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Abstract 

Version control is one of the important database require- 
ments for design environments. Various models of ver- 
sions have been proposed and implemented. However, 
research in versions has been focused exclusively on 
versioning single design objects. In a multi-user design 
environment where the schema (definition) of the design 
objects may undergo dynamic changes, it is important to 
be able to version the schema, as well as version the 
single design objects. In this paper, we propose a model 
of versions of schema by extending our model of versions 
of single objects. In particular, we present the semantics 
of our model of versions of schema for object-oriented 
databases, explore issues in implementing the model, 
and examine a few alternatives to our model of versions 
of schema. 

1. INTRODUCTION 
In the Advanced Computer Architecture Program at 

MCC, we have built a prototype object-oriented database 
system, called ORION. Presently, ORION is being used 
in supporting the data management needs of PROTEUS, 
an expert system shell also prototyped in the Advanced 
Computer Architecture Program at MCC. In ORION we 
have directly implemented the object-oriented paradigm 
[GOLD81, GOLD83, BOBR83, SYMB84, BOBR851, added 
persistence and sharability to objects through transaction 
support, and provided various advanced functions that 
applications from the CAD/CAM, Al, and OIS domains re- 
quire. Advanced functions supported in ORION include 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com- 
mercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice is given that copying is 
by permission of the Very Large Data Base Endowment. To copy 
othenvise, or to npublish, requires a fee and/or special permission 
from the Endowment. 

versions [CHOUSS, CHOU881, composite objects 
[KIM87], dynamic schema evolution [BANE87b], and mul- 
timedia data management [WOEL87], 

There is an extensive set of research reports on ver- 
sions of design objects [ROCH75, TICH82, KATZ84, 
DITT85, ATW085, KATZ86]. In a multi-user design envi- 
ronment, it is highly desirable to extend the notion of ver- 
sions of objects to versions of schema (definition of the 
objects). One major motivation is to better preserve the 
history of evolution of objects, so that applications may 
derive versions of schema, and create and manipulate 
different sets of objects under different versions of 
schema. If the schema cannot be versioned, objects that 
existed before a schema change can in general be irre- 
versibly changed. For example, if an attribute of a class 
is dropped, the values of the attribute in existing objects 
(instances) of the class become no longer visible to the 
application. If, however, a new version of the schema is 
derived in which the attribute of the class is dropped, the 
values of the attribute in existing objects continue to be 
visible to the application under the old version of the 
schema. 

Another important motivation for versioning the 
schema is to support checkouts and checkins of objects 
in a federated system of private databases and a public 
database. A private database system running on an engi- 
neering workstation may check a complex design object 
out of the public database, modify it, and check the modi- 
fied object into the public database as a new version of 
the object. If we are to allow the user to change the 
schema of the checked-out object in the private data- 
base, we must require the modified schema to be copied 
to the public database as a new version of the original 
schema before a new version of the object may be 
checked in. 

To the best of our knowledge, except for [SKAR86] 
which provides a brief discussion of versioning a class 
(rather than the entire schema), the semantics and imple- 
mentation of versions of schema have not been reported 
in the literature. In this paper, we make two original con- 
tributions to this important but largely unexplored area of 
research. First, we develop a model of versions of 
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schema. In doing this, we identify and address a number 
of semantic issues which arise in versioning the schema. 
By specifying a user interface, consisting of a surprisingly 
small set of commands, we show how the users may use 
our model of versions of schema. Second, we propose 
fairly detailed implementation techniques for supporting 
versions of schema in a database system. 

The remainder of this paper is organized as follows. 
In Section 2, we briefly review basic object-oriented con- 
cepts. Section 3 provides a review of our model of ver- 
sions of objects, and the semantics of schema evolution. 
In Section 4, we identify a number of major semantic is- 
sues in versioning the schema, and define our model of 
versions of schema. In Section 5, we propose implemen- 
tation techniques for versions of schema, and indicate 
expected system overhead. Section 6 describes the user 
interface for our model of versions of schema. Section 7 
provides a discussion of alternatives to our approach. 
The paper is summarized in Section 8. 

2. BASIC OBJECT-ORIENTED CONCEPTS 
In this section we review basic object-oriented con- 

cepts that are relevant to our discussions in the remain- 
der of this paper. This section is extracted from our full 
paper on the ORION data model in [BANE87a]. 

objects, attributes (instance variables), methods, 
and messages 

In object-oriented systems, all conceptual entities are 
modeled as objects. An ordinary integer or string is as 
much an object as is a complex assembly of parts, such 
as an aircraft or a submarine. An object consists of some 
private memory that holds its state. The private memory 
is made up of the values for a collection of attributes 
(often called instance variables). The value of an attribute 
is itself an object, and therefore has its own private mem- 
ory for its state (i.e., its attributes). A primitive object, 
such as an integer or a string, has no attributes. It only 
has a value, which is the object itself. More complex ob- 
jects contain attributes, through which they reference 
other objects, which in turn contain attributes. 

The behavior of an object is encapsulated in meth- 
ods. Methods consist of code that manipulate or return 
the state of an object. Methods are a part of the definition 
of the object. However, methods, as well as attributes, 
are not visible from outside of the object. Objects can 
communicate with one another through messages. Mes- 
sages constitute the public interface of an object. For 
each message understood by an object, there is a corre- 
sponding method that executes the message. An object 
reacts to a message by executing the corresponding 
method, and returning an object. 

classes, class hierarchy, inheritance, and domains 

If every object is to carry its own attribute names and 
its own methods, the amount of information to be speci- 

fied and stored can become unmanageably large. For 
this reason, as well as for conceptual simplicity, ‘similar’ 
objects are grouped together into a c/ass. All objects 
belonging to the same class are described by the same 
set of attributes and methods, They all respond to the 
same messages. Objects that belong to a class are 
called instances of that class. (In this paper, we will use 
the terms instances and objects interchangeably.) A 
class describes the form (attributes) of its instances, and 
the operations (methods) applicable to its instances. 
Thus, when a message is sent to an instance, the method 
which implements that message is found in the definition 
of the class. 

