
Administration and Autonomy In A
Replication-Transparent Distributed DBMS

Kenneth R. Abbott, Dennis R. McCarthy

Computer Corporation of America
Four Cambridge Center, Cambridge, MA 02142

Abstract

Administrative issues are of vital importance to organiza-
tions adopting distributed database technology. Most re-
search systems and emerging commercial DDBMSs have
assumed site autonomy as a guiding principle. This paper
presents some general problems associated with autonomy
and administration in a DDBMS, and discusses the in-
compatibility between replication transparency and site au-
tonomy. In a DDBMS which supports replication trans-
parency, the degree of site autonomy in a system should
properly be a policy decision made by system admin-
istrators. Parameterization of the degree of site autonomy
in a DDBMS involves careful design of a mechanism
involving storage structures, operations, and authorization.
A mechanism which extends the ANSI SQL authorization
model is described, and examples of how users can use the
mechanism to implement both centralized and decentralized
administration policies are presented.

1. Introduction

As distributed DBMS technology becomes more widely
available in commercial systems, issues related to
administration, configuration, and operation of distributed
systems are becoming increasingly important. Pragmati-
cally, administrative issues will probably be the hardest
problems faced by organizations attempting to adopt dis-
tributed database technology.

Research in distributed DBMS has focused on the problem
of access to distributed data (the problem of translating and
decomposing a database update or query into local updates
or retrievals at a set of communicating sites), but has not
paid much attention to administration of distributed data. A
few papers have discussed general organizational problems
of administering a distributed system [l] [2], but little
attention has been paid to the technical aspects of

Permission to copy without fee all or pt Of this rmtaial is

granted provided that the copies are not made or diiWed for
direct commercial advantage, the VLDB coWright rotice cud
the title of the publication and its date apear, md notice ir given
that copying is by permission of the Very Large Data Base
Endowment. To copy othexwise. or to republish, requites a fee
and/or special permission from the Endowment.

DBMS functionality that are useful for implementing dis-
tributed administration policies [33. Lack of work in the
area may reflect a bias that administrative and operational
problems are not technically interesting, and may also be a
consequence of the fact that the problems are not evident or
important in an R&D environment where most work on
distributed systems has occurred.

Single-site DBMS solutions to administrative problems
have evolved but they do not readily scale up to the dis-
tributed case for several reasons:

. Administration is complicated by fragmentation.
replication, and allocation of data to sites.

l Clear hierarchical lines of control at a single site do
not exist in a distributed system.

. In the distributed case, operations such as resource
allocation and backup/recovery decompose into dis-
tinct global and local components that are not dis-
tinguished in the single-site case.

As was recognized early on in the R* project, the issue of
site autonomy [4] is a seminal issue for the designer of a
distributed DBMS. The degree of site autonomy has a pro-
found effect on both the data access and administrative as-
pects of the DBMS. R* and emerging commercial systems
(Ingres/Star and Oracle*) adopt site autonomy as a basic
design principle. While the assumption of site autonomy
makes sense as a basis for migrating existing centralized
databases into a confederated distributed system, it affects
the ability of the system to hide distribution and
replication. Furthermore, the strong identification of au-
tonomy with sites obscures a useful distinction between
the logical concept of autonomy and the physical concept
of site. In fact, considerations of replication transparency
force a distinction between logical and physical concepts of
autonomy and administration. Logical level administrative
operations such as naming, backup, and reorganization of
tables necessarily involve cooperation (and hence loss of
autonomy) of sites which store replicated data. Local,
physical-level administrative operations (such as resource
allocation at a site) may be performed autonomously even
in the presence of replicated data.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

195

During the design of Adaplex [5], a homogeneous, replica-
tion transparent DBMS, replication transparency 1 and site
autonomy were found to be antagonistic goals. The goal of
fully transparent distribution and replication of data
strongly affects administrative DBMS functions as well as
data access functions2. Our work on Adaplex differs from
other systems because we began with the assumption of
replication transparency and investigated the implications
of this assumption on administration and autonomy. Our
approach was to parameterize the “degree of autonomy” in
the distributed system and allow database administrators to
trade-off between autonomy and replication transparency on
a per-installation basis. The key components of our
pammeterized approach are:

. introduction of the database storage structure (the
logical and administrative unit of autonomy) which
may be mapped to physical sites in various ways,
depending on the degree of site autonomy or
replication transparency desired,

l definition of intermediate storage structures and op-
erations which support a clear delineation between
logical level (site-independent) administration and
physical level (site-specific) administration;

. extension of the ANSI SQL authorization mecha-

‘For the purposes of this paper, we adopt the definitions
of distribution and replication transparency applied in [5]:

. Users see a logically centralized view of the catalog
(data dictionary) and the database. Names of objects
share a global namespace, and site names do not
appear in object names.

l Users are not associated with sites. Users may log
in to the DBMS and access data without regard for
their location (login site) or the location of data.

