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ABSTRACT

This paper introduces the partial normalized
storage model of nested relations which uses the
workload information of the database system under
consideration to obtain a "better" storage model (i.e.,
one with a lower query cost) for a given nested rela-
tion. Based on the normalized storage model, the
nested relation scheme is graphically represented as a
tree called the scheme tree. By using the workload
information, and by performing a series of merges on
the nodes of the scheme tree, a near-optimum scheme
tree is produced to represent the partial normalized
storage model.

We prove that our approach which uses the
greedy method, locates the optimum scheme tree in
most of the cases. In few cases, when the approach
locates a "near” optimum scheme tree, the relative
difference between the costs of the produced scheme
tree and the optimum scheme tree is shown to be very
small.

1. Introduction

Supporting new database applications in fields
such as computer aided design, computer aided
manufacturing and artificial intelligence requires
efficient implementations of nested relations (i.e.,
relations containing relations, also called non-first-
normal-form (NINF) relations or complex objects).
Storage structures for nested relations have been
investigated by many researchers [HamN79, AbiB84,
DKABS86, StoR86, VaKC86, KiCB87, DesV88].

Example 1: As a running example in this paper, we
use the nested relation scheme R where R=(3a, A, B),
A’(bv Cy D» E)r B=(C, F) G)y C=(d1 e)v D=(f: g)» E=(h’
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i), F=(j, k) and G=(l, m). R, the outermost relation, is
called the external relation. A,B,C,D, E,Fand G
are internal relations (i.e., relations inside the external
relation). Atomic attributes (i.e., attributes whose
values are single values) are denoted by lower-case
letters. The scheme of R and a single tuple in R are
given in figure 1.
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In the literature, System 2000 and ADABAS

[Olle71] are two hierarchical database systems used
to implement nested relations. The segments of
hierarchical records are inserted into one file. All
hierarchical relationships are expressed by a second
file. In OASIS [Wied83], an instance of a tuple,
together with its descendants, is placed into a single
compact variable-length record.

Dadam and others use the technique of separat-
ing structural information from data [DKAB86],
where each external relation tuple is stored into one
record, and, for each tuple, there is an entry in a direc-
tory, called the mini-directory (MD). The mini-
directory is used to handle the allocation of each
tuple.

In IMS [McGe77], a relation and all its internal
relations appear in a single file. Each top-level entry
in a file contains the atomic attributes of a tuple in the
extemnal relation. The four file options for IMS are



HSAM, HISAM, HDAM and HIDAM.

Recently, some new database management sys-
tems supporting nested relations have been designed
for non-traditional applications areas. EXODUS
[CDRS86] and POSTGRES [StoR86] are two exam-
ples. In EXODUS, the basic unit of stored data is the
storage object ( an entire tuple). Storage objects can
grow and shrink in size without putting any restric-
tions on where we should delete or insert. Accord-
ingly, the system supports insertion and deletion of
new portions of a storage object anywhere within the
object. In POSTGRES, a new datatype, called POST-
QUEL, has been defined to support nested relations.
A field of type POSTQUEL contains a sequence of
commands to retrieve data from other relations that
represent the subobjects. All relations are stored as
heaps within an optional collection of secondary
indices.

In the literature, storage models of nested rela-
tions are in general classified into four storage models
[HofS75, NCWJ84, CopK85, DKABS6, StoR86,
VaK(C86, KCIB87]. Below we describe how each
storage model represents a nested relation. To demon-
strate each storage model, we use the nested relation
scheme R of example 1. Assume that, for each
external/internal relation ® there is a surrogate attri-
bute S g, (i.e., an artificial identifier) which is used as
an identifier for relation &® (similar to "tuple
identifiers” in 1NF relations).

The Decomposed Storage Model (DSM)
[CopK8S, KCIB87] utilizes a transposed storage.
Each atomic attribute of a relation with a surrogate for
record identity forms a binary relation. Each binary
relation is stored into a separate file.

Example 2;: (DSM) There are 13 binary relations and
thus 13 files in the DSM representation of R. The
binary relations are:

R, =(SR »a), A =(SA ’b)’ B, '(SB ¥9R Cd "(SC »d)y
Ce =(SC ’e)r Df =(SD ’Dv D‘ "(SD »8). Ek '(SE ,h),
Ei =(SE vi)v F/ =(SF J)t Fk ’(SF 9k)9 Gl =(SG ll) and
GIII =(SG ,m)

The Normalized Storage Model (NSM)
(StoR86, VaKC86] decomposes a nested relation in
such a way that the atomic attributes of each
external/internal relation tuple form a record of a file,
and inner relations at a given level are related to each
other by using surrogates. Join indices [ValB86,
Vald87] may be used in order to retrieve an internal
relation.
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Example 3: (NSM) There are 8 files in the NSM
representation of R. Each file contains the atomic
attributes of an internal/external relation along with its
surrogate attribute. The records of each file have the
following format.

R‘_'(SR ra)v A=(SA vb)' B"(SB )C)’C=(SC ,d,e),
D=(Sp,f.g), E=(Sg,h,i), F=(Sr,j,k) and G=(S¢,l,m)

The Flattened Storage Model (FSM)
[DKAB86, VaKC86] is originally called the direct
storage model. A nested relation is stored directly into
a file. Each record of a file represents an entire exter-
nal relation tuple. The record of a file can be
clustered on-atomic attributes of the external relation
tuples. Access to nested relation tuples based on attri-
butes other than those of the external relation tuples
are done by using secondary indices or sequential
scans.

