
Browsing Electronic Mail:
Experiences Interfacing a Mail System to a DBMS

Jack Kent
Douglas Terry
Willie-Sue Orr

Corn uter Science Laboratory
Xerox i alo Alto Research Center

Abstract: A database management system provides the
ideal support for electronic mail applications. The
Walnut mail system built at the Xerox Palo Alto
Research Center was recently redesigned to take better
advantage of its underlying database facilities. The
ability to pose ad-hoc queries with a “fill-in-the-form”
browser allows people to browse their mail quickly and
effectively, while database access paths guarantee fast
retrieval of stored information. Careful consideration
of the systems’ usage was reflected in both the database
schema representation and the user-interface for
browsing mail.

1. Introduction

Electronic mail is used extensively within the
Computer Science Laboratory at the Xerox Palo Alto
Research Center. An average lab member may receive
fifty messages per day, many of which he will file for
future reference. Fast access to stored mail is essential.
We have discovered that a database management
system (DBMS) provides the ideal foundation for
electronic mail applications [6]. The ability to pose ad-
hoc queries allows people to browse their mail quickly
and effectively, while database access paths guarantee
fast retrieval of stored information.

Walnut is an electronic mail storage and retrieval
system developed for the Cedar environment [12].
Users can pose mail queries through a “fill-in-the-

Permission to copy without fee all or part of this mataial is
granted provided that the copies are not made or distributed for
direct commexcial advantage, the VLDB copyright notice and
the title of the publication and its date appear. and notice is given
that cqying is by Permission of the Very L.arge Date Base
Endowment. To copy otherwise, or to republish, raquires I fee
and/or b-pecial pexmission from the Endowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 112

form” browser: the browser interfaces to an entity-
relationship database system]3]. Walnut was created
both to satisfy our need for a mail system and LIS an
experiment. The objective of the experiment was
simple: to determine if the needs of an electronic mail
application would be better met by a DBMS than by a
file-system.

The majority of existing mail systems, such as
those provided in UNIXTM [ll] as well as our previous
mail system [2], are file-system based. Justifying the
additional overhead of transactions, a high-level data
model, and a browsing tool requires an understanding
of how users interact with mail readers. Our
understanding came from several sources. including
user-feedback, user information automatically gathered
by the system, and performance measurements. This
information proved invaluable in refining both the
user-interface and the data model of Walnut.

Despite our assertions that electronic mail is an
ideal client application for a DBMS, relatively few
Cedar users initially switched from the file-based mail
system to the original version of Walnut. There were
many reasons:

l Pet$ormance Degradation

Walnut operations ran slower than their
counterpart file-system based mail operations.
As an ex,?mple. displaying a Walnut message-set
generally requires an IO operation per message.
Opening a .-older of equal size in a conventional
mail system ‘s considerably faster since a file-
system can stream in bytes faster than a DBMS
streams in ordered tuples.

l Questionable benefits of transactions

To many Walnut users, it was unclear how
transaction support was truly beneficial in our
environment. For example. the value of

concurrency control is minimal since most mail
databases are private. Even the value of crash
recovery is not immediately apparent to most
mail users.

l No query facility

The inability to pose ad-hoc queries, such as
show me all messages from time X to time Y
sent by user Z, muted the value of the DBMS.

l Limited data model

Our model of mail was inadequate. Walnut
initially treated mail messages as uninterpreted
text rather than parsing fields such as subject,
sender, date, or recipient and including them in
the data model.

To improve the utility of Walnut, we added a
browser that allows users to query a mail database for
messages satisfying a given set of attributes. We also
the revised database schema that fully supports this
interface. In this paper, we relate our experiences.

In section two, we discuss the Walnut
functionality and user-interface. Section three follows
with a description of how Walnut’s database schema
was improved based on early experiences. In section
four, we present some proposed extensions to the data
model and methods for comparing alternative data
models. Section four also summarizes information
gathered about how users pose queries and discusses
how usage patterns can influence the design of mail
systems.

2.