Grouping objects into classes helps avoid the specifi- 
cation and storage of much redundant information. The 
concept of a class hierarchy extends this information 
hiding capability one step further. A class hierarchy is a 
hierarchy of classes in which an edge between a pair of 
nodes represents the IS-A relationship: that is, the lower 
level node is a specialization of the higher level node (and 
conversely, the higher level node is a generalization of 
the lower level node). The root of a class hierarchy is 
the system-defined class CLASS, For a pair of classes 
on a class hierarchy, the higher level class is called a 
superclass, and the lower level class a subclass. The 
attributes and methods (collectively called properties) 
specified for a class are inherited (shared) by all its sub- 
classes. Additional properties may be specified for each 
of the subclasses. A class inherits properties only from 
its immediate superclass. Since the latter inherits proper- 
ties from its own superclass, it follows that a class inherits 
properties from every class in its superclass chain. 

In object-oriented systems, the domain (which corre- 
sponds to data type in conventional programming lan- 
guages) of an attribute is a class. The domain of an 
attribute of a class C may be explicitly bound to a specific 
class D. Then instances of the class C may take on as 
values for the attribute instances of the class D as well as 
instances of subclasses of D. 

class lattice, multiple inheritance, and name-conflict 
resolution 

In many object-oriented systems (and in ORION), a 
class can have more than one superclass, generalizing 
the class hierarchy to a lattice (or a directed acyclic 
graph). In a class lattice, a class inherits properties from 
each of its superclasses. This feature is often referred to 
as mu/tip/e inheritance [LMl85, STEF86]. The class lat- 
tice simplifies data modeling and often requires fewer 
classes to be specified than with a class hierarchy. How- 
ever, it gives rise to conflicts in the names of attributes 
and methods. One type of conflict is between a class 
and its superclass (this type of problem also arises in a 
class hierarchy). Another, which is purely a conse- 
quence of multiple inheritance, is among the super- 
classes of a class. 
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Name conflicts between a class and its superclasses 
are resolved in all systems, including ORION, by giving 
precedence to the definition within the class over that in 
its superclasses. The approach used in many systems, 
and in ORION, to resolve name conflicts among super- 
classes of a given class is the use of superclass order- 
ing. If an attribute or a method with the same name ap- 
pears in more than one superclass of a class C, the one 
chosen by default is that of the first superclass in the list 
of (immediate) superclasses of C, which the application 
will have specified. 

3. REVIEW OF VERSIONS AND SCHEMA EVO- 
LUTION 

In this section we review the model of versions of 
objects [CHOU88] and the semantics of schema evolu- 
tion [BANE87b] which we support in ORION. The model 
of versions of objects is the basis of our model of ver- 
sions of schema. We will limit our review to those as- 
pects of our models of versions and schema evolution 
that are essential to understanding the subsequent sec- 
tions of this paper. 

3.1 VERSIONS 

Our model of versions associates different capabili- 
ties with versions: that is, it distinguishes transient ver- 
sions, which can be updated or deleted at will, from 
working versions, which can be deleted but not updated. 
A transient version may be created from scratch or de 
rived from an existing version. The user may explicitly 
promote a transient version to a working version. A tran- 
sient version may be implicitly promoted to a working ver- 
sion, if a new transient version is derived from it. 

An object is either versioned or non-versioned. A 
versioned object is an instance of a class which the appli- 
cation declares to be versionable. Since any number of 
transient versions may be derived at any time from an 
existing version, a versioned object consists of a hierar- 
chy of versions, called a version-derivation hierarchy. 
We use the term version instance to refer to a specific 
version in the version-derivation hierarchy for a versioned 
object, and generic instance to refer to the abstract ver- 
sioned object. A generic instance maintains the history of 
derivation of version instances for a versioned object. 

In object-oriented systems, every object Is assigned 
an identifier which uniquely identifies the object in the sys- 
tem. In ORION, both the generic instance and a version 
instance of the generic instance have object identifiers. 
An object, either a version instance or a non-versioned 
object, may reference one or more other objects. If an 
object references a version instance, the reference may 
be the object identifier of a generic instance or that of a 
version instance. If the reference is to a version instance, 
we say that the object is statically bound to the version 
instance. If the reference is to a generic instance, the 

object is said to be dynamically bound to a default ver- 
sion instance of the generic instance. The capability to 
bind an object dynamically to a default version instance is 
useful, since transient or working versions that are refer- 
enced may be deleted, and new versions created. We 
allow the user to specify a particular version instance on 
the version-derivation hierarchy as the default version. 
In the absence of a user-specified default, the system will 
select the version instance with the ‘most recent’ times- 
tamp as the default. The default version instance of a 
versioned object is recorded in its generic instance. 

3.2 SCHEMA EVOLUTION 

As we discussed in Section 2, the schema of an ob- 
ject-oriented database is the class lattice; and as such 
two types of changes to the schema are meaningful: 
changes to the definitions of a class (contents of a node) 
in the class lattice, and changes to the structure (edges 
and nodes) of the class lattice. Changes to the class 
definitions include adding and deleting attributes and 
methods. Changes to the class lattice structure include 
creation and deletion of a class, and alteration of the IS-A 
relationship between classes (adding and deleting the su- 
perclass-subclass relationship between a pair of 
classes). 

Below we outline (but not fully describe) the seman- 
tics of some of the schema change operations. Later in 
this paper, we will illustrate our implementation of versions 
of schema in terms of the semantics of these operations. 

7. Add an attribute V to a class C 

If the new attribute V causes no name conflicts in the 
class C or any of its subclasses, V will be inherited by all 
subclasses of C. If V causes a name conflict with an 
inherited attribute, V will override the inherited attribute. If 
the old attribute was also locally defined in C, it is re- 
placed by the new definition. Existing instances of the 
classes to which V is added receive the nil value. 

