
MANAGEMENT OF COMPLEX OBJECTS AS DYNAMIC FORMS

Michel ADIBA’, Christine COLLET2

(1) Laboratoire G&e Itiormatique (2) Centre & Recherche BULL.
Grenoble University BP 53X 38041 GRENOBLE Cedex

electronic mail: udiba@imag.imag.jr , collet@imag.imag.fr

ABSTRACT

Traditionally, a form is either a paper document or an
electronic object. It is used to describe, to structure and to
facilitate the information flow inside an organization, or at
the user interface level. From this well known concept, we
propose an advanced form model. This model integrates
three main areas of current database research:
(1) Multimedia aspects, (2) Structural aspects related to the
non first normal form models and (3) Dynamic aspects
related to the Object Oriented approach.

The form paradigm that we propose offers a formal and
homogeneous approach for describing and manipulating
structural, dynamic and interface aspects of new database
applications (Office Automation, Medical, CAD, . ..). This
approach provides a better control over object integrity and
allows for the integration of various database objects: flat
relations, multimedia documents and other forms. A
formal definition of our model has been done and a
prototype is currently under implementation on a
workstation using a relational DBMS as a basic data
manager.

1. INTRODUCTION

A Form is a well known and widely used kind of document
for exchanging information, in a structured and non
ambiguous manner. It was at the origin of several methods
used in the organizations in order to facilitate information
flow.

Permission to copy without fee all or Part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VIDB copyright notice and
the title of the publication and its date ppperr. and notice is given
lhat copying is by Permission of the Very Large Data Base
Endowment. To copy otherwise. or to republish, squires a fee
and/or special Permission from the Endowment

In the database field, most of the research and development
efforts consider the form at the interface level to facilitate
man and machine interaction. The concept of electronic
form appears immediately when people want to
computerize their applications. [TSI 82, GIB 841. Today,
several tools added on top of a given relational DBMS
(e.g. 4th Generation Language), offer a form concept.
Through forms displayed on the screen, the user describes,
manipulates, extracts informations from the database and
associates to them specific formats (report, diagram, . ..).
We classify these tools as:
l/ End-user oriented, for instance, QBF, VFE. RBF, GBF
of INGRES [ST0 861
2/ Programmer oriented, in this case, the form is an object
used as an application generator. For instance, IAF [ORA
841. ABF for INGRES [DOU 87). FADS [ROW 82,
ROW 851. For example, IAF allows to specify several
screens and to model some dialog but the approach is
rather artificial because of the use of the SQL language to
manipulate the database but also to express specific
operations on the form itself.
Previous work on forms can be found mainly in the area of
Office Automation. In such applications, the form concept
was very largely used in order to add to a DBMS a set of
tools, namely electronic mail, word processing, editors, . . .
Office is seen as a large database, shared by several users
[GIB84]. A form is a very convenient object both at the
data model level [LUM 82, SHU 83, SHU 85, TSI 82,
BAR 841, or at the methodological level for (1) integrity
constraint control [FER 82, GEH 831, (2) office
procedures automatization [ZLO 77, ZLO 82, DEJ 80,
TSI 821. In all these approaches, the use of form shows
that it is really an object:
l v allowing to interpret naturally the
office world;
+ “ereonamic” : allowing a rational organization for data,
actions and constraints;
l inferactive : allowing better information exchange
between all the actors of the organization.

This research has received the support of the French
Research Programm PRCIBD3.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

134

iiuwCvt1, most UA” the approaches mentioned above are
only considering one of these aspects. In the framework
of multimedia databases ana’ from our experience in the
TIGER project [LWI 87a, VEL 841, we choose to have a
more global view and we defined a model integrating
these three aspects [COL 871.

2. A MODEL FOR DYNAMIC FORMS

Figure 1 is an attempt to show how the different concepts
of our form model are related together. A complex form is
considered at different levels, by analogy with the
ANSI/SPARC architecture.

Our approach is motivated by the fact that usually, DBMS
are designed in a bottom-up process where a specific data
model (e.g. relational) is implemented and then, user
interfaces are built on top of this data manager in or&r to
implement applications. For multimedia database systems,
and specially in an office automation environment, we
propose a rather top-down approach. Starting with the
classical and well known notion of form as a tool for user
interaction, we propose to extend this concept in several
directions in order to design a complete system.

First we allow multimedia data to be stored in certain form
fields. Second, we assimilate a form to a specific complex
object, i.e. it is not only an object at the interface level but
it becomes an object inside the database, this object has a
hierarchical structure. Third, and because of the
interactivity, the user is allowed to do some specific
actions upon data displayed on the screen, letting the
system reacting accordingly. This is very similar to the
Object Oriented approach if we declare to the system (1)
the specific actions that a user is allowed to do on a given
object (a given form type), and (2) the sequence of
operations that the system must do according to a given
user action. We propose to capture the behavior of these
complex “forms” by defining specific rules which belong
to the form schema. In order to implement such a model,
we need a (complex) object manager with dynamic
capabilities [BDV 871.

To define our model, we took a similar approach than the
one developed for non first normal form relational models
[ABI 84. FIS 83, JAE 82, ROT 85a] or complex objects
[ABI 87a, HUL 871. The complete and formal definition of
our approach can be found in [COL 871, however, we give
here the main concepts that we propose, and particularly
we introduce the form model as a complex object model.
We describe briefly the interface and form presentation
approaches together with the main characteristics of the
implementation. Section 2 presents informally the form
model. Section 3 gives the structural aspects of what we
call the Abstract Form (FA) and section 4 gives an idea
about the extended algebra which has been defined in order
to build FA-expressions and to express form manipulation.
Section 5 indicates how we treat the dynamic aspects
through the notion of “rules” and section 6 gives some
elements about interface and presentation aspects.

1 :Formm

1. At the internal level of a database (or more generally an
object manager), the form is described and stored in terms
of the database model. Our prototype, for instance use a
relational DBMS for that. This choice is for rapid
prototyping only and we are thinking of an Object
Oriented DBMS for that purpose [LEC 87. BDV 871.

2. At the conceptual level, the notion of Abstract Form
(FA) is a class of forms having the same structural and
semantic properties. (e.g. the travel expenses form). When
we have to consider an Abstract Form from a semantic
point of view, we have to distinguish between structure
and contents.
m gives the specification of a forms class. It is twofold:

first the schema which describes the form structure and
second the rules which express dynamic aspects of the
application. The method for rule definition is based upon
the use of FA-expressions similar to (extended) algebraic
expressions in the relational model. FA-expressions (see
section 4 and 5) are built using different FA-operations
for querying, updating and doing specific calculations
(the power of FA-expressions is analogous to the power
of an SQL-like language or an extended SQL-like [PIS
86, ROT 861. A rule is composed of an activation
condition (WHEN) and BEFORE and AFTER clauses.
The meaning is similar to an on-condition: WHEN
specific actions will occur on the form (see presentation
below), then execute the BEFORE and eventually the
AFTER clauses and accept or reject the actions (see

135

section 5). Hence, a FA is a set of occurrences which
obey to a forms class specification (U). The EB and FA
notions “live together” and the term FA will be used to
refer to both structure (or schema) and contents of an
Abstract Form.

