
VERSIONS OF SCHEMA
FOR OBJECT-ORIENTED DATABASES

Won Kim and Hong-Tai Chou

MCC
3500 West Balcones Center Drive

Austin, Texas 78759

Abstract

Version control is one of the important database require-
ments for design environments. Various models of ver-
sions have been proposed and implemented. However,
research in versions has been focused exclusively on
versioning single design objects. In a multi-user design
environment where the schema (definition) of the design
objects may undergo dynamic changes, it is important to
be able to version the schema, as well as version the
single design objects. In this paper, we propose a model
of versions of schema by extending our model of versions
of single objects. In particular, we present the semantics
of our model of versions of schema for object-oriented
databases, explore issues in implementing the model,
and examine a few alternatives to our model of versions
of schema.

1. INTRODUCTION
In the Advanced Computer Architecture Program at

MCC, we have built a prototype object-oriented database
system, called ORION. Presently, ORION is being used
in supporting the data management needs of PROTEUS,
an expert system shell also prototyped in the Advanced
Computer Architecture Program at MCC. In ORION we
have directly implemented the object-oriented paradigm
[GOLD81, GOLD83, BOBR83, SYMB84, BOBR851, added
persistence and sharability to objects through transaction
support, and provided various advanced functions that
applications from the CAD/CAM, Al, and OIS domains re-
quire. Advanced functions supported in ORION include

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
othenvise, or to npublish, requires a fee and/or special permission
from the Endowment.

versions [CHOUSS, CHOU881, composite objects
[KIM87], dynamic schema evolution [BANE87b], and mul-
timedia data management [WOEL87],

There is an extensive set of research reports on ver-
sions of design objects [ROCH75, TICH82, KATZ84,
DITT85, ATW085, KATZ86]. In a multi-user design envi-
ronment, it is highly desirable to extend the notion of ver-
sions of objects to versions of schema (definition of the
objects). One major motivation is to better preserve the
history of evolution of objects, so that applications may
derive versions of schema, and create and manipulate
different sets of objects under different versions of
schema. If the schema cannot be versioned, objects that
existed before a schema change can in general be irre-
versibly changed. For example, if an attribute of a class
is dropped, the values of the attribute in existing objects
(instances) of the class become no longer visible to the
application. If, however, a new version of the schema is
derived in which the attribute of the class is dropped, the
values of the attribute in existing objects continue to be
visible to the application under the old version of the
schema.

Another important motivation for versioning the
schema is to support checkouts and checkins of objects
in a federated system of private databases and a public
database. A private database system running on an engi-
neering workstation may check a complex design object
out of the public database, modify it, and check the modi-
fied object into the public database as a new version of
the object. If we are to allow the user to change the
schema of the checked-out object in the private data-
base, we must require the modified schema to be copied
to the public database as a new version of the original
schema before a new version of the object may be
checked in.

To the best of our knowledge, except for [SKAR86]
which provides a brief discussion of versioning a class
(rather than the entire schema), the semantics and imple-
mentation of versions of schema have not been reported
in the literature. In this paper, we make two original con-
tributions to this important but largely unexplored area of
research. First, we develop a model of versions of

Proceedii s of the 14th VLDB Conference
Los Ange es, California 1988 f 148

schema. In doing this, we identify and address a number
of semantic issues which arise in versioning the schema.
By specifying a user interface, consisting of a surprisingly
small set of commands, we show how the users may use
our model of versions of schema. Second, we propose
fairly detailed implementation techniques for supporting
versions of schema in a database system.

The remainder of this paper is organized as follows.
In Section 2, we briefly review basic object-oriented con-
cepts. Section 3 provides a review of our model of ver-
sions of objects, and the semantics of schema evolution.
In Section 4, we identify a number of major semantic is-
sues in versioning the schema, and define our model of
versions of schema. In Section 5, we propose implemen-
tation techniques for versions of schema, and indicate
expected system overhead. Section 6 describes the user
interface for our model of versions of schema. Section 7
provides a discussion of alternatives to our approach.
The paper is summarized in Section 8.

2. BASIC OBJECT-ORIENTED CONCEPTS
In this section we review basic object-oriented con-

cepts that are relevant to our discussions in the remain-
der of this paper. This section is extracted from our full
paper on the ORION data model in [BANE87a].

objects, attributes (instance variables), methods,
and messages

In object-oriented systems, all conceptual entities are
modeled as objects. An ordinary integer or string is as
much an object as is a complex assembly of parts, such
as an aircraft or a submarine. An object consists of some
private memory that holds its state. The private memory
is made up of the values for a collection of attributes
(often called instance variables). The value of an attribute
is itself an object, and therefore has its own private mem-
ory for its state (i.e., its attributes). A primitive object,
such as an integer or a string, has no attributes. It only
has a value, which is the object itself. More complex ob-
jects contain attributes, through which they reference
other objects, which in turn contain attributes.

The behavior of an object is encapsulated in meth-
ods. Methods consist of code that manipulate or return
the state of an object. Methods are a part of the definition
of the object. However, methods, as well as attributes,
are not visible from outside of the object. Objects can
communicate with one another through messages. Mes-
sages constitute the public interface of an object. For
each message understood by an object, there is a corre-
sponding method that executes the message. An object
reacts to a message by executing the corresponding
method, and returning an object.

classes, class hierarchy, inheritance, and domains

If every object is to carry its own attribute names and
its own methods, the amount of information to be speci-

fied and stored can become unmanageably large. For
this reason, as well as for conceptual simplicity, ‘similar’
objects are grouped together into a c/ass. All objects
belonging to the same class are described by the same
set of attributes and methods, They all respond to the
same messages. Objects that belong to a class are
called instances of that class. (In this paper, we will use
the terms instances and objects interchangeably.) A
class describes the form (attributes) of its instances, and
the operations (methods) applicable to its instances.
Thus, when a message is sent to an instance, the method
which implements that message is found in the definition
of the class.