. When a user accesses a fragmented table, the DBMS
automatically decomposes the query into accesses to
fragments of the table. For retrievals, the DBMS
merges the results so that the user sees a single,
logically integrated table.

. When a user accesses replicated data, the DBMS
automatically transforms the access into an access to
a particular copy of the data item at some site. On
updates, the DBMS automatically propagates and
merges updates to all copies so as to maintain one-
copy serializability.

It is interesting to note in this context that R researchers
originally intended to support replicated data, but
eventually abandoned the effort 161.

nism to encompass these storage structures and
operations

Even with this flexible approach, it is necessary to make a
base assumption about the trustworthiness of the DBMS:
with full, “paranoid” site autonomy, the DBMS at one site
never trusts the DBMS at another site. However, many
algorithms and protocols for implementing transparent
replication must implicitly “trust” DBMS software at
multiple sites. Therefore, the parameterized mechanisms
described here cannot achieve “paranoid” site autonomy
(because users must trust DBMS software at remote sites)
but the mechanisms can achieve “functional” site auton-
omy (users can issue commands and perform operations
just as they would in a fully autonomous system).

In section 2, we will motivate and enumerate some of the
major technical issues in distributed database administra-
tion. In section 3, the role of operations, storage struc-
tures, and authorization in database administration are dis-
cussed in general terms. Section 4 describes the design of
the Adaplex storage structures and authorization mecha-
nism, and section 5 gives examples of how the Adaplex
mechanism can be used to implement a variety of
administrative policies.

2. Issues in Distributed Administration

Techniques for administering a single-site DBMS have be-
come well established as DBMS has become an essential
element of data processing. A key element in administra-
tion is identification of various administrative roles and the
association of various capabilities with them: DBMS op-
erators can perform DBMS operations that regular users
can’t; system administrators can do things that operators
can’t; etc. A common feature of single-site administration
schemes is that there is an implicit or explicit hierarchy of
roles - there is usually one role - that subsumes all oth-
ers.

However, in a distributed system, roles that are bundled in
the single-site case become unraveled. Responsibility for
the logical structure and integrity of the distributed database
is a system-wide role, while responsibility for detailed ad-
ministration tends to be distributed to localized roles at in-
dividual sites [2]. What was a hierarchy in the single-site
case is better understood as a balance of powers between
“spheres of control” [7] scattered throughout the distributed
system. Notice that a distributed system can be adminis-
tered in either a centralized or decentralized fashion. How-
ever, single-site administration techniques are not directly
applicable even in a centrally administered distributed sys-
tem.

The following paragraphs summarize some of the major
administrative issues which come into play in a distributed
system.

196

Replication Transparency vs Site Autonomy

In a distributed system, it is desirable to consider distribu-
tion and replication as physical details of an object’s
representation. In the query language, logical objects (e.g.
tables) are manipulated without regard for their physical
representation. Replication transparency means that the
user is unaware that a logical object may be represented by
multiple physical copies. Some administrative implica-
tions of replication transparency conflict with site auton-
omy:

.

.

.

Access control - with site autonomy, sites can con-
trol a user’s ability to access individual copies of
data. This violates transparency because a user may
be able to access some, but not all, copies of a data
item, and the behavior of a query may vary de-
pending on the copy selected. Furthermore, the
DBMS cannot guarantee mutual consistency of
replicated data if it cannot update all copies in an
identical fashion.

Operation - autonomous operation of sites can cause
inconsistencies between copies of a data item. For
example, individual copies of a data item cannot be
restored from tape, because the restored copy will be
out synch with other copies. Possible solutions
(prohibiting uncoordinated restores, or forcing all
sites to restore simultaneously) violate site auton-
omy.

Resource allocation - physical resources such as
disks are controlled by individual sites. In general,
the resources at a site will be used in a variety of
applications; the distributed DBMS will be merely
one activity among many being performed at a site.
The need to control allocation of site resources to
the DBMS must be balanced against the DBMS
need to maintain identical copies of data at different
sites.