We think that this is a very important point because we are
trying to express complex objects semantic and
dynamicity: other complex object models proposed so far :
NFNF relations models [FIS 83, SCH 84, ROT 85a, PIS
861, the model from the SPECDOQ system [KIT 841,
VERSO [BAN 82, ABI 841, TIGRE [VEL 841, or the one
by [ABI 871 are only considering static and structural
aspects and therefore dynamicity must be expressed through
specific programs.

3. At the external level called presentation level, we
can have several presentations for a given FA. A
presentation is twofold: a format and a list of
specific operations which are allowed on the form. A
format expresses how the form is to be displayed on the
screen and it may change from one user to another,
allowing different formats for a given FA. Here also, we
want to stress this point because, compared to traditional
complex object models, we are proposing a notion of
object presentation, at the interface level.
Besides the format, a presentation contains the list of
specific operations. They correspond to operations that the
user is allowed to invoke (e.g. create a form, retrieve,
update... see section 6). A specific operation is always
associated to a format and concerns a group of users.
Hence, the list of these operations for a format represents
the dynamic aspects from an external point of view (the
user). The invocation of a specific operation for a given
form occurrence, can be seen as the opening of a context
(e.g a transaction) for executing elementary actions on the
form elements (filling a field, modifying another one).
Each of these actions are considered as events and their
occurrence may trigger the execution of specific rules
defined in the schema. Like this, we are modeling the
behavior of the object (form) when it is used. In
summary, we can say that our form notion is the result of
the association of one FA and one presentation. This
results in a complex object that the user manipulates from
his/her workstation. The system is then responsible for
mapping these manipulations onto actions on database
objects.

A form example is given in figure 2 and will be used
throughout this article. It is used in a library environment
for managing book loans. Each member which can borrow
several books, has a name, a sex, an address. Each loan is
described by the book reference, title, loan date, and return
date. Also, we have the total number of books on loan.
To register a new member in the library, the librarian will

invoke the CREATE operation which allows for filling
the different fields. When the user considers that all the
occurrence is complete, he invokes the VALIDATE
operation which validates the creation and a new member
is registered inside the database.
During this dialog, a specific rule may be activated, for
instance to verify if the new member is not already inside
the database. From the CREATE operation to the
VALIDATE operation, the form is manipulated, at the
external level, inside a working area distinct from the
dabbase.

CREATE SELECT YODIFY VALIDATE QUIT HELP

I Member

Name :
l-l

sbx: 1 man I woman [I I

Addrobb
stmt :

zip : City :

LOANS

Serial TWO Loan-data Return-datb
number -Id - -I--/-

-/d - -M-

-I4 - -rY-

--I-+ - -w-
-Id - wry-

Toml of loana :

3. ABSTRACT FORM (FA)

As we have seen, an Abstract Form represents a class of
forms (orders, invoices, library member cards) which have
the same structure and semantic. As we said a distinction
have to be done between the design of an Abstract Form
(EB) and its contents (FA). A EB is composed of (i) a
schema and (ii) a set of rules. A FA is a set of occurrences,
constructed using a schema. In the following, we define
more precisely what we mean by schema and occurrence.
The second component of a FA (the rules), will be
described in section 5, after the presentation of query and
update FA-operations (section 4).

3.1 SCHEMA

Schema notion can be compared to the type notion for
structured objects. We use the formalism proposed in [ABI
871. We give a special attention to hierarchical schemaa,
cyclic schemas are not considered here. A schema is built

136

using four constructors. i.e. (1) the tuple constructor
which allows the aggregation of any number of elements,
(2) the set constructor allows the aggregation of elements
of the same kind, (3) the list constructor allows the
ordered aggregation of a bounded number of elements of the
same kind and (4) the choice consuuctor which allows a
choice between different elements.

Preliminaries

We assume the existence of an infinite set of values called
domains . An element of a domain is called an atomic
object. For multimedia database systems, many domains
should be considered : integer, real, string, text, image,
voice, etc. To simplify the presentation here, we consider
only one domain, namely D. We consider a particular
domain, denoted by Cl to allow constants in a schema. In
addition of punctuation symbols (“:“, “[“, “(“, . ..). we
assume the existence of an infinite set of symbols called
elements (in other models they are called attributes). We
also assume the existence of three null values [ROT85b] :

r3 : nonexistent (or does not exist) null (dne),
? : unlarown null (unk) ,

Cp : no-informative null. V D, + c D
The value a in a form field means that this field is not
applicable for this occurrence. The value ? denotes an
unknown value and # correspond to a no-informative null
value (e.g an empty set is considered as a set containing *
[ROT 85b]).

3.1.1 DEFINITION

The definition of a schema S consists of two components,
a name and a description (that could be a domain). Any
schema S has the form A:& . The first component A is
the name of S and is denoted by name(S). The second
component da is the description of S denoted by des(S).

The set S of allowed schemas is defined using the
following rules :

l if A is an element, then A: Cl Q S
4 if A is an element and D a domain, then A:D E S
+ if A, Al, A2, . . . An are distinct elements and

if Si = Ai:di l S. i l [l...n], then
4 A: [Sl, S2, . ..Sn] L S tuple
4 A: Sli S21 . ..Sn (I S choice
+ A:<Sl>,aS list of at most n element
4 A: (Sl) a S set

l 8% e S, (Sl)&&lowed ad (S1)unh/lowed E S

The following examples illustrate the notion of schema.

w : Sl= address: [(street: string),nkallowe~
zip: integer, city: string] tuple

S2= sex: man: Cl I woman: Cl choke
S3= loans: (loan: [ref:strlng. title:strlng,

begimime, retum:time]) set

For the schema Sl of the above example 1, name(Sl)=
address gives the name of Sl and its description is
des(Sl)= [(street: string)unkallowed’ zip: integer, city:
string 1.

Because of the recursive nature of schema definition, it
should be clear that to any schema S we can associate the
set (Sl, S2, Sn) of schemas which compose S. A
schema Si of this set is called an “element schema” and its
first component name(Si) is called an element of S. For
example, we can associate to the schema “address”, the set
(street: string, zip: integer, city: string). “street” and
“city” are elements of the schema “address”. Knowing an
element E of a schema S, the function sch-elem gives
the schema of E.

