
The Partial Normalized Storage Model of Nested Relations l

Aladdin Hufd and Gultekin Ozsoyoglu

Department of Computer Engineering and Science
Case Western Reserve University

Cleveland, Ohio 44 106

ABSTRACT
This paper introduces the partial normalized

storage model of nested relations which uses the
workload information of the database system under
consideration to obtain a “better” storage model (i.e.,
one with a lower query cost) for a given nested rela-
tion. Based on the normalized storage model, the
nested relation scheme is graphically represented as a
tree called the scheme tree. By using the workload
information, and by performing a series of merges on
the nodes of the scheme tree. a near-optimum scheme
tree is produced to represent the partial normalized
storage model.

We prove that our approach which uses the
greedy method, locates the optimum scheme tree in
most of the cases. In few cases, when the approach
locates a “near” optimum scheme tree, the relative
difference between the costs of the produced scheme
tree and the optimum scheme tree is shown to be very
small.

1. Introduction
Supporting new database applications in fields

such as computer aided design, computer aided
manufacturing and artificial intelligence requires
efficient implementations of nested relations (i.e.,
relations containing relations, also called non-fist-
normal-form (NINF) relations or complex objects).
Storage structures for nested relations have been
investigated by many researchers lHamN79, AbiB84,
DKAB86, StoR86, VaKC86, KiCB87, DesV881.
Example 1: As a running example in this paper, we
use the nested relation scheme R where R=(a, A, B),
A-h C, D, El, WC, F, 0, C-Cd, e), D=(f, g), E=h

Permission to copy without fee all or paft of this rnd is
granted provided that the copies arc not made. or distributed for
direct commercial advantage. the VLDB cogyright notice and
the tide of the publication and its date appw, and notice is given
that copying is by permission of the Very Large Da Be
Endowment. To copy otherwise. or to republish, rquircs a fee
and/or special permission from the Endowment.

Proceedings of the 14th VLDB Conference
LOS Angeles, California 1988 100

i), F=(j, k) and G-(1, m). R, the outermost relation, is
called the exrernul relation. A, B, C, D, E, F and G
are internul relations (i.e., relations inside the external
relation). Aromic artributes (i.e., attributes whose
values are single values) are denoted by lower-case
letters. The scheme of R and a single tuple in R are
given in figure 1.

A single tuple in R
64

(W KS) (h.0 t.P) 0.d
Scheme tree of R

(b)
Figure 1

In the literature, System 200 and ADABAS
[Olle7 11 are two hierarchical database systems used
to implement nested relations. The segments of
hierarchical records are inserted into one file. All
hierarchical relationships are expressed by a second
file. In OASIS [wied83], an instance of a tuple,
together with its descendants, is placed into a single
compact variable-length record.

Dadam and others use the technique of separat-
ing structural information from data lDKAB861,
where each external relation tuple is stored into one
record, and, for each tuple, there is an entry in a direc-
tory, called the mini-directory (MD). The mini-
directory is used to handle the allocation of each
tuple.

In KMS wcGe771, a relation and all its internal
relations appear in a single file. Each top-level entry
in a file contains the atomic attributes of a tuple in the
external relation. The four file options for IhfS are

HSAM, HISAM, HDAM and HIDAM.

Recently, some new database management sys-
tems supporting nested relations have been designed
for non-traditional applications areas. EXODUS
[CDRS86] and POSTGRES [StoR86] are two exam-
ples. In EXODUS, the basic unit of stored data is the
storage object (an entire tuple). Storage objects can
grow and shrink in size without putting any rest&
tions on where we should delete or insert. Accord-
ingly, the system supports insertion and deletion of
new portions of a storage object anywhere within the
object. In POSTGRES, a new datatype, called POST-
QUEL, has been &fined to support nested relations.
A field of type POSTQUEL contains a sequence of
commands to retrieve data from other relations that
represent the subobjects. All relations are stored as
heaps within an optional collection of secondary
indices.

In the literature, storage models of nested rela-
tions are in general classified into four storage models
fHof!375, NCWJ84, CopK85, DKAB86, StoR84
VaKC86, KCJB87]. Below we describe how each
storage model represents a nested relation. To demon-
strate each storage model, we use the nested relation
scheme R of example 1. Assume thal for each
external/internal relation @ there is a surrogure mri-
bute SO, (i.e., an artificial identi6er) which is used as
an identifier for relation Q, (similar to “tuple
identifiers” in 1NF relations).

The Decomposed Storage Model (DSM)
[CopK85, KCJB871 utilizes a transposed storage.
Each atomic attribute of a relation with a surrogate for
record identity forms a binary relation. Each binary
relation is stored into a separate file.

Example 2: (DSM) There are 13 binary relations and
thus 13 files in the DSM representation of R. The
binary relations are:

R, =(SR ,a), Ab =@A ,b), B, 4~ ,c). G=(& 4).
C, =(SC 4, Q -(SD ,O, D, -(SD ,g), Ek =(&.hh
Ei ‘(SE: ,i), Fi 4% j), Fk =(SF,k), GI=(SG J) and
G, 4s~ ml

The Normalized Storage Model (NSM)
(StoR86, VaKC86] decomposes a nested relation in
such a way that the atomic attributes of each
external/internal relation tuple form a record of a file,
and inner relations at a given level are related to each
other by using surrogates. Join indices lValB86,
Vald87] may be used in order to retrieve an internal
relation.

Example 3: (NSM) There are 8 files in the NSM
representation of R. Each file contains the atomic
attributes of an internal/external relation along with its
surrogate attribute. The records of each file have the
following format.

R=(& ,a), A=(& ,b), B==& ,c),C=(Sc ,d,e),
D=(&I ,Lg), E=(&,h,i), F=(SF j,k) and G=(SG ,l,m)

The Flattened Storage Model (FSM)
[DKAB86. VaKC861 is originally called the direct
storage model. A nested relation is stored directly into
a file. Each record of a file represents an entire exter-
nal relation tuple. The record of a file can be
clustered onatomic attributes of the external relation
tuples. Access to nested relation tuples based on attri-
butes other than those of the external relation tuples
are done by using secondary indices or sequential
SClUlS.