Local View vs The Big Picture

In the distributed case, there is no “all-seeing, all-powerful”
person with total authority over all details of distributed
system operation. In general, designing, implementing,
and using a distributed database involves the interaction of
several people in different roles. For example, the designer
of a distributed database may have the “big picture** in
terms of the overall logical design (e.g. global access paths
for distributed queries, system-wide requirements for
availability and recovery, etc) but cannot be expected to
have the detailed knowledge of particular sites (e.g. names
of disk units, filenames, etc) necessary to implement the
design.

Top Down vs Bottom Up Database Design

Top-down design and implementation requires centraliza-
tion of authority in the database designer. The designer is
responsible for defining the logical structure of the database
and allocating and replicating data at sites. Individual sites
are treated as anonymous resources to be used as the global
design dictates.

Bottom-up design and implementation is done in a decen-
tralized fashion: individual pieces of the database are
independently created at various sites, and the system ad-
ministrator is responsible for passively reacting to deci-
sions made locally at sites. Bottom-up design mode is
compatible with full site autonomy.

3. Overview of Distributed Database
Administration

Although the query language is often considered the only
“important” interface to a DBMS, most vital administra-
tive DBMS functions are not accessible from the query
language. Consider the case of the SQL [81 language,
which is purely a query language in the sense that it deals
only with the “logical” objects presented by a DBMS: ta-
bles, indexes, authorization ids, etc. It does not address the
way in which a particular DBMS maps these abstract rela-
tional concepts to structures or facilities provided “outside”
the DBMS, nor does it address issues pertaining to operat-
ing the DBMS in a failure-prone environment (viz, the real
world). Commercial DBMS’s based on SQL (e.g., DB2,
Oracle) have extended SQL to address these administrative
aspects of database management. In fact, for most
commercial DBMSs, more linear feet of documentation are
dedicated to administrative functions than to data access
functions. From the standpoint of an organization using a
DBMS, easy and reliable administration of the DBMS may
be as important as accessibility of data in the DBMS.

In this paper, we will focus on on the following aspects of
DBMS administration:

. Resource Allocation and Utilization - The issue of
resource allocation reflects the need to share physical
resources such as disks, tapes, processors, etc be-
tween various functions, one of which is data man-
agement. There is a need to be able to conveniently
allocate needed resources to a DBMS and to be as-
sured that the DBMS will not exceed its allocation.
The issue of resource utilization reflects a related
need to exercise fine-grained control over how the
DBMS uses particular resources. The placement of
data on disk, in particular, can be an extremely im-
portant factor in DBMS performance.

l DBMS Operation - Administering a database in-
volves performing many operations. Some of these

197

operations involve interaction with both the DBMS
and the host system. Many of these operations do
not directly involve logical data objects such as ta-
bles. Some major categories of DBMS operations
are: installation, system and site control, routine
maintenance, and recovery.

3.1 The Role Of Storage Structures in
Administration

To support administrative DBMS functions, most com-
mercial DBMSs introduce “intermediate” storage structures
into their storage architecture (e.g. DB2 has databases,
table spaces, and storage groups [9]; Oracle has partitions,
spaces, and clusters,[lOl etc.). Administrative operations
work on intermediate storage structures rather than logical
objects. In effect, intermediate structures are the objects of
administrative “design” of the database, just as physical
structure are objects of physical design.

In a distributed DBMS, the issues related to intermediate
storage structures are quite complex. The mapping from
logical objects to physical storage has an additional layer
of complexity introduced by the need to locate data at sites.
Also, the physical representation of an object may span
site boundaries. Support of fully transparent distribution
and replication of data further complicates the role of in-
termediate storage structures. There are needs both for dis-
tributed intermediate structures (to facilitate administration
of logical objects - e.g. groups of related tables) and for
localized structures (to facilitate placement of data on disk
at a particular site.)

3.2 Authorization And Administration

To tailor the configuration of a DBMS to conform to a
particular organization’s needs, an authorization mechanism
is providedThis mechanism allows administrators to se-
lectively control a user’s ability to access data and/or to
perform administrative operations. SQL defines an autho-
rization mechanism based on the granting and revoking of
privileges on objects which is derived from the System R
authorization mechanism [111. The SQL authorization
mechanism supports access control to data in tables and
indexes. When administrative functions are factored into a
DBMS, there is a parallel need to control access to and
operations on objects which are not visible in the query
language. To serve these needs, the basic SQL authoriza-
tion mechanism must be extended [121.

In extending the SQL mechanism, the DBMS designer
must make design choices along several dimensions :

. How are users and data identified and named for pur-
poses of authorization [3] [13]?

l What intermediate storage structures does the DBMS
provide and what primitive operations are allowed

on them?

. How are are various administrative roles represented
for purposes of authorization?