Example 4: (FSM) The whole nested relation
instance is stored into one file whose record format is

(SR ,a,{SA »b9{SC vdye}n{sD .f,g},{SE vh’i}}:
{SB ,C,{SF J»k}l{SG ,l,m}})

The DSM and the NSM may be viewed as spe-
cial cases of another storage model. The Partial
Decomposed Storage Model (P-DSM) [HofS75,
NCWI84, VaCK86] is a mix between the DSM and
the NSM. The atomic attributes of an internal/external
relation are partitioned such that those atomic attri-
butes that are frequently accessed together are stored
in the same file. Each file contains a set of atomic
attributes and a surrogate of their conceptual relation.

Example 5: (P-DSM) The P-DSM model for R can
take several possible forms. One of those forms pro-
duces 10 files with the record formats

R’(sd sa)t A=(SA !b)’ B‘(SB ,C), C’(SC ’d,e)r
D 1"(SD 'ﬂ! DZ*(SD ,8), E”(SE )h!i)v Fl’(sl’ ’j);
F 2=(SF k) and G=(Sg,l,m)

We now introduce a new type of storage model,
the Partial Normalized Storage Model (P-NSM). The
NSM and the FSM may be viewed as two special
cases of the P-NSM. In the P-NSM, the nested rela-
tion is vertically partitioned such that those subobjects
(i.e., internal relations) which are frequently accessed
together are stored in the same file. Each file contains
the atomic attributes of an internal/external relation
and some of its descendants. Figure 2 and example 6
illustrate the P-NSM.

Example 6: (P-NSM) One possible P-NSM model
for R may have 6 files with formats
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Figure 2. The Spectrum of Different Storage
Models for Nested Relations.
R=(SR »dy {SA »b})9B=(SB ,C,{SF J’k})’ C'—'(SC vdve)v
D=(5p,f.g), E=(Sg,h,i) and G=(5¢,I,m)

By storing into the same file the internal rela-
tions which are accessed together frequently, the
number of /O operations required to respond to
queries can be reduced. In general, the storage model
of a nested relation can be classified as supporting
three different query types: (a) queries manipulating
entire external relation tuples, (b) queries manipulat-
ing internal relations and (c) queries manipulating
specific individual components of (external/internal)
relation tuples and their atomic attributes at different
nesting levels. If the query type (a) is the dominant
query type then clearly the FSM is the best choice to
implement the nested relation. For the query type (b),
the NSM is the obvious choice to implement the
nested relation. Query type (c) constitutes the general
case for nested relation queries. The P-NSM provides
good support for those nested database systems which
have the query type (c) as the dominant query type.
By using the appropriate methodology and the work-
load information of the system, the NSM may be
turned into a P-NSM with a better query processing
performance. This paper describes such a methodol-
ogy.

The NSM is graphically represented as a tree
called the scheme tree. Each node in the scheme tree
represents a file containing the atomic attributes of an
internal/external relation. Figure 1-(b) describes the
scheme tree of R. In this paper, we are specifically
concerned with two parameters of the workload infor-
mation of a database system. Query count is the first
parameter. Each node and each edge in the scheme
tree has its own query count (frequency) denoting the
number of queries that manipulate the information in
that node and in the nodes adjacent to that edge,
respectively. In this paper, we introduce the
ASSIGN.F algorithm which, given a set of queries,
assigns frequencies to the nodes and edges in the
scheme tree in a consistent manner. The second
parameter is the query cost. The query cost of each
node is a function of the size of the file represented by
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the node, and the type of the query used. Each node
may have a number of different query costs. Queries
are classified according to their disk processing costs.
Each group of queries contains those queries that have
the same disk processing cost.

We compute the scheme tree cost by using the
query costs and the frequencies of the nodes and the
edges of the scheme tree. Depending on the query
types, the cost of the scheme tree in the NSM can be
changed by reducing the depth of the scheme tree
through the merge operation of two or more nodes
(which produces a P-NSM representation). Then, the
scheme tree with the lowest cost can be found by
enumerating all the possible trees derivable from the
scheme tree by the merge operation.

In this paper, we introduce the GREEDY-
MERGE algorithm which takes the original NSM
scheme tree, the query types, the associated query
costs for each node, and frequencies for each node
and for each edge in the scheme tree, and uses the
greedy method to convert the NSM scheme tree into a
P-NSM scheme tree with a lower scheme tree cost.
The GREEDY -MERGE algorithm utilizes a level
order traversal starting at the lowest level. At each
step, a subset of nodes (at the present level) are
checked for merging them into their father node.
After examining the nodes at a certain level, the algo-
rithm moves up to the next higher level and repeats
the merge checks at the new level. For a large number
query cost types, the GREEDY-MERGE algorithm
finds the scheme tree with the lowest cost, without
having to enumerate all the possible trees derivable
from the scheme tree.

The preliminary experiments in section 4.2
show that out of 25,000 cases, the GREEDY-MERGE
algorithm have produced P-NSM structures with the
optimal scheme trees in 95.2% of the cases. For those
cases where a suboptimal scheme tree were obtained,
the average and the maximum percentage of error
were 1.255% and 5.744%, respectively.

The rest of the paper is organized as follows.
Section 2 presents the scheme tree model and the
ASSIGN-F algorithm which is used to assign frequen-
cies to the nodes and edges in the scheme tree. In sec-
tion 3, we analyze some special cases of scheme trees
for their optimum scheme tree costs, and then intro-
duce the GREEDY-MERGE algorithm. Section 4
discusses the preliminary experimental results.

2. Assigning Frequencies to The Scheme Tree

In this section, we present the scheme tree
model and its frequency assignment algorithm. Sec-
tion 2.1 introduces the scheme tree model. The



ASSIGN-F algorithm is given in section 2.2. Section
2.3 describes the MERGE procedure along with the
frequency adjustments of nodes and edges due to the
merges in the scheme tree.