As proposed by other people [SCH 84, ABI 86, HUL 871,
we can represent schemas by trees. The cross (x)
represents the tuple constructor, the plus (+) the choice
constructor, the star (*) the set constructor and the star
subscript n (an) the list constructor. The trees of Figure 3
show the schemas Sl, S2 and S3 of Example 1.

Sl s2 s3

Figure 3: Tree schemas

3.1.2 DOMAIN

An object built using a schema is an occurrence. The set
of possible occurrences for a given schema S defines the
domain of S.

Definition
The domain of a schema S, denoted dam(S) is defined by :
+ S=A:D,dom(S)= (A:alaa DJ
+S=A:O,dom(S)=(A:Cl)=(A)
l S = A: [Sl, S2, . ..Sn].
dam(S) = [A: [sl, ~2, . ..sn] I

V i E [l...n], si l dom(Si))
+ S = A: Sll S2l . ..Sn.

dam(S) = (A: s I3 i l [l...n], s Q dom(Si))

137

l S=A:<Sl>n.
dom(S)=(A: < sl. s2, . ..sk > I for 0 I k&t

and V i E [l...k], si l dom(S1))
+S=A:(Sl),

dam(S) = (A: (sl. s2, . ..sk) I for 0 s k
and V i, j E [l...k], i#j, sksj and si, sj 8 dom(S1))

A complete definition of the domain of a schema S with
the option dneallowed (respectively u&u/lowed) is given
in [COL 871. This definition shows that a dne (unk)
occurrence is composed of dne (unk) sub-occurrences. We
also give simplified representations used for dne, unr
occurrences, and no-informative (empty) occurrences. For
example, A: c 9 > represents an empty list i.e an
occurrence built from a schema S = A: c Sl >,,. The
empty set is denoted : (6).

The following examples illustrate the notion of occurrence.
(1) address: [street: 10 av couchetard, code: 38100, city:

Grenoble]
address: [street: ?, code: 38402, city: St Martin

dWres]
These occurrences have been built from the schema
“address” of Example 1. The second occurrence have the
sub-occurrence “street: ?” which means that now
“street” is unknown.

(2) sex : man: •i
sex : woman: Cl
These occurrences have been built from the schema
“sex” of Example 1. They do not have the same
schema, because “sex” is a choice schema.

(3) loans: (loan: [ref: A6, title: L’amant,
begin: 20/12/1987, return: 31/12/1987],

loan: [ref: AS, title: Les ealw brfile’es,
begin: 20/12/1987, return: @] 1,

This occurrence have been built from the schema
“loans” of Example 1.

Notation :
In the formalism used for schema declaration, we have to
note the importance of elements. For a given occurrence,
elements allow to distinguish and to name its sub-
occurrences. Let us consider the occurrence 0 = address:
[street: 10 av couchetard, zip: 38100, city: Grenoble],
then “O.street” denotes the sub-occurrence “street: 10 av
couchetard ” which is called an element value. For the
occurrence 0 = “sex:man:Cl ” (built from the schema sex :
marun I woman:0), “0.woma.n” denotes an undefined sub-
occurrence. For the occurrence 0 of example (3) above, the
element “loan” indicates any sub-occurrence of the set
“loans”. The use of “loan”, to indicate a particular sub-
occurrence, will be possible in some quantified expressions

on a set. For example, it is possible to write : V I l 0,
O.loan = I and “loan” designates successively the two sub
occurrences of 0. Other notations are given in [COL 871,
specially to locate a particular sub-occurrence of a list. In
the context of an occurrence 0 built from a schema S, an
element of S represents (generally) a sub-occurrence of 0
(value of element) if it exists. From a given occurrence it
is almost always possible to determine the corresponding
schema. Obviously exceptions come from the choice
constructor and from empty occurrences.

3.2 FA

A FA corresponds to a set of occurrences stored at a given
time in the database. Occurrences are built from fi =
<S, R>. The component S is one schema of S and R is a
set of associated rules (see section 4). Formally a FA is
definedby:

FA = (0 I 0 E dam(S) and R [O]) where
RIO] denotes a successful execution of rules for 0.

The difference between m and FA is similar to the
distinction between relation schema and relation in the
relational model and more generally between data type and
data. The notions of &$ and FA “live together” and we
misuse the term “FA” to describe the pair (EB, FA).
When we want to make the distinction clear, we use
SCHEMA for EB and VALUE for FA.

As an example of FA, consider Figure 4 which shows
informations of a set of forms presented in Figure 2. The
VALUE of FA “member” is represented by table of
Figure 4(b). Each line of this table gives an occurrence
built from the schema “member” of Figure 4(a). Some
rules related to this schema will be presented further.

The following notations are used. Consider the FA r (<S,
R>, A), sch(l-) = S and val (I-) = A.
We extend the function name (on a schema) to be directly
applicable to FA r by the following definition : name(r)
= name(sch(r)) = name(S). The notion of element, element
schema and element value can be used for a FA.

The FA “member” has the elements “name”, “address”,
“sex”, “loans” and “total”. In the context of the occurrence

” member: [name : bafou, picture : 9 , address:
[street: 10 av couchetard. zip: 38100, city: Grenoble],

sex: man: 0 , loans : {#}, total: 0] ”
to the element “address” correspond :
+ the element schema “address: [street: string, zip:

integer, city: string]”
l the element value “address: [street: 10 av couchetard,

zip: 38100, city: grenoble]”

138

4. FA operations 4.1 Query FA-operations

This section presents the operations provided to manipulate
and update FA. The “form algebra” and its formalism
proposed here do not define a user friendly language or
interface. We try to capture the elementary operations that
are really necessary to retrieve, create, delete and modify
occurrences. We present them in the following using the
FA “member” of Figure 4.

We first present a set of (recursive) algebraic operators in
order to have an homogenous framework for FA
manipulation and consultation. A FA is a natural
extension of a non first normal form (7lNF) relation.
Therefore, we construct our operations in a way similar to
TINF relational models [JAE 82, SCH 84, ROT 85a,
ROT 85b, PIS 86. FJS 83, ABI 841, and also to SttUCNred

object models [ABI 87, BAN 881. The update operations
are defied later (section 4.2).