There are innumerable subtleties in design choices along
any dimension, and there are often unexpected connections
between superficially unrelated design choices3

To achieve the goal of designing a flexible mechanism that
works well in many different situations, it is necessary to
make compromises along all dimensions. The measure of
success is not in making the mechanism optimal for any
particular application, but in making it close to optimal
for a spectrum of anticipated applications.

4. The Adaplex Administrative
Concepts and Mechanisms

The Adaplex authorization model and mechanisms were
designed to allow implementation of policies with the fol-
lowing requirements:

1.

2.

3.

4.

Allow a database designer the ability to specify a
logical and physical design without requiring de-
tailed knowledge of sites that may eventually store
data.

Allow a naive user to perform simple operations
(e.g. CREATE TABLE without fancy options)
without intervention of site or database ad-
ministrators.

Allow an “indifferent” site administrator to permit
the system to place data at the site by issuing sim-
ple commands, without requiring knowledge of the
overall database design.

Allow a “concerned” site administrator to have fme-
grained flexibility and control over physical place-
ment of data at the site, but deny him the ability to
override logical or physical design decisions made
by a database designer.

Notice that it is a policy decision (at each installation) to
allow or deny the capabilities implied by these require-
ments.

3 An example of an unexpected connection between design
decisions was the discovery that implementation of
“protection views” in R* was significantly complicated by
considerations of site autonomy [14] [15]. “F’rotection
views” are objects of authorization which can be used to
provide users with a restricted view of tables which they
would not otherwise be authorized to access.

198

The remainder of this section is organized as follows. First
we introduce a generalization of the notion of site au-
tonomy. Then we discuss administrative roles. Finally, we
describe the authorization mechanism used to implement
these roles.

4.1 Storage Structures

In Adaplex, a database the unit of administrative auton-
omy. It is a self-contained subset of the distributed DBMS
with a unique system-wide name. A database encapsulates a
namespace which contains tables, users, indexes, etc. A
database contains both user data and the catalogs which de-
scribe the data. Catalogs for a database are physically
replicated at every site which stores any data stored in the
database. There is no “hard-wired” association between sites
and databases: a site may store data from zero, one, or
many databases. However, it is useful the think of a
database as the logical analog of a site, in the following
senses:

l Each database contains a disjoint namespace. Refer-
ences from one database to another must be qualified
by database name.

l Users are validated relative to a database (i.e. a user
is named object within a database’s name space).

. Databases are decoupled from each other - activity
in one database cannot affect data or users in another
databas.

Thus the database abstracts the various logical notions of
autonomy (e.g., independent operation, separate names-
pace) without implications about physical representation.

Using databases, users have considerable flexibility in
configuring a distributed DBMS. If all data is placed in a
single database, then the system acts like a logically cen-
tralized DBMS with a single namespace and globally
replicated metadata. If each site is associated with exactly
one database, then the system acts like a loose federation of
autonomous sites, where each site maintains its own
namespace, users, and data. It is also possible to define in-
termediate configurations where multiple databases are
stored at multiple cooperating sites.

A table exists within a database and can be fragmented and
replicated (within the containing database) as described in
[5]. A copy of a fragment of a table is stored at a site in a
pagespace, which is the Adaplex intermediate storage
structure that represents actual physical storage at a site.

The following table summarizes the intermediate structures
used to represent and store table and index data:

The configuration of a distributed DBMS is determined by
control over pagespaces as well as by the use of databases.
Sites can maintain a degree of autonomy by retaining con-
trol over their pagespaces. To centralize database adminis-
tration, sites must give up control of pagespaces. Adaplex
provides flexible control over pagespaces through its au-
thorization mechanism.

Storage Structure

Database

Description

A self-contained environment (virtual DBMS) in which users,
tables, etc. are defmed. A database can exist at one or more sites,
and a site may store one or more databases.

Fragment A horizontal partition or “slice” of a table. A fragment is defined
by a predicate defined on columns within a single table.

Fragment Group A set of logically related fragments which am distributed,
replicated, and recovered as a unit.

A set of disk pages at a site used to store fragments with similar
characteristics. A pagespace is defined in terms of host system
files, which may have been created outside of Adaplex.

Figure 1. A&plex Storage Structures

199

4.2 Administrative Roles

In a centralized DBMS, the roles played by various classes
of DBMS users and operators are fairly well understood and
established. In DB2, there is a hierarchy of roles, with the
“system administrator” being all-seeing and all-powerful.
In a distributed DBMS, the roles are more differentiated and
are no longer hierarchical. In particular, the centralized
system administrator role bifurcates into two roles: a
global administration role and a site administration role
[2]. The following list summarizes administrative roles
iden t&d for Adaplex:

. Global Administrator - This role is responsible
for managing a distributed Adaplex system. The role
has complete control over all logical objects in the
system, but does not directly control allocation of
resources at a particular site. Responsibilities
include system-wide installation and configuration.