2.1. Scheme Tree Model

The atomic relation R4 of a (internal or exter-
nal) relation R is the relation which contains only the
atomic attributes of R. Clearly, for a first-normal-form
(INF) relation S, the corresponding atomic relation is
S itself. To illustrate, consider a nested relation
scheme R, where R=(a, b, B, C), B=(ay, b;) and
C=(a2, bz). Then, R4 =(a, b), B4 =B and CA =C are the
atomic relations of relations R, B and C, respectively.

The scheme tree T with the node set Ny of a
nested relation represents the nesting structure of the
relation. The scheme tree is also the graphical
representation of the NSM. Each node n; in Nr
represents a file which contains the atomic relation of
that (internal or external) relation. Each edge in the
scheme tree T represents a relationship between two
atomic relations of the nested relation that are adja-
cent to the edge.

Example 7: Consider the nested relation scheme R of
example 1. The NSM of R consists of the eight atomic
relations Ry =(a), Ax =(b), B4 =(c), Ca=(d, ), Da=(f,
g), Ea=(h, i), F4 =(j, k) and G4 =(1, m). The scheme
tree T of the nested relation R is given in figure 1 (b).
For notational simplicity, we will use nodes ng, n4,
ng, nc, np, ng, nr and ng to represent (the scheme
tree nodes and) the files which contain the atomic
relations R4, Aas, Ba, Ca,Da, Es, F4 and
G respectively. ’

We now assign two parameters to the nodes and
edges in a given scheme tree:

a) the query cost of a node (file), and
b) the query frequency of a node and an
edge.

The query cost of a node depends on the types of
queries accessing that node, the file organization of
the node and the size of the file represented by that
node. Query costs will be discussed in section 3.

Query frequencies of nodes and edges depend
on the relationship between the nodes involved in the
queries. We first give some definitions and examples.

Definition (Query Node, Nonquery Node). For a
query Q, a node n is called a query node if it is
referred to in that query. Ny is the set of all query
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nodes with respect to the query Q. Those nodes which
do not appear in the query Q are called nonquery
nodes. Nt-Ng is the set of nonquery nodes with
respect to query Q.

Definition (Query Forest, Query Tree). Delete the
nonquery nodes from a scheme tree T. The remaining
set of trees form a query forest Fp with respect to
query Q. If the cardinality of Fp is one (i.e., [Fg|=1)
then the resulting tree is called the query tree Tg.

Example 8: Let the scheme tree T with the node set
Nr be

ne

ns

ng ni ng

Assume for a given query Q, the set of query nodes is
Ng={ni, na, n3, ns, ng}. Then the set of nonquery
nodes is {n4, n¢, n7}. If the nonquery nodes are
removed from the scheme tree T then the remaining
nodes will form the following query forest :

n

Fp: nj na

ns ng

which contains a single tree Tg.

Assume for a given query Q’, the set of query
nodes is NQ's {n2, ns, ny, ne, ns}. Then the set of
nonquery nodes is {ny, ns, n7}. If the nonquery nodes
are removed from the scheme tree then the remaining
nodes will form the following query forest Fp-

n2 nj3
ng neg ng

Fg consists of two distinct trees, i.e., [Fg-=2.

Assumption: In the rest of the paper, we consider
only those queries with |[Fg|=1. Thus, Tg of a given
query Q is unique.

We think that most (if not all) "meaningful” nested
relation queries satisfy the above assumption. We
give an example.



Example 9: Let the nested relation scheme DEPT-
EMP be

DEPT-EMP = (dno, dname, EMP-EXEC, EMP-
OTHER),

where dno and dname are atomic attributes. EMP-
EXEC and EMP-OTHER are higher order attributes.
EMP-EXEC is the relation of executive employees
while EMP-OTHER is the relation of other employ-
ees.

EMP-EXEC = (eno, ename, salary, success-ratio, . .
.)and

EMP-OTHER = ( eno, ename, salary, children, .. .).

The scheme tree Tp of the nested relation DEPT-
EMP is

DEPT-EMP,
EMP-EXEC, EMP-OTHER,

Let a query Q be " Select those employees which
have salary <20 K ".

Query Q could be written as

Oisalary <20k (Temp-gxec (DEPT-EMP)
Remp -otHeR (DEPT-EMP)),

which has the query forest Fp

DEPT-EMP,

AN

EMP-EXEC, EMP-OTHER,
where |[Fg|=1.

A file F represented by the scheme tree node n
may be accessed by
a) queries that only refer to attributes in n, and/or

b) queries that refer to n and other nodes n; which
are adjacent to n.

Our goal is to take a scheme tree and modify it
into a new "scheme tree" for a better performance.
To this end, rather than directly counting query counts
of files, we assign frequencies to both nodes and
edges of the scheme tree in order to compute access

counts of files for the revised scheme trees. The fre-
quency f;j of node n; for query type q denotes the
count of those queries of type q that only refer to the
attributes in n;. The frequency fx; of edge e; for
query type q incident to nodes n and n; denotes the
count of those queries of type q that refer to attributes
of n and n;. Assume there are L edges incident to
nodenin T and ¢;, 1<i<L, is an edge incident to node
n. The query count A, 4 of the file F with respect to
query type q denotes the count of queries of type q
that refer to attributes of n. Thus A, 4 is defined as

Ang !=(‘= Xi )+ fa

2.2. Frequency Assignment Algorithm

The algorithm ASSIGN-F given in figure 3
assigns frequencies to nodes and edges in T.

Algorithm ASSIGN-F (T,S)

Input: (a) A scheme tree T with some node and edge
frequencies (possibly all frequencies are zerc), and
(b) a sequence S of queries such that, for each query Q
in §, T is unique,ie.lFgl=1.
Output: New frequency assignments to edges and nodes in T.
begin
{fx; denotes the frequency of edge &;; f; denotes the
frequency of node 7 }

for each query Q in S do
begin
for each edge ¢; in T do fx; = fx; + 1;
for each node nj in T do f; = f; + 1-d(n;);
end
end.