2. Drop an attribute V from a class C 

V is dropped from C and subclasses of C that inher- 
ited it. Existing instances of these classes lose their val- 
ues for V. If C or any of its subclasses has other super- 
classes that have attributes of the same name as that of 
V, it inherits one of them. 

3. Make a class S a superclass of a class C 

The addition of a new edge from S to C must not 
introduce a cycle in the class lattice. C and its sub- 
classes inherit attributes and methods from S. 

4. Add a new class C 

All attributes and methods from all superclasses 
specified for C are inherited, unless there are conflicts. If 
no superclasses of C are specified, the system-defined 
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;root of the class hitice, CLASS, becomes the superclass 
of c. 

5. Drop an existing class C 

All edges from C to its subclasses are dropped; 
which means that the subclasses will lose all the attrib- 
utes and methods they inherited from C. Next, all edges 
from the superclasses of C into C are removed. Finally, 
the definition of C is dropped, and C is removed from the 
class lattice. The subclasses of C continue to exist. 

4. VERSIONS OF SCHEMA 

As we observed in Section 1, one of the important 
database requirements for a multi-user design environ- 
ment is for the users to be able to view and manipulate 
different sets of objects under different versions of the 
schema. We have explored three different approaches to 
satisfying this requirement. One is to view the entire 
schema (the entire class lattice) as a versioned object; 
this is the versions of schema approach. Another is to 
view each class as a versioned object; this is the ver- 
sions of class approach. Another is to provide dynamic 
views, rather than versions, of the schema: this is the 
views of schema approach. We have selected the ver- 
sions of schema approach, and developed a model of 
versions of schema by extending the concepts of version 
capabilities, version-derivation hierarchies, and default 
versions from versions of objects to versions of schema. 
The model also reflects our view that a version of schema 
is associated with a set of objects created under it. Be- 
cause a comparison of the three approaches requires a 
deeper understanding of the semantic and implementa- 
tion issues involved, we defer such a discussion to Sec- 
tion 7. 

Before we proceed, we define some terms we will 
use throughout the remainder of this paper. 

A schema version SV-j is called a descendant 
schema version of a schema version SV-I, if SV-j is 
derived directly or indirectly from SV-I. Conversely, 
SV-i is called an ancestor schema version of SV-j. 

A schema version SV-j is called a child schema 
version of a schema version SV-I, if SV-j is derived 
directly from SV-i. Conversely, SV-i is called a par- 
ent schema version of SV-j. 

The schema version under which the application 
currently accesses and manipulates objects is 
called the current schema version. 

The schema version under which an object was 
created is called the creator schema version of the 
object. 

The access scope of a schema version SV is the 
set of objects which are accessible to SV. 

The direct access scope of a schema version SV is 
the set of objects which are created under SV. 

The object-oriented paradigm models all logical enti- 
ties uniformly as objects with unique object identifiers. 
However, we may distinguish three types of objects for 
the purposes of version semantics: (instance) objects of 
a class, class objects, and the schema object. We will 
show in Section 5 that the implementation techniques we 
propose for our model of versions of schema make it un- 
necessary to support versions of class objects. There- 
fore, throughout this paper, when we talk about manipu- 
lating objects under a schema version (read, insert, de- 
lete, replace), we mean manipulating instance objects, 
but not class objects. 

Our model of versions of schema may be expressed 
in terms of seven rules. The first three rules are exten- 
sions of the major concepts in our model of versions of 
objects. 

Schema-Version Capability Rule: A schema version 
may be either a transient schema version or a working 
schema version. A transient schema version may be up- 
dated or deleted; and it may be promoted to a working 
schema version any time. A working schema version 
cannot be updated. A working schema version may be 
deleted or demoted to a transient version, if it has no 
child schema version. 

We note that both a working version of the schema 
and a working version of an object are non-updatable. 
However, as we mentioned earlier, a working version of 
an object may be deleted at any time. 

Schema-Version Derivation Rule: Any number of new 
versions of schema may be derived at any time from any 
existing schema version, giving rise to a version-deriva- 
tion hierarchy for the schema. A derived schema version 
is initially a transient version. If a schema version is de- 
rived from a transient schema version, the transient 
schema version is automatically promoted to a working 
schema version. 

Schema-Version Deletion Rule: A schema version 
which is a leaf node in the schema-version derivation hi- 
erarchy can be deleted, regardless of whether it is a 
working version or a transient version. A schema version 
cannot be deleted, if it has any child schema version. 
When a schema version is deleted, its direct access 
scope is also deleted. 

The schema-version deletion rule makes it clear that 
a schema version ‘owns’ the objects created under it, 
that is, its direct access scope. Two fundamental ques- 
tions arise concerning the access scope between the 
creator schema version and a descendant schema ver- 
sion, One is whether the access scope of a schema 
version SV-i should be inherited into a descendant 
schema version SV-j. Another is, if the access scope of 
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SV-i is inherited, whether it should remain updatable (re- 
placed or deleted) under SVi. The following rule has 
been developed to address these questions. It will be 
discussed in detail shortly. 

Access-Scope Inheritance Rule: When a schema ver- 
sion SV-j is derived from a schema version SV-i, SV-j by 
default inherits the access scope of SV-i. However, the 
user may optionally block the inheritance of the access 
scope of the parent schema version. Further, once SV-j 
inherits the access scope of SV-i, the access scope of 
SV-i becomes by default non-updatable under SV-i. 
Again, however, the application may optionally leave the 
access scope of SV-i updatable under SV-I, when inher- 
iting the access scope from SV-I. 