As for algebraic languages, we consider that the
information we want to retrieve could be represente-d by a
FA built from successive applications of (unary or binary)
FA-operations.
As mentioned earlier, a FA F is defined by a couple (<S,
RX A) S l S and A C dam(S). The component R (rules)
is not relevant for the operations definitions and will be
discussed later. Therefore, in the following we consider a
simplified definition of a FA :

T(S, A) is a FA, S e S and A C dam(S).

apmc: sdI(> in@-
x dress sex

nullallowed

/

I\

/\
* loans

street: string lIlM:o womon:~ I

city: string / ‘OPO

zip: integer
rtk string

+
titk string return: time

begin: time

me 4(a) : $&ma of the FA “member”

In [COL 871, we prove that in the context of an
occurrence 0 (of a FA F), an element schema SE together
with an element value A E forms a FA FE which in turn
may have elements. So we are able to apply the definitions
and notations introduced in section 3 in a nested manner.
The operations proposed to consult and manipulate FA
may be applied also in a nested manner, i. e repeatedly to a
given FA but also on any of its sub-FA. This approach is
similar to the one proposed in [SCH 841 for 7lNF
relations algebra. Functions of the main operations are
summarized in Figure 5.
A complete and precise definition of each operation can be
found in [COL 871. The filtering operations are used to
choose some occurrences in a FA (selection), to
transform occurrences “pruning” some edges (prune), to
rename some elements of FA and to arrange occurrences
in a certain order (sort). The set operations : union,
intersection, difference and product have their
usual meaning. The nest and unnest operations are
extensions of nest and unnest operations in the 7lNF
relational model [JAE 82. SCH 84. FIS 83, ROT 85al.
We proposed also some other operations allowing

X mombor

x addrow
lame ptcturr 1 +sox * loan8

stroot ZIP town

balou ,’

lim

38100 Grenoble man:. loem: +

[? 1
loan:[refrAl. tltle:El tuncl, bcgln:01/11/1987. end:30111119871

Woman: m tosn:[rehAl. titl.:Lea CRUX brdldea. begin:15/11/1987, end: 91

loan:[rel:AZ, titlcrCocninc. bcgln:0111111987. end:15/11/19871

dobcy Cp 50 cr J. Jaurhs 38100 Grenoble womanrl Ioau[nf:Al, tlttle:El tunel. begln:02/12~1987. end: 9 I

loan:[ref:AZ. title:CocaPae, begin:02/1211967. end:15/12/19871

17 1 mun:m loanr[rcl:A6. title: L*rmant, bcgln:20/12/1987. cnd:31112/19871

EipUre4(b): VAl&Eof theFA II II &

L

0

3

139

SCHEMA-FA transformation : (1) sup, which
transforms A:[Sl] into Sl, (2) sup+ which transforms A:
Sl (choice) into Sl and (3) sup+ which transforms
A:(Al:(Sl))into Al:(Sl]. In the following we present in
more details the selection, the nest and unnest
operations.

OPERATIONS FUNCTION

Filtering operations
selection
Pm=
lanmle
Sal

Set operations
union
intersection

occunences sekch3
picking up some elements
rename a FA and/or ils cleme.nts
rmIing occunwlces

Product
Restructuring operations

nest
wmest

union of fwo FA
interseclion of two FA
difference of two FA
Cartesian pmduct of bvo FA

-earnup
delete a gmup

Figure 5 : FA-onerations to consult and maninulate FA

4.1.1 SELECTION

We first introduce the definition of an Elementary
Selection Expression (ESE). Consider S a schema of FA
and Al, A2 elements of S.The following expressions are
ESE-expressions :

+8(Al, W
W&9 e l (=, f, c, s, >, 2, =r c, c,3, a),

v E dom(sch-elem(A1)) or
v C dom(sch-elem(A1))

8 is defined for sch-elem(Al), sch-elem(A2) and
sch-elem(A1). sch-elem(A2) are compatibles

+ $I Al
4 3?Al

sch-elem(A1) = Slhallowed
sch-elem(A1) = Slunkallowed

It is clear that we cannot write any Elementary Selection
Expression. For example, the ESE = C (ref, title) for the
schema loan : [retsting, title:string, begin:time, end:time]
is not a valid ESE because the operator is not allowed for

schemas like “refzstring” and “title:suing”. We give in
[COL 871 the compatibility rules between two schemas
and more precisions about the possible use of a comparator
(=, f, <, 5, >, 1, 8, C, C, 3.1) with respect to schemas.

Consider a FA r with name A. sch(r) is A:da. A
Selection Expression (ES) on r is defined by the
following syntactic rules :

ES := selection(A, EB)

if sch(r) = A: [Sl, S2, Sn] or

if sch(r) = A: Sll S21 . . . I Sn, Si = Ai:di

I sclection(A, Q ES), Q l (V, 3)

if sch(r) = {Sl)or S = cSl>,

EB := ESE I not (EB) I and (EB, EB) I or (EB, EB)

I Ai

I ES

(choice schema)

Examples of selection expressions are :
SE11 = selection(member, 3?address) select the
occurrences from the FA “member” which have no
“address” (the value of the element “address” is unknown).
SE12 = selection(member,and(selection(sex, woman),
= (name, dobey))), select the “member” with name
dobey and sex “woman”.
SE13 = selectioa(member, selection(loans, 3
selection(loan, = (return, @),)) select the “members”
who are still in possession of some books. The result of
this expression is given in Figure 6.

The evaluation of a selection expression consists to
determine the schema and the VALUE of the resulting FA
From Figure 6, it is easy to see that a selection expression
SEL(T) on a FA r does not transform its schema, so we
have sch(SEL(r)) = sch(r). The VALUE of the FA result,
val(SEL(r)), is evaluated in a recursive manner. The
details are given in [COL 871, comparators and logical

x member

‘Uddro.8
nama plctura’ + 8aX I loan8 tota

8trom1 ZIP town

germ
El

loan:[refiAl,tltle:El tuncl. bcgln:01/11/1987. cnd:30/11/1987]

17 I woman~ I loaa:[ref:AS, tltle:Le# wswx br0ller. boglnrl5/11/1987. end: e 1 3

loan:[ref:A2, titlcrCocslne, begl”:01/11/1987. c”d:15/11/1987]

dobcy @, 50 cr J. Jsurh 36100 Grenoble WWIWI~: 0 losn:[rel:Al. tltlo:El tuncl. begln:02/12/1987. end: e 1 2
lor”:[rcf:A2, tltle:CocsX”e. begln:02/1211987, cnd:1511211987]

WtheFof

140

connectives are interpreted in an usual manner. As an
examples, let us consider:
(1) sch(r) = A: Sl I S2 I . . . I Sn (Si=Ai:di) and

SEL (r) = selection(A, Ai) then val(selection(A,
Ai)) = (0 E val (r) I O.Ai is defmed)

(2) sch(l-) = A: [Sl, S2, S3, Sn] and Si=Ai:di (di #
D), SEL (r) = selection(A, selection (Ai, . ..)) then
val(selection(A, selection (Ai, . ..))) = (0 E val (r) I
val (selection (Ai, . ..)) # (e))

Remark :
Note that an ESE-expression allows only for comparison
between elements belonging to the same schema. For
instance, in “member” (Figure 4), it is not possible to
make comparison between the elements “name” and
“city”. In [COL 871, we proposed a solution for that
problem which is based on the use of the “prune”
operation in an ESE-expression.