Grouping objects into classes helps avoid the specifi-
cation and storage of much redundant information. The
concept of a class hierarchy extends this information
hiding capability one step further. A class hierarchy is a
hierarchy of classes in which an edge between a pair of
nodes represents the IS-A relationship: that is, the lower
level node is a specialization of the higher level node (and
conversely, the higher level node is a generalization of
the lower level node). The root of a class hierarchy is
the system-defined class CLASS, For a pair of classes
on a class hierarchy, the higher level class is called a
superclass, and the lower level class a subclass. The
attributes and methods (collectively called properties)
specified for a class are inherited (shared) by all its sub-
classes. Additional properties may be specified for each
of the subclasses. A class inherits properties only from
its immediate superclass. Since the latter inherits proper-
ties from its own superclass, it follows that a class inherits
properties from every class in its superclass chain.

In object-oriented systems, the domain (which corre-
sponds to data type in conventional programming lan-
guages) of an attribute is a class. The domain of an
attribute of a class C may be explicitly bound to a specific
class D. Then instances of the class C may take on as
values for the attribute instances of the class D as well as
instances of subclasses of D.

class lattice, multiple inheritance, and name-conflict
resolution

In many object-oriented systems (and in ORION), a
class can have more than one superclass, generalizing
the class hierarchy to a lattice (or a directed acyclic
graph). In a class lattice, a class inherits properties from
each of its superclasses. This feature is often referred to
as mu/tip/e inheritance [LMl85, STEF86]. The class lat-
tice simplifies data modeling and often requires fewer
classes to be specified than with a class hierarchy. How-
ever, it gives rise to conflicts in the names of attributes
and methods. One type of conflict is between a class
and its superclass (this type of problem also arises in a
class hierarchy). Another, which is purely a conse-
quence of multiple inheritance, is among the super-
classes of a class.

149

Name conflicts between a class and its superclasses
are resolved in all systems, including ORION, by giving
precedence to the definition within the class over that in
its superclasses. The approach used in many systems,
and in ORION, to resolve name conflicts among super-
classes of a given class is the use of superclass order-
ing. If an attribute or a method with the same name ap-
pears in more than one superclass of a class C, the one
chosen by default is that of the first superclass in the list
of (immediate) superclasses of C, which the application
will have specified.

3. REVIEW OF VERSIONS AND SCHEMA EVO-
LUTION

In this section we review the model of versions of
objects [CHOU88] and the semantics of schema evolu-
tion [BANE87b] which we support in ORION. The model
of versions of objects is the basis of our model of ver-
sions of schema. We will limit our review to those as-
pects of our models of versions and schema evolution
that are essential to understanding the subsequent sec-
tions of this paper.

3.1 VERSIONS

Our model of versions associates different capabili-
ties with versions: that is, it distinguishes transient ver-
sions, which can be updated or deleted at will, from
working versions, which can be deleted but not updated.
A transient version may be created from scratch or de
rived from an existing version. The user may explicitly
promote a transient version to a working version. A tran-
sient version may be implicitly promoted to a working ver-
sion, if a new transient version is derived from it.

An object is either versioned or non-versioned. A
versioned object is an instance of a class which the appli-
cation declares to be versionable. Since any number of
transient versions may be derived at any time from an
existing version, a versioned object consists of a hierar-
chy of versions, called a version-derivation hierarchy.
We use the term version instance to refer to a specific
version in the version-derivation hierarchy for a versioned
object, and generic instance to refer to the abstract ver-
sioned object. A generic instance maintains the history of
derivation of version instances for a versioned object.

In object-oriented systems, every object Is assigned
an identifier which uniquely identifies the object in the sys-
tem. In ORION, both the generic instance and a version
instance of the generic instance have object identifiers.
An object, either a version instance or a non-versioned
object, may reference one or more other objects. If an
object references a version instance, the reference may
be the object identifier of a generic instance or that of a
version instance. If the reference is to a version instance,
we say that the object is statically bound to the version
instance. If the reference is to a generic instance, the

object is said to be dynamically bound to a default ver-
sion instance of the generic instance. The capability to
bind an object dynamically to a default version instance is
useful, since transient or working versions that are refer-
enced may be deleted, and new versions created. We
allow the user to specify a particular version instance on
the version-derivation hierarchy as the default version.
In the absence of a user-specified default, the system will
select the version instance with the ‘most recent’ times-
tamp as the default. The default version instance of a
versioned object is recorded in its generic instance.

3.2 SCHEMA EVOLUTION

As we discussed in Section 2, the schema of an ob-
ject-oriented database is the class lattice; and as such
two types of changes to the schema are meaningful:
changes to the definitions of a class (contents of a node)
in the class lattice, and changes to the structure (edges
and nodes) of the class lattice. Changes to the class
definitions include adding and deleting attributes and
methods. Changes to the class lattice structure include
creation and deletion of a class, and alteration of the IS-A
relationship between classes (adding and deleting the su-
perclass-subclass relationship between a pair of
classes).

Below we outline (but not fully describe) the seman-
tics of some of the schema change operations. Later in
this paper, we will illustrate our implementation of versions
of schema in terms of the semantics of these operations.

7. Add an attribute V to a class C

If the new attribute V causes no name conflicts in the
class C or any of its subclasses, V will be inherited by all
subclasses of C. If V causes a name conflict with an
inherited attribute, V will override the inherited attribute. If
the old attribute was also locally defined in C, it is re-
placed by the new definition. Existing instances of the
classes to which V is added receive the nil value.

2. Drop an attribute V from a class C

V is dropped from C and subclasses of C that inher-
ited it. Existing instances of these classes lose their val-
ues for V. If C or any of its subclasses has other super-
classes that have attributes of the same name as that of
V, it inherits one of them.

3. Make a class S a superclass of a class C

The addition of a new edge from S to C must not
introduce a cycle in the class lattice. C and its sub-
classes inherit attributes and methods from S.

4. Add a new class C

All attributes and methods from all superclasses
specified for C are inherited, unless there are conflicts. If
no superclasses of C are specified, the system-defined

150

;root of the class hitice, CLASS, becomes the superclass
of c.