. Database Administrator - This role is re-
sponsible for a single database. The role has control
over all objects in the database. Responsibilities
include database design, maintenance of tables and
indexes, and fragmentation and replication of data.

. Site Administrator - This role is responsible for
managing a single site. The role has complete
control over physical resources at the site, but may
have limited control over the mapping of logical
structures to physical structures. Responsibilities
include site-specific installation and configuration,
creation and maintenance of local storage structures,
and local operations.

The implementor of an authorization policy has the option
of assigning multiple administrative roles to a single user
or may choose to assign different administrative roles to
different users. In the latter case, administration of the
DBMS requires active cooperation among the various ad-
ministrators. The authorization mechanism makes it pos-
sible for non-cooperating administrators to effectively
“veto” operations that might impinge on his ‘or her sphere
of control. For example, data may not be stored at a site
until the proper physical structures have been initialized at
the site. If the authorization policy separates the site and
database administration roles, then a site administrator may
block the storage of data at his site by refusing to create
the requisite structures. However, if the site administrator
does create the structures, the site administrator still does
not have any control over the stored data since control over
the “logical” data remains vested in the database
administrator.

4.3 Authorization Mechanism

The Adaplex authorization mechanism is based on the
ANSI GRANT/REVOKE model [81, and is strongly influ-

enced by (but not identical to) the DB2 mechanism [12]. In
the simplest form of this mechanism, users perform
operations on objects. A privilege is a ternary relation be-
tween a user, an operation, and an object which represents
that the user is authorized to perform the operation on the
object. There are numerous extensions to this basic model,
some of which have been implemented in DB2 (e.g.
aggregate privileges), and some of which have been pro-
posed (e.g. classes or groups of users [16]). Adaplex pro-
vides aggregate privileges to support the administrative
roles described above.

Wilms and Lindsay [16] briefly discusses the issue of au-
thorization in a distributed, site autonomous system. The
approach taken by Adaplex differs from that approach be-
cause authorization is also site transparent.

The basic user/privilege/object mechanism has the draw-
back that all privileges must be attached to DBMS objects.
This leads to bootstrapping problems: installing or
configuring the DBMS requires authorization, but the
DBMS may not be functional or may contain no objects.
DB2 solves this problem by imprinting itself with the
host operating system id of the “superuser” who initially
configured the DBMS, and recognizing that id as a special
one. This technique is very awkward in the distributed case,
because the same user can access the DBMS from many
different sites with different host system ids.

To generalize this notion, the concept of an authority was
introduced. The appropriate privilege or authority is re-
quired to perform an operation. Authorities are authenti-
cated using passwords, without reference to a database.
They are “hardwired” into the DBMS, and cannot be
granted or revoked. Adaplex recognizes two authorities:
system and site. System Authority corresponds to “global
administrator” role. It controls addition and deletion of
sites, creation and replication of databases. Site Authority
corresponds to the “site administrator” role. It controls lo-
cal storage structures and operations at a site.

A user may gain site authority over his login site if he
knows the password for the site. (The password for the site
is stored at the site during the installation procedure.) No-
tice that Adaplex will only grant site authority to users
actually logged in at the site. Using the site authority,
privileges to perform operations on pagespaces can be
granted to users in databases. In this manner, control over
local resources can be transferred from the site administra-
tor to a database administrator.

5. Implementing Administrative
Policies

In designing the authorization mechanism, it became clear
that there is an unavoidable conflict between the ad-
ministrative roles described above. Site administrators want

200

total control over resources at their site; global and
database administrators want to be able to commandeer re-
sources from sites as dictated by the global needs of the
system. We attempt to resolve this conflict by division of
labor and authority between administrative roles. In gen-
eral, configuring a site as part of a distributed Adaplex
system will require the execution of some operations re-
quiring authority at a site, some commands requiring au-
thority on specific objects, and some commands requiring
authority on both simultaneously.

5.1 Site Administration

When a copy of a fragment group is stored at a site, each
fragment in the fragment group must be assigned to a
pagespace at the site. Before the fragment group is stored,
the pagespaces must be created, and the user placing the
fragments in the pagespaces must be granted privileges to
use the pagespaces. A site administrator has control over
the creation and use of pagespaces at a site. Initially, site
authority is required to create a pagespace or to store a
fragment in a pagespace.