Example 4: (FSM) The whole nested relation
instance is stored into one file whose record format is

The DSM and the NSM may be viewed as spe-
cial cases of another storage.model. The Partiul
Decomposed Storage Model (P-DSM) lHofS75,
NCWJ84, VaCK861 is a mix between the DSM and
the NSM. The atomic attributes of an internal/external
relation are partitioned such that those atomic attri-
butes that are frequently accessed together are stored
in the same file. Each file contains a set of atomic
attributes and a surrogate of their conceptual relation.

Example 5: (P-DSM) The P-DSM model for R can
take several possible forms. One of those forms pro-
duces 10 files with the record formats

R=(S, ,a), Ad& 34 B-(&I ,c), C=(Sc .d,e),
Dl-(&~,f), D2=&,g), E=(&,h,i), F1=(Sp,j),
F2=& Jr) and G=(Sc,b)

We now introduce a new type of storage model,
the Partial Normalized Storage Model (P-NSM). The
NSM and the FSM may be viewed as two special
cases of the P-NSM. In the P-NSM, the nested rela-
tion is vertically partitioned such that those subobjects
(i.e., internal relations) which are frequently accessed
together are stored in the same file. Each file contains
the atomic attributes of an internal/external relation
and some of its descendants. Figure 2 and example 6
illustrate the P-NSM.

Example 6: (P-NSM) One possible P-NSM model
for R may have 6 files with formats

101

FSM DSM
a 0

P-NSM
\/

P-DSM

b d
0

NSM

Figure 2. The Spectrum of Different Storage
Models for Nested Relations.

R=(& ,a{& ,bl),B=(S~ ,c,i& jkl), C=& ,d,e).
D=(& ,f,g), E=&,h,i) and G=(So,l,m)

By storing into the same file the internal rela-
tions which are accessed together frequently, the
number of I/O operations required to respond to
queries can be reduced. In general, the storage model
of a nested relation can be classified as supporting
three different query types: (a) queries manipulating
entire external relation tuples, (b) queries manipulat-
ing internal relations and (c) queries manipulating
specific individual components of (external/internal)
relation tuples and their atomic attributes at different
nesting levels. If the query type (a) is the dominant
query type then clearly the FSM is the best choice to
implement the nested relation. For the query type (b),
the NSM is the obvious choice to implement the
nested relation. Query type (c) constitutes the general
case for nested relation queries. ‘Ihe P-NSM provides
good support for those nested database systems which
have the query type (c) as the dominant query type.
By using the appropriate methodology and the work-
load information of the system, the NSM may be
turned into a P-NSM with a better query processing
performance. This paper describes such a methodol-
%Y.

The NSM is graphically represented as a tree
called the scheme tree. Each node in the scheme tree
represents a file containing the atomic attributes of an
internal/external relation. Figure l-(b) describes the
scheme tree of R. In this paper, we are specifically
concerned with two parameters of the workload infor-
mation of a database system Query count is the first
parameter. Each node and each edge in the scheme
tree has its own query count (frequency) denoting the
number of queries that manipulate the information in
that node and in the nodes adjacent to that edge,
respectively. In this paper, we introduce the
ASSIGN-F algorithm which, given a set of queries,
assigns frequencies to the nodes and edges in the
scheme tree in a consistent manner. The second
parameter is the query cost. The query cost of each
node is a function of the size of the file represented by

the node, and the type of the query used. Each node
may have a number of different query costs. Queries
are classified according to their disk processing costs.
Each group of queries contains those queries that have
the same disk processing cost.

We compute the scheme tree cost by using the
query costs and the frequencies of the nodes and the
edges of the scheme tree. Depending on the query
types, the cost of the scheme tree in the NSM can be
changed by reducing the depth of the scheme tree
through the merge operation of two or more nodes
(which produces a P-NSM representation). Then, the
scheme tree with the lowest cost can be found by
enumerating all the possible trees derivable from the
scheme tree by the merge operation.

In this paper, we introduce the GREEDY-
MERGE algorithm which takes the original NSM
scheme tree, the query types, the associated query
costs for each node, and frequencies for each node
and for each edge in the scheme tree, and uses the
greedy method to convert the NSM scheme tree into a
P-NSM scheme tree with a lower scheme tree cost.
The GREEDY -MERGE algorithm utilizes a level
order traversal starting at the lowest level. At each
step, a subset of nodes (at the present level) are
checked for merging them into their father node.
After examining the nodes at a certain level, the algo-
rithm moves up to the next higher level and repeats
the merge checks at the new level. For a large number
query cost types, the GREEDY-MERGE algorithm
finds the scheme tree with the lowest cost, without
having to enumerate all the possible trees derivable
from the scheme tree.

The preliminary experiments in section 4.2
show that out of 25,000 cases, the GREEDY-MERGE
algorithm have produced P-NSM structures with the
optimal scheme trees in 95.2% of the cases. For those
cases where a suboptimal scheme tree were obtained,
the average and the maximum percentage of error
were 1.255% and 5.74496, respectively.

The rest of the paper is organized as follows.
Section 2 presents the scheme tree model and the
ASSIGN-F algorithm which is used to assign frequen-
cies to the nodes and edges in the scheme tree. In sec-
tion 3, we analyze some special cases of scheme trees
for their optimum scheme tree costs, and then intro-
duce the GREEDY-MERGE algorithm. Section 4
discusses the preliminary experimental results,

2. Assigning Frequencies to The Scheme Tree
In this section, we present the scheme tree

model and its frequency assignment algorithm Sec-
tion 2.1 introduces the scheme tree model. The

102

ASSIGN-F algorithm is given in section 2.2. Section
2.3 &scribes the MERGE procedure along with the
frequency adjustments of nodes and edges due to the
merges in the scheme tree.