5. Drop an existing class C

All edges from C to its subclasses are dropped;
which means that the subclasses will lose all the attrib-
utes and methods they inherited from C. Next, all edges
from the superclasses of C into C are removed. Finally,
the definition of C is dropped, and C is removed from the
class lattice. The subclasses of C continue to exist.

4. VERSIONS OF SCHEMA

As we observed in Section 1, one of the important
database requirements for a multi-user design environ-
ment is for the users to be able to view and manipulate
different sets of objects under different versions of the
schema. We have explored three different approaches to
satisfying this requirement. One is to view the entire
schema (the entire class lattice) as a versioned object;
this is the versions of schema approach. Another is to
view each class as a versioned object; this is the ver-
sions of class approach. Another is to provide dynamic
views, rather than versions, of the schema: this is the
views of schema approach. We have selected the ver-
sions of schema approach, and developed a model of
versions of schema by extending the concepts of version
capabilities, version-derivation hierarchies, and default
versions from versions of objects to versions of schema.
The model also reflects our view that a version of schema
is associated with a set of objects created under it. Be-
cause a comparison of the three approaches requires a
deeper understanding of the semantic and implementa-
tion issues involved, we defer such a discussion to Sec-
tion 7.

Before we proceed, we define some terms we will
use throughout the remainder of this paper.

A schema version SV-j is called a descendant
schema version of a schema version SV-I, if SV-j is
derived directly or indirectly from SV-I. Conversely,
SV-i is called an ancestor schema version of SV-j.

A schema version SV-j is called a child schema
version of a schema version SV-I, if SV-j is derived
directly from SV-i. Conversely, SV-i is called a par-
ent schema version of SV-j.

The schema version under which the application
currently accesses and manipulates objects is
called the current schema version.

The schema version under which an object was
created is called the creator schema version of the
object.

The access scope of a schema version SV is the
set of objects which are accessible to SV.

The direct access scope of a schema version SV is
the set of objects which are created under SV.

The object-oriented paradigm models all logical enti-
ties uniformly as objects with unique object identifiers.
However, we may distinguish three types of objects for
the purposes of version semantics: (instance) objects of
a class, class objects, and the schema object. We will
show in Section 5 that the implementation techniques we
propose for our model of versions of schema make it un-
necessary to support versions of class objects. There-
fore, throughout this paper, when we talk about manipu-
lating objects under a schema version (read, insert, de-
lete, replace), we mean manipulating instance objects,
but not class objects.

Our model of versions of schema may be expressed
in terms of seven rules. The first three rules are exten-
sions of the major concepts in our model of versions of
objects.

Schema-Version Capability Rule: A schema version
may be either a transient schema version or a working
schema version. A transient schema version may be up-
dated or deleted; and it may be promoted to a working
schema version any time. A working schema version
cannot be updated. A working schema version may be
deleted or demoted to a transient version, if it has no
child schema version.

We note that both a working version of the schema
and a working version of an object are non-updatable.
However, as we mentioned earlier, a working version of
an object may be deleted at any time.

Schema-Version Derivation Rule: Any number of new
versions of schema may be derived at any time from any
existing schema version, giving rise to a version-deriva-
tion hierarchy for the schema. A derived schema version
is initially a transient version. If a schema version is de-
rived from a transient schema version, the transient
schema version is automatically promoted to a working
schema version.

Schema-Version Deletion Rule: A schema version
which is a leaf node in the schema-version derivation hi-
erarchy can be deleted, regardless of whether it is a
working version or a transient version. A schema version
cannot be deleted, if it has any child schema version.
When a schema version is deleted, its direct access
scope is also deleted.

The schema-version deletion rule makes it clear that
a schema version ‘owns’ the objects created under it,
that is, its direct access scope. Two fundamental ques-
tions arise concerning the access scope between the
creator schema version and a descendant schema ver-
sion, One is whether the access scope of a schema
version SV-i should be inherited into a descendant
schema version SV-j. Another is, if the access scope of

151

SV-i is inherited, whether it should remain updatable (re-
placed or deleted) under SVi. The following rule has
been developed to address these questions. It will be
discussed in detail shortly.

Access-Scope Inheritance Rule: When a schema ver-
sion SV-j is derived from a schema version SV-i, SV-j by
default inherits the access scope of SV-i. However, the
user may optionally block the inheritance of the access
scope of the parent schema version. Further, once SV-j
inherits the access scope of SV-i, the access scope of
SV-i becomes by default non-updatable under SV-i.
Again, however, the application may optionally leave the
access scope of SV-i updatable under SV-I, when inher-
iting the access scope from SV-I.

The access-scope inheritance rule is the basis of the
access-scope rule which defines the objects visible to a
schema version in the schema-version derivation hierar-
chy. Two additional rules explain the update capabilities
under a schema version: the direct-access-scope up-
date rule specifies when objects created under a schema
version SV can and cannot be updated under SV; and the
inherited-access-scope update rule defines what it
means to update objects under a schema version SV,
when the objects are inherited from an ancestor schema
version of SV.

Access-Scope Rule: The access scope of a schema
version SV is the set of objects created under SV and
those objects in the inherited access scopes of the an-
cestor schema versions. All objects in the access scope
of SV are visible to SV, which means that they may be
read or updated (inserted, replaced, deleted) under SV.
No other objects are visible to SV.

Direct-Access-Scope Update Rule: The access scope
of a schema version SV is non-updatable (no insert, no
delete, no replace) under SV, if any schema version
SV-k has been derived from SV, unless each SV-k has
been derived from SV by blocking the inheritance of SV’s
access scope or by leaving the access scope of SV up-
datable under SV.

Inherited-Access-Scope Update Rule: All inherited
objects in the access scope of SV may be updated or
deleted. However, updates and deletes under SV of the
objects inherited into SV are only visible to SV and the
descendant schema versions of SV which inherited the
access scope from SV.