2.1

An Overview of Walnut

The Conceptual Model

The Walnut data model includes two classes of
objects: messages and message-sets. Message-sets are
named folders for categorizing messages: they can be
created deleted or enumerated Messages are
unnamed and are added to, deleted from, or moved
between message-sets. Messages belong to one or more
message-sets.

Two message-sets are treated specially: Active and
Deleted. The NewMail operation gathers mail from
the mail transport service and adds it to Active. The
Deleted message-set contains all messages that belong
to no other message-set. Expunge is a special operation
that irrevocably discards Deleted messages, thereby
reclaiming the storage they occupied

2.2 The User-Interface

The Walnut user-interface supports three types of
windows: the control window, message-set display
windows (one per message-set), and message display
windows (one per message). Figures 2-1, 2-2. and 2-3
contain representatives of these types of windows.
Each wmdow provides a menu of operations specific to
its type. For instance, the NewMail and Expunge
operations can be found in the control window (Figure
2-l). Clients invoke an operation by using a mouse to
select a menu entry.

The Walnut control window contains a list of
named message-sets. Using the mouse to click on one
of these message-set names causes a message-set display
window to be created. A message-set window contains
a line summarizing each message in the message-set.
The menu at the top of this window includes operations
for displaying, moving, and deleting messages.
Clicking on an entry in a message-set window causes a
message display window to be created containing the
textual contents of the selected message.

2.3 The Query Tool

2.3.1 SpecifVing queries

Figure 2-4 shows the message browsing form used
to specify queries on a mail database. There is a slot in
the form for each of five attributes of a mail message:
the message-set that it belongs to (one of possibly
many), the sender of the message, the recipient(s) of the
message, the carbon-copy (cc) recipients of the
message, the date that the message was sent, the subject
of the message, and the actual text of the message.
(Note: including the complete message text as a field in
the form allows full text searches.) The user constrains
the value of an attribute by filling in the slot
corresponding to that attribute. After initiating the
query, any mail message that “matches” the form is
returned; the user can then perform further operations
on the matching messages.

Exactly how the filled-in text in the message form
is “matched” against mail attributes is determined by
user-selected filters. The filter currently being used for
a given attribute is depicted in a box to the left of the
attribute. In Figure 2-4, all of the attributes specify the
“Do What I Mean” (DWIM) filter. Alternative filters
can be chosen by clicking with a mouse over the filter
button.

As of this time, the mail browser provides nine
pattern-matching filters: exact, prefix, wildcard, regular

113

There is no new mail at February 11, 1988 l&37:31 am PST I
Active Deleted ActiveDel BANION DBFS Dialog DocMan File&-stem 1
guncontrol Hector LoganWalnut Net Networks ronwork 9D Outdoors
Performance PeterIntern peterNow Summer SummerIntern SysModel tax
UGrents WallabyStats Windex WindowEx

Figure 2-l. A Walnut Control Window,

Select a message-set button to open a message-set display window.

MoveTo Display Delete AddTo NewMail Places Levels MsgOps
? 9 Feb 88 To: kentpa WallabyStats

9 Feb 88 CHauser,pa Interminal end chorded mouse actions
9 Feb 88 gunther ,pa PlotGraph for CedarChest 7.0

, ? 9 Feb 88 “David Cher , , . CS 548 seminar 2111 cancelled

Figure 2-2. A Walnut Message-Set Window.

Select a message-header to open a message.

Freeze Answer Forward KeSend MSgOpS Split PlaeS LeVelS

nate: Tue, 9 Feb 88 20:12:2S PST
Frem: gunther #pa
Subject: PlotGraph for CedarChest 7.0
Te: CedarUsers f ,pa
CC: CedarChest Coordinator <Willie-sue,pa>
Reply-to: LeCocq

DF: [Ceclar]<CeclarChest7,0>Top>PlotGraph,df
Document ation:
[Cedar]<CedarChest’ir,O>Documentation>PlotGraphDoc,tioga
Maintainer: LeCocq.pa
Plotqraph provides an oscilloscope-like display of data generatec
bv rwatnrs em..