2.1. Scheme Tree Model
The arotic relation RA of a (internal or exter-

nal) relation R is the relation which contains only the
atomic attributes of R. Clearly, for afirst-normal-form
(INF) relation S, the corresponding atomic relation is
S itself. To illustrate, consider a nested relation
scheme R, where R=(a, b, B, C), B=(ur, 61) and
C=(a2,62). Then, RA =(a, b), BA =B and CA =C are the
atomic relations of relations R, B and C, respectively.

The scheme tree T with the node set NT of a
nested relation represents the nesting structure of the
relation. The scheme tree is also the graphical
representation of the NSM. Each node ni in NT
represents a file which contains the atomic relation of
that (internal or external) relation. Each edge in the
scheme tree T represents a relationship between two
atomic relations of the nested relation that are adja-
cent to the edge.

Example 7: Consider the nested relation scheme R of
example 1. The NSM of R consists of the eight atomic
relations RA =(a), AA =(b), BA I(C), CA =(d, e), DA =(f,
g), EA =(h, i), FA -0, k) and GA =(I, m). The scheme
tree T of the nested relation R is given in figure 1 (b).
For nOtat.iOIId simplicity, we will use nO&S nR, nA,
ne , nc , no, nE , nF and no to represent (the scheme
tree nodes and) the files which contain the atomic
~~~~~~O~~SRA,AA,BA,CA,DA,EA,FA and 
GA ,respectively. 

We now assign two parameters to the nodes and 
edges in a given scheme tree: 

a) the query cost of a node (file), and 
b) the query frequency of a node and an 

The query cost of a node depends on the types of 
queries accessing that node, the file organization of 
the node and the size of the file represented by that 
node. Query costs will be discussed in section 3. 

Query frequencies of nodes and edges depend 
on the relationship between the nodes involved in the 
queries. We first give some definitions and examples. 

Definition (Query Node, Nonquery No&). For a 
query Q, a node n is called a query node if it is 
referred to in that query. Ne is the set of all query 

nodes with respect to the query Q. Those nodes which 
do not appear in the query Q are called nonquery 
nodes. NT-NQ is the set of nonquery nodes with 
respect to query Q. 

Definition (Query Fore% Query Tree). Delete the 
nonquery nodes from a scheme tree T. The remaining 
set of trees form a query forest FQ with respect to 
query Q. If the cardinality of FQ is one (i.e., FQ I=l) 
then the resulting tree is called the query tree TQ . 

Example 8: Let the scheme tree T with the node set 
NT be 

Assume for a given query Q, the set of query nodes is 
NQ={nr,n2,nj,ns,na}.Thenthesetofnonquery 
nodes is (n4, n6, n7). If the nonquery nodes are 
removed from the scheme tree T then the remaining 
nodes will form the following query forest : 

FQ: nA 

ns / \ n8 

which contains a single tree TQ . 

Assume for a given query Q ‘, the set of query 
nodes is NQ- (n2, n3, n4, n6, ns}. Then the set of 
nonquery nodes is {n 1, ns, n7). If the nonquery nodes 
are removed from the scheme tree then the remaining 
nodes will form the following query forest FQ’ 

FQC 

n4 

4 

\ 4 

FQ* consists of two distinct trees, i.e., FQb2. 

Assumption: In the rest of the paper, we consider 
only those queries with Ir;;, I= 1. Thus, TQ of a given 
query Q is unique. 
We think that most (if not all) “meaningful” nested 
relation queries satisfy the above assumption. We 
give an example. 

103 



Example 9: Let the nested relation scheme DEFT- 
EMP be 

DEFT-EMP = (dno, dname, EMP-EXEC, EMP- 
OTHW, 

where dno and dname are atomic attributes. EMP- 
EXEC and EMP-OTHER are higher order attributes. 
EMP-EXEC is the relation of executive employees 
while EMP-OTHER is the relation of other employ- 
ees. 

EMP-EXEC = (eno, ename, salary, success-ratio, . . 
. ) and 

EMP-OTHER = ( eno, ename, salary, children, . . . ). 

The scheme tree TO of the nested relation DEFT- 
EMPis 

TD: 

DEFT-EMPA 

Let a query Q be W Select those employees which 
have salary <20 K “. 

Query Q could be written as 

which has the query forest FQ 

DEPTEMPA 

FQ: 

Eh4P-EXECA 
where FQ l= 1. 

A file F represented by the scheme tree node n 
may be accessed by 

a) queries that only refer to attributes in II, and/or 
b) queries that refer to n and other nodes ni which 
are adjacent to n. 

Our god is to take a scheme tree and modify it 
into a new “scheme tree” for a better performance. 
To this end, rather than directly counting query counts 
of files, we assign frequencies to both nodes and 
edges of the scheme tree in order to compute access 

counts of files for the revised scheme trees. Thefre- 
quency f j of node ?tj for query type q denotes the 
count of those queries of type q that only refer to the 
attributes in nj . The frequency f xi of edge ei for 
query type q incident to nodes n and ni denotes the 
count of those queries of type q that refer to attributes 
of n and nj . Assume there are L edges incident to 
nodeninTandei, lBti,isanedgeincidenttonode 
n. The query count A,, of thefile F with respect to 
query type q denotes the count of queries of type q 
that refer to attributes of n. Thus A,, is defined as 

A 14 :=(,Q& >+fm 

2.2. Frequency Assignment Algorithm 
The algorithm ASSIGN-F given in figure 3 

assigns frequencies to nodes and edges in T. 

Algorithm ASSIGN-F (T,S) 

Input: (a) A sdmne tne T with lomc no& and edge 
freguencier (poxsibly all frequcncier are zero). and 

