
A logical framework for temporal deductive databases

S. M. Sripada

Department of Computing
Imperial College of Science & Technology

180 Queen’s Gate, London SW7 2BZ

Abstract

Temporal deductive databases are deductive
databases with an ability to represent both valid
time and transaction time. The work is based on
the Event Calculus of Kowalski & Sergot. Event
Calculus is a treatment of time, based on the
notion of events, in first-order classical logic
augmented with negation as failure. It formalizes
the semantics of valid time in deductive databases
and offers capability for the semantic validation
of updates and default reasoning. In this paper,
the Event Calculus is extended to include the
concept of transaction time. The resulting
framework is capable of handling both proactive
and retroactive updates symmetrically. Error
correction is achieved without deletions by means
of negation as failure. The semantics of
transaction time is formalised and the axioms of
the Event Calculus are modified to cater for
temporal databases. Given a description of
events, axioms are presented for deducing
relationships and the time periods for which they
hold with respect to any past/present state of the
database .

(1) Introduction

Interest in research concerning the study of time
in databases has been growing steadily over the
past few years. The study of time has attracted
researchers from various fields such as artificial
intelligence, databases, natural language
processing, logic and concurrent systems. Many

Permission to copy without fee alI or put of this mat&l is
granted provided tht the copies are not made cr distributed for
direct axnmexcial advantage, the VIDB copyright notice and
the title of the publication end its date appca, end notice is given
chat copying is by permission of the Very Large Data Bose
Endowment. To copy o&wise, or to republish. requires a fee
and/or special permission from the Endowmcnt.

researchers have incorporated time into
conventional databases using various schemes
providing different capabilities for handling
temporal information. In particular, work has
been done on adding temporal information to
conventional databases to turn them into temporal
databases. However, no work is done on
handling both transaction time and valid time in
deductive databases. In this paper we propose a
framework for dealing with time in temporal
deductive databases.

Snodgrass dz Ahn [16,17] describe a
classification of databases depending on their
ability to represent temporal information. They
identify three different concepts of time - valid
time, transaction time and user-defined time. Of
these, user-defined time is temporal
information of some kind that is of interest to the
user but does not concern a DBMS. It is just
treated as any other non-temporal attribute.
Valid time is the time for which information
models reality and corresponds to the actual time
for which a relationship holds in the real world.
Transaction time, on the other hand, is the
time at which information is stored in the
database. Databases which represent only the
latest snapshot of the world being modelled are
called snapshot databases. All conventional
databases come under this category, for example,
INGRES[20]. Databases which represent
transaction time alone and therefore treat valid
time and transaction time as identical are called
rollback databases since it is possible to
rollback to a past state of the database and pose a
query with respect to that state. The
POSTGRES[21] model is a database in this
category. The problem with representing
transaction time alone is that a history of the
database activities is recorded (since every
database state is stored, in effect), rather than the
history of the world being modelled. Thus it is
not possible to make proactive/retroactive updates
and errors in a past state cannot be corrected.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 171

Databases which store the history of the real
world as is best known are called historical
databases[2,4,5,9,10,12]. These databases have
the concept of valid time alone but it is possible
to make changes to the history of each tuple.
Thus changes could be made to reflect the past as
is best known. Finally, databases which store all
the past history as is best known at every state of
the database are called temporal databases[191.
These databases involve a representation of both
valid time and transaction time for each tuple. An
extensive bibliography of research concerning
time in databases is given in [13,18].

Temporal databases are especially useful when
updates have retrospective effect. For example,
in [151, Sergot et al. discuss the representation
of the British Nationality Act as a logic program.
A database might be used to record the details of
a person. The logic program can then be used to
deduce whether or not that person is, according
to the act, a British citizen. As the person’s
details change, their status can change
accordingly. It is possible for a person to become
a British citizen and for this status to have effect
from the date of their birth. A temporal database
preserves the distinction between what was
previously considered to be their status at the
time of their birth and what is now considered
to be their status at that time. This capability is
achieved by an explicit storage of the time at
which information becomes available. In the case
of databases, this time is referred to as the
transaction time.

In this paper, we extend the Event Calculus of
Kowalski & Sergot[8] to formalize the semantics
of time for temporal deductive databases. In the
following section, we outline the treatment of
time in the Event Calculus. In section 3, we
outline the framework, in section 4 we formalize
the semantics of transaction time in temporal
databases and, in section 5, we modify the
axioms of the Event Calculus to accommodate the
concept of transaction time thereby forming a
theory of time for temporal deductive databases.