Figure 3. Frequency assignment algorithm
for a scheme tree

Example 10: Let Tp of a query Q be

ny
€l
TQI ny
ey €3
nj ng

Before the incorporation of Q, assume f (=3, f »=2,
f3=5, f4=2 and fx=1, fx,=2, fxy=4. According to
the ASSIGN-F algorithm, the frequency of each edge
¢; will be increased by 1. Thus, after the change,
fx1=2, fx=3 and fx3=S. The frequency of each node
n; will be increased by 1- d (n;) where d(n;) denotes
the degree of node n;. Thus, after the change, f1=3,
f2=0, f3=5 and f 4=2.



Whenever a query Q refers to some attributes in
a file, we would like to increment the query count of
the file by 1. Lemma 1 below shows that the algo-
rithm ASSIGN-F correctly performs this increment
operation,

Lemma 1: Let A, , be the query count of the file F
represented by n. Assume there is a new query Q
with query type q; [Fg| = 1;nis anode in Fp. After
executing the algorithm ASSIGN-F, we have
Apg=Ang+1.

Proof: Let the node n in the scheme tree T be also in
Fg, and d(n) be the degree of node n with respect to
Fg. Using the algorithm ASSIGN-F, the frequency of
n will be increased by 1 - d (n), and the frequency of
each edge adjacent to n in Fp will be increased by 1.
Since the number of edges which are adjacent to node
n is d(n), the total sum of the frequency changes of
node n and its adjacent edges equals (1-d (n)) +d
(n)=1. QED.

2.3. Adjusting Frequencies Under Changes to The
Scheme Tree

Let T be a scheme tree and T'; be a subtree of T.
The algorithm MERGET (T) produces a new scheme
tree T’ from T by merging all the nodes of T in T
into a single node n. Thus the file represented by the
new node n contains all the information in those files
represented by the nodes in T;. Then the frequency of
node nin T’, denoted by f, (T’), is computed as the
sum of the frequencies of all nodes n; in T and all
edgese; in T).

Example 11: Let the scheme tree T be

ni

e

€4

ny ns

Let T| denote the subtree with nodes ns,n4,n5 and
with edges e1,e4. If Ty is reduced to a single node n
by the algorithm MERGET (T) then the new scheme

tree T’ will be

n
T" -3}
na n

ez
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where
[i T =fi(D), 1£j<2,
fx,- (T') =fx,-(T), 1€i<2 and

fa(T)= Jg £i(T 3, f(D.

Lemma 2 allows us to avoid recomputing fre-
quency assignments from the original query sequence
after each change in the scheme tree.

Lemma 2: For a scheme tree T, a subtree Ty of T
and a set S of queries,

MERGET (ASSIGN-F(T,S))=ASSIGN-
F(MERGET,(T),S)

Proof : By using enumeration and the fact that
ASSIGN-F (ASSIGN-F (T, §1), S3) = ASSIGN-F (T,
S 1\ US2) for two disjoint sets S; and S, of queries.

3. Optimum Scheme Trees

This section discusses a technique to find a
better ( i.e., optimum or near-optimum ) scheme tree. '
A new structure is established by merging two or
more nodes in the original NSM scheme tree. The
evaluation criteria of a given scheme tree T is the
number disk accesses ( characterized by the scheme
tree cost ) required to process the queries ( i.e., the
workload ) using the files represented by the nodes in
the scheme tree T. Thus, the optimum scheme tree for
a given workload is the one with the lowest scheme
tree cost. We present the GREEDY-MERGE algo-
rithm which takes the original scheme tree, the query
types, the associated query costs for each node, and
the frequencies for each node and each edge in the
scheme tree, and uses the greedy method to convert
the scheme tree into a "near-optimum” scheme tree.
To judge the performance of the GREEDY-MERGE
algorithm, we also discuss a number of special cases
of query costs for which we analytically find the
optimum scheme tree.

3.1. The GREEDY-MERGE Technique

Query cost C, 4 of node n withrespect to query
type q is the number of disk accesses required to pro-
cess a single query with type q on the file F
represented by node n. Each node may have a
number of different query costs according to the types
of queries involved in the database system under con-
sideration. Queries are classified according to their
disk processing costs. Each group or type of queries
contains those queries which have the same disk pro-
cessing cost. The disk processing cost is represented
in the order notation as a function of the size of the



associated file. Query costs for differe
a8s0Ciatea e, Yuery COsts 101 ail nt query types

may be K 1.1, K,.logN, K3.N, . . , etc., where N'is the
size of the file used to process the query and K;’s are
constants.

We now generalize the model given in section 2
so that for each query type q, the system keeps dif-
ferent (node and edge) frequencies. Consider the
scheme tree T with the set of nodes N, the query
type q and the file F represented by node nin T. The
cost of file F with respect to the query type q is
defined as the query count of F for query type q times
the query cost of F with respect to query type q. For a

cat nf nnnnnc beloneging to different query types QT
5Ct O1 16§ 0eionging 1O giierent query types (1,

the cost of F with respect to QT is defined as

Cn Ketd =q E%TAR 4

where A, ;, and C, 4 denote the query count and the
query cost of F with respect to q, respectively.

Consider a scheme tree T with a set of nodes
Nr and a set of query types QT. The scheme tree cost
Eg with respect to QT is defined as

* Cag

Er = Cuor

neN,

Depending on the query types, the scheme tree
cost changes when the nesting depth of the scheme
tree changes. The depth of the scheme tree is reduced
by merging two or more nodes together.

One way to find the optimum scheme tree (i.e.,
the one with the minimum scheme tree cost ) is to
enumerate all possible trees derivable from the
scheme tree by merging nodes. For a scheme tree T
with a node set Nr, there are 2'™! ~ ! possible trees
derivable from the scheme tree T, where [N7| is the
cardinality of Nr. Cleary such an approach is not
feasible even for reasonably small |[N7| values.