(b) a sequence S of queries such that, for each query Q 
in S. TQ is uuique.i.e..pQ l-1. 

Gutput: New frequency assignments to edges and nodes in T. 

bcDIn 
(fXi &llOkS Ihe frequency Of edge t?i ; fj &llOtCS the 

frequency of node ?lj ) 

for each query Q in S do 
boein 

for each edge ei in TQ do fXi := fXi + 1; 

foreachnoden~ inTp dOfj :-fj +1-d(nj); 
md 

end. 

Figure 3. Frequency assignment algorithm 
for a scheme tree 

Example 10: Let TQ of a query Q be 

nt 

TQ: 

n3 

Before the incorporation of Q, assume f p3, f 2==2, 
f 3=5, f 4=2 and fxi=l, fxp2, fx&. According to 
the ASSIGN-F algorithm, the frequency of each edge 
ei will be increased by 1. Thus, after the change, 
fxl-2, fxp3 and fxp5. The frequency of each node 
nj will be increased by l- d (nj) where d(nj) denotes 
the degree of node ttj . Thus, after the change, f l=3, 
f2=0,fp5mdf4=2. 

104 



Whenever a query Q refers to some attributes in 
a file, we would like to increment the query count of 
the file by 1. Lemma 1 below shows that the algo- 
rithm ASSIGN-F correctly performs this increment 
operation. 

where 
fj (T?=fj(T), Kj 12, 

fXi (T’) = fxi(T)p II i 12 and 

fn (T’)=,,&fi(T)+~fxi(T) 

Lemma 1: Let A., be the query count of the file F 
represented by n. Assume there is a new query Q 
withquerytypeq;IFQI=l;nisanodeinFe. After 
executing the algorithm ASSIGN-F, we have 
A ,,R:=A,,R+l. 

Lemma 2 allows us to avoid recomputing fre- 
quency assignments from the original query sequence 
after each change in the scheme tree. 

Lemma 2: For a scheme tree T, a subtree Ti of T 
and a set S of queries, 

Prook Let the node n in the scheme tree T be also in 
FQ, and d(n) be the degree of node n with respect to 
Fe. Using the algorithm ASSIGN-F, the frequency of 
n will be increased by 1 - d (n), and the frequency of 
each edge adjacent to n in FQ will be increased by 1. 
Since the number of edges which are adjacent to node 
n is d(n), the total sum of the frequency changes of 
node n and its adjacent edges equals ( 1 - d (n)) + d 
(n) = 1. Q.E.D. 

23. Adjusting Frequencies Under Changes to The 
Scheme Tree 

LetTbeaschemetreeandTibeasubtreeofT. 
The algorithm MERGEr,(T) produces a new scheme 
tree T’ from T by merging all the nodes of T1 in T 
into a single node n. Thus the file represented by the 
new node n contains all the information in those files 
represented by the nodes in TI. Then the frequency of 
node n in T’, denoted by f ,, (T’), is computed as the 
sum of the frequencies of all nodes nj in Tl and all 
edges ej in Tl. 

Example 11: Let the scheme tree T be 

T: n2 

MERGErJASSIGN-F(T,S))=ASSIGN- 
F(MERW,(T)S) 

Proof : By using enumeration and the fact that 
ASSIGN-F (ASSIGN-F (T, S I), Sz) = ASSIGN-F (T, 
S lyS2) for two disjoint sets St and S2 of queries. 

3. Optimum Scheme Trees 
This section discusses a technique to find a 

better ( i.e., optimum or near-optimum ) scheme tree. 
A new structure is established by merging two or 
more nodes in the original NSM scheme tree. The 
evaluation criteria of a given scheme tree T is the 
number disk accesses ( characterized by the scheme 
tree cost ) required to process the queries ( i.e., the 
workload ) using the files represented by the nodes in 
the scheme tree T. Thus, the optimum scheme free for 
a given workload is the one with the lowest scheme 
tree cost. We present the GREEDY-MERGE algo- 
rithm which takes the original scheme tree, the query 
types, the associated query costs for each node, and 
the frequencies for each node and each edge in the 
scheme tree, and uses the greedy method to convert 
the scheme tree into a “near-optimum” scheme tree. 
To judge the performance of the GREEDY-MERGE 
algorithm, we also discuss a number of special cases 
of query costs for which we analytically find the 
optimum scheme tree. 

3.1. The GREEDY-MERGE Technique 
Let TI denote the subttee with nodes n3,n,+,nJ and 
with edges e3,e.t. If T1 is reduced to a single node n 
by the algorithm MERGEr,(T) then the new scheme 
treeT’willbe 

T’: n2eh2 

Query cost C,,, of node n with respect to query 
type q is the number of disk accesses required to pro- 
cess a single query with type q on the file F 
represented by node n. Each node may have a 
number of different query costs according to the types 
of queries involved in the database system under con- 
sideration. Queries are classified according to their 
disk processing costs. Each group or type of queries 
contains those queries which have the same disk pro- 
cessing cost. The disk processing cost is represented 
in the order notation as a function of the size of the 

105 



associated file. Query costs for different query types 
may beKi.1, Ka.logN, Ks.N, . . ., etc., where N’is the 
size of the file used to process the query and Ki ‘s are 
constants. 

We now generalize the model given in section 2 
so that for each query type q, the system keeps dif- 
ferent (node and edge) frequencies. Consider the 
scheme tree T with the set of nodes Nr, the query 
tm q and the file F represented by node n in T. The 
cost ofjile F with respect to the query type q is 
defined as the query count of F for query type q times 
.the query cost of F with respect to query type q. For a 
set of queries belonging to different query types QT, 
the cost of F with respect to QT is defined as 

where A. R and C,, A denote the query count and the 