(2) Event Calculus

The Event Calculus of Kowalski & Sergot[8] is a
treatment of time formalized in first-order
classical logic augmented with negation as
failure[3]. It is based on the notion of an event as

primitive. Various relationships and the time
periods for which they hold are derived from a
description of events that occur in the real
world. The approach is closely related to Lee et
al.‘s[10,14] treatment of time in deductive
databases and Allen’s interval temporal logic[11.
In his paper, Kowalski[9] deals with database
updates using the Event Calculus and compares
this approach with updates in a conventional
relational database and the use of modal temporal
logic, situation calculus and case semantics for
storing and updating information in a database. It
is argued that the Event Calculus combines the
expressive power of both case semantics and
situation calculus, derives the computational
power of logic programming and overcomes the
frame problem of the situation calculus. Schemes
for specializing the Event Calculus so as to make
it comparable in efficiency to that of relational
databases with destructive assignment are also
presented in Kowalski[9]. In the following, we
give an outline of the treatment of time in the
Event Calculus.

In the Event Calculus, event descriptions are
used to deduce the existence as well as the
initiation and termination of time periods. Each
time period is uniquely identified by a
combination of the relationship that holds during
the time period and the event which initiates or
terminates the period. This is so, because, each
event may initiate or terminate more than one time
period and there may be several different time
periods in which the same relationship holds.
The term[7,11] after(e r) is used to denote a
time period started by an event e in which the
relationship r holds. Similarly, the term
before(e r) is used to denote a time period
terminated by the event e in which the
relationship r holds. The atom[7,11]
Holds(after(e r)) is a shorthand version for the
atom Holds(r after(e r)) and means that the
relationship r holds in the time period after(e r).
Similarly, the atom Holds(before(e r)) asserts
the fact that the relationship r holds in the period
before(e r).

For example, let El be an event in which John
gave a book to Mary and E2 be an event in
which Mary gave the book to Bob. Assume that
E2 occurred after El. Then, given these event
descriptions, we could deduce that there is a
period started by the event El in which Mary
possesses the book and that there is a period

172

terminated by El in which John possesses the
book. This is represented pictorially in Fig 1.

1”
Fig 1

The axioms of the Event Calculus for deducing
such time periods are as follows:

Holds(before(e r)) if Terminates(e r) EC1

Holds(after(e r)) if Initiates(e r) EC2

These axioms are used along with application
specific rules such as

Initiates(e possesses(x y)) if
Act(e give) and
Recipient(e x) and
Object(e y)

and

Terminates(e possesses(x y)) if
Act(e give) and
Donor(e x) and
Object(e y)

However, deducing that two time periods are
identical involves some default reasoning since it
depends on the assumption that there is no event
in between which initiates or terminates a
conflicting time period. This is captured in the
following axioms(readers are referred to [8] for
detailed explanation and examples):

These rules state the relationships that each kind after(e r) = before(e’ r) if
of event initiates and terminates.The types of Holds(after(e r)) and
events for which such rules are given depends Holds(before(e’ r)) and
upon the domain of application. It is then e c e’ and
possible to deduce that the following are true: NOT Broken(e r e’) EC7

Holds(after(E1 possesses(Maty Book)))
Holds(before(E1 possesses(John Book)))
Holds(after(E2 possesses(Bob Book)))
Holds(before(E2 possesses(Mary Book))).

Having deduced the existence of time periods,
there is a need to deduce the Start and End of
each time period. The axioms for this are the
following:
(The atom Start(x y) denotes that the start of the
time period x is the event y.)

Start(after(e r) e)

End(before(e r) e)

Start(before(e’ r) e) if

EC3

EC4

after(e r) = before(e’ r)

End(after(e r) e’) if

EC5

after(e r) = before(e’ r) EC6

These axioms allow us to deduce that
(i)the period after(E1 possesses(Mary Book))
is started by the event E 1 (using axiom EC3)
(ii)the period before(E1 possesses(John
Book)) is terminated by the event El (axiom
EC4)
(iii)the period before(E2 possesses(Mary
Book)) is started by the event El if the periods
afer(EI possesses(Mary Book)) and
before(E2 possesses(Mary Book)) are identical
(axiom EC5) and
(iv)the period after(E1 possesses(Mary Book))
is terminated by the event E2 if the periods
ajler(El possesses(Mary Book)) and
before(E2 possesses(Mary Book)) are identical
(axiom EC6).