To retain local control, the site administrator creates
pagespace (using site authority) and grants database
administrators the privilege to store fragments in the
pagespace. In this case, storing a copy of a fragment group
at a site is a two stage process, with responsibility divided
between the site administrator and the database administra-
tor. First the site administrator must create the pagespaces
and grant privileges to use them. Then the database admin-
istrator stores a copy of the fragment group at the site in
the pagespaces. The site administrator can veto the place-
ment of a fragment group at a site by refusing to set up the
pagespaces. Local control of a site is desirable from the
standpoint of site autonomy, but is undesirable because it
requires frequent close collaboration between database ad-
ministrators and site administrators.

Alternatively, the site administrator can grant privileges on
the site to users in a database (that is replicated at the site).
For example, granting the privilege to create pagespaces on
the site makes it possible for users to create pagespaces (in
a single database) at the site without explicit intervention
by the site administrator.

A logically centralized DBMS can be configured by grant-
ing privileges for site operations on all replication sites of
a database to the database administrator. The database ad-
ministrator then has control over the “logical” data as well
as its physical placement.

5.2 Distributed Database Design and
Implementation

A distributed database can be designed, implemented, and
used in either a centralized fashion or a decentralized
fashion. The activities of design, implementation, and use
are independent in the sense that it is possible (for
example) to design a database centrally, implement it in a
decentralized manner, and use it in a centralized fashion.
Since a DBMS does not usually directly support database
design (independent of implementation), in this section we
focus on database implementation and usage, and describe
schematically how the authorization mechanism can
accommodate both centralized and decentralized styles of
administration.

To illustrate how the authorization mechanism is used, we
distinguish two usage modes and two resource control
modes for a distributed database. The usage modes are:

1. Interactive mode: In this mode, users can create and
drop tables and views. There is no single database
designer who has the universal view of all objects in
the database. This mode of usage might occur
within a department where the DBMS is used as a
decision support tool and ad hoc queries are com-
mon.

2. Production mode: In this mode, the schema for a
database is designed and implemented specifically to
support an application. There is a database adminis-
trator for each database who has a universal view of
database contents and who is responsible for moni-
toring and implementing all changes to the database.
This mode of usage might occur in a large company
developing MIS applications for in-house clients.

Orthogonal to the usage modes described above are
“resource control modes” for processors and disks in the
distributed system:

1. Cooperative mode: Resources are used cooperatively
and are allocated on an as-needed basis. All the re-
sources in the distributed system are controlled by
the same organization, and can be used inter-
changeably. This mode might correspond to a
DBMS running on a small LAN where all proces-
sors are controlled by the same department in a
company.

2. Autonomous mode: Resources are strictly allocated
along site boundaries and each site has strong con-
trol over its own resources. This mode might corre-
spond to a DBMS running a geographically dis-
tributed network, where each site is controlled by a
different corporate organization.

201

Role

Database
Administrator

Action

Create user profiles in the database for all interactive users.
Grant privileges to all users which allow them to create tables,
indexes, and fragment groups.

Site
Administrator

At each site where data will be stored, create default pagespaces
and grant interactive users the privileges to place fragment
groups in the pagespaces.

SQL User As desired, define new tables and indexes. Use default fragment-
ation and replication parameters so that data is automatically
placed in &fault pagespaces created by site administrators.

Figure 2. Interactive Usage/Cooperative Resource Control Scenario

The following scenarios are constructed by considering
combinations of usage modes and resource control modes.
In all of them, it is assumed that the global administrator
has already created a database and replicated it at all of the
sites where data is to be stored.

Figure 2 describes the combination of interactive and co-
operative modes. In this scenario, ‘mtive” interactive use is
accommodated by heavy use of default values. Database and
site administrators collaborate in setting up author-ization
and storage structures so that default mechanisms work
transparently.

Figure 3 describes the combination of interactive and au-
tonomous modes. In this scenario, interactive usage is ac-
commodated by liberally granting privileges on logical
objects (tables) but limiting privileges to create pagespaces
to site administrators. By NOT creating default pagespaces,
site administrators force users to be explicit in specifying
physical storage. If a user wants to store data at a site, the
user must get the site administrator at the site to create
pagespaces and/or grant privileges on pagespaces at that
site.

Role

Database
Administrator

Action

Create user profiles in the database for all interactive users.
Grant privileges to all users which allow them to create tables,
indexes, and fragment groups.

Site
Administrator

When a user wants to store data at a site, the user negotiates
with the site administrator, who creates a pagespace at the site
and grants the privilege to place data in the pagespace to the
user (and no other user).