Figure 2-3. A Walnut Message.

expression, soundex, subrange, date, date range, and desired by the user can be inferred from the pattern
DWIM. Their meanings can be surmised from their alone. To this end the DWIM filter has been provided
names. For instance, the “date range” filter assumes and is the default. More specifically, when DWIM is
the user has typed a pair of date/times separated by a specified, the browser looks for special characters
dash, where each date can be interpreted by an within-the pattern and attempts to infer the filter type
intelligent date parser. Very often, the type of filter from context. If the text contains a “*‘I, for example.

114

STOP! Browse BrowseToMsgSet

IDWIM I

MsgSetName:
Sender:
Recipient:
CC

Date:
DWIM Subject:

‘-1 MessageText:

Figure 2-4. The Wnlnut Query Tcol.

then wildcard pattern matching is used.

Figures 2-5, 2-6, and 2-7 give examples of three
different forms and the intended queries they
represent. Figure 2-5 depicts a browsing form to find
all mail in my database sent since February 1, 1986
from someone named Hagrnann: note that for the Date
field, DWIM selects date-range pattern matching,
whereas it selects textual prefix pattern matching for
the Sender field. The form in Figure 2-6 allows all mail
sent to the RiverRats distribution list to be retrieved.
The form in Figure 2-7 finds messages that were sent
from someone whose name sounds like “Tearee”, such
as “Terry”, and that contain the word “suggestions”
somewhere in the message text.

2.3.2. Initiating a query and viewing the results

Initiating a query is done simply by clicking one of
the two browse buttons in the menu of the query tool
(Figure 2-4): Browse or BrowseToMsgSet. The
operations differ in how they present the results of a
wry.

The Browse presentation mode is a lightweight
mechanism for viewing the results of a query. A result
appears in the window below the form window as five
properties (called an item). Collectively these five
properties uniquely identify a message. Mouse
selecting an item opens a message window and displays
the corresponding message text.

The BrowseToMsgSet operation moves the results
of a query to a designated Walnut message-set. While
slower than Browse (since it involves updating the
database rather than simply displaying a message), this
operation is useful for defining new categories, splitting
a category, merging two categories, or even cleaning up

-1 MsgSetName:
m Sender: Hagmann
-1 Recipient:
-1 cc:
(m Date: fob 1 , 1986 - now
m Subject:
r1 MessageText:

Figure 2-5. A form to find mail sent between February
I,1986 and now, from someone named Hagmann.

MsgSetName:
Sender:
Recipient: RiverRats
cc:
Date:
Subject:
MessageText:

Figure 2-6. A form to find mail sent to the RiverRats
distribution list.

71 Recipient:
‘-iisilcc:
71 Date:
-1 Subject:
J-1 MessageText: *suggestions*

Figure t-7. A form to find all mail sent from someone
whose name sounds like ‘Tearee’ with the word

“suggestions” occurring somewhere in the message.

the database, A common use for BrowseToMsgSet is
cleaning up the Active message-set by specifying a
query that moves all unwanted active mail to Deleted.

2.4 Comparisons to Some Other Mail Systems

All mail systems have some basic similarities. In a
typical mail system, each user is associated with a
mailbox. A sender, assisted by a user agent. composes a
message and identifies its recipients. The message is
then deposited with the transport system which

115

SuDDort for
cateaorizing
mail

browser
SuDDort

conversation
suDDort

shared mail
SuDDort

time to
process
new mail

fast access
paths

suDuort for
removi nq
unwanted msas

Draaonllail

none mail is grouped semi-structured DBMS support,
by conversations messages, rules, message fields

sub-typing

editor equality rules wide variety
matching on of filters
subject, date
and sender

none unique ID
context kept

NetNews same as
public mail

very fast fast

topic, ordered topic, ordered by
by time rcvd. time sent

ANYONE public mail
servers database archive

depends on slow
number of rules

no no no yes

none space deallocated rules can be query operation
when conversation defined for aids cleanup,
is terminated filtering Expunge operation

Table 2-I. A comparison of mail reading systems.

forwards it to each recipient’s mailbox. Tools are
typically provided for categorizing messages after they
have been received, usually into predefined file-names
called folders.