A basic premise of our model of schema versions is
that the access scope of a schema version SV may be
inherited into any schema version derived from SV. The
default access-scope inheritance rule reflects this. A
major advantage of this approach is that by allowing auto-
matic inheritance of the access scope of a schema ver-
sion SVi into any new schema version SV-j derived from
SVi, it avoids needless copying of those objects of SV-i
which are to be visible to SV-j. This approach is particu-

larly appropriate, if the objective of deriving a new
schema version is to experiment with the impacts of a
new definition of the schema on existing objects. How-
ever, it is inappropriate, if only a relatively small subset of
the objects in the access scope of the parent schema
version needs to be visible to the derived schema ver-
sion

If a schema version SV-j, derived from a schema
version SV-i, inherits the access scope of SV-i, it is rea-
sonable to disallow further updates to objects of SV-i un-
der SV-I. If objects of SV-i are updated under SV-i after
SV-j has been derived, the creator of SV-j will see differ-
ent objects of SV-i at different times. However, with this
restriction, to update any objects of SV-i, after SV-j has
been derived from it, the creator of SV-i will have to de-
rive a new transient schema version SV-k from SV-I,
even if there may be no differences between SV-i and
SV-k, and update the objects under SV-k.

The discussions above point out that a strict adher-
ence to the default access-scope inheritance rule may
not always be desirable. This is the reason for the ex-
ceptions to the rule. We allow the application to option-
ally leave the access scope of a schema version SV-i
updatable under SV-i when deriving a new schema ver-
sion SV-j from SV-I, and even block the inheritance of
the access scope altogether. There are then three possi-
ble options in deriving a schema version SV-j from a
schema version SV-I. We note that the users may dy-
namically change the option any time after the initial deri-
vation of a schema version (this is further explained in
Section 6).

1. SV-j inherits the access scope of SV-I, and the
access scope of SV-i is made non-updatable under
SV-i.

2. SV-j inherits the access scope of SV-i. but the
access scope of SV-i remains updatable under SV-i.

3. SV-j does not inherit the access scope of SV-I,
and it is immaterial whether the access scope of SV-i is
updatable under SV-I,

The access scope of a schema version SV is the set
of objects created under SV and those inherited from the
ancestor schema versions. For example, if a schema
version SV-i is the parent schema version of a schema
version SV-j. and SV-j is the parent of a schema version
SV-k, and SV-j inherits the access scope of SV-I, and
SV-k inherits the access scope of SV-j, the access
scope of SV-k is the set of objects created under SV-I,
SV-j, and SV-k.

For added flexibility, we will allow the users to further
restrict the access scope of a schema version to the set
of objects from a range of continuous sequence of an-
cestor schema versions, from the current schema version
to a specified ancestor schema version.

Figure 1 illustrates the access-scope inheritance rule
and the access-scope rule. In the figure, three schema

152

versions are shown with the objects that are visible to
them. Under the initial schema version SV-0, two ver-
sioned objects, al and a2 arz created, along with their
first version instances al.vO and a2.v0, and then a sec-
ond version instance of al, al.vl, is derived. The ob-
jects al and a2 belong to the same class, and has three
attributes, atl, at2, and at3. Then a new schema ver-
sion, SV-1 is derived from SV-0, by deleting attribute at3
from the class. All objects created under SV-0 are now
visible to SV-1, without the deleted attribute at3. Further,
a new version instance vl of a2 is created, and a new
versioned object a3 (along with its first version instance
a3.vO) is created under SV-1. Then a new schema ver-
sion SV-2 is derived from SV-1 by adding a new attribute
at4 to the class. All objects and their attributes visible to
SV-1 are now made visible to SV-2, along with the new
attribute at4. A new version instance of a3 is derived
under SV-2.

legend:

%%Ga

a3

at1 @D at2
at4

cl
attribute

eneric i?l stance

Figure 1. Example Schema Versions

Now, we consider the direct-access-scope update
rule. There may be conflicts between different schema
versions derived from the same schema version SV with
respect to updatability of the access scope of SV. For
example, a schema version SV-j may have been derived
from SV by leaving the access scope of SV updatable
under SV, and a new schema version SV-k is then de-
rived from SV by making the access scope of SV non-up-
datable under SV. We take the view that when the user
derives a schema version SV-j from SV by leaving the
access scope of SV updatable under SV, the user in ef-

fect does not care whether the access scope of SV is
updatable (which means any changes will automatically
propagate to SV-j). Therefore, we give preference to the
default access-scope inheritance rule over exceptions.
In the current example, derivation of the new schema ver-
sion SV-k will make the access scope of SV non-up-
datable under SV. By the same token, if SV-k was de-
rived first, the access scope of SV will remain non-up-
datable under SV, when SV-j is derived next.

Next, we consider the inherited-access-scope up-
date rule. If objects are inherited into SV-j from SV-I, the
effects of the updates and deletes made under SV-j are
visible only to SV-j; that is, when viewed from SV-i, it is
as if the updates and deletes had never taken place.
We restrict insertion (creation) of new objects to only the
current schema version; that is, newly created objects
belong to the direct access scope of the schema version
under which they are created.

In the case of an update (replace) of an inherited
object under a schema version SV, the new object is
made visible to all descendant schema versions of SV
which inherit the access scope of SV. The new object
persists, even if the old object is deleted under its creator
schema version.

Further, when an inherited object is deleted under a
schema version SV, the object will not be visible to SV
and any descendant schema version of SV which inherits
the access scope of SV. However, the object will con-
tinue to be accessible to any other schema version which
includes the creator schema version SV in its access
scope.

5. IMPLEMENTATION ISSUES
In this section, we discuss auxiliary data structures

for objects to efficiently support versioning of the schema,
detailed algorithms for accessing objects, and storage
representation for the schema versions.

5.1 AUXILIARY DATA STRUCTURES FOR OBJECTS

To support object manipulation in the presence of
versions of schema, we need to include in every object
one system-defined attribute, called the creator attribute,
and to associate a data structure, called an anchor in-
stance, with every object. The creator attribute of an
object indicates the creator schema version of the object.
The anchor instance of an object is a data structure
which describes a set of copies of the object; recall that,
in a similar manner, a generic instance of a versioned
object describes the set of version instances of the ob-
ject. Algorithms for object fetch, insert, delete, and re-
place are presented in the next subsection.