SQL User Create tables and explicitly specifies fragmentation, replication,
and creation of fragment groups. For each fragment group,
replicate it at sites by explicitly placing it in the pagespace
created by the site administrator.

Figure 3. Interactive Usage/Autonomous Resource Control Scenario

202

Role Action

Site
Administrator

At each site which will store data, grant the privilege on the site
to allow the database administrator to act as site administrator.

Database
Administrator

Design the logical schema, and determine fragmentation, fragment
grouping, and placement of fragment groups at sites. Create
pagespaces at sites as needed. Create tables, fragments, and
fragment groups, and explicitly place fragment groups in
previously defined pagespaces. Grant ordinary users privileges
to access the logical objects (tables) but not the underlying
pagespaces.

Figure 4. Production Usage/Cooperative Resource Scenario

Figure 4 describes the combination of production and co-
operative modes. In this scenario, all control over resources
is centralized by granting the site administrator privilege
on each site to the database administrator. By NOT grant-
ing privileges on pagespaces to users, users are prevented
from creating new tables without collaboration with the
databaseadministrator.

Figure 5 describes the combination of production and au-
tonomous modes. In this scenario, the database admini-
strator and site administrators share responsibility for
designing and implementing the database. Collaboration is
forced by NOT granting privileges on sites to the database
administrator.

5.3 Operational Example: Backup and Re-
covery

Even routine DBMS operations (e.g. backup, software in-
stallation, log maintenance, etc) can be complicated by
distribution, autonomy, and replication. To illustrate this
point, this section uses backup and recovery operations as
examples of a basic DBMS operations that are affected by
these considerations.

Backup and recovery must work on fragmented, distributed,
replicated, and geographically dispersed data. The obvious
implementation (mount a tape and put all the data you
want on it) is unwieldy for two reasons:

I Role

Databuse
Administrator

Site
Administrator

Action

Design the logical schema, and determine fragmentation, fragment
grouping, and placement of fragment groups at sites. In cooper-
ation with site adminstrators, determine pagespaces required
to hold fragment groups at each site.

At each site, create the pagespaces agreed on with the database
administrator. Grant the privilege to place fragment groups
in each pagespace to the database administrator.

Database
Administrator

Create tables, fragments, and fragment groups, and explicitly
place tiagment groups in previously defined pagespaces. Grant
ordinary users privileges to access the logical objects (tables)
but not the underlying pagespaces.

* Figure 5. Production Usage/Autonomous Resource Control Scenario

203

. To obtain a consistent snapshot of a table (for ex-
ample) may require retrieving data from fragments at
remote sites. Transmission of the large volumes of
data required for backups over the network would
swamp the network and would cause backups to take
a long time (and hence be less likely to complete
successfully).

. If recovery is required, then the backup tape may be
at a different site from the recovery site. This not
only implies the data transmission problems men-
tioned above, but has the operational problem of
getting the correct tape mounted at the correct time
at a remote site (which may be anywhere else in the
world!).

Individual sites cannot be allowed to autonomously backup
local data, because there is no way to ensure that backups
taken independently at different sites contain a consistent
snapshot of the system. This is a problem when data at
one site may refer to or depend on data at another site (even
in the absence of replication). Therefore, even if backup
operations only put local data on tape, there needs to be a
global synchronization of backup operations. Similarly,
recover operations must be synchronized when there are
inter-site data dependencies. Furthermore, recovery of
replicated data must synchronize all copies of the data, not
just the copy being recovered.

Adaplex implements distributed backups using the read-
only transaction mechanism [17]. The backup operation is
performed in two phases: in the global phase, a database
administrator “declares” a backup and gives it a name; in
the local phase, individual site administrators “attach” to
the backup and make tapes containing local data which is
consistent with data put on tape at other sites. Internally,
Adaplex starts a distributed read-only transaction when the
backup is declared. This transaction reserves a consistent
snapshot of the database at all sites which will participate
in the backup. When individual sites attach to the backup,
data is retrieved using the read-only transaction and put on
tape. Since the database snapshot is automatically reserved
until transaction termination, there is no need for real-time
synchronization of local backup operations.

The distributed recovery operation has a similar two phased
structure. The recover operation is first declared, and then
individual sites perform local recover operations. To guar-
antee mutual consistency, Adaplex will not make the logi-
cal object being recovered accessible until all local opera-
tions have successfully completed.