Table 2-l attempts to summarize the differences
between four mail systems: UNIX Mail [ll],
Dragonmail [5], Information Lens [9], and Walnut. The
mail system commonly used in UNIX is chosen as a
representative of conventional mail readers.
Dragonmail provides additional support for managing
conversations. The Information Lens (sometimes
referred to simply as LENS) uses semi-structured
message types and rules for filtering incoming mail.

In terms of support for categorizing mail, LENS
appears to be the most versatile. In LENS, a rule’s
predicate can be based on the message type or the
contents of the message header. A rule’s action can be,
for example, to store the message in a given folder.
Using the type hierarchy, a wide variety of message
inter-relationships can be represented.

For browsing, the LENS user can define a
browsing rule such as “if mail from Joe then display”.
The Walnut user, on the other hand, has a more
convenient fill-in-the-form browsing interface and can
choose from a wide variety of predefined filter types.

Support for conversation browsing is also
important, LENS and Walnut interpret the message’s
subject field as a conversation ID, and then display
these message in a linear temporal order (by time
received or by time sent). This approach has two
problems: (1)multiple conversations may be associated
with a single topic and (2) displaying a conversation in
date order may be misleading since it gives the user no
idea of the context in which the message was written,
that is. which messages were read to instigate a given
reply. Dragonmail solves this problem by associating a
unique ID with each conversation. Users browse
conversations not in temporal order, but in the context
in which they were written (a conversation is
represented by a directed acyclic graph).

116

The various systems also differ in how they
support public mail (mail that is to be widely read).
Many mail systems use distribution lists that are
maintained by the mail transport service [l]; these
allow client applications to treat public mail exactly like
private mail. Unfortunately, maintaining public mai!
recipients using distribution lists is wasteful of space
since each recipient receives a private copy of the
message. For this reason, systems like NetNews [8]
store public mail in a logically centralized repository
called a bulletin board. Walnut supports both bulletin
boards (public databases) and distribution lists. LENS
offers a compromise solution: the ANYONE server.
The ANYONE server fi.mctions as an intermediary
beiween the sender and potential recipient. Users
register interests (via rules) with the ANYONE server.
In contrast to distribution lists, “interests” can be very
detailed (as the interests are rules) and tie technique
scales better (as mail is forwarded at a more local level,
there is less network bandwidth consumed).

Convenfiona! mail systems provide little or no
support for one very important electronic-mail
operation: removing junk mail. The LENS system’s
rules provide some help for the problem. In Walnut,
we have discovered that queries invoked with the
BrowseToMsgSet operation can be used quite
effectively to remove junk mail from one’s Active
message set.

In many ways, the file-based mail systems
described above suffer from performance and usability
limitations. Browsing is often inconvenient or
impossible. Retrieval is slow due to the lack of fast
access paths. And data consistency is not guaranteed.
Many of these deficiencies are what motivated us to
build Walnut, an electronic mail system layered over a
DBMS.

3. The Walnut Implementation

3.1 The First Schema

In the first implementation of Walnut, the
mapping from conceptual mode! to entity-relationship
schema was fairly simple. This original schema is
presented in a high-level language in Figure 3-l. Both
messages and message-sets are represented as entities
(represented by the two domains: Message and
MsgSet). A single relation, MessageSetToMessage,
serves to associates messages with message-sets.
Additionally, there is an index on the concatenation of

Domain Message

Domain MsgSet

Relation MessdgeSetToMessage
msgSet: MsgSet
date: time
message: Message

Index on Relation MessageSetToMessage
[msgSet, date]

Figure 3-l. The first Walnut schema.

Domain Message

Domain MsgSet

Relation MessageSetToMessage
msgSet: MsgSet
date: time
sender: text
recipient: text
cc: text
subject: text
message: Message

Index on Relation MessageSetToMessage
[msgset, date]

Index on Relation MessageSetToMessage
[date]

Index on Relation MessageSetToMessage
[sender, date]

Index on Relation MessageSetToMessage
[recipient, date]

Index on Relation MessageSetToMessage
[cc, date]

Index on Relation MessageSetToMessage
[subject, date]

Figure 3-2. The revised Walnut schema.

the first two fields of the MessageSetToMessage
relation.