To support delete or replace of an inherited object,
the system will create a new copy of the object when the
object is first deleted or replaced under a schema version

153

which is not its creator schema version. An object, when
first created, exists without an anchor instance; however,
it will carry the identifier of the creator schema version,
An anchor instance, and each of the copies of the object
it describes, are all identified by the same object identifier
of the object: this is necessary so as not to invalidate
existing references to the object. The creator attribute in
each copy of the object is used to distinguish one copy
from any other.

anchor instance discussed earlier. In the algorithms, the
parameter sv denotes the current schema version. We
assume the existence of two boolean functions: (1) An-
cestor-of, which returns TRUE when its first argument is
an ancestor schema version whose access scope is in-
herited by the schema version specified in the second
argument: and (2) Frozen, which returns True when the
argument specifies a schema version whose direct ac-
cess scope is non-updatable under the schema version.
For convenience, we define another boolean function

The anchor instance of an object consists of the Ancestor-Of* (svl , sv2) =
following system-defined attributes. Ancestor-Of (svl, sv2) OR svl = sv2.

1. a list of terminator schema versions
2. a list of copies of the object

A terminator schema version is the schema version un-
der which the object was deleted. We note that termina-
tor schema version can only be a descendant of the
creator schema version: if an object is deleted or re-
placed under its creator schema version, it is physically
deleted or replaced, respectively.

find-closest copy (copy-list, sv)
/’ routine for-finding the ancestor copy that is closest to
sv ‘1

for each c in copy-list
if ancestor-of* (ccreator, sv) return c;

I” an ancestor copy found ‘I
end-for:
return nil;

Figure 2 illustrates the way in which an anchor in-
stance is created and manipulated. In the figure, the an-
chor instance is shown with a terminator, and each copy
of the object includes the creator schema version. The
anchor instance and copies of the object are created in
the following sequence. The object initially exists as
copy-O, and SV-0 is its creator schema version. The
anchor instance is created when the object is updated
under schema version SV-4, and a new copy of the ob-
ject, copy-l, is created with SV-4 as the creator schema
version. The anchor instance describes two copies of
the object. Then copy-O, which is still accessible to
schema version SV-1, is deleted under SV-1, causing
schema version SV-1 to be recorded in the terminator
attribute of the anchor instance.

end find-closest-copy;

copy blocked (terminators, sv, copy-sv)
/* routine for checking if a copy is visible under sv “I

for each t in terminators
if (ancestor-of* (t, sv)) and (ancestor-of (copy-sv. t))

return TRUE: /* copy-sv is blocked from sv by t “/
end-for;
return FALSE: /’ sv is not blocked by any terminator l /

end copy-blocked;

ALGORITHM-SV-FETCH (object-id, sv)
object <- locate-object (object-id);
if (object is an anchor instance)

do anchor-instance <- object:
object <- find-closest copy

(anchor%stance.copy-list, sv);
if (object = nil) or

c(5ii2s$T~m2,
creator%-4 creator:SV-0 sv-3 sv-4

cop -0
of 0 I!* ject

Schema-Version
Derivation Hierarchy

Figure 2. An Anchor Instance and Object Copies

5.2 OBJECT ACCESS ALGORITHMS

(This section may be skipped without loss of continu-
ity.) The following algorithms precisely describe the way
in which an object is fetched, inserted, replaced, and de-
leted. They use the augmented object structure and the

copy-blocked(anchor-instance.terminators,
sv, objectcreator)

error; I* no copy is visible under sv ‘1
end-do;

else if not (ancestor-of* (objectcreator, sv))
error: /’ the only existing copy is not visible l /

return object:
end algorithm-sv-fetch:

ALGORITHM-SV-INSERT (object, sv)
if frozen (sv) error:
objectcreator <- sv;
allocate an id for the object and return the id;

end algorithm-sv-insert;

ALGORITHM-SV-DELETE (object-id, sv)
if frozen (sv) error:
object <- locate-object (object-id):
if (object is an anchor instance)

154

do anchor-instance <- object:
object <- find-closest copy

(anchor-%stance.copy-list. sv);
if (object = nil) or

copy-blocked(anchor-instance.terminators,
sv, objectcreator)

error: /’ no copy is visible under sv “1
else if (object.creator = sv) /* delete by creator ‘/

do remove object from
anchor-instance.copy-list;

if (anchor-instancecopy-list = nil)
remove anchor-instance:

else add sv to anchor-instance.terminators;
end-do:

else add sv to anchor-instance.terminators:
end-do:

else I’ there is no anchor instance ‘I
if (object.creator = sv) remove object:
else if (ancestor-of (object.creator, sv))

create an anchor instance for object-id
with sv and (object) as the values of its
terminators and copy-list attributes,
respectively:

else error; /’ the only existing copy is not visible
under sv *I

end algorithm-sv-delete;

ALGORITHM-SV-REPLACE (object-id, new-object, sv)
if frozen (sv) error:
object <- locate-object (object-id):
if (object is an anchor instance)

do anchor-instance <- object;
object <- find-closest copy

(anchor-&stance.copy-list, sv);
if (object = nil) or

copy-blocked(anchor-instance.terminators,
sv, objectcreator)

error; /* no copy is visible under sv ‘1
else if (objectcreator = sv)

objectdata <- new-objectdata:
I* update in place ‘I

else do new-objectcreator <- sv:
add new-object to
anchor-instance.copy-list
as the first element:

end-do;
end-do:

else I* there is no anchor instance ‘I
if (object.creator = sv) objectdata <- new-object.data:

I* update in place ‘1
else if (ancestor-of (objectcreator, sv))

create an anchor instance for object-id with nil
and (new-object object) as the values of its
terminators and copy-list attributes.
respectively:

else error; /’ the only existing copy is not visible

under sv ‘1
end algorithm-sv-replace:

It is clear that the boolean function Ancestor-Of is an
important factor in the performance of the algorithms, To
minimize this overhead, the ancestor relationship can be
encoded in bit vectors, one for each schema version.
The bit vector associated with the root schema version
contains all zero’s When a new schema version SV-j is
derived and inherits objects from SV-k, a new bit vector
BVj is created and initialized as follows:

BV-j[i] = 1 for i = k, and BV-j[i] = BV-k[i] for all other
i’s, where BV-k is the bit vector of SV-k. If SV-j does not
inherit objects from SV-k, BVj is initialized to all zeros. It
is easy to prove by induction that BV-j[i] is 1 if and only if
SV-j inherits instances from SV-i. Thus, we have reduced
the check for ancestor relationship to a vector access.