The access-scope inheritance rule is the basis of the 
access-scope rule which defines the objects visible to a 
schema version in the schema-version derivation hierar- 
chy. Two additional rules explain the update capabilities 
under a schema version: the direct-access-scope up- 
date rule specifies when objects created under a schema 
version SV can and cannot be updated under SV; and the 
inherited-access-scope update rule defines what it 
means to update objects under a schema version SV, 
when the objects are inherited from an ancestor schema 
version of SV. 

Access-Scope Rule: The access scope of a schema 
version SV is the set of objects created under SV and 
those objects in the inherited access scopes of the an- 
cestor schema versions. All objects in the access scope 
of SV are visible to SV, which means that they may be 
read or updated (inserted, replaced, deleted) under SV. 
No other objects are visible to SV. 

Direct-Access-Scope Update Rule: The access scope 
of a schema version SV is non-updatable (no insert, no 
delete, no replace) under SV, if any schema version 
SV-k has been derived from SV, unless each SV-k has 
been derived from SV by blocking the inheritance of SV’s 
access scope or by leaving the access scope of SV up- 
datable under SV. 

Inherited-Access-Scope Update Rule: All inherited 
objects in the access scope of SV may be updated or 
deleted. However, updates and deletes under SV of the 
objects inherited into SV are only visible to SV and the 
descendant schema versions of SV which inherited the 
access scope from SV. 

A basic premise of our model of schema versions is 
that the access scope of a schema version SV may be 
inherited into any schema version derived from SV. The 
default access-scope inheritance rule reflects this. A 
major advantage of this approach is that by allowing auto- 
matic inheritance of the access scope of a schema ver- 
sion SVi into any new schema version SV-j derived from 
SVi, it avoids needless copying of those objects of SV-i 
which are to be visible to SV-j. This approach is particu- 

larly appropriate, if the objective of deriving a new 
schema version is to experiment with the impacts of a 
new definition of the schema on existing objects. How- 
ever, it is inappropriate, if only a relatively small subset of 
the objects in the access scope of the parent schema 
version needs to be visible to the derived schema ver- 
sion 

If a schema version SV-j, derived from a schema 
version SV-i, inherits the access scope of SV-i, it is rea- 
sonable to disallow further updates to objects of SV-i un- 
der SV-I. If objects of SV-i are updated under SV-i after 
SV-j has been derived, the creator of SV-j will see differ- 
ent objects of SV-i at different times. However, with this 
restriction, to update any objects of SV-i, after SV-j has 
been derived from it, the creator of SV-i will have to de- 
rive a new transient schema version SV-k from SV-I, 
even if there may be no differences between SV-i and 
SV-k, and update the objects under SV-k. 

The discussions above point out that a strict adher- 
ence to the default access-scope inheritance rule may 
not always be desirable. This is the reason for the ex- 
ceptions to the rule. We allow the application to option- 
ally leave the access scope of a schema version SV-i 
updatable under SV-i when deriving a new schema ver- 
sion SV-j from SV-I, and even block the inheritance of 
the access scope altogether. There are then three possi- 
ble options in deriving a schema version SV-j from a 
schema version SV-I. We note that the users may dy- 
namically change the option any time after the initial deri- 
vation of a schema version (this is further explained in 
Section 6). 

1. SV-j inherits the access scope of SV-I, and the 
access scope of SV-i is made non-updatable under 
SV-i. 

2. SV-j inherits the access scope of SV-i. but the 
access scope of SV-i remains updatable under SV-i. 

3. SV-j does not inherit the access scope of SV-I, 
and it is immaterial whether the access scope of SV-i is 
updatable under SV-I, 

The access scope of a schema version SV is the set 
of objects created under SV and those inherited from the 
ancestor schema versions. For example, if a schema 
version SV-i is the parent schema version of a schema 
version SV-j. and SV-j is the parent of a schema version 
SV-k, and SV-j inherits the access scope of SV-I, and 
SV-k inherits the access scope of SV-j, the access 
scope of SV-k is the set of objects created under SV-I, 
SV-j, and SV-k. 

For added flexibility, we will allow the users to further 
restrict the access scope of a schema version to the set 
of objects from a range of continuous sequence of an- 
cestor schema versions, from the current schema version 
to a specified ancestor schema version. 

Figure 1 illustrates the access-scope inheritance rule 
and the access-scope rule. In the figure, three schema 

152 



versions are shown with the objects that are visible to 
them. Under the initial schema version SV-0, two ver- 
sioned objects, al and a2 arz created, along with their 
first version instances al.vO and a2.v0, and then a sec- 
ond version instance of al, al.vl, is derived. The ob- 
jects al and a2 belong to the same class, and has three 
attributes, atl, at2, and at3. Then a new schema ver- 
sion, SV-1 is derived from SV-0, by deleting attribute at3 
from the class. All objects created under SV-0 are now 
visible to SV-1, without the deleted attribute at3. Further, 
a new version instance vl of a2 is created, and a new 
versioned object a3 (along with its first version instance 
a3.vO) is created under SV-1. Then a new schema ver- 
sion SV-2 is derived from SV-1 by adding a new attribute 
at4 to the class. All objects and their attributes visible to 
SV-1 are now made visible to SV-2, along with the new 
attribute at4. A new version instance of a3 is derived 
under SV-2. 

legend: 

%%Ga 

a3 

at1 @D at2 
at4 

cl 
attribute 

eneric i?l stance 

Figure 1. Example Schema Versions 

Now, we consider the direct-access-scope update 
rule. There may be conflicts between different schema 
versions derived from the same schema version SV with 
respect to updatability of the access scope of SV. For 
example, a schema version SV-j may have been derived 
from SV by leaving the access scope of SV updatable 
under SV, and a new schema version SV-k is then de- 
rived from SV by making the access scope of SV non-up- 
datable under SV. We take the view that when the user 
derives a schema version SV-j from SV by leaving the 
access scope of SV updatable under SV, the user in ef- 

fect does not care whether the access scope of SV is 
updatable (which means any changes will automatically 
propagate to SV-j). Therefore, we give preference to the 
default access-scope inheritance rule over exceptions. 
In the current example, derivation of the new schema ver- 
sion SV-k will make the access scope of SV non-up- 
datable under SV. By the same token, if SV-k was de- 
rived first, the access scope of SV will remain non-up- 
datable under SV, when SV-j is derived next. 