3.2 The Revised Schema

To l%!!y support the mail browser, the Walnut
schema was later revised, as in Figure 3-2. This new
schema exposes far more of the semantics dssociated
wtth mail. Properties that were previous left
uninterpreted in the mail message are parsed and

117

exposed in the schema. Indices were defined on each
of the five new fields: date, sender, recipient, cc, and
subject. All of these indices are keyed on the
concatenation of some message attribute with the
message’s date.

3.3 Selecting An Access Path

Due to the lack of a sophisticated query optimizer
in our DBMS and the complexity of optimizing queries
with a variety of pattern matching filters, the Walnut
query tool was forced to perform its own optimization
(in this case, index selection). Initially, we used a
simple heuristic for index selection: find the field in the
form with the longest character string and use this
field’s index. The reasoning was that prefix pattern
matching is most commonly used and that the longest
character string will most likely provide the fewest
entries in an index.

This strategy had worked well for a similar browser
used to query databases of names and phone numbers.
It did not work well for Walnut databases since:

l A mail form contains dates as well as text.
l Walnut text fields are not as uniformly

distributed as, for example, phone
numbers.

Moreover, a mail database is typically much larger than
our phone database, so poor index selection can add
greatly to the cost of a query.

We ultimately chose to implement a more
intelligent optimization strategy. The new strategy
takes into account both the types of pattern matching
filters being used and estimated selectivity factors.
Date selectivity is estimated by the size of a date range
and the average number of messages stored per day.
Entity selectivity is computed by the number of tuples
that reference a particular entity.

4. Evaluating the System: Usage Patterns,
Schema Design, and Performance
Considerations

4.1 User feedback

Based on an informal sampling of user opinion,
the second release of Walnut was a qualified success.
Users reported that manual message-set categorization
was usually unnecessary (automatic message
categorization sufficed) and retrieval of old messages
was fast, considerably faster than displaying a message-
set.

We informally probed users as to how we might
improve the Walnut data model. A few suggested we
enhance the schema, for example, to expose keyword
information. Others suggested we simplify the data-
model (who needs “cc”?) or at least allow indices to be
declared on a per-user basis. This lack of consensus
reinforced something we knew ::I1 aiond: we needed <I
more formal way to evaluate how the system was being
used.

Sending out a questionnaire was one option. This
is a widespread method for understanding how users
work wtth complex systems (or user-interfacesj. But
the information we sought was basic enough (how +en
did users fill in this tield? wh3t did they fill it with?)
that we could get all our information simply by
analyzing a log of user’s queries.

Many of the new features that have been proposed
to improve query processing come at the expense of
mail update operations. To better assess the tradeoffs
involved, we decided to examine both how users pose
queries and the performance impact (and storage cost)
of past and proposed schema designs on mail update
operations.

4.2 Insights into the DBMS Burden

4.2.1 Alternate schemas

Complicating the mail schema places additional
burden on new mail retrieval and expunge operations.
Quantifying this burden is helpful. For this reason, we
compared four mail schemas in two important ways.
The first comparison is based on storage required by a
1082 message database, whose characteristics are
described in Table 4-1. The second comparison is the
time required to read 45 new messages into the
database,

Descriptions of the four alternative schemas that
we tried are included below:

The Old Schema is the first Walnut schema
summarized in Figure 3-1.

The Current Schema is the revised schema
summarized in Figure 3-2. There are six indices, all
concatenated with dates.

The Normalized Schema better exposes the
semantics of the “recipient” field and “cc” field to the
user. Mailbox names (those present in the recipient. cc,
and send fields), as well as the subject field, are
represented as entities rather than uninterpreted
strings. This provides for more intelligent browsing

118

Size of database in messages: 1082

Number of subject entities in database: 850
Number of address entities in database: 899
Number of keyword entities in database: 1547

986 keywords occur once
297 keywords occur twice
108 keywords occur three times
156 keywords occur more than three times

Table 4-l. Characteristics of benchmark database.