Another approach for finding a "near-optimum"”
scheme tree is as follows: A scheme tree T is a collec-
tion of two-level subtrees. Each two-level subtree
consists of a "father" node and "child" nodes. For
each two-level subtree, one can enumerate all possi-
ble merges to find the associated optimum subtree.
The resulting overall scheme tree is clearly a "near-
optimum” scheme tree. For each two-level subtree
ST; with the node set SN;, 1<i NS, where NS is the
number of the two-level subtrees in the scheme tree T,
there are 2%/ - ! possible subtrees derivable from
the subtree ST;, where [SN;] is the cardinality of SN;.
In the whole scheme tree T, the number of subtrees
examined by this approach is

gzl SN, -1
1=
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which may still be quite cosily.

Our approach for finding the near-optimum
scheme tree is to find a near-optimum subtree for each
two-level subtree in the scheme tree T. For a given
two-level subtree, the approach starts by calculating
the costs of the subtrees resulted from merging one of
the "child" nodes into the "father” node. Clearly the
number of such subtrees equals the number of "child"
nodes. We then compare the costs of the original sub-
tree and the derived subtrees, and choose the one with
the lowest cost to be the new subtree. Then the new
subtree is once again investigated for a possible
produces a lower cost sub-

single- nnda
.llalv BN

tree and so on until there is no more cost improve-
ment in the two-level scheme tree. In our approach
described in figure 3 (the GREEDY-MERGE algo-
rithm), the number of the examined subtrees is

O (INr %)

T‘\n {‘Dt:l:‘nv_\,ﬂ:br‘l: alanrmthm utilizac o
L1 NJENA LAY L TAVAALANNI Ay als\’llullll BULLVY @

level order, left-to-right traversal starting at the lowest
level. At each step, according to the cost formula
used, each node at that level is checked for merging it
into its father node. After examining the two-level
subtrees at a certain level, we move up to the next
higher level and repeat the merge checks at the new
level. The following example shows how the
GREEDY-MERGE algorithm works.

-merge which
erge waich

Example 12: Assume the scheme tree T is as follows
level 1

T: level2

level 3

For simplicity, we assume a single query type is
involved in this example, and thus, we will not men-
tion query types in the cost formulas of this example.
Each node n;, 0<i <4, has frequency f; and query cost
C;, and each edge e;, 1<j <4, has frequency fx;.
GREEDY-MERGE algorithm starts with the

nodes at level 3. Subtree T'; contains those nodes at
level 3 along with their father node.

N\
\é:2
na
€3
nj3

T1 . €4

ny
The scheme tree cost of the subtree T is

Er,=Ca(fa+ 3, fu)+ 3G (fi +fx)



The other alternatives are merging n3 with n ( sub-
tree T3 ), and merging n4 with n, (subtree T3 ). For
example, the new node n3’ in T, has the frequency
f3 = f2 + f3 + fx;and the query cost C3” which
is the query cost of the file produced by merging the
files represented by nodes n3 and n43. The new sub-
trees Ty and T4 are :

\ \
s’ ey

ny ny
Ty: Ty:
ng ns

The scheme tree cost of the subtrees T, and Ty are

Er,=Cy (f2 +f3+§fxi) +Ca(fa+fxa),
Er,=Ci(f2 +f4+§;fxi)+cs(f3 +fx3)

where C’ is the query cost of the new node n4/, and
the frequency of node ny’is f4' = fo + f a4+ X4

According to the three cost formulas Er, Er,
and Er, the GREEDY-MERGE algorithm chooses
the subtree which has the lowest cost. In the case
when Er, is the lowest cost, the GREEDY-MERGE
algorithm moves up to the higher level and repeats the
procedure. On the other hand, when either Et, or Er,
is the lowest cost, the GREEDY-MERGE algorithm
takes the subtree resulted from the last step (i.e, T, or
T) and repeats the procedure. Figure 3 gives the
GREEDY-MERGE algorithm.

The lemma below gives an upper bound to the
number of subtrees examined by the GREEDY-
MERGE algorithm.

Lemma 3: For a scheme tree T with a node set N7,
the GREEDY-MERGE algorithm evaluates, in the
worst case, less than |N7| ([Nr| - 1)/ 2 different two-
level subtrees of the scheme tree T.

Consider figure 4. Assume the subtree ST is a
two-level subtee in a scheme tree T. Each node n;, 0
<1i<r, has frequency f; and cost C;, and each edge
ej,0<j<r, has frequency fx;. We use the notation
..... i} for the query cost of the node resulted
after merging the nodes n; n; , . . . ,n; . Similarly C
denotes the query cost of the node n;. We also use
the notation E ; ; , ... ,i_} to denote the scheme tree
cost of the two-level subtree obtained after merging
nodes n; ,n; , . .., n; . The notation E ; ; denotes the
scheme tree cost of the original two-level subtree with
no mergings.
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Algorithm GREEDY-MERGE (T',T")
Input: A scheme tree T with frequencies and costs on the
nodes and edges in T.
Output: A "near-optimum” scheme tree T’

begin
for i from the highest level of Tto 1 do

begin
for each two level subtree ST with leaves at level i do
begin
repeat
calculate the cost of the subtree ST;

for each leaf j, 1<j <k, in the scheme tree ST do
begin
Obtain subtree ST; by merging j to its father
node;
Calculate the cost of ST;;
end;
Let ST denote the lowest cost ST, 1< <k ;
if cost (ST;) < cost (ST')
then replace ST with ST
"improvement”

and mark

else mark "no improvement”;
untll there is "no improvement”;
end;
end;
end.
Figure 3. The GREEDY-MERGE algorithm

ST e e2 €y
ni na e ~
Figure 4.