4.1.2 NEST and UNNEST

The nest operation can only be used on a FA having a
ruple schema of the form : A: [Sl, S2, Sn] with Si =
Ai: di. Let us consider the FA r with schema S = A:
[Al:integer. AZ:integer, A3:integer, A4:integerJ. The
operation nest(A, Xl:A3,A4 [X2]) transforms r creating a
new set element Xl for r. It merges, without loss of

x A

-

Al -

:

j:
2

3

3’

::

5

P

information, any values of elements A3, A4 in a set of
name Xl for every pair of elements values (Al, A2) (see
Figure 7). When null values occur as values of elements
which are being nested, then no special rule applies : we
only use the element set reduction to eliminate the
duplicates. But when null values exist for the partitioning
elements (the elements not being nested), a problem
arises: “could we have equality between nulls values for
partitioning purposes?“. As in [ROT 85b], we choose to
treat dne null as any other values (there is equality
between two values a) whereas unknown and no-
informative nulls are treated as unique values (there is no
equality between two values ? or two values *). When an
? or 9 null is in one of the partitioning elements, then
the result of nesting is a set of cardinality one. The
unnest operation is the reverse of nest : it deletes a set
element. Some properties (similar to those for 7lNF
relations) could be given :
0 unnest (nest (r)) = r if we nest only one element of

sch(l-).
l unnest (nest (r)) 1: r if we nest more than one element

of sch(r).
+ nest(unnest(r)) f r

With null values, there is no loss of information. But
we still loose the separation between occurrences that
have the same values for partitionning elements (see
occurrences (a) and (b) in Figure 7). If we do not want to
loose the fact that values are nested together for a null

XA

*
no-t (A, Xl : A3. A4 [X2])

I’]
7

t
unnort (A, Xl)

XA

nmrt (A, Xl: X2)

Fieure 7 : nest and unnest operations

141

value, we could introduce marks on ? or 9 null as in
[ROT 85b].

4.2 Updates FA-operations

The table of Figure 8 presents the update FA-operations
that we have defined. The operations : create, modify
and delete apply on an occurrence and assign and
remove apply on an element. As presented informally in
section 2, the FA manipulation takes place at the external
level and any creation will be done using a working
context for the new occurrence. This workspace will keep
track of any action on the (temporary) form, e.g. assign,
remove, rule activation, etc. As soon as the user validates
all these actions, and if every rule was executed correctly,
the new form occurrence will effectively be stored into the
database with a unique identifier.

OPERATIONS FUNCTION 1

create
modii
dektc
assign
remove

creat.eanoccunenceofFA
modify an occurrence of FA
delete an occunence of FA
assign a value to im element of occurrence
remove a value to sn element of occurrence

8 : Uo& FA-m

The assign and remove operations are used to modify
the elements in an occurrence. They are not defined
recursively. An occurrence could also be represented as a
tree. The following tree represents the third occurrence of
FA “member” (table (b) of Figure 4).

titlc:EI tune1
I

tWttWB:*

h’~n:02/111J987

To update a node of the tree (a value of element), we have
to designate it. The notion of path is used here to refer to
an element : it may be thought of as a “path” through the
tree. A path is always linked to a specific occurrence. The
syntax for a path is as follows :

<path> := <occcurrence-id> . <element-chain>.
As examples of paths, suppose the above occurrence is
identified as the id-01 occurrence, then we can have:

id-01 .name, id-Ol.address.city, id-Ol.sex.man.
id Ol.loans -

Paths are evaluated from left to right. For example
“id-01 name” refers to the name of the member
id_OZ .“id-OZ .sex.man” is undefined and”id-01 Jeans” is
the set of loans done by the member id-O].

Examples of update operations :
aasign(id-OI.name, ‘toto’) : replace the previous value

of the element “name” for occurrence id-01 (which may
be null, i.e “name:@“) by value “name:foto”.

assign(id-Ol.sex, ‘woman’) : assign the value
“sex:woman” to the element “sex” of the occurrence
id 01. This element have a choice schema and this
in&ates the schema name which replaces the previous
one, if any.

assign(id-01 .loans(3).retum, ‘24/l 2/l 987’) : assigns a
value to the element “return” of the third
“sub-occurrence” of set “loans”. The subscript is used
to designate sub-occurrences.

The remove operation is in a sense the fever= operation
for assign. It has the following syntax remove(<path>.
<value>). In the case of an aggregare element E or a
choice element E, the remove operation replaces the value
of the element (E:v) with E:+. If the element has a set or
a list schema, then <value> is removed from the set or
list which is the value of the element designated by
<path>.

4.3 FA-expressions

The FA-operations presented above could be used for FA
query and update. To express other operations, these
functions are not sufficient. We would like (i) to express
arithmetic and logical calculus, (ii) to express some
algorithmic operations, (iii) to use the result of a query as
a temporary FA etc. In order to extend the power of FA-
operations, we introduced FA-expressions. FA-expressions
have to he considered as a formalism which is part of our
model and not as a user language. More precisely, an FA-
expression is constructed using :

l Query and Update FA-operations,
l the operation FA which specifies a temporary FA. The

specification involves the use of a FA-variable : i.e a
name local to the transaction in which it has been
defined and bound to a set of occurrences. There are two
methods to define the set of occurrences : query FA-
operations and extension. The temporary FA could he
seen as a cursor and then could be manipulated
accordingly (with the iteration operation : for).

+functions for handling data values related to data types
(integer (+, *...), text, time), users functions
(corresponding to particular programs) and progmmming
functions such as : “if then else”, “for each”, . . .

142

In FA-expressions, variables local to a transaction may
appears. They are denoted by an identifier with a question
mark. They are assigned during the expression execution.
They naturally could be referred in other expressions.

Examples of FA-expresslons :
create(member, ?a); create a new occurrence ?a of FA

“member” : ?a will take the value of the occurrence
identifier.

assign(?a.total, count(?a.loans)); for any occurrence ?a,
assign to element “total” the result of the function
count applied on the set of “loans”.

FA(LATE, selection(member, selection(loans,
3 selection(loan, and (= (return, Cp),
longer (subtime (‘now’, begin), Imonth))))));

for ((LATE, ?r), print (?r.name););
The first FA-expression (operation FA) creates a
temporary FA containing all members which still have
books on loan for more than a month. The second
expression prints the name of these members.

5 RULES

Here, with forms, we do not try to solve all the problems
related to object dynamicity management. Concerning this
area, a lot of research has been done. Some propose to
introduce in data models (i) time [ADI 86, ADI 87b, BUR
871 (ii) events and operations [ANT 8 1, LIN 87, BAN 871.
Complex objects dynamicity is treated here in the precise
framework of the interaction between a form and a user.