Here, the relation < is a chronological ordering
on events. e < e’ means that theevent eoccurs
chronologically earlier than the event e’. The
relation s has a similar meaning. The NOT is
interpreted as negation as failure.

Broken(e r e’) if Holds(after(e* r*)) and
Exclusive(r r*) and
e c e* and
e* c e’ EC8

173

Broken(e r e’) if Holds(before(e* r*)) and
Exclusive(r r*) and
e<e* and
e* < e’ EC9

The atom Exclusive(r r*) is true when the
relationships r and P are identical or r and r* are
incompatible(cannot be true simultaneously).

Exclusive(r r*) if r = r*
Exclusive(r P) if Incompatible(r r*)
and, to reason with equality,
r = r

The incompatibility of relationships are defined
by application specific rules such as

Incompatible(owns(Mary Bookl)
owns(Bob Bookl))

which states that different persons cannot own
the same book at the same time.

There are other cases whereby time periods
interact to imply the existence of Starts and Ends.
These are described below by means of examples
(in figures) along with the corresponding
axioms.

The case where there are two events, one
initiating a relationship and the other terminating
the relationship, with no event that affects the
relationship occurring between these two events
is shown in Fig 2. Axioms EC5, EC6 and EC7
deal with this c&e.

after(e possesses(Maty Book))

0 b

e

bsfore(e’ possesses(Mary Book))
4 0

e’

Fig 2

When we know of two events which terminate
relationships that are mutually exclusive but with
no known event initiating the later of these
relationships, it is possible to deduce, by default,
the existence of an event initiating that

relationship. This case is shown in Fig 3. The
relationship r’ in Fig 3 can be either
possesses(Mary Book) or some other
relationship which is incompatible with it, such
as, possesses(Bob Book).

lefore(e possesses(fvlary, Book))
* 0

e before(e’
4

e’

Fig 3

For the case shown in Fig 3, the following
axioms are need&
(The functions init and fin give the start and
end points of a time period respectively.)

[Start(before(e’ r’) init(before(e’ r’)))
and

e 5 init(before(e’ r’))] if
Holds(before(e r)) and
Holds(before(e’ 2)) and
Exclusive(r r’) and
e < e’ and
NOT Broken(e r’ e’) EC10

after(e possesses(Mary Book))
0 b
e after(e’ r’)

0 b
e’

Fig 4

The case shown in Fig 4 is symmetric to that of
Fig 3 but with the terminating event unknown.
Again, the relationship r’ is mutually exclusive to
the relationship possesses(Mary Book). This is
formalized by the following axiom:

174

[End(after(e r)dfin(after(e r)))

fin(after(e r)) s e’] if
Holds(after(e r)) and
Holds(after(e’ r’)) and
Exclusive(r r’) and
e < e’ and
NOT Broken(e r e’) EC11

For the case shown in Fig 5 the following axiom
is needed:

[fin(after(e r)) ;nit(before(e r’))

S tart(before(ei,rd) init(before(e’ r’)))

End(after(e r) fin(after(e r)))] if
Holds(after(e r)) and
Holds(before(e’ r’)) and
Exclusive(r r’) and
NOT r= r’ and
e c e’ and
NOT Broken(e r e’) EC12

after@ possesses(Mary Book))

0 b
e

before(e’ possesses(Bob Book))
I 0

e’

Fig 5

Finally, knowing that a particular relationship
holds for a certain time period, the axioms for
deducing that the relationship holds at a given
point in time are as follows:

HoldsAt(r t) if Holds(after(e r)) and
t in after(e r) EC13

HoldsAt(r t) if Holds(before(e r)) and
t in before(e r) EC14

tinx if Start(x e’) and
End(x e”) and
Time(e’ t’) and
Time(e” t”) and
t’< t and
t c t” EC15

tinx if Start(x e’) and
Time(e’ t’) and
NOT End(x e”) and
t’ < t EC16

The axiom EC16 is valid only for the special case
where events are recorded in the order in which
they occur and the database contains a complete
record of all the relevant past events.

(3) Overview of the framework

One way to use the Event Calculus for database
applications would be to record all the events of
interest that have taken place in the real world in a
database. The axioms of the Event Calculus can
then be used to deduce relationships along with
the time periods for which they hold. Thus the
Event Calculus gives a treatment of valid time in
databases. Event Calculus, applied to databases,
formalizes a historical database[9,10,17] without
a facility for correcting errors.