When a schema version is derived, the user can
choose not to inherit any instances from the ancestor
schema versions. However, class objects are always in-
herited by the new schema version, at least at the time of
derivation. Thus we need another bit vector for each
schema version to guide the retrieval and updates of
class objects.

5.3 STORAGE REPRESENTATION FOR THE SCHEMA

In this subsection, first we present the schema repre-
sentation in ORION, and then describe our proposal for
representing schema versions and the schema-version
derivation hierarchy.

representation for a single schema

In ORION, we represent the schema (without version-
ing it) as a set of ‘class objects, where a class object is
represented as a set of instances of several system-de-
fined classes. These classes are analogous to system
catalogs in conventional database systems [IBM81].
Three of these classes are shown, in a simplified form, in
Figure 3. For each class, attribute, and method defined,
there is a corresponding instance in the class Class, At-
tribute, and Method, respectively.

Class Attribute

VariableName

InheritedFrom

Method

MethodName

Figure 3. Classes for the Schema

The class Class contains attributes ClassName, At-
tributes, Superclasses, Subclasses, and Methods.
ClassName is the name of the class. Attributes is the set
of all attributes defined for or inherited into the class. The

155

attributes Superclasses and Subclasses are sets of su-
perclasses and subclasses of the class, respectively.
Methods is a set of methods defined for or inherited into
the class. We emphasize that the Attributes and Methods
attributes for a class hold values for not only the attributes
and methods defined for the class, but also those inher-
ited from all superclasses. This technique is known as
‘flattening’ of the class lattice [ZARA85], and is used
often to speed up access to the schema.

The class Attribute (Method) has an instance for
every attribute (method) defined for or inherited into each
class. The class Attribute has attributes Class,
VariableName, Domain, and Inheritedfrom. The attribute
Class references the class to which the attribute belongs.
Domain specifies the class to which the value of the at-
tribute is bound. InheritedFrom refers to an instance of
the class Attribute, and it indicates the attribute of the
superclass from which the attribute is inherited.

representation for schema versions

We now address the issue of maintaining schema
versions in the database. Since one full copy of the
schema can require significant storage space, our objec-
tive is to not maintain a physically separate copy of the
entire schema for each version of the schema, Our solu-
tion is quite simple. We note that all changes to the
schema are either changes to the definition of a class or
changes to the relationship between classes, and that the
relationships between classes are encoded in the class
objects. We continue to maintain instances of the sys-
tem-defined classes Class, Attribute, and Method as
non-versioned objects, but apply the anchor instance
structure to class objects to support updates to a class
object under different schema versions. We need no
changes to the basic representation for a single schema
described above. When the definition of a class is
changed, a copy of the class object for the class is cre-
ated. When the relationship between a pair of classes
changes (e.g., when a new subclass S of a class C is
created, a class S is made a new superclass of a class
C, etc.), a copy of the class object for each of the
classes is created.

We illustrate our storage representation for schema
versions using Figure 4, in which the class lattice is con-
structed and modified under five schema versions. Next
to the nodes and edges of the class lattice, we indicate
the schema version under which they are created or ma-
nipulated. Each of the five anchor instance structures
represents each of the five class objects in the class lat-
tice. The creator schema version is indicated immedi-
ately below each copy of a class object, while the termi-
nator is indicated below the anchor instance. The anchor
instances are in the final state that results from the follow-
ing sequence of five schema changes. First, under
schema version SV-0, classes C-a, C-b, and C-c are
defined. Second, class C-d is created as a subclass of

(SV-1) (SV-2)

sv-0
sl

sv-1 sv-2

4
sv-3 sv-4

Class Lattice

anchor
instance
for C-b

anchor
instance
for C-c

Schema-Version
Derivation Hierarchy

$iz&-6-
sv-2 sv-1

(+Q sv-3

+o sv-0

anchor
instance
for C-e

(si-z-
sv-4 sv-3 sv-2

Anchor Instances for Class Objects

Figure 4. Representation of Schema Versions

C-b under schema version SV-1, This requires an auto-
matic creation, under SV-1, of a new copy of the class
object for C-b, since it must reference the class object
for C-d as a subclass. Third, under schema version
SV-2, class C-e is defined as a subclass of class C-b.
Again, this causes the automatic creation of a copy of the
class object for C-b under SV-2. Fourth, under schema
version SV-3, the class C-c is made a superclass of
C-e. A new copy of the class object for C-c, and a new
copy of the class object for C-e are automatically gener-
ated, so that the former will reference the latter as a sub-
class, and the latter references the former as a super-
class, Fifth, under schema version SV-4, the class C-b
is deleted, making C-a the immediate superclass of C-d
and C-e. This makes the class object for C-b inaccessi-
ble under SV-4, and causes the creation of a new copy
of the class object for C-a, C-d, and C-e. We leave it to
the reader to verify the correctness of the final state of
the anchor instance structure for each of the class ob-
jects.

representation for the schema-version derivation hi-
erarchy

We also need a data structure to describe the deriva-
tion hierarchy of schema versions. A simple solution is to

156

create a system-defined class SCHEMA for schema ver-
sions. This class will have only one instance, which is
versionable. Each schema version is a version instance
of this versioned object, and the schema-version deriva-
tion hierarchy is maintained in the generic instance asso-
ciated with the versioned object. The class SCHEMA has
two attributes, Update-instances and Ancestor-SVs. Up-
date-Instances is a boolean variable which is False when
the access scope of the schema version is made non-
updatable by a child schema version. Ancestor-SVs
contains the list of ancestor schema versions from which
the schema version inherits the access scope.