Next, we consider the inherited-access-scope up- 
date rule. If objects are inherited into SV-j from SV-I, the 
effects of the updates and deletes made under SV-j are 
visible only to SV-j; that is, when viewed from SV-i, it is 
as if the updates and deletes had never taken place. 
We restrict insertion (creation) of new objects to only the 
current schema version; that is, newly created objects 
belong to the direct access scope of the schema version 
under which they are created. 

In the case of an update (replace) of an inherited 
object under a schema version SV, the new object is 
made visible to all descendant schema versions of SV 
which inherit the access scope of SV. The new object 
persists, even if the old object is deleted under its creator 
schema version. 

Further, when an inherited object is deleted under a 
schema version SV, the object will not be visible to SV 
and any descendant schema version of SV which inherits 
the access scope of SV. However, the object will con- 
tinue to be accessible to any other schema version which 
includes the creator schema version SV in its access 
scope. 

5. IMPLEMENTATION ISSUES 
In this section, we discuss auxiliary data structures 

for objects to efficiently support versioning of the schema, 
detailed algorithms for accessing objects, and storage 
representation for the schema versions. 

5.1 AUXILIARY DATA STRUCTURES FOR OBJECTS 

To support object manipulation in the presence of 
versions of schema, we need to include in every object 
one system-defined attribute, called the creator attribute, 
and to associate a data structure, called an anchor in- 
stance, with every object. The creator attribute of an 
object indicates the creator schema version of the object. 
The anchor instance of an object is a data structure 
which describes a set of copies of the object; recall that, 
in a similar manner, a generic instance of a versioned 
object describes the set of version instances of the ob- 
ject. Algorithms for object fetch, insert, delete, and re- 
place are presented in the next subsection. 

To support delete or replace of an inherited object, 
the system will create a new copy of the object when the 
object is first deleted or replaced under a schema version 
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which is not its creator schema version. An object, when 
first created, exists without an anchor instance; however, 
it will carry the identifier of the creator schema version, 
An anchor instance, and each of the copies of the object 
it describes, are all identified by the same object identifier 
of the object: this is necessary so as not to invalidate 
existing references to the object. The creator attribute in 
each copy of the object is used to distinguish one copy 
from any other. 

anchor instance discussed earlier. In the algorithms, the 
parameter sv denotes the current schema version. We 
assume the existence of two boolean functions: (1) An- 
cestor-of, which returns TRUE when its first argument is 
an ancestor schema version whose access scope is in- 
herited by the schema version specified in the second 
argument: and (2) Frozen, which returns True when the 
argument specifies a schema version whose direct ac- 
cess scope is non-updatable under the schema version. 
For convenience, we define another boolean function 

The anchor instance of an object consists of the Ancestor-Of* (svl , sv2) = 
following system-defined attributes. Ancestor-Of (svl, sv2) OR svl = sv2. 

1. a list of terminator schema versions 
2. a list of copies of the object 

A terminator schema version is the schema version un- 
der which the object was deleted. We note that termina- 
tor schema version can only be a descendant of the 
creator schema version: if an object is deleted or re- 
placed under its creator schema version, it is physically 
deleted or replaced, respectively. 

find-closest copy (copy-list, sv) 
/’ routine for-finding the ancestor copy that is closest to 
sv ‘1 

for each c in copy-list 
if ancestor-of* (ccreator, sv) return c; 

I” an ancestor copy found ‘I 
end-for: 
return nil; 

Figure 2 illustrates the way in which an anchor in- 
stance is created and manipulated. In the figure, the an- 
chor instance is shown with a terminator, and each copy 
of the object includes the creator schema version. The 
anchor instance and copies of the object are created in 
the following sequence. The object initially exists as 
copy-O, and SV-0 is its creator schema version. The 
anchor instance is created when the object is updated 
under schema version SV-4, and a new copy of the ob- 
ject, copy-l, is created with SV-4 as the creator schema 
version. The anchor instance describes two copies of 
the object. Then copy-O, which is still accessible to 
schema version SV-1, is deleted under SV-1, causing 
schema version SV-1 to be recorded in the terminator 
attribute of the anchor instance. 

end find-closest-copy; 

copy blocked (terminators, sv, copy-sv) 
/* routine for checking if a copy is visible under sv “I 

for each t in terminators 
if (ancestor-of* (t, sv)) and (ancestor-of (copy-sv. t)) 

return TRUE: /* copy-sv is blocked from sv by t “/ 
end-for; 
return FALSE: /’ sv is not blocked by any terminator l / 

end copy-blocked; 

ALGORITHM-SV-FETCH (object-id, sv) 
object <- locate-object (object-id); 
if (object is an anchor instance) 

do anchor-instance <- object: 
object <- find-closest copy 

(anchor%stance.copy-list, sv); 
if (object = nil) or 

c(5ii2s$T~m2, 
creator%-4 creator:SV-0 sv-3 sv-4 

cop -0 
of 0 I!* ject 

Schema-Version 
Derivation Hierarchy 

Figure 2. An Anchor Instance and Object Copies 

5.2 OBJECT ACCESS ALGORITHMS 

(This section may be skipped without loss of continu- 
ity.) The following algorithms precisely describe the way 
in which an object is fetched, inserted, replaced, and de- 
leted. They use the augmented object structure and the 

copy-blocked(anchor-instance.terminators, 
sv, objectcreator) 

error; I* no copy is visible under sv ‘1 
end-do; 

else if not (ancestor-of* (objectcreator, sv)) 
error: /’ the only existing copy is not visible l / 

return object: 
end algorithm-sv-fetch: 