(users could now ask for all mail where they were
specified as a recipient without needing to specify a
wildcard filter).

The Keyword Schema is an attempt to assess the
potential burden of keyword processing on new mail.
Keywords are represented as entities within the
schema, and are extracted from the subject field using a
reasonable stop-word list. (Note: This schema was
built on the normalized schema.)

4.2.2 Observations

We expected a significant storage savings from the
current schema to the normalized schema since unique
ID’s would be replacing many of the long text fields.
Table 4-1 supports our intuition. Compression of
sender, cc, and recipients fields to address entities
results in almost a 4:l storage savings (1082 messages *
3 address entities per message : 899 address entities).
The other domains accounted for far less savings.
From the meager compression of subject field to
subject entities, we can conclude that there aren’t many
conversations in the benchmark database. Keyword
entities also did not offer much opportunity for
compression, we see in Table 4-1 that the vast majority
of keywords occur only once.

Table 4-2 confounds our intuition. Note the
database size increase (we expected a decrease) from
the current schema to the normalized schema. For this
reason, we checked to see exactly how the database
pages were being allocated and discovered two things:

(1) Both the “to” and “cc” field of a message may
contain many names. And to represent a one-to-many
relationship between a message and its recipients (or its
cc’s), a new relation R must be created to maintain this
association. For each message containing N names in a
given list (cc or recipient), N tuples must be added to R.

(2) The underlying DBMS maintains indices on aII

Schema Size (kilobytes) NewMail (seconds)

Old 1590 18.3

Current 3082 28.8

Normalized 3338 41.4

Keywords 4618 52.8

Table 4-2. Comparisons of alternative schemas.

entity names, whether or not they were declared Thus,
for many fields, we were forced to pay twice for
indices; for example, indices were kept on both subject
and (subject, date).

The last column in Table 4-2 gives the time
required to add 45 new mail messages to the database.
As expected this cost increases with the complexity of
the schema.

4.2.3 Suggestions

Indexing on each keyword in the subject of a
message, is expensive. Alternative solutions have been
proposed:

l Only keyword process mail that will be referenced in
the fiture. That is, index a mail message by its
keywords not when it enters Active but when it is
moved to a stable message-set. This saves processing
since a considerable amount of mail is deleted
immediately as it comes in from Active: deleted mail
can justifiably not be keyword processed.

l Perform keyword processing as a batch operation.
Keyword processing can be performed as an off-line
operation, just like Expunge.

l Try alternative access paths. Signatures [7] may be
preferable to indices, especially given their minimal
space consumption.

4.3 Insights into User’s Queries

4.3.1 Usage Information

Understanding how people use the browser is
helpful in many ways. Unused fields can be identified
and removed from the schema. Candidate fields for
further refinement can be exposed. Common fill-ins
for a form can suggest user-interface speed-ups and
prefetching information. Overall, we can assess the

119

TYPE Frequency
(datesender) 14%
(sender) 9%
(subject) 8%
(subject, date) 7%
(sender,msgset) 7%
(subjectsender) 5%
(datesendermsgset) 5%
(subjectmsgset) 4%
(subjectdatesender) 4%
(subjectdate) 4%

Table 4-3. Frequency of Query Types.

Cumulative
14%
23%
31%
38%
45%
50%
55%
59%
63%
67%

Sender

9%

Subject

8%

Date Recipient MsgSet MsgText Cc

2% 2% <l% (1% 0%

Table 4-4. Frequency of One-Fill-Ins.

Sender

59%

Date MsgSet Subject Recipient Cc MsgText

44% 44% 40% 23% 15% 3%

Table 4-5. Frequency that a Form Contains a Given Field.

tradeoffs between facilitating query processing and
complicating mail update.

Shortly after the new version of Walnut was
released, we gathered usage information by analyzing
logs of users’ queries. During the testing session, 713
queries were run over 50 days by 18 users. Discounting
weekdays, this amounts to 20 queries per day. Four
users accounted for over half of these queries.