6. USER INTERFACE

In this section, we specify messages the user (appli-
cation) can send to use our model of schema versions.
The set of messages is surprisingly small, despite the rich
semantics that the model captures.

(derive-schema-version parent-SV,
highest-ancestor-SV, update-instances)

This command is used to return a new schema version
derived from an existing schema version, specified in the
parent-SV parameter. The schema version specified in
the parent-SV parameter, if it is presently a transient
schema version, is automatically promoted to a working
schema version.

The highest-ancestor-SV parameter specifies the highest
ancestor schema version whose access scope is to be
inherited into the new schema version. The default is
root, the root of the schema-version derivation hierarchy,
consistent with the access-scope inheritance rule. If the
value of the parameter is self, the access scope of the
parent schema version is not inherited into the new
schema version. Otherwise, the access scope of the
schema version being derived is the set of objects in the
direct access scope of each of the schema versions from
parent-SV to highest-ancestor-SV.

The default value of the update-instances parameter is
False by the access-scope inheritance rule. Then the
objects in the access scope inherited into the schema
version being derived become non-updatable under their
respective creator schema versions. If update-instances
is True, derivation of the present schema version has no
impact on the updatability of the inherited instances under
their respective creator schema versions.

(change-inheritance highest-ancestor-SV,
update-instances)

This command is used to allow changes to the highest-
ancestor-SV, and the update-instances parameters,
specified when deriving a schema version, after the
schema version has been derived.

(delete-schema-version SV)
This command is used to delete a schema version SV,

along with all version instances created under it. If the
specified schema version has at least one child schema
version, the command is rejected.

(promote-schema-version SV)
This command is used to upgrade the status of a tran-
sient schema version SV to a working schema version, If
SV is already a working schema version, the command
has no effect.

(set-current-schema-version current-SV)
This command is used to switch the schema to the
schema version specified in the current-SV parameter.
All database operations are performed under the current
schema version, including changes to the schema, up-
dates to the access scope of the schema, and creation
of new objects.

(current-schema-version)
This command is used to return the current schema ver-
sion.

7. ALTERNATIVE APPROACHES
In this section, we explore a couple of alternative ap-

proaches to versions of schema. One is to treat each
class object, rather than the entire schema, as a ver-
sionable object. Another is to support views, rather than
versions, of the database schema.

7.1 VERSIONS OF CLASSES
It is clear that our model allows versioning of simple

instance objects, and, of course, the schema. The ques-
tion is whether we should support versioning of class ob-
jects, either instead of versioning the schema or in con-
junction with versioning of the schema. The proposal
briefly outlined in [SKAR86] is to treat the class objects as
versionable objects, and not the schema. If the schema
is not versioned, a ‘virtual’ version of the schema is con-
structed as a lattice of versioned class objects: of course,
only one version instance of a class object will be in-
cluded in any ‘virtual’ version of the schema.

Versioning the class objects has a few problems.
When the schema is not explicitly versioned, the user
must nevertheless manage the ‘virtual’ versions of
schema by keeping track of which versions of class ob-
jects belong to which ‘virtual’ versions of schema. In the
representation of the class objects, since the class ob-
jects are versioned, dynamic binding may be used for
references from one class to its superclasses and sub-
classes. The system will resolve any reference to a ge-
neric class object to a default version of the class object.
The user then must maintain, for each ‘virtual’ schema
version, a list of default versions for all references to ge-
neric instances of the class objects! Further, the use of
dynamic binding of references to class objects implies
that the ‘virtual’ schema version cannot be flattened for
efficient access!

Even if only static binding is used for references to
versions of the class objects, the situation is not much

157

better. For example, suppose a new version v-j of a
class C is derived from version v-i: and remember that
the different versions of a class object have different ob-
ject identifiers. Since each class object has the Super-
Classes and Subclasses attributes, all subclasses of the
class C must now reference the new version of C under
the new ‘virtual’ schema version. This will mean that a
new version must be created for each of the subclasses
of C. Similarly, a new version must be derived for each
of the superclasses of C. In other words, if we are to use
versions of the class objects to support ‘virtual’ schema
versions, we will end up generating a new version of the
entire class lattice for each ‘virtual’ schema version!

The above problems also arise even if the schema is
also explicitly versioned, as long as the class objects are
also versioned. Our model does not support versioning of
the class objects: instead, we use copies of the class
objects to support updates of objects inherited from an-
cestor schema versions. In our approach, a schema ver-
sion is a lattice of class objects, where only one copy of
any class object is selected. The copies of a class ob-
ject roughly correspond to versions of a class object in
the class versioning approach. The only difference be-
tween the two approaches is that our approach allows
only one copy (version) of each class object within any
schema version. As such, the users cannot experiment
with alternative definitions of a class within one schema
version; of course, however, they may derive alternative
schema versions, each with a different definition of the
class, and experiment with the database by inheriting the
access scope of the original schema version. On the
other hand, the flexibility available (which we discussed
above) in the class-version approach creates more op-
portunities for mistakes. For example, by allowing any two
schema versions to share the same default of a class
object, changes to the class object under one schema
version may generate surprises in the other schema ver-
sion.

7.2 VIEWS OF THE SCHEMA
We have been able to identify two difficulties with our

model of versions of schema. One is the system over-
head in supporting updates of objects inherited from an
ancestor schema version. We feel that the solution we
presented in Section 5 is reasonably good; however, it
still requires a non-trivial system overhead. Another diffi-
culty is that updates of inherited objects may cause con-
fusion to the users. Suppose, for example, that a user,
operating under a schema version SV-k, deletes an ob-
ject inherited from a schema version SV-j, which in turn
inherited the object from a schema version SV-I. If the
user then operates under SV-j, the object will be visible
again. Of course, this is exactly the desired effect; how-
ever, it may nonetheless be somewhat confusing to the
user.