In addition to the above, temporal databases
need to be able to deal with transaction time as
well. Transaction time is concerned with the time
at which information is stored in a database.
Every event is entered into the database through a
transaction. Thus a transaction is a meta-event.
When information regarding an event e is entered
into a database through a transaction tr, a belief
period(also called transaction time period) is
started in which the information regarding the
event e is believed. The predicate Basis(tr e) is
used to express the fact that the basis for
believing in the event e is the transaction tr.
However, such a belief period ends when
another event e’ is entered into the database and
e’ revises(corrects) the information given by the
event e.

With the aid of belief periods, it is possible to
find out what are all the events that are believed
to be true at a given point in transaction
time(altematively, in any given database state).
Once the set of such events is known, it is
possible to deduce the relationships that are
implied by these events using the axioms of the
Event Calculus(in a modified form).

Since the history of the world as represented in
the database may contain some errors, there is a
need for the ability to revise some of the

175

information. In our scheme, we achieve this by
means of an additional relation Revises(e e’)
which states that the information given by event
e overrides the information given by the event e’.
Thus corrections to history are always achieved
by asserting the existence of a new event which
revises an earlier event. No event description is
ever deleted.

From an application point of view, the scheme is
implemented as follows:

(i) Record an event e (occurring in the real world)
in the database through a transaction tr. The
relations that are added to the database are
Basis@ e) and Time(tr t). For example, if the
event El0 is entered in the database through a
transaction TR5, the following relations are
added to the database:

Basis(TR5 ElO)
Time(TR5 SJanuary).

(ii) Enter the information regarding the event
itself. For example,

Act(El0 Give)
Donor@10 Bob)
Recipient@0 Mary)
Object(E10 Bookl)
Time(El0 2January).

(iii) If the newly entered event e is supposed to
be a correction to the information given by
another event e’, add the relation Revises(e e’)
to the database. For example,

Revises(El0 E8).

Note that
(a)both past and future events can be entered into
the database. It does not matter whether an event
is yet to occur in the future i.e. the time of
occurrence of the event is greater than now, the
current time. This provides an ability to handle
proactive updates
(b)every event has a basis(for belief) which is the
database transaction through which it was entered
(c)information regarding events may be entered
into the database in any order with respect to their
actual order/time of occurrence in the real world
(d)transactions, of course, can only be entered
into the database in the order in which they
actually take place. Obviously, the time of a

transaction cannot be greater than the current
time.

With the above scheme it is possible to answer
temporal queries. Before that we need to
formalize the concept of transaction time which is
done in the following section.

(4) Transaction time

Transaction time represents the time at which
information is stored in a database. The addition
of the concept of transaction time to a database
enables one to answer queries such as “What was
Mary’s rank on 5 January as per the database of
10 January?“. The reasoning involved in
answering this query can be split into two parts:
(i) what are the events that are believed to be true
as per the database of 10 January? and (ii)what
are the inferences that can be drawn from this
subset of events regarding the rank of Mary on 5
January? The second of these is handled to a
large extent by the treatment of time in the Event
Calculus. The reasoning involved in solving the
first part needs to be formalized. In this section
we formalize the deduction of belief periods so
that these rules could be used in conjunction with
the axioms of the Event Calculus, modified
suitably, to form a framework for the treatment
of time in temporal databases. Consider the
following example which involves a correction
as well as belief periods:

Examnle 1

E3 is an event in which John was hired as a
lecturer on I January. The information regarding
E3 was entered into the database on 3 January,
through a transaction TRl. It was discovered
subsequently that John was hired as a lecturer
on 5 January and this information was entered
into the database by another transaction TR2 on 8
January.

Transaction TRl adds the following information
to the database :

Basis(TR1 E3)
Time(TR1 3Januar-y)
Act(E3 hire)
Object(E3 John)
NewRank(E3 lecturer)
Time(E3 1 January)

176

The predicate Basis(tr e) indicates that tr is the
transaction which is the basis for believing the
information regarding event e. The transaction
TRl initiates a belief period in which it is
believed that John was hired as a lecturer on 1
January. Transaction TR2 introduces a correction
(a revision) to the data already existing in the
database. Since old data is not deleted, the
correct information is entered as a new event,
say E4, along with the relation Revises(E4 E3).
The database contains the following additional
information after transaction TR2:

Basis(TR2 E4)
Time(TR2 8January)
Act(E4 hire)
Object(E4 John)
NewRank(E4 lecturer)
Time(E4 SJanuary)
Revises(E4 E3)

Since all the information, old and new, is now
present in the database, it should be possible to
reason that after 3 January and before 8 January
it was believed that John was hired as lecturer on
1 January. After 8 January, however, it is
believed that John was hired as a lecturer on 5
January. If the information regarding the event
E4 is not revised by any subsequent transactions,
we continue to believe that John was hired as a
lecturer on 5 January. Note that this belief will
not be affected by normal updates, such as, John
getting promoted to the rank of professor at a
later date.