Rules are the second component of a EB <S,R> (meaning
of a FA). They encode the semantic tied up to the schema
S and give a dynamic behavior to the object (form)
presented to the user at the interface level. The form reacts
to the users actions, realizes controls and FA-operations.
The rule concept enhances the schema concept in the same
way (i) methods enhance the class concept in object
oriented languages [GOL 83, LEC 871, (ii) facets
(procedural attachments) in frames [BEN 85, FIK 85, VIG
851. Also the rule notion we defined here is an extension of
the “triggers” proposed in [GIB 841. Many examples of
rules are given in [COL 871. showing that the rule notion
should be used to express :
+ several integrity constraints for database (complex)

objects,
+ objects status : mandatory, no modifiable, locked, . . .
+calculation of value element, either local to a given

form occurrence or global when values belong to other
database occurrences.

*update translation in the case of virtual elements (view
constructor [COL 871).

l exceptions : the concept of semantic tolerance
introduced in [ESC 871 gives a new approach to model
and handle exceptions in databases [BOR 851. We show
that it is possible to introduce some “tolerance” in rules
in other to soften controls and accept exceptional data

A rule is deiined by : DEF-R u-ule name>
WHEN <evtl>; cevt2>; . ..<evtn>.
BEFORE <FA-expressions>
AFTER cFA-expressions>

The WHEN clause, identifies a list of events which
activate the rule. The main difficulty here is to define
precisely what is an event [ANT 811. In our framework, an
event will be an activation of one update FA-operations :
create, modify, delete, assign and remove.

Rule1 (Figure 9) is intended to control assignation of
values to begin and return dates for a book loan. We find
two events (evl and ev2). An event occurs when the
corresponding operation is invoked by the user. So, Rule1
will become active when evl occurs and ev2 occurs or
vice versa. In this way, a rule activation is controlled by
one event, the last one which occurs. The corresponding
operation for that event is called an activation operation. In
our example, when both values for ?b and ?r are given by
the user to the system, they will be accepted only if ?b
precedes ?r in time. A rejection (stop-event) causes the non
acceptation of the update operation (assign) and the system
may wait until consistent values are given.

WHEN assign(?m.loans(?i).begin, ?b); - ev 1
assign(?m.loans(?i).retum, ?r); - ev2

BEFORE
if (precede (?r, ?b), message(‘the return loan date can’t

precede the loan date’); stop-event;)

In general, every operation on a FA is controlled in order
to determine the rules which are concerned by the
corresponding event. For a given rule R, as soon as all the
events of its WHEN clause occur, then R is activated. If a
BEFORE clause exists, the corresponding FA-expressions
are performed. Usually, they are used to verify integrity
constraints. If one constraint is not satisfied, we provide
the “stop-event” operation to force the rule to fail. For
instance, in the BEFORE clause of RuleZ, there is only
one FA-expression which permits to verify that “the
return date of a book on loan do not precede the loan
date”. If the rule R did not fail or if there was no BEFORE
clause, then we consider the AFTER clause. This one may
contain FA-expressions which have to be executed. Two
cases may occur : (1) correct execution of all these
expressions result in a successful rule R. (2) if one of
these expressions is an event for another rule R’ and if R

143

fails, then, to avoid side effects, we rollback all the
operations performed since the beginning of R.
For instance in Rule2 (Figure 10) : when the event
“assign(loans(?i).ref, ?r)” occurs, then the BEFORE is
executed. It verities first if the requested book is in the
LIBRARYCATALOG inside the database. If so. it verities
that the book is not already on loan. If the book is
available, the assign is accepted and the AFTER clause is
executed. This results in assigning to the form the book
title which was extracted from the database by the
execution of the first selection of the BEFORE clause.
In this way title will be displayed on the screen.

WHEN assign(?a.loans(?i).ref, ?r);
BEFORE FA(CAT,

FA(CAT, selection (LIBRARYCATALOG,
=(serial-number, ?r)));

if(non(exist(CAT)). message(‘no book corresponding
to this serial number’);
stop-event;)

FA(NOTRETURN, selection (member, (selection
(loans, 3 selection(loan, and (=(ref,?r), =(retum, Cp))))))
if(exist (NOTRETURN), message(‘this book is already

on loan’); stop-event;)
AFTER for ((CAT, ?c),

assign(?a.loans(?i).titIe, ?c.title););

Remark :

An important step during rules specification is to examine
their behavior and their correctness . This is not a trivial
problem. First a rule must not be inconsistent. In our case,
this will require to do proof of FA-expressions. A more
formal treatment of this problem is related to program
proving and of course it is not our intention to solve this
problem here. A second problem is when two (or more)
rules are activated by the same operation . If we accept
such situation, we need a general policy for the activation
of such rules. As in [GIB 841, the policy is that rules
which have at least a common event in their WHEN clause
should have FA-expressions (in the BEFORE or/and
AFTER clauses) that operate upon mutually exclusive
objects. A third problem is the detection of loops. It is
easy to define - a rule which have a loop : when it is
activated, it will reactivated itself indefinitely - or a rule
which can form a loop with existing rules. We can handle
a dependency graph for “before” and “after” of the existing
ruIes. All the problems introduced above still belongs to
the research area. We think, however that our approach is
sufficient for several interactive applications where the
users apply a methodological approach for specifying
dynamic aspects through rules.

6 PRESENTATION

We give in this section some elements about the concept
of presentation. Remember that a FA can have different
presentations. A presentation have two components: a
format and a list of specific operations.

6.1 FORMAT

The format is the specification of how a FA (or only a part
of it) presents itself to users on a particular output. We
limit ourself to formats for displaying on screen. A format
is defined by the primitive : DEF-FT <SCHEMA-Fl[,
FOR <FA> WITH <users>.

<SCHEMA-FT>describes a set of boxes. Their
organization reflects the schema of the cFA>.In the FOR
clause, we give a name of FA or an PA-expression.
Finally, in the WITH clause is given a list of “users”
allowed to use the format. In SCHEMA-FT. we find three
types of information described for rernplares [TSI 821 : (i)
box appearance, (ii) box - element mapping. (ii) box
positioning. The approach chosen here is similar to the
one proposed in JANUS [CHA 811, but we do not use a
programming language to describe a format. Each box is
described by attributes. The following table gives an
:xhaustive list of attributes .