ALGORITHM-SV-INSERT (object, sv) 
if frozen (sv) error: 
objectcreator <- sv; 
allocate an id for the object and return the id; 

end algorithm-sv-insert; 

ALGORITHM-SV-DELETE (object-id, sv) 
if frozen (sv) error: 
object <- locate-object (object-id): 
if (object is an anchor instance) 
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do anchor-instance <- object: 
object <- find-closest copy 

(anchor-%stance.copy-list. sv); 
if (object = nil) or 

copy-blocked(anchor-instance.terminators, 
sv, objectcreator) 

error: /’ no copy is visible under sv “1 
else if (object.creator = sv) /* delete by creator ‘/ 

do remove object from 
anchor-instance.copy-list; 

if (anchor-instancecopy-list = nil) 
remove anchor-instance: 

else add sv to anchor-instance.terminators; 
end-do: 

else add sv to anchor-instance.terminators: 
end-do: 

else I’ there is no anchor instance ‘I 
if (object.creator = sv) remove object: 
else if (ancestor-of (object.creator, sv)) 

create an anchor instance for object-id 
with sv and (object) as the values of its 
terminators and copy-list attributes, 
respectively: 

else error; /’ the only existing copy is not visible 
under sv *I 

end algorithm-sv-delete; 

ALGORITHM-SV-REPLACE (object-id, new-object, sv) 
if frozen (sv) error: 
object <- locate-object (object-id): 
if (object is an anchor instance) 

do anchor-instance <- object; 
object <- find-closest copy 

(anchor-&stance.copy-list, sv); 
if (object = nil) or 

copy-blocked(anchor-instance.terminators, 
sv, objectcreator) 

error; /* no copy is visible under sv ‘1 
else if (objectcreator = sv) 

objectdata <- new-objectdata: 
I* update in place ‘I 

else do new-objectcreator <- sv: 
add new-object to 
anchor-instance.copy-list 
as the first element: 

end-do; 
end-do: 

else I* there is no anchor instance ‘I 
if (object.creator = sv) objectdata <- new-object.data: 

I* update in place ‘1 
else if (ancestor-of (objectcreator, sv)) 

create an anchor instance for object-id with nil 
and (new-object object) as the values of its 
terminators and copy-list attributes. 
respectively: 

else error; /’ the only existing copy is not visible 

under sv ‘1 
end algorithm-sv-replace: 

It is clear that the boolean function Ancestor-Of is an 
important factor in the performance of the algorithms, To 
minimize this overhead, the ancestor relationship can be 
encoded in bit vectors, one for each schema version. 
The bit vector associated with the root schema version 
contains all zero’s When a new schema version SV-j is 
derived and inherits objects from SV-k, a new bit vector 
BVj is created and initialized as follows: 

BV-j[i] = 1 for i = k, and BV-j[i] = BV-k[i] for all other 
i’s, where BV-k is the bit vector of SV-k. If SV-j does not 
inherit objects from SV-k, BVj is initialized to all zeros. It 
is easy to prove by induction that BV-j[i] is 1 if and only if 
SV-j inherits instances from SV-i. Thus, we have reduced 
the check for ancestor relationship to a vector access. 

When a schema version is derived, the user can 
choose not to inherit any instances from the ancestor 
schema versions. However, class objects are always in- 
herited by the new schema version, at least at the time of 
derivation. Thus we need another bit vector for each 
schema version to guide the retrieval and updates of 
class objects. 

5.3 STORAGE REPRESENTATION FOR THE SCHEMA 

In this subsection, first we present the schema repre- 
sentation in ORION, and then describe our proposal for 
representing schema versions and the schema-version 
derivation hierarchy. 

representation for a single schema 

In ORION, we represent the schema (without version- 
ing it) as a set of ‘class objects, where a class object is 
represented as a set of instances of several system-de- 
fined classes. These classes are analogous to system 
catalogs in conventional database systems [IBM81]. 
Three of these classes are shown, in a simplified form, in 
Figure 3. For each class, attribute, and method defined, 
there is a corresponding instance in the class Class, At- 
tribute, and Method, respectively. 

Class Attribute 

VariableName 

InheritedFrom 

Method 

MethodName 

Figure 3. Classes for the Schema 

The class Class contains attributes ClassName, At- 
tributes, Superclasses, Subclasses, and Methods. 
ClassName is the name of the class. Attributes is the set 
of all attributes defined for or inherited into the class. The 
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attributes Superclasses and Subclasses are sets of su- 
perclasses and subclasses of the class, respectively. 
Methods is a set of methods defined for or inherited into 
the class. We emphasize that the Attributes and Methods 
attributes for a class hold values for not only the attributes 
and methods defined for the class, but also those inher- 
ited from all superclasses. This technique is known as 
‘flattening’ of the class lattice [ZARA85], and is used 
often to speed up access to the schema. 

The class Attribute (Method) has an instance for 
every attribute (method) defined for or inherited into each 
class. The class Attribute has attributes Class, 
VariableName, Domain, and Inheritedfrom. The attribute 
Class references the class to which the attribute belongs. 
Domain specifies the class to which the value of the at- 
tribute is bound. InheritedFrom refers to an instance of 
the class Attribute, and it indicates the attribute of the 
superclass from which the attribute is inherited. 

representation for schema versions 

We now address the issue of maintaining schema 
versions in the database. Since one full copy of the 
schema can require significant storage space, our objec- 
tive is to not maintain a physically separate copy of the 
entire schema for each version of the schema, Our solu- 
tion is quite simple. We note that all changes to the 
schema are either changes to the definition of a class or 
changes to the relationship between classes, and that the 
relationships between classes are encoded in the class 
objects. We continue to maintain instances of the sys- 
tem-defined classes Class, Attribute, and Method as 
non-versioned objects, but apply the anchor instance 
structure to class objects to support updates to a class 
object under different schema versions. We need no 
changes to the basic representation for a single schema 
described above. When the definition of a class is 
changed, a copy of the class object for the class is cre- 
ated. When the relationship between a pair of classes 
changes (e.g., when a new subclass S of a class C is 
created, a class S is made a new superclass of a class 
C, etc.), a copy of the class object for each of the 
classes is created. 