4.3.2 General Query Types

One way to distinguish amongst query types is
according to whether (or not) a given field in the form
is used. Table 4-3 lists the nine most frequent queries.
Referring to Table 4-3, we see that ten query types (out
of 128) account for 67% of the queries. Note that the
majority of types are two-fill-ins (6) with 2 three-fill-ins
and 2 one-fill-ins. Filling in two entries, it appears,
almost always provides an adequate filter.

Table 4-4 gives the measured frequencies when
only a single field in the query form is used, while
Table 4-5 gives the frequencies that a given field
appears in a form. One apparent inconsistency is that
MsgSet and Date occur with low frequency in Table
4-4, and with high frequency in Table 4-5. The former

is easily explained: The Walnut control user-interface
(Figure 2-l) provides message-set buttons that enable a
user to easily open a message-set window (as in Figure
2-2) on a given message-set: these operations are not
accounted for in Table 4-4. As for why date is never a
lone fill-m, we suspect temporal associations are rarely
made without additional knowledge.

According to the gathered usage data, the
recipient and cc fields rarely are filled in by themselves
or even with date. For this reason, both these indices
could be dropped at least for the private mail
databases. (Although we have no statistics on public
mail database browsing, we suspect that public mail
browsers would likely interrogate the cc and recipient
fields a great deal.)

4.3.3 Use of the Date slot

We were interested in how people temporally
browse. In particular, how long is the interval when a
date range is specified, and how far back in time is the
start?

Figure 4-l gives the number of observed queries
for different length intervals of days. By far. the
majority of date intervals are from one to two days.

120

012 4 8 16 32 64 128 256 512 10242048

number of days in interval

Figure 4-l. Histogram of Date Intervals.

The (relatively) large number of queries with a time
interval of 256 - 512 days can be explained by the large
number that start on either January 1 or “one year
ago”.

Figure 4-2 clearly shows the mail users’ bias
towards querying about recent events. Nearly one half
of all queries that included a date range specified a
“start time” of less than a week ago. For this reason, we
believe mail systems should prefetch recent mail on
start-up and cache messages to reflect the temporal
bias.

Our experience has also shown that users tend to
specify date ranges in a very systematic way, one that
could likely be exploited by a better user-interface
design. Ranges such as “the beginning of this
[temporal unit] to now” accounted for the majority of
user’s ranges. Allowing the user to mouse select a
range (from a pre-defined menu) would be preferable
to forcing the user to type in these common ranges as
he must do in Walnut.

0 1 2 4 8 16 32 84 128 256 51210242048

number of days ago

Figure 4-2. Histogram of Query Start Dates.

4.3.4 Use of the Subject Slot

When a Walnut user responds to a mail message
with subject field “foe”, the system fills in the subject
field of his response with ‘Ye: foo”. Thus, conversation
browsing on message “foe” is done by first browsing
for subject “fbo” and then for subject “re: foe”.

We foupd that the mail system has rarely been
used for conversational browsing (at least not in the
way we described). When the subject slot was filled in,
it was preflxed by “re” only 6% of the time. If nothing
else, this leads us to question the importance of
specialized support for conversations.

Users browse for keywords in the subject field by
using wildcard queries. We found that’ when the
subject slot was fllled in, 31% of the time it was prefixed
by a wildcard Processing these queries is slow. For
this reasgn. WI believe keyword support is justified and
keywords should be interpreted by the DBMS. The
next Walnut release will incorporate keywords.

121

5. Conclusions

Based on our experiences, electronic mail will
represent a considerable percentage of communication
in the “office-of-the-future”. Our mail system, Walnut.
is one of the first to exploit database management
technology. Though it manipulates an entity-
relationship database [4], the particulars of the data
model are not important Conventional relational
database management systems would have served us as
well.

The Walnut case-study offers compelling evidence
for layering an electronic-mail application over a
database management system, especially given the
features now available in commercial relational systems
(features that we did without). The majority come
equipped with fourth-generation languages (for
building forms-based user-interfaces), triggers (for
implementing a reminder feature) and long strings (for
efficiently storing message text in the database).