The scheme tree cost of the subtree ST is
E =Co (fo+§/x.-) +‘§ Cuy(fi +fx)

Assume node n;, 1 <j <, is merged with node ng.
Then the cost of the resulting subtree is

Ewj =Cog For fi+ ;fxi) + ‘,j}_j Cay (fi+ fx)

Clearly, after the merge of n; to n, the query costs of
the immediate descendants of n; will be effected by
the merge. This is the reason that the GREEDY-
MERGE algorithm produces a suboptimal scheme
tree. In section 4, we discuss the effectiveness of the
GREEDY-MERGE algorithm by comparing its per-
formance with the optimal scheme trees for a number
of selected types of scheme trees.



Let K;={0,i1,iz, ... i1}, 1<1<rand 1 <i; <r.
The cost Eg, of the subtree ST after all the nodes ; in
K, are merged to ny is

Ex,=Cx ( 3 fi +§fx;)+‘,}; Cuwy (i +fx)

In the following section, we discuss some spe-
cial cases of query costs for which we analytically
find the optimum scheme tree.

3.2. Optimum Scheme Trees for Single Query
Types

The evaluation of a nested relation manipula-
tion operator (such as select, project, nest, etc.)
depends on the file organizations of scheme tree
nodes (e.g., sequential files, indexed files, hash files, .
. . etc.) and the standard operations involved (e.g.,
search, sort, scan, . . .etc.). As an example, to evalu-
ate a selection query, we need to search for a certain
value(s). The number of disk accesses required to
evaluate the search operations depends on the file
organization. The processing cost may be O(1) (e.g.,
hash files), O(log N) (e.g., sequential sorted files),
O(N) (e.g., heap files),

In this section, we assume that all the nodes
have the same query type (and hence the same query
cost). We discuss three different generic query costs
for which the optimum scheme tree is either the origi-
nal scheme tree (i.e., the NSM model) or a single
node obtained by merging all the nodes in the scheme
tree (i.e., the FSM model). The proofs of the lemmas
in this section and section 3.3 are long [HafO88] and
omitted due to space considerations.

Lemma 4 below shows that for those query
types that have a constant query cost, the optimum
scheme tree is the one that has all the nodes merged
into a single node. That is the FSM is the best storage
model for this case.

Lemma 4: Let C, ,=a where a is a positive constant,
n € Nr, T is a scheme tree. Then the optimum scheme
tree of T is a single node obtained by merging all the
nodes in T. Moreover, the GREEDY-MERGE algo-
rithm finds the optimum scheme tree.

Lemma 5 shows that when the common query
cost of a node in the scheme tree is N times a mono-
tonically increasing function of the associated file size
(e.g., N log NoraN*, k > 1) then the optimum
scheme tree is the original scheme tree. That is, in
such a case, the NSM is the best storage model for the
scheme tree.

Lemma 5: LetCy o = N g(N),n€ Nr, Tis a scheme
tree, N is the size of the file represented by node n,
g(N) is a monotonically increasing function of N.
Then the optimum scheme tree is the original scheme
tree T. Moreover, the GREEDY-MERGE algorithm
finds the optimum scheme tree.

3.3. A Sufficient Condition to Obtain the
Optimum Scheme Subtree for Logarithmic Query
Costs

In section 3.2, lemmas 4 and 5 have shown that
when all nodes have the same query cost function, the
GREEDY-MERGE algorithm always finds the
optimum scheme tree for all practical query cost func-
tions except log N, where N is the file size. This sec-
tion shows that when the query cost C, 4 is log N,
the GREEDY-MERGE algorithm, under certain con-
ditions, finds the optimum subtree for each two-level
subtree in the scheme tree.

Let, after applying the GREEDY-MERGE

algorithm, the subtree ST in figure 4 be transformed
into the subtree ST in figure 5, where m<r.

~_ €0
el‘ﬁ\’em
ni na e Ny
Figure §

Then for any two nodes n; and n;, 1 < j, k < m, the
following two inequalities are always true,

Ciop (fo+§fx.-)+cm (fj +fx))<

C{o_j)(fo+fj+§fx;) (1)
C(o} (fo+§fx,~)+C{k} fe+fx) <
Cuox fo+fr +‘gfxi) @

However, it is not necessarily true that we have the
inequality E (O}SE {0,4,k}s which can be written as

Cioy fot+ ‘gfxz) +Ci (fi+fx)+ Cpuy (fa+ fxe) <
Ciju Fo+fj +fi +l§fx.~) 3

We now list a number of conditions that collectively
make the inequality (3) true.

Conditions

Cl. Cyo =alogN, ais a positive constant and N is
the size of the file represented by node ny .



C2. alogyN<C;<alogdN, 3,8,v>0,

1€i<m
Cl fizafe >0, 1<ism
C4. fx.'SBfo, ﬁ)O, 1€i€<m

Please note that the conditions C1 and C2 simply state
that all nodes have the same query cost function (i.e.,
logarithmic cost). The condition C2 also states that
the ratio of file sizes between the child nodes and the
father node ranges between vy and 8. The condition C3
gives a lower limit on the frequency ratio between the
father node and the child nodes. The condition C4
gives an upper limit on the frequency ratio between
the father node and the edges between the father node
and the child nodes.

From the inequalities (1) and (2), we have

Co (fo+ ‘g/x;') +Ch i+ %) + Cugy (Fa+ fxa) S
Cog o+ fi+ §f1i)+ Cioxy fot+ fi+ gﬁ/x.-) -
Cioy (fo+ gfxa) “)

By using the inequality (4), the inequality (3) is true if
the inequality

Cgfo+f; +‘g/x,-)+c{ox} (Fo+fr +§fxi)-
C{O)(fo+§fx.')$C(om fo+fi+fi +‘§/xi) %)

is true. By utilizing conditions C1, C2, C3 and C4,
one can show [HafO88] that the inequality (5) is true

if
log((1+8)3/( l+2'ﬂg < O (6)
log((1+2¥)/(1+0)) T+mP

Thus, given the inequality (6) and the conditions C1,

C2, C3 and C4, the inequality (3) always holds. This
discussion is generalized in the lemma given below.