BOX ATTRIBUTE FOR

- box name
utk box till0
title position above. side

e simple, multipk

fi!izzE
bodrground
holght, width

box position above. under. inside a box
contcnt.5 clanalt-chain / consUYlt
justifration contents justifration : centered. kft justifkd . . .

izzi$im
thicked. dotted. . . .
text for help

igi!i%L-
always I condition
mIc I false

;TANDARD FORMAT

1

J

To help the programmer during form specification, we
provide a mechanism to generate a standard format for each
FA. For that, some informations must be given first :
format name and name of the corresponding FA, its type
(Simple to display one occurrence, Multiple to display
several occurrences, Mn to display a menu or a choice).
This type is used to determine the control functions
associated with the format. Then the mechanism will be
able to define a set of boxes according to the schema of the
specified FA. For each schema, a box is defined with :

l anintemalname,
l a title which is the name of the schema. Its position

depends of the box which includes it (by default left to
the box)

144

l a justification : left and right justified
l a standard appearance
l a description which is the element schema
l display status : always

The others attributes are defined using mapping-rules,
described in [COL 871. As example of mapping-rules. the
following attributes are defined for a choice schema :

l type : simple
l dimension : calculated in accordance with the dimension

of the biggest box defined for schemas which compose
the choice and the “menu” box (see below).

l borders : nothing
l format : horizontal. The box have two horizontal

zones. The first zone have a “menu” box. Its contents
gives the possible choices (names of schemas which
composed the choice schema). The second zone is
reserved to display the box defined for the schema
which would be chosen. The size of this zone is equal
to the one of the biggest box associated to one of the
schemas which compose the choice. When one of these
schemas defines a constant (domain = •I), no box will
be specified.

SCHEMA-FA = choice : Cl: string I C2 : integer
. ...““““““““-.

,

: CHOICE

: IpqTr’J ;
, a-e-----------ss

i i/?r\A

4 ‘&.I-]-[:3l

6.2 SPECIFIC OPERATIONS

A specific operation is related to a format and concerns one
“user”. It specifies the actions (events on FA through the
format) which could be accepted from the user. A specific
operation gives a first level of control for the users actions
without activation of rules and then, open a context where
rules are considered (see section 2 and 5). The names of
specific operations will define the menu used to manipulate
a form, resulting from the connection of a presentation
with a FA.

7 CONCLUSION

We presented here a generalization of the FORM concept.
Considered mainly in Office systems, the form is not only
an interface object but is considered as a complex and
dynamic object at different levels of database definition,
manipulation and interaction. We think that our
proposition constitutes an homogeneous framework for
describing and managing structural and dynamic aspects for

complex (and multimedia) objects as forms. This work is
related to several research areas: complex or structured
object models, extended algebra, knowledge representation,
data dynamicity, database interfaces. We tried to integrate
several aspects in order to offer proper tools for the design
and the implementation of new database applications.
A first implementation of this model is already in progress
using on an Apollo workstation a relational DBMS with a
C interface and with specific interface tools . We choose a
subset of operations on forms and we are trying to
implement our system in an incremental manner by
taking advantage of the meta level of the model. Offering
menus and interfaces for the definition of form schemas is
done through specific “system” forms to which they
correspond specific “system” rules, here coded in the C
language. This is a very important point because, for
instance an interface with a pop-up menu can be model as
a form with a choice between several elements. This
approach appears to be very promising.

Complex objects are mapped onto flat relations in a
conventional (although, not efficient) manner [VAL 861
and rules are implemented in C+SQL. One of the main
difficulty is to separate clearly (1) external and conceptual
levels in order to be independent of any specific interface
tool [COU 87];and (2) conceptual and internal levels in
order to consider in the future, object oriented DBMS
[LEC 87, BDV 871. A more detailed discussion on these
aspects will appear in a following paper.

We are considering several directions of research as a
continuation of this work. First, we think that more work
is needed on dynamic aspects for complex forms. Our
notion of rule must be extended and need more formal
considerations. It should be compared to a strict Object
Oriented approach with encapsulation in order to find a
good level for expressing set of objects manipulations.
This will help for implementing extended database query
and manipulation languages through form interfaces.

Second, we want to define in a more systematic manner
how to design a complex object manager integrating
structural and dynamic capabilities. This work is part of a
new important project that we are currently defining. Two
main directions are considered, one concerns knowledge
representation and manipulation and the other one is related
to multimedia aspects of complex objects. We mentioned
only this problem at the beginning of the paper but we are
far away from real “mu1 timedia” complex forms! !

Acknowledgments : The authors wish to thank C.
Delobel and S. Abiteboul for their hepful and constructive
comments on this research and the anonymous referees for
their pertinent remarks.

145

[ABi84] S. ABITEBOUL, N. BIDOIT : Non First
Normal Form relations : an algebra allowing
data restructuring . Proc. ACM SIGACT-
SIGMOD Symposium on Principles of
Database System (1984). Journal of Computer
and Sciences (December 1986).

[ABI861 S. ABITEBOUL, R. HULL : Restructuring of
semantic database objects. Proc Int. Conf. on
theory of databases. Rome, September 1986.To
appear in theoretical Computer Science.

[ABI 871 S. ABITEBOUL, S. GRUMBACH : Bases de
Don&es et objets Structures. Techniques et
Sciences de Dnformatique. December 1987.

[AD1861 M. ADIBA, N. BUI QUANG : Historical
Multimedia Database. VLDB Conference.
Kyoto, Japan (August 86)

[ADI87a] M. ADIBA : Modelling Complex Object for
multimedia databases. ENTITY RELATION
SHIP APPROACH. S. Spacapietra (Editor)

[ADI 87b] M. ADIBA, N. BUI QUANG N., C. COLLET
: Aspects temporels, historiques et dynamiques
dans les Bases de Don&es . Techniques et
Sciences de l’btformatique. December 1987.

[ANT811 V. ANTONELLIS, B. ZONTA : Modelling
events in Database Application design. Proc
7th VLDB Cord. Cannes, September 1981.

[BAR841 F. BARBIC, MCARLI, B. PERNICI, G.
BRACCHI : A tool for form definition in
office information systems specification . New
Applications on Databases edited by G.
Gardarin. On Proc ICOD- Conf. Workshop
Cambridge University, September 1983.

BEN851 A. BENSAID: (In modele de donnees
relationnel ttendu. These Docteur lngenieur.
INPG de Grenoble, June 1985.

[BAN821 F. BANCILHON, P. RICHARD, M. SCHOLL
:Verso : a relational Back end Database
Machine. Proc. International Workshop on
Database Machines. San Diego (1982).

[BAN871 F. BANCILHON, S. KOSHAFIAN : A
calculus for Complex Objects. Proc of ACM
Symp. on PODS, Boston, March 1986.

[BAN861 F. BANCILHON, T. BRIGGS, S.
KOSHAFIAN, P. VALDURIEZ : FAD, A
powerful and Simple Database Language. Proc
of 13th VLDB Conf. Brighton 1987.