6. Conclusions and Areas For Future
Work

Before distributed DBMS technology can be adopted, ade-
quate solutions must be provided for the problems of

administering a distributed DBMS. Existing solutions for
single-site DBMS’s do not address the complications in-
troduced by distribution. Database administrators must deal
with fragmentation and replication; there are operations
that span sites and must produce consistent results; the hi-
erarchy of administrative roles in a single-site DBMS
breaks down in the distributed case. Site autonomy has
been proposed as a guiding principal in distributed DBMS
administration, but it is incompatible with replication
transparency. We propose a generalization of site auton-
omy in which the database is the unit of autonomous ad-
ministration. Autonomy is raised to the logical level; sites
are treated as physical resources. This allows a range of
configurations for a distributed DBMS. At one extreme,
functional site autonomy can be achieved by imposing a
one-to-one correspondence between sites and databases. At
the other extreme, a system can be configured to behave
like a logically centralized DBMS by storing all data in a
single database which is present at all sites. Intermediate
configurations are possible with varying usage modes and
resource control modes. We describe intermediate storage
structures and an authorization mechanism that provide
flexibility in configuring a distributed DBMS.

Areas for future work include:

.

.

ill

El

Distributed Resource Control - this paper has
“routine” DBMS administration. It is not clear how
this techniques will work in “exceptional” cases.
For example, suppose a disk at one site overflows
when applying updates to a copy of a replicated data
item. There are many possible actions the system
could take: abort all update transactions until the
condition is fixed, take the copy offline, make the
logical data item unavailable, etc. It is not clear
what tools are needed to diagnose such problems in
a distributed system, nor is it clear who is respon-
sible for recognizing and fixing such problems.

Distributed Security - the problems of providing se-
curity in a distributed system are well known. In the
absence of reliably secure networks and trusted
security kernels, it is not clear to what extent sites
in a distributed system can trust each other.

References

J. M. Gross, P. E. Jackson, J. Joyce, and F. A.
McGuire, “Distributed Database Design and
Administration”, Distributed Databases: An
Advanced Course, Draffan and Poole, eds.,
Cambridge University Press, 198 1.

H. Walker, “Administering A Distributed
Database Management System”, ACM-SIGMOD
Record, 12~3.1982.

204

r31

[41

El

El

PI

@I

r91

DOI

S. Ceri and G. Pelagatti, “Distributed Databases:
Principles and Systems”, McGraw-Hill, 1984.

B. Lindsay and P. Selinger, “Site Autonomy
Issues in R*: A Distributed Database
Management System”, IBM Research Report
RJ2927, IBM, San Jose, CA.

A. Chart, et al, “Overview of An ADA
Compatible Distributed Database Manager*‘,
ACM-SIGMOD Proceedings, San Jose, CA,
1983.

B. Lindsay, “A Retrospective of R*: A
Distributed Database Management System*‘,
Proceedings of the IEEE 75.5, 1987.

0. Bray, “IRM In A Decentralized/Distributed
Environment”, Database Engineering, 9:2,1986.

ANSI, “ANSI X3.135-1986 Database Language
SQL”, American National Standards Institute,
1986.

IBM Corp., “IBM Database 2 Data Base Planning
and Administration Guide”, SC264077-3, IBM
Carp, 1987.

Oracle Corp, “Oracle Database Administrator’s
Guide”, 3601-V5.0, Oracle Corp., Belmont, CA,
1986.

Ull

WI

1131

041

WI

ml

[17l

P. Selinger and B. W. Wade, “An Authorization
Mechanism For a Relational Database System”,
ACM-TODS, 1:3, 1976.

IBM Corp., “IBM Database 2 System Planning
and Administration Guide”, SC26-40853, IBM
Corp. 1987.

B. G. Lindsay, “Object Naming and Catalog
Management For A Distributed Database
Manager”, Proceedings 2nd International
Conference On Distributed Computing Systems,
Paris, 1981.

D. Daniels, et al, “An Introduction To Distributed
Query Compilation in R*“, Proceedings of The
2nd international Symposium On Distributed
Databases, Berlin, 1982.

E. Bertino. L. M. Haas, and B. G. Lindsay,
“View Management in Distributed Data Base
Systems”, IBM Research Report RJ3851, IBM
Corp., San Jose, 1983.

P. F. Wilms and B. G. Lindsay, “A Database
Authorization Mechanism Supporting Individual
and Group Authorization”, IBM Research Report
RJ3137 (38514), IBM Research, San Jose, CA,
1981.

A. Chan and R. Gray, “Implementing Distributed
Read-Only Transactions”, IEEE Transactions on
Software Engineering, SE-l 1:2, February, 1985.

205