We illustrate our storage representation for schema 
versions using Figure 4, in which the class lattice is con- 
structed and modified under five schema versions. Next 
to the nodes and edges of the class lattice, we indicate 
the schema version under which they are created or ma- 
nipulated. Each of the five anchor instance structures 
represents each of the five class objects in the class lat- 
tice. The creator schema version is indicated immedi- 
ately below each copy of a class object, while the termi- 
nator is indicated below the anchor instance. The anchor 
instances are in the final state that results from the follow- 
ing sequence of five schema changes. First, under 
schema version SV-0, classes C-a, C-b, and C-c are 
defined. Second, class C-d is created as a subclass of 

(SV-1) (SV-2) 

sv-0 
sl 

sv-1 sv-2 

4 
sv-3 sv-4 

Class Lattice 

anchor 
instance 
for C-b 

anchor 
instance 
for C-c 

Schema-Version 
Derivation Hierarchy 

$iz&-6- 
sv-2 sv-1 

(+Q sv-3 

+o sv-0 

anchor 
instance 
for C-e 

(si-z- 
sv-4 sv-3 sv-2 

Anchor Instances for Class Objects 

Figure 4. Representation of Schema Versions 

C-b under schema version SV-1, This requires an auto- 
matic creation, under SV-1, of a new copy of the class 
object for C-b, since it must reference the class object 
for C-d as a subclass. Third, under schema version 
SV-2, class C-e is defined as a subclass of class C-b. 
Again, this causes the automatic creation of a copy of the 
class object for C-b under SV-2. Fourth, under schema 
version SV-3, the class C-c is made a superclass of 
C-e. A new copy of the class object for C-c, and a new 
copy of the class object for C-e are automatically gener- 
ated, so that the former will reference the latter as a sub- 
class, and the latter references the former as a super- 
class, Fifth, under schema version SV-4, the class C-b 
is deleted, making C-a the immediate superclass of C-d 
and C-e. This makes the class object for C-b inaccessi- 
ble under SV-4, and causes the creation of a new copy 
of the class object for C-a, C-d, and C-e. We leave it to 
the reader to verify the correctness of the final state of 
the anchor instance structure for each of the class ob- 
jects. 

representation for the schema-version derivation hi- 
erarchy 

We also need a data structure to describe the deriva- 
tion hierarchy of schema versions. A simple solution is to 
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create a system-defined class SCHEMA for schema ver- 
sions. This class will have only one instance, which is 
versionable. Each schema version is a version instance 
of this versioned object, and the schema-version deriva- 
tion hierarchy is maintained in the generic instance asso- 
ciated with the versioned object. The class SCHEMA has 
two attributes, Update-instances and Ancestor-SVs. Up- 
date-Instances is a boolean variable which is False when 
the access scope of the schema version is made non- 
updatable by a child schema version. Ancestor-SVs 
contains the list of ancestor schema versions from which 
the schema version inherits the access scope. 

6. USER INTERFACE 

In this section, we specify messages the user (appli- 
cation) can send to use our model of schema versions. 
The set of messages is surprisingly small, despite the rich 
semantics that the model captures. 

(derive-schema-version parent-SV, 
highest-ancestor-SV, update-instances) 

This command is used to return a new schema version 
derived from an existing schema version, specified in the 
parent-SV parameter. The schema version specified in 
the parent-SV parameter, if it is presently a transient 
schema version, is automatically promoted to a working 
schema version. 

The highest-ancestor-SV parameter specifies the highest 
ancestor schema version whose access scope is to be 
inherited into the new schema version. The default is 
root, the root of the schema-version derivation hierarchy, 
consistent with the access-scope inheritance rule. If the 
value of the parameter is self, the access scope of the 
parent schema version is not inherited into the new 
schema version. Otherwise, the access scope of the 
schema version being derived is the set of objects in the 
direct access scope of each of the schema versions from 
parent-SV to highest-ancestor-SV. 

The default value of the update-instances parameter is 
False by the access-scope inheritance rule. Then the 
objects in the access scope inherited into the schema 
version being derived become non-updatable under their 
respective creator schema versions. If update-instances 
is True, derivation of the present schema version has no 
impact on the updatability of the inherited instances under 
their respective creator schema versions. 

(change-inheritance highest-ancestor-SV, 
update-instances) 

This command is used to allow changes to the highest- 
ancestor-SV, and the update-instances parameters, 
specified when deriving a schema version, after the 
schema version has been derived. 

(delete-schema-version SV) 
This command is used to delete a schema version SV, 

along with all version instances created under it. If the 
specified schema version has at least one child schema 
version, the command is rejected. 

(promote-schema-version SV) 
This command is used to upgrade the status of a tran- 
sient schema version SV to a working schema version, If 
SV is already a working schema version, the command 
has no effect. 

(set-current-schema-version current-SV) 
This command is used to switch the schema to the 
schema version specified in the current-SV parameter. 
All database operations are performed under the current 
schema version, including changes to the schema, up- 
dates to the access scope of the schema, and creation 
of new objects. 

(current-schema-version) 
This command is used to return the current schema ver- 
sion. 

7. ALTERNATIVE APPROACHES 
In this section, we explore a couple of alternative ap- 

proaches to versions of schema. One is to treat each 
class object, rather than the entire schema, as a ver- 
sionable object. Another is to support views, rather than 
versions, of the database schema. 