[BDV87] F. BANCILHON, V. BENZAKEN, C.
DELOBEL, F. VELEZ :The 02, VO Object
Manager Interface. Technical Report Altalr 1 1 -
87. September 1987.

mOR85] A. BORGIDA, K.E WILLIAMSON :

Accomodating Exceptions in Databases, and
Refining the Schema by Learning from Them.
Proc. of VLDB Conf. Stockholm, August
1985.

lBUR86] R. BURSENS, J. GUYOT : Temps +
Dynamique + dfkrentiel = Histoirt
.Troisi&mes Joumees Bases de Dondes
Avancees. Port-Camargue, May 1987.

[CHA81] D.D. CHAMBERLIN, J.C KING, D.R
SLUTZ, S.J.P TODD, B.W. WADE :JANUS

An interactive system for document
breparation. Proc. ACM. Symposium on text
manipulation. June 198 1.

[COL87] C. COLLET : Les Formulaires complexes
&ns les bases de do&es multimedia. Th& de
doctorat de I’USTMG. Grenoble. November
1987.

[COU 871 J. COUTAZ : PAC, an object Oriented Model
for Dialod Design. Human Computer
Interaction INTERACT’87. H.J Bullinger and
B. Shackel (Editors). North-Holland.

lDOU87] A. DGUCET, C. LEPENANT : Langages de
quatrit?me gf5tktion et gtnkrateurs dinterfaces
. Rapport technique GIP Altriir No 3-87 (INZ
INRIA-LRI). March 1987

[OEJ 801 P. DE JONG : The system for business
automation (SBA) : A unified application
development system. Proc. IFIP Conference
(1980)

[ESC 871 C. ESCULIER : Inheritances with exceptions
: an approach based on semantictolerance
iFIP88 Conference. Canton Chine (1988).

m82] J.C FERRANS : SEDL : A language for
specifying integrity constraints on office
forms. ACM SIGOA Conf. on ofice
information systems. Phyladelphia. June 1982.

[FIK 851 R. FIK,T. KEHLER :The role of frame based
representation in reasonning. Communication
of ACM. Vol28, No 9. September 1985.

[nS 831 P. FISHER, S.T THOMAS : Operators on
Non-First-Normal-Form Relations . Proc of
the 7th Int. Computer Software Application
Conference, Chicago. 1983.

[GEH 831 N.H GEHANI : High level form definition in
office information systems. The Computer
Journal. Vol26, No 1, 1983.

[GlB84] S. GIBBS : An object-Oriented Office Data
Model . Technical Report CSRG-154. January
1984.

[GOL83] A. GOLDBERG, D. ROBSON :
SMALLTALK-80. The language and its
implementation. Addison Wesley Publishing
Company. 1983.

146

[GUT 871 R.H.GUTING, R.ZICARI, D.M.CHOY: An
algebra for structured office documents, IBM
Research Report, RJ5559. San Jose, March 87

IJKJL 871 R. HULL : Resarch on typed complex database
objects. Databses edited by J. Paredeans.
University of Antwerp VIA, Belgium.

[JAE82] B. JAESCHKE. H.J SCHECK : Remarks on
the Algebra of non first normal form relations.
Proc PODS, Los Angeles. 1982

[KIT841 H. KITAGAWA, M. GOTOH, S. MISAKI. M.
AZUMA : Form Document Manugement
System SPECDOQ - Its Architecture and
Implementation. ACM SIGOA on Office
Information System. Toronto, June 1984.

MC871 C. LECLUSE, P. RICHARD, F. VELEZ :
02, an object Oriented Data Model. Technical
Report Altdir 10-87. September 1987.

w 871 J. LINGAT, P. NOBECOURT, C. ROLLAND
: Behavior Management in Database
Applications. Proc of 13th VLDB Conf.
Brigthon . September 1987.

[LUM82] V.Y LUM, D.M CHOY, N.C SHU : OPAS :
an office procedure automation system . IBM
Reserch Lab. RJ3394. San Jose, February
1982.

[ORA 841 Oracle IAF : Users Manual for IAF upplication
Design.Oracle corporation. Menlo Park.
California. Original issue : October 1984.

[PIS 861 P.PISTOR, F. ANDERSEN : Designing a
generalized NF2 model with an SQL-rype
language interface . Proc 12th VLDB Conf.
Kyoto. August 1986.

[ROT85a] M.A ROTH, H.F KORTH A.
SILBERSCHATZ : Extended Algebri and
calculus for -JNF Relational Databases
Technical Report - Computer Science Dept. -
University of Texas Austin (1985).

[ROT85b) M.A ROTH, H.F KORTH : Null values in
4NF Relational databases . Technical Report
- Computer Science Dept. - University of Texas
at Austin (1985).

[ROT861 M.A ROTH, H.F KORTH, D.S BATORY :
SQLINF, A query Languuge for 4NF
Relational Databases. Technical Report -
Computer Science Dept. - University of Texas
at Austin (1986).

[ROW821 L.A ROWE, K.A SHOENS : A form
application development system. Proc. ACM
SIGMOD Conf. Orlando. May 1982.

[ROW 85) L.A ROWE : ‘Ifill-in-the-form” programming .
Proc 11th. VLDB Conf. Stockholm. August
1985.

[SCH 841 H.J SCHEK, M.H SCHOLL : An algebra for
the relational model with relation valued

attributes , Technical Report. Technische
Hochschule Darmstadt. 1984.

[SHU83] N.C SHU, H.K WONG, V.Y LUM : Forms
Approach to Requirements Specification for
Database Design. ACM SIGMOD.
International Conf. on management of data.
San Jose May 1983.

[SHU85] N.C SHU : FORMAL : A Forms-Oriented,
Visual-Directed Application Development
System . IEE Transactions on software
engineering, 1985.

[ST0861 M. STONEBRAKER :The Ingres Paper,
Anatomy of a relational Database System
Addison-Wesley Publishing Company.

[TsI82] D. TSICHRITZIS : Form management
Communications ACM. Vol 25, No 7. July
1982.

[vAL86] P. VALDURIEZ, S. KHOSHAFIAN, 0.
COPELAND : Implementation Techniques of
Complex Objects. VLDB Conference. Kyoto.
August 1986.

m84] F. VELEZ, M.LOPEZ : Modelling and
handling generalized data in the TIGRE
Project. 8th Honeywell International
Computer Science Conference Bloogmington,
1984.

[vIG86] P. VIGNARD : Reprtsentations de
connaissances - mt?canisme d’exploitation et
d’apprentissage . INRIA collection Didactique.
1986.

[px)77] M. ZLOOF : Query-By-Example : a database
language . IBM systems Journal. Vol 16, No
4, 1977.

[ZLO82] M. ZLOOF: Office-By-Example : a business
language that unifies data ana’ word processing
and electronic mail . IBM systems Journal.
Vol 21, No 3, 1982.

147