Our investigation has revealed that users classify
mail in a very systematic and structured manner. For
this reason, we question the value of certain approaches
to personal mail browsing. Keyword search on the
body of a message may not be worth the additional
burden: consider that MsgText was never a lone fill-in
for a browser form and that less than 3% of Walnut
mail queries filled in MsgText. Contrast this usage
with keyword browsing in the subject field (described
earlier). Our observation seems to dovetail with the
favorable results reported by Salton [lo] for an
automatic indexing system that uses only abstracts (not
full text). However, keep in mind that our usage
information was gathered from a relatively small set of
novice users; we hope to repeat our experiments now
that our users are more numerous and sophisticated

Given a mail browsing facility, ad hoc mail
categorization (like message-set or folder) may be less
necessary. Consider that almost 70% of ah queries that
included message-set were filled in with Active or
Deleted (and the vast majority of these were two fill-
ins). In fact, some Walnut users now report that they
only work with three (logical) message-sets: Active,
Deleted and Archived.

We have gained important insights into how mail
users pose queries, and under what conditions the boon
of additional functionality (and complicating the
schema) may justify compromising update performance
(or increasing storage costs). Insofar as the DBMS we
used is not unusual and the model of mail we chose is
very simple, we believe our insights will be of interest

to both researchers and implementors.

In the future, we plan to release a new version of
Walnut, based on the keyword-conceptual model
discussed in section 4.2.1 and using insights gleaned
from examining users’ queries. More intelligent
filtering will also be used, especially as it relates to mail
addresses and keywords.

6. Acknowledgements

Jim Donahue deserves much of the credit for
Walnut. Carl Hauser and Polle Zellweger provided
valuable comments on early versions of this paper.
Margaret Butler gave tremendous help on the final
revisions of the paper.

7. References

PI

PI

[31

[41

[51

WI

[71

PI

Birrell, A., Levin, R., Needham, R., and
Schroeder, M. Grapevine: An exercise in
distributed computing. Communications of the
ACM, April 1982. pp. 260-274.

Brotz, D.K. Laurel Manual. Tech Report
CSL-81-6, Xerox Palo Alto Research Center, Palo
Alto, Calif.. May 1981.

Cattell, R. G. G. Design and Implementation of
a Relationship-Entity-Datum Data Model. Tech
Report CSL-83-4, Xerox Palo Alto Research
Center, Palo Alto, Calif.. May 1983.

Chen, P. The entity-relationship model-toward
a unified view of data. ACM Transactions on
Databases, March 1976, pp. 9-36.

Comer, D. and Peterson, L. Conversation-based
mail. ACM Transactions on Computer Systems,
November 1986, pp. 299-319.

Donahue, J. and On; W.-S. Walnut: Storing
electronic mail in a database. Tech Report
CSL-85-9, Xerox Palo Alto Research Center, Palo
Alto, Calif., April 1986.

Faloutsos, C. and Christodoulakis, S. Description
and performance analysis of signature file
methods for office filing. ACM Transactions on
Oflce Information Systems, July 1987, pp.
237-257.

Horton, M. How to read the network news. 4.3
Berkeley Software Distribution, April 1988.

122

[9] Malone, T., Grant, K., Turbak, F., Brobst, S., and
Cohen, M. Intelligent information-sharing
systems. Communications of the ACM, June
1987, pp. 390407.

[lo] Salton, G. Another look at automatic text-
retrieval systems. Communications of the ACM,
June 1986, pp. 648-656.

[ll] Shoens, K. Mail Reference Manual. UNIX
Programmer’s Manual. 4.1 Berkeley Software
Distribution, vol. 2, Berkeley, Calif., 1979.

[12] Swinehart, D. C., Zellweger, P. T., Beach, R. J..
and Hagmann, R. B. A structural view of the
Cedar programming environment. ACM
Transactions on Programming Languages and
Systems, October 1986. pp. 419-490.

123