Thus, as a result of transaction TR2, the belief
period in which it is believed that John was hired
as a lecturer on 1 January was terminated. TR2
involves the revision of information given by
another event. We now proceed to formalize the
reasoning involved in deducing belief periods.

Since each transaction may start and/or terminate
more than one belief period, we use a notation
similar to that of the Event Calculus to identify
belief periods. The term after(tr e) denotes a
time period started by the transaction tr in which
the information regarding the event e is believed
to be true. The term before(tr e) has a similar
meaning. The predicate BHolds(e p) expresses
the relationship that event e is believed to be true
in the period p. The above reasoning can be
expressed by the following rules:

BHolds(e after@ e)) if Basis(tr e) Al

BHolds(e before(tr e)) if Basis@ e’) and
Revises(e’ e) A2

There are two main differences between the
concepts of transaction time and valid time. The
first is that transactions are entered into databases
strictly in a chronologically ascending order
(transaction time moves only into the future)
whereas events themselves may be entered in any
order in relation to their actual time of occurrence
in the real world. In other words, at any point in
time, the database contains a complete record of
all the transactions that have taken place, whereas
the database may not contain a complete record of
all the events that occurred in the world. The
second difference is that for a belief period to be
terminated by a transaction, it must have been
started earlier by another transaction. Otherwise,
it means that there is an event in the database
which is believed to be true but there is no
transaction which is responsible for entering the
event in the database - a contradiction. However,
the database might be informed of an event
signalling the end of a valid time period without
any prior information regarding its beginning as
emphasized in the Event Calculus. For these
reasons, it is sufficient to consider belief periods
in the forward direction alone (i.e. into the
future). Therefore rule A2 is redundant.

The rule Al is not valid for all cases as is
illustrated by the following example:

Examde 2

Same as Example 1 except for the transaction
times which are as follows:

Time(TR1 lOJanuary)
Time(TR2 8January).

In other words, information regarding event E3
is entered into the database on 10 January even
though it is known that event E4 revises event
E3, and E4 is already in the database. Since it is
known on 10 January that E4 revises E3, the
information regarding E3 is not believed in at any
time for deducing relationships.
However, rule Al allows one to deduce that
BHolds(E3 after(TR2 E3)) is true. The rule Al
therefore needs to be modified as follows:

177

BHolds(e after(tr e)) if Basis@ e) and
NOT [Revises(e’ e) and

Basis@’ e’) and
tr’ I tr] TIT

Again, the information regarding an event e is
believed to be true at transaction time t if t is a
time instant within the belief period of e. This is
given by the following rules:

BHoldsAt(e t) if BHolds(e after& e)) and
t within after@ e) TI2

t within p if BStart@ tr’) and
BEnd(p tr”) and
Time(tr’ t’) and
Time(tr” t”) and
t’ c t and
t c t”

The predicates BStart and BEnd denote the start
and end of a belief period respectively and are
analogous to the Start and End predicates of
section 2.In the case where a belief period is not
terminated by any transaction, it extends into
eternity and requires the following axiom:

t within p if BStart@ tr’) and
Time(tr’ t’) and
t’c t and
NOT BEnd@ tr”) ‘IT4

The starts and ends of belief periods are given by
the axioms ITS and TT6. It can be argued that
these definitions of BStart and BEnd are
complete.

BStart(after(tr e) tr) IT5

BEnd(after(tr e) tr’) if Basis&’ e’) and
Revises(e’ e) ‘IT6

. . . ve & retroactive lar>dates.

Both proactive and retroactive updates are
handled symmetrically. All that needs to be done
to record such an update is to enter information in
the form of new events in the usual way and
assert relationships regarding the revision of
events previously entered, if any. The following
example makes the procedure clear:

Mary was hired as a lecturer on 5 April,
1985(event El). This data was entered into a
database on 7 April, 1985(transaction TRl).
Mary was then promoted to the rank of a
professor on 12 November, 1987 with effect
from 1 October, 1987(event E2). This
information was entered into the database on 15
November, 1987(transaction TR2).