7.1 VERSIONS OF CLASSES 
It is clear that our model allows versioning of simple 

instance objects, and, of course, the schema. The ques- 
tion is whether we should support versioning of class ob- 
jects, either instead of versioning the schema or in con- 
junction with versioning of the schema. The proposal 
briefly outlined in [SKAR86] is to treat the class objects as 
versionable objects, and not the schema. If the schema 
is not versioned, a ‘virtual’ version of the schema is con- 
structed as a lattice of versioned class objects: of course, 
only one version instance of a class object will be in- 
cluded in any ‘virtual’ version of the schema. 

Versioning the class objects has a few problems. 
When the schema is not explicitly versioned, the user 
must nevertheless manage the ‘virtual’ versions of 
schema by keeping track of which versions of class ob- 
jects belong to which ‘virtual’ versions of schema. In the 
representation of the class objects, since the class ob- 
jects are versioned, dynamic binding may be used for 
references from one class to its superclasses and sub- 
classes. The system will resolve any reference to a ge- 
neric class object to a default version of the class object. 
The user then must maintain, for each ‘virtual’ schema 
version, a list of default versions for all references to ge- 
neric instances of the class objects! Further, the use of 
dynamic binding of references to class objects implies 
that the ‘virtual’ schema version cannot be flattened for 
efficient access! 

Even if only static binding is used for references to 
versions of the class objects, the situation is not much 
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better. For example, suppose a new version v-j of a 
class C is derived from version v-i: and remember that 
the different versions of a class object have different ob- 
ject identifiers. Since each class object has the Super- 
Classes and Subclasses attributes, all subclasses of the 
class C must now reference the new version of C under 
the new ‘virtual’ schema version. This will mean that a 
new version must be created for each of the subclasses 
of C. Similarly, a new version must be derived for each 
of the superclasses of C. In other words, if we are to use 
versions of the class objects to support ‘virtual’ schema 
versions, we will end up generating a new version of the 
entire class lattice for each ‘virtual’ schema version! 

The above problems also arise even if the schema is 
also explicitly versioned, as long as the class objects are 
also versioned. Our model does not support versioning of 
the class objects: instead, we use copies of the class 
objects to support updates of objects inherited from an- 
cestor schema versions. In our approach, a schema ver- 
sion is a lattice of class objects, where only one copy of 
any class object is selected. The copies of a class ob- 
ject roughly correspond to versions of a class object in 
the class versioning approach. The only difference be- 
tween the two approaches is that our approach allows 
only one copy (version) of each class object within any 
schema version. As such, the users cannot experiment 
with alternative definitions of a class within one schema 
version; of course, however, they may derive alternative 
schema versions, each with a different definition of the 
class, and experiment with the database by inheriting the 
access scope of the original schema version. On the 
other hand, the flexibility available (which we discussed 
above) in the class-version approach creates more op- 
portunities for mistakes. For example, by allowing any two 
schema versions to share the same default of a class 
object, changes to the class object under one schema 
version may generate surprises in the other schema ver- 
sion. 

7.2 VIEWS OF THE SCHEMA 
We have been able to identify two difficulties with our 

model of versions of schema. One is the system over- 
head in supporting updates of objects inherited from an 
ancestor schema version. We feel that the solution we 
presented in Section 5 is reasonably good; however, it 
still requires a non-trivial system overhead. Another diffi- 
culty is that updates of inherited objects may cause con- 
fusion to the users. Suppose, for example, that a user, 
operating under a schema version SV-k, deletes an ob- 
ject inherited from a schema version SV-j, which in turn 
inherited the object from a schema version SV-I. If the 
user then operates under SV-j, the object will be visible 
again. Of course, this is exactly the desired effect; how- 
ever, it may nonetheless be somewhat confusing to the 
user. 

The cause of these difficulties is that each schema 
version is associated with an access scope, and the ac- 

cess scope of a schema version is updated from a de- 
scendant schema version. One way to alleviate these 
difficulties maybe to simply provide dynamic views of a 
single underlying schema. In this model, as in our model, 
any number of views may be derived from any schema 
view, giving rise to a derivation hierarchy of schema 
views. However, this model does not admit the notion of 
inheriting objects from an ancestor schema view (remem- 
ber that inheritance of objects and updates of inherited 
objects are the cause of the problem we are attempting 
to address). Instead, all objects are associated with the 
single underlying schema, and the access scope of each 
schema view is the subset of all objects in the database 
whose attributes are defined by the schema view. In 
other words, all updates to objects under one schema 
view become visible to all schema views which include 
the definition of the attributes of the objects. This means 
that the schema view approach does not associate with 
any view a snapshot of the state of the database at some 
point in time. This contrasts sharply with our model, in 
which the set of objects manipulated under a schema ver- 
sion SV may be preserved with respect to schema ver- 
sions derived from SV. 

8. SUMMARY 

In a multi-user design environment, versioning of de- 
sign objects and versioning of the schema for these ob- 
jects are important requirements. There exists an exten- 
sive set of research reports on versions of design ob- 
jects, and some systems have even implemented version 
control. However, there has been virtually no formal pro- 
posal to define the semantics of versioning the schema, 
although many professionals in the design and database 
communities have talked of the importance of research 
into versions of schema. In this paper, we described a 
model of versions of an object-oriented schema, using as 
its basis the model of versions of objects which we have 
implemented in the ORION prototype object-oriented da- 
tabase system. In particular, the model includes such 
notions as capabilities, derivation hierarchy for versions of 
schema: and incorporates the view that each version of 
the schema captures the state of the database at some 
point in time and that the state may be inherited into any 
derived schema version for read and update. 

Next we presented the data structure for representing 
objects and the schema, and algorithms for manipulating 
objects under our model of versions of schema. Then we 
discussed two possible alternative approaches to achiev- 
ing some of the objectives which we we tried to meet with 
our model of versions of schema. These alternatives in- 
clude versioning of the class objects and dynamic views 
of a single schema. 
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