Lemma 6: Consider a two-level subtree ST, with the
node set SN, E 0y £Eoj); ni € SN. Assume that the
conditions C1, C2, C3 and C4 are satisfied. Then the
inequality E{o) < EK', K = {igi,.il }, n; € SN, 0
<j<£L,1<1<n,n=|SN|-1,is trueif

log((1 + 8}/l + H) . _«
log((1+)/(1+3))} 1+mP

Lemma 7: Let C, 4 = alog N, a is a positive con-
stant, n € SN, ST be a two-level subtree, E (0)<E (o},
n; € SN. Assume conditions C1, C2, C3 and C4 hold.
If the inequality (6) holds then the optimum subtree of
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ST is ST itself.

3.3.1. Evaluating the Cases in Which the Sufficient
Condition Holds

In this section, we discuss experimentally the
effect of applying the GREEDY-MERGE algorithm
to the scheme tree T when there is only one type of
queries involved in the database system workload.

According to lemmas 4 and 5, the GREEDY-
MERGE algorithm produces the optimum scheme
tree when the query types involved in the database
workload have query (processing) costs a, a N* and N
g(N); a>0, K> 1, N is the size of the file involved in
the query and g(N) is a monotonically increasing
function of N. For the logarithmic query processing
cost, lemma 7 gives a sufficient (but not necessary)
condition for which the GREEDY-MERGE algorithm
produces optimum two-level subtrees. In this section,
we discuss the effect of the database workload on the
inequality (6) in lemma 7.

Assume the two-level subtree ST in figure 4 is
the subtree that results after applying the GREEDY-
MERGE algorithm. The inequality (6) gives a
sufficient condition for the optimum two-level subtree
ST. We now observe the behaviour of the inequality
(6) when the parameters , B, 8 and y change. For
m=5, the number of optimum subtrees satisfying the
inequality (6) increases when a and y increase. On the
other hand, the number of optimum subtrees satisfy-
ing the inequality (6) decreases when [ and §
increase. Figure 6 contains for different values of o,
B, 8 and v, the variations in the ratio opt / total where
opt is the number of optimum subtrees that satisfy the
inequality (6), and total is the total number of sub-
trees.

Figure 6(a) shows that, all the cases with 0.1 <
B <0.5,0.5<38<2and 0.5 <y< § satisfy the inequal-
ity (6) and are also optimum when o 2 1.8. Figure
6(b) shows that for0.5 <0 <5,0.5<8<2and0.5<y
< 3, all the cases satisfy the inequality (6) and are
optimum if 8 < 0.2. In figure 6(c), all the cases are
optimum for 8 < 0.5 when 0.5< 0 <5,0.1<B <
0.5.Finally, figure 6(d) shows that all the cases are
optimum fory>3.0when0.5<a<5and 0.1 <P <
0.s.

To get a better insight into the performance of
the GREEDY-MERGE algorithm, we clarify some
important factors which show the advantages of our
greedy algorithm. For the two-level subtree shown in
figure 4, the GREEDY-MERGE algorithm always
chooses to merge the child node »; to its father node
ny as long as it gives the smallest scheme subtree
cost. Assume the twonodes n; and nj, 1'Sij<r, are



qualified to be merged to node ng, i.e.,

C(O)(fo+‘§fxt)+ Cuy(fi +fx)>
Cuiyfo+fi +‘§fxa) and

C{O}(fo+§)ka)+c{j) (f; +fx)>
Crog fo+fj +.§fn )

Assume also that the GREEDY-MERGE algorithm
chooses node n; to be merged to node ng, then

Crog fo+fj +.§ka) -Cupy (Fj+fx)s
Cui (fo+fi +;ka)-cm (fi +fxi)

which is equivalent to

Ciop (fo+§fxt) +(Cpp-Ci)fi-Cyfxs
Coi (fo+§bka)+(C{o,i)-C{i})fi -Cyy fxi. ')

For fi = ok fo, fxx =P foand Cy =log (1 + %)
Cuopk=1,2,...,1, the inequality (7) is always
satisfied since the node n; satisfies at least one of the
following conditions,

@fjsfioro>a
(b)ij Efx.- or Bj <B;
©) C(OJ) < Co,i}» which means C(j) <sCr ory; <Yi.

Conditions (a), (b) and (c) show that the resulting
two-level subtree produced by the GREEDY-MERGE
algorithm should have either large a values or small B
values or large y values or any of the above. With the
support of the results established from figure 6, the
two-level subtree ST obtained by the GREEDY-
MERGE algorithm approaches the optimum when a
or y increases, or P decreases. As a result, the
GREEDY-MERGE algorithm almost always locates a
"near” optimum two-level subtree.
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Figure 6.

4. Preliminary Experimental Results

In this section, we compare the scheme trees
obtained by applying the GREEDY-MERGE algo-
rithm with the optimum scheme tree obtained by
exhaustive enumeration for only one specific scheme
tree. More experiments are presently being conducted
for different scheme trees.

The results of applying the GREEDY-MERGE
algorithm on the scheme tree T in figure 7 are shown
in tables 1 - 5. We compare the scheme trees obtained
by the GREEDY-MERGE algorithm and the optimum
scheme trees obtained by exhaustive enumeration
over all possible scheme trees. Only those cases that
the GREEDY -MERGE algorithm produces non-
optimum scheme trees are considered. In tables 1 - §,
we calculate the percentage of error, defined as the
ratioe = ((a- b)/ b)*100 where a is the cost of the
resulting scheme tree obtained by the GREEDY-
MERGE algorithm, and b is the cost of the optimum
scheme tree. The frequencies of nodes and edges
range from 1 to 5, except in tables 2 and 3 where the
frequencies of nodes are assigned according to the
node levels. When the frequencies range from 1 to 5,
the results stay the same when the frequencies range
from 1*A to 5*A with step A, A > 0, (that is, when
A=10, the range is 10 to 50 with step 10). The sizes of
the files range from 64 to 32,768 blocks, except in
tables 4 and 5 where the sizes of files are assigned
according to the node levels.