The relations of interest that are added to the
database as a result of these two transactions are

Basis(TR1 El)
Time(TR1 7April1985)
%ne&5A~rill985)

Basis(TR2 E2)
Time(TR2 15November1987)
Act(E2 promote)
Time(E2 lOctober1987)

Notice that there is no need for the revision of
any past event. The time 12November1987
comes under the category of user-defined time
which does not contribute to the reasoning
involved. It could just be asserted like any other
non-temporal information.

Axioms TI’l-TI’6 then imply that the following
are true:

BHolds(E I after(TR 1 E 1))
BHolds(E2 after(TR2 E2))
BStart(after(TR1 El) TRl) (Thereforewe

believe in event E 1 from 7 April onwards}
BStart(after(TR2 E2) TR2) {Therefore we
believe in event E2 from 15 November onwards)

Hence, after 15 November we believe in the
occurrence of both the events El and E2. This
situation is analogous to the one shown in Fig 4.
The use of Event Calculus axioms on the event
descriptions El and E2 then allow us to conclude
that:
Mary was hired as a lecturer on 5 April 1985,
Mary was promoted to the rank of professor on 1
October 1987, and
Mary was a professor on 2 October 1987.
However, on 14 November 1987, the belief
period after(TR2 E2) has not started yet.

178

Therefore, there is only one event El in which
the database believes. The axioms of the Event
Calculus applied to the event El alone would
allow us to conclude that:
Mary was hired as a lecturer on 5 April 1985 and
Mary was a lecturer on 2 October 1987 (axiom
EC13).
This is how the inferences that follow from any
state of the database are deduced.

We now give another example wherein the need
for a revision of some of the events arises in a
proactive/retroactive update. Explanatory
comments are enclosed in ().

Example 4

Mary was hired as a lecturer in April 1985(event
El ,transaction TR 1) (simple update). A decision
was taken in June 1985 to promote Mary to the
rank of assistant professor for a period of 2 years
starting from August 1985 (event E2,
transaction TR2) and then to promote her to the
rank of professor at the end of that period(event
E3, transaction TR2) (proactive updates}. Mary
turned out to be extremely brilliant and was
therefore promoted to the rank of professor in
October 1985 with effect from May
1985(event E4, transaction TR3)(a retroactive
update affecting earlier proactive updates, some
of which have already taken effect].

The relations of interest that are added to the
database as a result of these three transactions are

Basis(TR1 El)
Time(TR1 Apri11985)
Act(E1 hire)
NewRank(E1 lecturer)
Time(E1 April 1985)
Basis(TR2 E2)
Basis(TR2 E3)
Time(TR2 June 1985)
Act(E2 promote)
OldRank(E2 lecturer)
NewRank(E2 assistantProfessor)
Time(E2 August1985)
Act(E3 promote)
OldRank(E3 assistantProfessor)
NewRank(E3 professor)
Time(E3 August1987)
Basis(TR3 E4)
Time(TR3 October1985)
Act(E4 promote)

OldRank(E4 lecturer)
NewRank(E4 professor)
Time(E4 May1985)
Revise@4 E2)
Revises(E4 E3)

Belief periods and the relationships that hold are
then deduced using the axioms TTl-IT6 and
ECl-EC16 as explained in Example 3.

(5) Modification of the Event Calculus

Since the belief in an event and the corresponding
inferences may change with time, the belief that a
relationship r holds in the period after(e r) is
valid only when the time at which that belief is
held is specified. In the case of databases, this
time will be along the transaction time axis.
Therefore, it is necessary to augment the Holds
predicate with an additional parameter
representing the transaction time. This is also true
of all the other predicates of the Event Calculus.
The set of augmented predicates and their
definitions are as follows :

The axiom EC1 yields two new rules in the
context of a temporal database. One rule is
required for inferring that a valid time period
before(e r) was believed to exist for a
transaction time period p (rule TDl). A second
rule is required for inferring that a valid time
period before(e r) was believed to exist at a
transaction time z (rule TD2).

PHolds(before(e r) p) if
Terminates(e r) and
BHolds(e p) TDl

The predicate PHolds(before(e r) p) means that
there is a belief period(transaction time period) p
in which it is believed that the relationship r holds
in the valid time period before(e r).

PHoldsAt(before(e r) 2) if
PHolds(before(e
z within p

r) P) and
TD2

Alternatively, this could be reformulated as

179

PHoldsAt(before(e r) 2) if
Terminates(e r) and
BHoldsAt(e 2)

The predicate PHoldsAt(before(e r) 2) means
that the relationship r holds for the time period
before(e r) according to the state of the database
attimez.