query cost of F with respect to q, respectively. 

Consider a scheme tree T with a set of nodes 
NT and a set of query types QT. The scheme tree cost 
ET with respect to QT is defined as 

Depending on the query types, the scheme tree 
cost changes when the nesting depth of the scheme 
tree changes. The depth of the scheme tree is reduced 
by merging two or more nodes together. 

One way to End the optimum scheme tree ( i.e., 
the one with the minimum scheme ttee cost ) is to 
enumerate all possible trees derivable from the 
scheme tree by merging nodes. For a scheme tree T 
With a node Set NT, there are 21N” - ’ possible trees 

derivable from the scheme tree T, where l&l is the 
cardinality of NT. Cleary such an approach is not 
feasible even for reasonably small VT 1 values. 

Another approach for Ending a “near-optimum” 
scheme tree is as follows: A scheme tree T is a collec- 
tion of two-level subtrees. Each two-level subtree 
consists of a “father” node and “child” nodes. For 
each two-level subtree, one can enumerate all possi- 
ble merges to End the associated optimum subtree. 
The resulting overall scheme tree is clearly a “near- 
optimum” scheme tree. For each two-level subtree 
STi with the node set SNi, 15i5NS, where NS is the 
number of the two-level subtrees in the scheme tree T, 
there are 2’s4’ - ’ possible subtrees derivable from 
the subtree STi, where 1SNi 1 is the cardinality of SNi . 
In the whole scheme tree T, the number of subtrees 
examined by this approach is 

which may still be quite costly. 
Our approach for Ending the near-optimum 

scheme tree is to End a near-optimum subtree for each 
two-level subtree in the scheme tree T. For a given 
two-level subtree, the approach starts by calculating 
the costs of the subtrees resulted from merging one of 
the “child” nodes into the “father” node. Clearly the 
number of such subtrees equals the number of “child” 
nodes. We then compare the costs of the original sub- 
tree and the derived subtrees, and choose the one with 
the lowest cost to be the new subtree. Then the new 
subaee is once again investigated for a possible 
single-node-merge which produces a lower cost sub- 
tree and so on until there is no more cost improve- 
ment in the two-level scheme tree. In our approach 
described in figure 3 (the GREEDY-MERGE algo- 
rithm), the number of the examined subtrees is 
O(INT 1'). 

The GREEDYMERGE algorithm utilizes a 
level order, left-to-right traversal starting at the lowest 
level. At each step, according to the cost formula 
used, each node at that level is checked for merging it 
into its father node. After examining the twelevel 
subtrees at a certain level, we move up to the next 
higher level and repeat the merge checks at the new 
level. The following example shows how the 
GREEDY-MERGE algorithm works. 

Example 12: Assume the scheme tree T is as follows 

level 1 n0 

el e2 

T: level 2 ni 

3\ 

n2 

e3 e4 

level 3 n3 n4 

For simplicity, we assume a single query type is 
involved in this example, and thus, we wilI not men- 
tion query types in the cost formulas of this example. 
Each node ni , 09 14, has frequency f r and query cost 
Ci, and each edge ei, lSji14, has frequency fXj . 

GREEDY MERGE algorithm starts with the 
nodes at level 3. Subtree Tl contains those nodes at 
level 3 along with their father node. 

',e2 

n2 

T1 : e3 
A 

e4 

n3 n4 

The scheme tree cost of the subtree TI is 

ET,=c2(f2+&fXii)+kci (fi +fXi) 

106 



The other alternatives are merging ns with ns ( sub- 
tree TZ ), and merging n4 with ns (subtree T3 ). For 
example, the new node ns’ in T2 has the frequency 
f 3’ = f 2 + f 3 + fxg and the query cost Cs’which 
is the query cost of the file produced by merging the 
files represented by nodes ns and n3. The new sub- 
trees T2 and T3 are : 

The scheme tree cost of the subtrees TI. and T3 are 

where Cd’ is the query cost of the new node nd’, and 
thefrequencyofnoden4’isf4’=f2+f4+fx4. 

According to the three cost formulas ET,, ET, 
and ET,, the GREEDY-MERGE algorithm chooses 
the subtree which has the lowest cost In the case 
when ET, is the lowest cost, the GREEDY-MERGE 
algorithm moves up to the higher level and repeats the 
procedure. On the other hand, when either ET, or ET, 
is the lowest cost, the GREEDY-MERGE algorithm 
takes the subtree resulted from the last step (i.e, T2 or 
T3) and repeats the procedure. Figure 3 gives the 
GREEDY -MERGE algorithm. 

The lemma below gives an upper bound to the 
number of subtrees examined by the GREEDY- 
MERGE algorithm 

Lemma 3: For a scheme tree T with a node set&, 
the GREEDY-MERGE algorithm evaluates, in the 
worst case, less than VT1 ( VT1 - 1 ) / 2 different two 
level subtrees of the scheme tree T. 

Consider figure 4. Assume the subtree ST is a 
two-level subtee in a scheme tree T. Each node ni, 0 
< i I r, has frequency f i and cost Ci , and each edge 
ej , 0 I j S r, has frequency fxj . We use the notation 
C(i.J,,...,il for the query cost of the node resulted 
after merging the nodes $Jti,, . . . , tli-. Similarly C{i} 
denotes the query cost of the node ni . We also use 
the notation E {id,, . . ,i} to denote the scheme tree 
cost of the two-level subtree obtained after merging 
nodes ni/IiI, . . . , ni-. The notation E Ii.1 denotes the 
scheme tree cost of the original two-level subme with 
no mergings. 

Algorithm GREEDY-MERGE (T,T’) 