Tables 1 - 5 show two significant results. First,
the number of cases that the GREEDY-MERGE algo-
rithm does not locate the optimum scheme tree, is
very small compared to the total number of cases.
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Second, the percentage of error e is significantly
small.

In table 1, the percentage of error e decreases
when the ratio between fx and f decreases. For
example when n=64 and fx/f = 2/3 the percentage of
error is 1.1%, while at the same value of n=64 and
fx/f =3/5 the percentage of error is 0.555%. Tables
2 and 3 show that the percentage of error decreases
when the ratio between the child frequency and the
father frequency is large. For fx =1 and n=16384,
when the ratio between the child frequency and the
father frequency is large (e.g., child frequency is 10
and father frequncy is 1), table 2 shows that the per-
centage of error is 0.013%, while in table 3, when the
ratio of frequencies is small, (e.g., child frequency is
10 and father frequency is 100), the percentage of
error is 0.632%. In tables 4 and 5, the percentage of
error decreases when the ratio between the child’s file
size and the father’s file size is large. For f =2 and
fx=2, when the ratio is large, table 4 shows that the
percentage of error is 0.220%, while in table 5, when
the ratio is small, the percentage of error is 2.786%.

5. References

[AbiB84] Abiteboul, S. and Bidoit, N., "Noa First Normal Relations to
Represent Hierarchically Organized Data”, Proc., the 3rd

ACM SIGACT-SIGMOD Symposium on Principles of Data-

111

base Systems, Apr. 1984,

Carey, M.]., DeWitt, D.J., Richardson, J.E. and Shekita, E.,
"Object and File Management in the EXODUS Extensible
Database System”, Int. Conf. on VLDB, Aug. 1986.
Copeland, G. and Khoshafian, S., "A Decomposed Storage
Model”, ACM SIGMOD Int. Conf. on Management of Data,
May 198S.

Date, C., An Introdiction to Database Systems (4th ed.),
Addison-Wesley, 1987.

[DesV88] .- Deshpande, A. and Van Gucht, D., "An Implementation for
Nested Relational Databases”, Technical Report, Computer
Science Dept., Indiana University, Feb. 1988.

Dadam, P., Kuespert, K., Andersen, F., Blanken, H., Erbe, R,
Guenauer, J., Lum, V., Pistor, P. and Waich, G., "A DBMS
Prototype to Support Extended NF * Relations: An Integrated
View on Flat Tables and Hierarchies”, Proc. ACM SIGMOD
Int. Conf. on the Management of Data, May 1986.

Hafez, A. and Ozsoyoglu, G.,"The Partial Normalized Storage
Model of Nested Relations”, Technical Report, Department of
Computer Science, Case Western Reserve University, 1988,
Hammer, M. and Niamir, B., "A Heuristic Approach to Attri-
bute Partitioning”, Proc. ACM SIGMOD Int. Conf. on
Management of Data, May 1979.

Hoffer, .A. and Severance, D.G.,"The Use of Cluster
Analysis in Physical Database Design”, Proc., 2ad Iat. Conf.
on VLDB, 1975.

Khoshafian, S., Copeland, G., Jagodits, T., Boral, H. and Val-
duriez, P., "A Query Processing Strategy for the Decomposed
Storage Model”, 3rd Int. Conf. on Data Enginsering, Feb.
1987,

Kim, W., Chou, H. and Banerjee, ., "Operations and Imple-
mentation of Complex Objects”, 3rd Int. Conf. on Data
Engineering, Feb. 1987,

McGee, W.C., "The Information Management System
IMS/VS Part 1: General Structure and Operation”, JBM Syst.
J.,Vol. 16, No. 2, 1977.

Navathe, S., Ceri, S.,Wiederhold, G. and Jinglie, D., "Vertical
Partitioning Algorithms for Database Design”, ACM Trans. on
Database Systems, Vol.8, No 4, Dec. 1984,

Otle, T.W., "Introduction to "Feature Analysis of Generalized
Data Base Management Systems’”, CACM, Vol.14, No 5, May
1971,

Rotem, D., Tompa, P. and Kirkpatrick, D., "Foundations for
Multiple Design by application Partitioning”, Proc., ACM
Symposium on Principles of Database Systems, Mar. 1982,
Stonebraker, M. and Rowe, L.A., "The Design of
POSTGRES", Proc., ACM SIGMOD Int. Conf. on Manage-
ment of Data, May 1986.

Valduriez, P., Khoshafian, S. and Copeland, G., "Implementa-
tion Techniques of Complex Objects”, Int. Conf. on VLDB,
Aug. 1986.

Valduriez, P. and Boral, H., "Evaluation of Recursive Queries
Using Join Indices”, Proc. of First Int. Conf. on Expert Sys-
tems, Apr, 1986.

Valduriez, P., "Join Indices”, ACM Trans. on Database Sys-
tems, Vol.12, No. 2, June 1987.

Wiederhold, G., Database Design (2nd ed.), McGraw-Hill,
1983,

[CDRS86]
(CopK8s]

(Date87]

[DKABS6]

[HafO88]
[HamN?78]
[HofS75]

{KCJB87]

[KiCB87)

[McGe?7]
[NCWI84)
[Olie71]

[RoTK82]

[StoR86]

[VaKC86)

[ValB86)

[vald8T}

[Wied83}