Similarly, the axiom EC2 of the Event Calculus
yields

PHolds(after(e r) p) if
Initiates(e r) and
BHolds(e p) TD3

PHoldsAt(after(e r) 2) if
PHolds(after(e r) p) and
z within p

The axioms for Start and End also need to be
modified. In the general case, inferring the Start
and End of a time period involves default
reasoning and therefore depends upon the
amount of information that is present in the
database at that time 2. (The case where the Start
and End of a valid time period are inferred to
hold over a transaction time period is more
involved and is not considered in this paper
because of limitations of space.)

Axioms EC3 to EC6 are modified to TD5 - TD8

Start(after(e r) e 2)
End(before(e r) e 2)

Start(before(e’ r) e z) if
after(e r) =z before(e’ r)

End(after(e r) e’ 2) if
after(e r) =z before(e’ r)

TDS

TD8

In the example of Fig 1, the conclusion that the
valid time periods
after(E1 possesses(Mary Book)) and
before(E2 possesses(Mary Book)) are identical is
correct only if the database at time z does not
contain any information to the contrary (this is
taken care of by the use of negation as failure in

TD9). Note that an event E5 may be entered at a
later time making the above conclusion incorrect
in the new state of the database. Thus the rule
EC7 is modified as

after(e r) =z before(e’ r) if

PHoldsAt(after(e r) 2) and
PHoldsAt(before(e’ r) 2) and
e c e’ and

NOT Broken(e r e’ 2) TD9

The predicate Broken takes in an additional term
to allow for the effect of events such as E5
mentioned above. Note that the ordering relation
on events, <, is not subject to change with time
since changes are affected only by asserting a
new event along with an appropriate Revises
relation. The exclusivity relation is also invariant
in time.

Broken(e r e’ z) if
PHoldsAt(after(e* r*) 2) and
Exclusive(r r*) and
e < e* and
e* c e’ TDlO

Broken(e r e’ 2) if
PHoldsAt(before(e* r*) 2) and
Exclusive(r r*) and
e c e* and
e* c e’ TDll

The rest of the rules for deducing the Start and
End are obtained by modifying EClO-EC12 as
shown below:

[Start(before(e’ r’) init(before(e’ r’)) 2)
and

e s init(before(e’ r’))] if
PHoldsAt(before(e r) z) and
PHoldsAt(before(e’ r’) z) and
Exclusive(r r’) and
e < e’ and
NOT Broken(e r’ e’ z) TD12

180

[End(after(e r) fin(after(e r)) z)
and

fin(after(e r)) < e’] if
PHoldsAt(after(e r) z) and
PHoldsAt(after(e’ r’) z) and
Exclusive(r r’) and
e < e’ and
NOT Broken(e r e’ z) TD13

[Start(before(e’ r’) init(before(e’ r’)) z)
and

Fin(after(e r))a2d init(before(e’ r’))

End(after(e r) fin(after(e r)) z)] if
PHoldsAt(after(e r) z) and
PHoldsAt(before(e’ r’) z) and
Exclusive(r r’) and
NOT r =r’ and
e < e’ and
NOT Broken(e r e’ z) TD14

Again, the truth of the statement that a
relationship holds at point in time(valid time) is
subject to the state of a database. In Example 1,
John was a lecturer on 2 January as per the
database of 6 January but not as per that of 9
January. Therefore EC13-EC16 are to be
modified as

HoldsAt(r t 2) if
PHoldsAt(after(e
t in after(e r)

HoldsAt(r t 2) if

r) 2) and
at z TD15

PHoldsAt(before(e r) 2) and
t in before(e r) at Z TD16

Since the Start and End of time periods are
subject to change with transaction time, that a
point in valid time is in the period before(e r) or
after(e r) is meaningful only when the state of
the database(transaction time) is specified. Thus
we have

t in p at z if Start(p e’ 2) and
End(p e” 2) and
Time(e’ t’) and
Time(e” t”) and
t’ c t and
t < t” TD17

t in p at z if Star@ e’ z) and
Time(e’ t’) and
t’ c t and

NOT End@ e” Z) TD18

TD18 is correct only for the special case in
which the database contains a complete record of
all relevant past events.

The axioms TDl -TD 18 along with the axioms
TTl-‘IT6 form a logical framework for treatment
of time in temporal deductive databases.

(6) Conclusions

We described a framework for representing and
dealing with the concepts of valid time and
transaction time in the context of temporal
deductive databases. The formalization is done in
the Horn clause subset of first-order classical
logic augmented with negation as failure and is
executable as a logic program.