Input : A scheme tree T with fquencies and costs on the 

nodes and edges in T. 
Output: A “near-optimum” scheme tree T ‘ 

Wn 
for i from the highest level of T to 1 do 

besin 
for each two level subtree ST with leaves at level i do 

begin 
repeat 

calculate the co& of the subtrel ST; 

for each leaf j, l<j 9, in the scheme tnze ST do 

begin 
Obtain subtne STj by merging j to its father 
node; 

C~ICUIU the NICZ of STj ; 
end; 

Let STf deoote the lowest cmt STj , l<j a ; 
wcost(ST,)<coet(ST) 

UWI replace ST with ST, ad mar~ 
“improvement” 

eke mark “00 improvement”; 
until there is “00 improvement”; 

ad; 
en& 

end. 

Figure 3. The GREEDY -MERGE algorithm 

ST: cl 
nl 

Figure 4. 

The scheme tree cost of the subtree ST is 

Efo) = Go) cfo + zP+z C{i} cfi +fXi) 

Assume node nj, 15 j 5 r, is merged with node no. 
Then the cost of the resulting subtree is 

EfOJ) = c{Oj} (fO+fj+ ,&i) +i=$,jcIil Vi+fXi) 

Clearly, after the merge of ttj to nb the query costs of 
the immediate descendants of nj will be effected by 
the merge. This is the reason that the GREEDY- 
MERGE algorithm produces a suboptimal scheme 
tree. In section 4, we discuss the effectiveness of the 
GREEDY-MERGE algorithm by comparing its per- 
formance with the optimal scheme trees for a number 
of selected types of scheme trees. 

107 



LetKr={O,il,iz,. ..,ir),I<l<randl<ijIr. 
The cost EK, of the subtree ST after all the nodes ni in 
K, are merged to no is 

In the following section, we discuss some spe- 
cial cases of query costs for which we analytically 
find the optimum scheme tree. 

3.2. Optimum Scheme Trees for Single Query 
TYPIC 

The evaluation of a nested relation manipula- 
tion operator (such as select, project, nest, etc.) 
depends on the file organizations of scheme tree 
nodes (e.g., sequential files, indexed files, hash files, . 
. . etc.) and the standard operations involved (e.g., 
search, sort, scan, . . . etc.). As an example, to evalu- 
ate a selection query, we need to search for a certain 
value(s). The number of disk accesses required to 
evaluate the search operations depends on the file 
organization. The processing cost may be 0( 1) (e.g., 
hash files), O(log N) (e.g., sequential sorted files), 
O(N) (e.g., heap files), 

In this section, we assume that all the nodes 
have the same query type (and hence the same query 
cost). We discuss three different generic query costs 
for which the optimum scheme tree is either the origi- 
nal scheme tree (i.e., the NSM model) or a single 
node obtained by merging all the nodes in the scheme 
tree (i.e., the FSM model). The proofs of the lemmas 
in this section and section 3.3 are long [HafO88] and 
omitted due to space considerations. 

Lemma 4 below shows that for those query 
types that have a constant query cost, the optimum 
scheme tree is the one that has all the nodes merged 
into a single node. That is the FSM is the best storage 
model for this case. 

Lemma 4: Let C.,q -a where a is a positive constant, 
n E NT, T is a scheme tree. Then the optimum scheme 
tree of T is a single node obtained by merging all the 
nodes in T. Moreover, the GREEDY-MERGE algo- 
rithm finds the optimum scheme tree. 

Lemma 5 shows that when the common query 
cost of a node in the scheme tree is N times a mono- 
tonically increasing function of the associated file size 
(e.g., N log N or aN’, k > 1) then the optimum 
scheme tree is the original scheme tree. That is, in 
such a case, the NSM is the best storage model for the 
scheme tree. 

Lemma 5: Let C,,q = N g(N), n E NT, T is a scheme 
tree, N is the size of the file represented by node n, 
g(N) is a monotonically increasing function of N. 
Then the optimum scheme tree is the original scheme 
tree T. Moreover, the GREEDY-MERGE algorithm 
finds the optimum scheme tree. 

33. A Sufficient Condition to Obtain the 
Optimum Scheme Subtree for Logarithmic Query 
C&S 

In section 3.2, lemmas 4 and 5 have shown that 
when all nodes have the same query cost function, the 
GREEDY-MERGE algorithm always finds the 
optimum scheme tree for all practical query cost func- 
tions except log N, where N is the file size. This sec- 
tion shows that when the query cost C., is log N, 
the GREEDY -MERGE algorithm, under certain con- 
ditions, finds the optimum subtree for each two-level 
subtree in the scheme tree. 

Let, after applying the GREEDY-MERGE 
algorithm, the subtree ST in figure 4 be transformed 
into the subtree STt in figure 5, where m I r. 

-_ e0 

Figure 5 

Thenforanytwonodesn~ and&, lsj,kIm,the 
following two inequalities are always true, 

C{O) (fo + zf Xi)+Co}(fj +fXj)S 
1 

C{o,ji (f0 +fi + 
zlf 

Xi 1 
1 

C(O) vo + xi) + C{k) (fk +fxk) 5 

ctO,k} (/O + fk + 

However, it is not necessarily true that we have the 
inequality E (o)lE (&j,k}, which can be written as 

CIOI (fo+ + Cu} vj+fXj> + c(k) (fk+fxk) 5 

c{Oj.k) (.fO+fj +fk + 

We now list a number of conditions that collectively 
make the inequality (3) true. 

Conditions 
Cl. C(O) =a log N, a is a positive constant and N is 
the size of the file represented by node n 0 . 

(1) 

108 



C2. alogyN<Ci salog&N, a, 6, Y > 0, 
llilm 

C3. f; 2tXf0, a>O, 1Sism 
C4. fXiIPf& J3>0, 15izZm 

Please note that the conditions Cl and C2 simply state 
that all nodes have the same query cost function (i.e., 
logarithmic cost). The condition C2 also states that 
the ratio of file sixes between the child nodes and the 