The cause of these difficulties is that each schema
version is associated with an access scope, and the ac-

cess scope of a schema version is updated from a de-
scendant schema version. One way to alleviate these
difficulties maybe to simply provide dynamic views of a
single underlying schema. In this model, as in our model,
any number of views may be derived from any schema
view, giving rise to a derivation hierarchy of schema
views. However, this model does not admit the notion of
inheriting objects from an ancestor schema view (remem-
ber that inheritance of objects and updates of inherited
objects are the cause of the problem we are attempting
to address). Instead, all objects are associated with the
single underlying schema, and the access scope of each
schema view is the subset of all objects in the database
whose attributes are defined by the schema view. In
other words, all updates to objects under one schema
view become visible to all schema views which include
the definition of the attributes of the objects. This means
that the schema view approach does not associate with
any view a snapshot of the state of the database at some
point in time. This contrasts sharply with our model, in
which the set of objects manipulated under a schema ver-
sion SV may be preserved with respect to schema ver-
sions derived from SV.

8. SUMMARY

In a multi-user design environment, versioning of de-
sign objects and versioning of the schema for these ob-
jects are important requirements. There exists an exten-
sive set of research reports on versions of design ob-
jects, and some systems have even implemented version
control. However, there has been virtually no formal pro-
posal to define the semantics of versioning the schema,
although many professionals in the design and database
communities have talked of the importance of research
into versions of schema. In this paper, we described a
model of versions of an object-oriented schema, using as
its basis the model of versions of objects which we have
implemented in the ORION prototype object-oriented da-
tabase system. In particular, the model includes such
notions as capabilities, derivation hierarchy for versions of
schema: and incorporates the view that each version of
the schema captures the state of the database at some
point in time and that the state may be inherited into any
derived schema version for read and update.

Next we presented the data structure for representing
objects and the schema, and algorithms for manipulating
objects under our model of versions of schema. Then we
discussed two possible alternative approaches to achiev-
ing some of the objectives which we we tried to meet with
our model of versions of schema. These alternatives in-
clude versioning of the class objects and dynamic views
of a single schema.

158

REFERENCES

[ATWO85] Atwood, T.M. “An Object-Oriented DBMS
for Design Support Applications,” Proc. /EEE
COMPINT 85, Montreal, Canada,pp.
299-307.

[BANE87a] Banerjee, J., et al. “Data Model Issues for
Object-Oriented Applications,” ACM Trans.
on Office Information Systems, April 1987.

[BANE87b] Banerjee, J., W. Kim, H.J. Kim, and H.F.
Korth. “Semantics and Implementation of
Schema Evolution in Object-Oriented
Databases,” in Proc. ACM SIGMOD
Conference on Management of Data, San
Francisco, CA., May 1987.

[BOBR83] Bobrow, D.G.. and M. Stefik. The LOOPS
Manual, Xerox PARC, Palo Alto, CA., 1983.

[BOBR85] Bobrow, D.G. et al. CommonLoops:
Merging Common Lisp and Object-Oriented
Programming, Intelligent Systems Laboratory
Series ISL-85-8, Xerox PARC, Palo Alto,
CA., 1985.

[CHOU86] Chou, H.T., and W. Kim. “A Unifying
Framework for Versions in a CAD
Environment,” in Proc. Intl Conf. on Very
Large Data Bases, August 1986, Kyoto,
Japan.

[CHOUSS] Chou, H.T., and W. Kim. “Versions and
Change Notification in an Object-Oriented
Database System,” to appear in Proc. 25th
Design Automation Conference, June 1988.

[Dll-l-851 Dittrich K. and R. Lorie. “Version Support for
Engineering Database Systems,” IBM
Research Report: RJ4769, IBM Research,
Calif., July 1985.

[GOLD811 Goldberg, A. “Introducing the Smalltalk-
System,” Byte, vol. 6, no. 8, August 1981,
pp. 14-26.

[GOLD831 Goldberg, A. and D. Robson. Smalltalk-80:
The Language and its Implementation,
Addison-Wesley, Reading, MA 1983.

[IBM811 SQL/Data System: Concepts and Facilities.
GH24-5013-0, File No. S370-50, IBM
Corporation, Jan. 1981.

(KATZ841 Katz, R. and T. Lehman. “Database Support
for Versions and Alternatives of Large Design
Files,” IEEE Trans. on Software
Engineering, vol. SE-lo, no. 2, March
1984, pp. 191-200.

[KATZ861 Katz R., E. Chang, and R. Bhateja. “Version
Modeling Concepts for Computer-Aided
Design Databases,” in Proc. ACM SIGMOD
Intl. Conf. on Management of Data,
Washington, D.C., May 1986.

[KIM871 Kim, W., et al. “Composite Object Support
in an Object-Oriented Database System,” in
Proc. Object-Oriented Programming
Systems, Languages, and Applications, Oct.
1987, Orlando, Florida.

[LMl85] ObjectLISP User Manual, LMI, Cambridge,
MA, 1985.

[ROCH75] Rochkind M. “The Source Code Control
System,” IEEE Transactions on Software
Engineering, vol. SE-l, no. 4, December
1975, pp. 364-370.

[SKAR86] Skarra, A.H., and S. Zdonik. “The
Management of Changing Types in an
Object-Oriented Database,” in Proc.
Object-Oriented Programming Systems,
Languages, and Applications, Oct. 1986,
Portland, Oregon.

[STEF86] Stefik, M., and D.G. Bobrow.
“Object-Oriented Programming: Themes and
Variations,” The Al Magazine, January 1986,
pp. 40-62.

[SYMB84] FL4V Objects, Message Passing, and
Flavors. Symbolics, Inc., Cambridge, MA,
1984.

[TICH82] Tichy W. “Design, Implementation, and
Evaluation of a Revision Control System,”
IEEE 6th International Conference on
Software Engineering, September 1982.

[WOEL871 Woelk, D., and W. Kim. “Multimedia
Information Management in an
Object-Oriented Database system,” in Proc.
lntl Conf. on Very Large Data Bases, Sept.
1987, Brighton, England.

[ZARA85] Zara, R.V. and D.R. Henke. “Building a
Layered Database for Design Automation,”
in Proc. 22nd Design Automation Conf.,
1985, pp. 645-651.

159