We have restricted our attention to ground unit
clauses as the relationships that are derivable
from a description of events. However, the
formalization may be extended for sentences of
fmt-order logic. When extended thus, the sytem
will be capable of reasoning with rules that are
effective only for certain periods of time and then
generate the corresponding inferences. Domains
such as legislation require such a capability.

The framework is capable of handling both
proactive and retroactive updates symmetrically.
Historical and rollback databases may be
obtained as special cases.

Acknowledgements

I would like to thank Robert Kowalski, Marek
Sergot, Fariba Sadri and Murray Shanahan for
many helpful discussions. I am grateful to Fariba
Sadri for many useful comments on an earler

181

draft of this paper. Special thanks to Cheryl
Anderson for her help in typesetting the paper.

The research is sponsored by the Jawaharlal
Nehru Memorial Trust(UK). The work is also
supported by an ORS(UK) award.

References

[l]Allen, J. F. Maintaining Knowledge about
Temporal Intervals. CACM, November 1983,
Vol. 26, No. 11, pp.832-843

[2]Ariav, G. Clifford, J. & Jarke, M. Panel on
Time and Databases. ACM SIGMOD Record,
Vol. 13, No. 4, Sanjose, 1983

[3]Clark, K.L. Negation as Failure, in Logic and
Databases, Eds. Gallaire, H. Minker, J. Plenum
Press, NY 1978

[4]Clifford, J. & Warren, D. S. Formal
Semantics for Time in Databases. ACM
Transactions on Database Systems, Vo1.8, No.2,
1983

[SIDean, T. L. & McDermott, D. V. Temporal
Data Base Management. Artificial Intelligence 32,
No.1 (1987), pp. l-55

[6]Gallaire, H. Minker, J. & Nicolas J. M. Logic
and Databases: A Deductive Approach.
Computing Surveys, June 1984, pp. 153- 185

[7]KowaIski, R. A. Logic for Problem Solving.
Elsevier North Holland. 1979

[8]Kowalski, R.A. & Sergot, M.J. A Logic-
based Calculus of Events. New Generation
Computing, 4, No. 1 (1986), pp. 67-95

[9]Kowalski, R.A. Database updates in the Event
Calculus. Research Report DoC 86/12,
Department of Computing, Imperial College,
London

[lO]Lee, R. M. Coelho, H. & Cotta, J. C.
Temporal Inferencing on Administrative
Databases. Information Systems, Vol. 10, No.
2, pp. 197-206

[12]Martin, N. Navathe, S. & Ahmed, R.
Dealing with Temporal Schema Anomolies in
History Databases in Proceedings of the
thirteenth international conference on Very Large
Data Bases, Brighton, 1987, pp.177-184

[13]McKenzie, E. Bibliography: Temporal
Databases. ACM SIGMOD Record, Vol. 15,
No. 4, December 1986

[14]Sadri, F. Three recent approaches to
temporal reasoning. Research Report DoC 86/23,
Revised November, 1986, Department of
Computing, Imperial College, London

[lS]Sergot, M.J. Sadri, F. Kowalski, R.A.
Kriwaczek, F. Hammond, P. & Cory, H.T. The
British Nationality Act as a Logic Program.
CACM, Vol. 29, No. 5, May 1986, pp. 370-386

[16]Snodgrass, R. & Ahn, I. A Taxonomy of
time in databases, in Proceedings of ACM
SIGMOD International Conference on
Management of Data, Ed. S. Navathe.
Association for Computing Machinery. Austin,
Texas, May 1985, pp. 236-246

[17]Snodgrass, R. & Ahn, I. Temporal
Databases. IEEE Computer, 19, No.9, Sep.
1986, pp. 35-42

[18]Snodgrass, R. (Ed.) Research Concerning
Time in Databases Project Summaries. SIGMOD
Record, Vol. 15, No. 4, December 1986

[19]Snodgrass, R. The Temporal Query
Language TQuel. ACM Transactions on Database
Systems, Vo1.12, No.2, June 1987, pp.247-298

[20]Stonebraker, M. Wong, E. & Kreps, P. The
Design and Implementation of INGRES. ACM
Transactions on Database Systems, Vol.1, No.3,
September 1976, pp. 189-222

[21] Stonebraker, M. The Design of the
POSTGRES Storage System in Proceedings of
the thirteenth international conference on Very
Large Data Bases, Brighton, 1987, pp.289-300

[l l]Lloyd, J. W. Foundations of Logic
Programming. Springer Verlag. 1984

182