father node ranges between 7 and 8. The condition C3 
gives a lower limit on the frequency ratio between the 
father node and the child nodes. The condition C4 
gives an upper limit on the frequency ratio between 
the father node and the edges between the father node 
and the child nodes. 

From the inequalities (1) and (2), we have 

c[O) (fO+ pi) +cfjl (fj+fxj) + c{k} cfk+fxit) s 

(4) 

By using the inequality (4). the inequality (3) is true if 
the inequality 

ctOj} (f0 +fj + 
8f 

xi) + C{O)} (fO+fk + 
zf 

xi)’ 
1 1 

ctOl(fO+, 
z 

fXi)~C{O&k}cfO+fj +f& + 
zif 

Xi) (3 1 

is true. By utilizing conditions Cl, C2, C3 and C4, 
one can show [Hat0881 that the inequality (5) is true 
if 

Thus, given the inequality (6) and the conditions Cl, 
C2, C3 and C4, the inequality (3) always holds. This 
discussion is generalized in the lemma given below. 

Lemma 6: Consider a twelevel subtree ST, with the 
node set SN, E (0)s E(oi); ni E SN. Assume that the 
conditions Cl, C2, C3 and C4 are satisfied. Then the 
inequality E{o) 5 EK,, KI = { i&i1 ,... ,il } , tti, E SN , 0 
Ij<l,lIIIn,n=lSNl-l,istrueif 

Lemma 7: Let C., = a log N, a is a positive con- 
stant, n E SN, ST be a twelevel subttee, E ~o$E~o,i), 
ni E SN. ASSUIIE conditions Cl, C2, C3 and C4 hold. 
If the inequality (6) holds then the optimum subtree of 

03 

ST is ST itself. 

33.1. Evaluating the Cases in Which the Sufficient 
Condition Holds 

In this section, we discuss experimentally the 
effect of applying the GREEDY-MERGE algorithm 
to the scheme tree T when there is only one type of 
queries involved in the database system workload. 

According to lemmas 4 and 5, the GREEDY- 
MERGE algorithm produces the optimum scheme 
tree when the query types involved in the database 
workload have query (processing) costs a, a Nk and N 
g(N); a > 0, IQ 1, N is the size of the file involved in 
the query and g(N) is a monotonically increasing 
function of N. For the logarithmic query processing 
cost, lemma 7 gives a sufficient (but not necessary) 
condition for which the GREEDY-MERGE algorithm 
produces optimum two-level subtrees. In this section, 
we discuss the effect of the database workload on the 
inequality (6) in lemma 7. 

Assume the two-level subtree ST in figure 4 is 
the subtree that results after applying the GREEDY- 
MERGE algorithm The inequality (6) gives a 
sufficient condition for the optimum two-level subtree 
ST. We now observe the behaviour of the inequality 
(6) when the parameters a, /3,8 and y change. For 
m=5, the number of optimum subtrees satisfying the 
inequality (6) increases when a and y increase. On the 
other hand, the number of optimum subtrees satisfy- 
ing the inequality (6) decreases when /3 and 6 
increase. Figure 6 contains for different values of a, 
j3,6 and y, the variations in the ratio opt / total where 
opt is the number of optimum subtrees that satisfy the 
inequality (6). and total is the total number of sub- 
tie&$. 

Figure 6(a) shows that, all the cases with 0.1 I 
B < 0.5,0.5 < 6 I 2 and 0.5 5 y < 6 satisfy the inequal- 
ity (6) and are also optimum when a 2 1.8. Figure 
6(b) shows that for 0.5 < a 5 5,0.5 I6 I2 and 0.5 I y 
5 6, all the cases satisfy the inequality (6) and are 
optimum if B c 0.2. In figure 6(c), all the cases are 
optimum for 6 c 0.5 when 0.5 5 a 15,0.1 I B < 
O.S.Finally, figure 6(d) shows that all the cases are 
optimumfory>3.0when0.5Ia<5andO.lIB< 
0.5. 

To get a better insight into the performance of 
the GREEDY -MERGE algorithm, we clarify some 
important factors which show the advantages of our 
greedy algorithm. For the two-level subtree shown in 
figure 4, the GREEDY-MERGE algorithm always 
chooses to merge the child node ni to its father node 
n 0 as long as it gives the smallest scheme subtree 
cost.Assumethetwonodesni andnj, l’<i,j<r,are 

109 



qualified to be merged to node no, i.e., 

C[O)(fO+ 
ks 

fxk)+C{i)Cfi +fXi)> 

C{O.i) Vo +fi + 

c{O,j} CfO +fj + 

Assume also that the GREEDY-MERGE algorithm 
chooses node nj to be merged to node no, then 

which is equivalent to 

C{O~} vfo + &fxk) + (C{OJ) - c(j>>fj - ca)fXj 5 

c(Oj} cfO+ 
Al 

fxk> +(c{Oj} -c{i))fi -c{i}.fxi. (7) 

Forfr = 4t f O.fxk = pk f 0 ad c{k) = 1% ( 1 + yk ) 
C{o), k = 1.2,. . . , r, the inequality (7) is always 
satisfied since the node nj satisfies at least one of the 
following conditions, 

(a)fj Sfi or Ctj >Q 
(b) fXj 2 fXi or bj < pi 
(C) C (0~15 C(uj), which ITEmS Co1 5 C(i) or yi < yi . 

Conditions (a), (b) and (c) show that the resulting 
two-level subtree produced by the GREEDY-MERGE 
algorithm should have either large a values or small p 
values or large y values or any of the above. With the 
support of the results established from figure 6, the 
two-level subtree ST obtained by the GREEDY- 
MERGE algorithm approaches the optimum when a 
or y increases, or p decreases. As a result, the 
GREEDY-MERGE algorithm almost always locates a 
“near” optimum two-level subtree. 

Figure 6. The System Workload Effect on the 
Number of Optimal Cases. 

4. Preliminary Experimental Results 
In this section, we compare the scheme trees 

obtained by applying the GREEDY -MERGE algo- 
rithm with the optimum scheme tree obtained by 
exhaustive enumeration for only one specific scheme 
tree. More experiments are presently being conducted 
for different scheme trees. 

The results of applying the GREEDY-MERGE 
algorithm on the scheme tree T in figure 7 are shown 
in tables 1 - 5. We compare the scheme trees obtained 
by the GREEDY-MERGE algorithm and the optimum 
scheme trees obtained by exhaustive enumeration 
over all possible scheme trees. Only those cases that 
the GREEDY -MERGE algorithm produces non- 
optimum scheme trees are considered. In tables 1 - 5, 
we calculate the percentage of mar, defined as the 
ratio e = ((a - b) / b)*lOO where a is the cost of the 
resulting scheme tree obtained by the GREEDY- 
MERGE algorithm, and b is the cost of the optimum 
scheme tree. The frequencies of nodes and edges 
range from 1 to 5, except in tables 2 and 3 where the 
frequencies of nodes are assigned according to the 
node levels. When the frequencies range from 1 to 5, 
the results stay the same when the frequencies range 
from l*A to 5*A with step A, A > 0, (that is. when 
A-10, the range is 10 to 50 with step 10). The sizes of 
the files range from 64 to 32,768 blocks, except in 
tables 4 and 5 where the sixes of files are assigned 
according to the node levels. 

Tables 1 - 5 show two significant results. First, 
the number of cases that the GREEDY-MERGE algo- 
rithm does not locate the optimum scheme tree, is 
very small compared to the total number of cases. 

110 



Fieure 7 

Second, the percentage of error e is significantly 
small. 

In table 1, the percentage of error e decreases 
when the ratio between fx and f decreases. For 
example when n=64 and fxlf = 2/3 the percentage of 
error is 1.196, while at the same value of n=64 and 
fxlf = 315 the percentage of error is 0.555%. Tables 
2 and 3 show that the percentage of error decreases 
when the ratio between the child frequency and the 
father frequency is large. For fx =l and n- 16384, 
when the ratio between the child frequency and the 
father frequency is large (e.g., child frequency is 10 
and father frequncy is 1). table 2 shows that the per- 
centage of error is 0.013%, while in table 3, when the 
ratio of frequencies is small, (e.g., child frequency is 
10 and father frequency is 100). the percentage of 
error is 0.632%. In tables 4 and 5, the percentage of 
error decreases when the ratio between the child’s file 
size and the father’s file size is large. For f -2 and 
fx =2, when the ratio is large, table 4 shows that the 
percentage of error is 0.22096, while in table 5, when 
the ratio is small, the percentage of error is 2.786%. 

bare Syslcmc, Apr. 1984. 
[CDRS86] Carey, MI., Dewitt, D.J., Richadson. J.E. and Shekitx. E., 

“Object and File Management in the EXODUS Extensible 
Database System”, Inr. Coil/. 08 VLDB, Aug. 1986. 

Pww Copeland, 0. xnd Khoshdan, S.. “A Decomposed Storage 
Model”, ACM SIGMOD Ia. Coil/. on Mamzgrnur of Da@ 
May 1985. 

[Da71 Date, C.. An Iarrodnsior to Daabaw Symw (4th ed.). 
Addison-Wesley. 1987. 

mV88] /Deshpaode, A. xnd Vxn Oucht, D., “An Implementation for 
Neated Relational D-es”, Technicxl Repo& Computer 

IHpfow 

[HunN781 

[Hofs’IS] 

WJ’B87l 

[Ki‘3387l 

[NCWJ84] 

[Olle71] 

[Ron<821 

[.stoR86] 

(vaKC86] 

W~71 

[Wied83] 

Science De& Indiana Univusity, Feb. 1988. 
Dadam, P., Kuespaf K.. Andersen, F., Blanken, H., Erhe, R., 
Ouenxua, J.. Lurn, V., Pi&r, P. xn$ Walch, 0.. “A DBMS 
Prototype to Supw Extended NF Relations: An Integrated 
View on Flat Tables and Hierarchia”, Prcc. ACM SIGMOD 
hr. Co$ oa ha Mampunf of Daa, May 1986. 
Hafez. A. and Ouoyoglu, O.,“The Putid Normalized Storage 
Model of Nested Rduions”, Technical Report, Dep&ment of 
Computer Science. Case Watern Reserve University, 1988. 
Hammer, M and Niamir, B., “A Heuristic Approach to Attri- 
hute Patltioning”. Proc.. ACM SIGMOD ht. Coty? on 
Manqrmeru of Doto. May 1979. 
Hoffer. J.A. and Severaoce. D.O.,“The Use of Clusta 
Analysis in Phyricd Datahow Design”, Prcc., 2nd Inr. Co# 
0” VLDB, 1973. 
Khahatian, S.. Copeland, O., Jxgodita. T., Boral. H. lad Val- 
duriex, P., “A Quay Pmceaning Strategy for the Decomposed 
Storage Mdd”. Jrdlnt. COD$ 01 DIUO Enginuhg, Feb. 
1987. 
Kim, W., Chcu, K xnd Bane+, J.. “Operxtiom and Impla 
meat&ion of Complex objects”. 3rd hu. C.o.$ on Dao 
E.+ueriag, Feb. 1987. 
I&Or+ W.C., “llu? Informxtion Management System 
IJWVS Pat 1: Oenad stnrtrrre aluj Operation”, IBM sy.rr. 
1.. Vol. 16. No. 2. 1977. 
Nxvathe, S., Cai. S.,Wiedahold, 0. and Jinglie, D., “Vertiul 
Partitioning Algorithms for Database Design”. ACM Trw. om 
Da&mu Sjwams. Vol.& No.4, Dec. 1984. 
Ok, T.W., “Inlmduction to ‘Feature Analysis of Generalized 
Dxta Base Management Syxtems’“. CACM. Vol.14. NoJ, May 
1971. 
Rc&m, D.. Tompn, P. xnd Kirkpatrick, D., “Foumlations fw 
Multiple Deign by applicxtion Pulitioning”. Proc., ACM 
Symposivm 01 Ptiipdu cfDotabca Sysumr. Mar. 1982. 
Stonebnka, hl. and Rowe, LA., Ihe Design of 
poSXXES”, Pm., ACM SIGMOD hu. ConJ on Manage- 
nuti of Data, May 1986. 
Vxlduriex, P.. KhoshpAan, S. md Copeland, 0.. “Implement* 
tion Techniqua of Complex Ohjectr”, Inr. Coil/. 01 VLDB, 
Aug. 1986. 
Vxlduriax, P. and Boral. Ii., “Evaluption of Rau-xive Quaia 
Using Join Indica”, Pm. of First ht. Co.$. 06 Exprn Sys 
raw. Apr, 1986. 
Vxldurtu, P.. “Join India”, ACMTmns. on Datable Syx- 
terns, Vd.lZ,No. 2. June 1987. 
Wirdexhdd, O., Da&baa Duigr (2~3 ed.). McOmw-Hill. 
1983. 

5. References 

[AbiB Abiteboul. S. and Bidoit, N., “Non First Nomul Relations to 
Rep-t Hiemrchically Organized Dxta”, Proc., rk 3rd 
ACM SIGACT-SIGMOD Syw om PrinciFlu OjData- 

111 


