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Abstract relational model. 
POSTGRES allows fields of a relation to have pro- 

cedural (executable) objects. POSTQUEL is the query 
language supporting access to these fields, and in this 
paper we consider the optimizing process for such 
queries. The simplest algorithm for optimization assumes 
that the procedural objects are executed in full, whenever 
needed. As a refinement to this basic process, we pro- 
pose an algorithm wherein cost savings are achieved by 
modifying the procedural queries before executing them. 
In another direction of refinement, we consider the cach- 
ing of the materialized results. Two caching strategies- 
caching in tuples, and separate caching-are considered. 
The fifth algorithm is flattening, where a POSTQUEL 
query is modified into an equivalent flat query, and then 
optimized through a traditional optimizer. We study the 
relative performances of these algorithms under varying 
conditions and parameters. Our results show that caching 
wins when updates do not occur with a high frequency, 
and that separate caching is, in general, better than cach- 
ing in tuples. We further show that when the composition 
of the objects in the procedural field is predictable and 
parameterizable, flattening is a good option. 

However, a number of recent proposals which 
enhance Codd’s [CODD70] model require the 
modification of the existing algorithms to optimize the 
new set of queries that were not possible before. In this 
paper we study the query optimization problem in one 
such extended relational model, namely POSTGRES. 
We present a number of algorithms for optimization of 
queries in such an environment, and do a performance 
study of each. 

The rest of the paper is organized as follows. In 
Section 2 we present the extensions in POSTGRES 
relevant to our study. We also discuss the previous work 
on optimization of queries on procedural objects. The 
optimizing paradigm and the details of the algorithms 
under consideration are then discussed in Section 3. In 
Section 4 we present the framework in which we com- 
pare the various algorithms. Section 5 presents the 
results of our study. Finally, this paper ends with the 
conclusions on the viability of each algorithm. 

2. POSTGRES PROCEDURES 

1. INTRODUCTION 
Query optimization in relational database systems 

has been a traditional research problem. A number of 
algorithms for optimizing queries have been proposed 
[SELI79, WONG761. They arc based on a variety of 
paradigms [JARK841, and work well for the traditional 
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The relational model has been found deficient in 
many areas of database applications (e.g., knowledge 
management [ZANI85], and engineering applications 
[STON83]). As a result, there have been several propo- 
sals to enhance the relational model. These extensions 
either address specihc deficiencies (e.g., ADT INGRES 
[STON83]), or a broad spectrum of inadequacies (e.g., 
Starburst, EXODUS, GENESIS, DASDBS and 
POSTGRES [lEEE87]). 

POSTGRES [STON86], a new relational database 
system currently being developed at Berkeley, extends 
the relational model in several ways. The one relevant to 
this study is the addition of procedural data types. Thus, 
in addition to the standard data types permitted by all 
systems (integer, real, character etc.) and abstract data 
types permitted by some systems [STON83], fields of the 
relations in POSTGRES can contain procedural objects. 
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Procedural objects are executable programming 
constructs. In this paper we restrict ourselves to those 
procedures that are queries on the underlying database. 
The fields containing such queries are called POST- 
QUEL fields. The presence of procedural objects lends a 



high degree of flexibility to the design of a database 
schema and allows many complex problems (e.g., 
storage of query plans, representation of hierarchical 
information, and sharing of subobjects by complex 
objects) to be naturally addressed [STON87]. 

Consider the following relations in a database 
schema: 
DEPT (number = ~10, name = ~10, mgr = ~10) 
EMP (name = ~10, hobbies = POSTQUEL, 

dept = PQSTQUEL) 
SOFTBALL (name = ~10, day = ~10, position = ~10) 
FOOTBALL (name = ~10, day = ~10, position = ~10) 
MUSIC (name = ~10, instrument = c10) 
The field day in SOFTBALL and FOOTBALL refers to 
the day the person plays that game. Each employee has 
zero or more hobbies. The field EMP.hobbies conse- 
quently contains up to three POSTQUEL queries, one for 
each hobby. Each employee belongs to exactly one 
clliartment. For example, the relation EMP may look 

name 
John 

hobbies 

retrieve (SOFTBALL.day. 
SOFl’BALLqosition) 

where SOFTBALLname = “John” 

retrieve (FOOTBALL.day, 
FOOTBALL.position) 

where FOOTBALL.namc = “John” 

dept 

r&eve @EPT.all) 
where 
DEPT.munber = 9 

Mary retrieve (SOFTBALLday, retrieve @BpT.aB) 
SOFTBALL.positicm) where 

when: SORBALL.name = “Mary” DEPT.number = 8 

retrieve (MUSIC.instmment) 
where MUSIC.name = “Mary” 

Table 1 gives a set of queries which would be used 
to illustrate the optimizing algorithms. 

2 retrieve (BMP.name) where 
EMP.dept.name = “TOY” 

Table 1: Example PQSTQUEL queries 
Query 1 retrieves the days John plays something, and 
query 2 retrieves the names of the cmployecs who work 
in the “TOY” dcpartmcnt. 

The PQSTQUEL fields can contain arbitrary 
PQSTQUEL queries. To distinguish between the POST- 
QUEL queries present in the procedural fields (such as 
those in EMP.hobbics) and the queries used to access 
these fields (such as those in Table l), we refer to the 
former as objects and the latter as queries. 

POSTQUEL extends QUEL in many ways 
[ROWE87]. The extension which deals with the pro- 
cedural objects is the multiple dot notation (like GEM 
lZANI831). The execution of the queries in the pro- 
cedural fields in a multiple dot notation is implicit. For 
example, in Query 1, the target field EMP.hobbies.day 
can only be determined after the queries in EMP.hobbies 
are executed. 

The depth of a field is one less than the number of 
dots in its multiple dot representation. Thus EMP.name 
is at depth zero, and EMP.hobbies.day is at depth one. 
Clauses containing fields with depth greater than zero are 
called extended clauses. The rest are called ordinary 
clauses. 

The two PQSTQUEL fields in EMP are fundamen- 
tally different in terms of the nature of the objects they 
contain. EMP.hobbies contains objects of unpredictable 
composition. For example, as the database evolves, 
employees may take up new hobbies, and give up old 
ones. As a result, the set of queries that occupy 
EMP.hobbies may change dynamically, and can only be 
determined after each tuple in EMP is fetched and exam- 
ined. In contrast, the composition of objects in EMP.dept 
is fixed-each tuple of EMP contains exactly one object 
of the form: 

retrieve (DEPT.all) where 
DEPT.number = $dept-number 

where $dept-number may differ across the tuples. 
In the case of EMP.dept, it makes sense to store 

only the parameter $dept-number instead of the entire 
POSTQUEL query. The relation EMP would thus con- 
tain: 

name 
John 

hobbies dept 

retrieve (SOFTBALL.day. SOFTBALLposition) 9 

where SOFTBALLname = “John” 

retrieve (FOOTBALLday. FOOTBALLposition) 
where FOOTBALL.name = “John” 

Mary retrieve (SOFlBALL.day. SOFTBALL.position) 8 

where SOFTBALLname = “Mary” 

retrieve (MUSIC.instmment) 
where MUSIC.name = “Mary” 

Now consider Query 2. It can be converted into the fol- 
lowing “flattened” query: 

retrieve (EMP.name) where 
EMP.dept = DEPT.number and 
DEPT.name = “TOY” 

This sort of query modification, which removes the 
extended clauses in a PQSTQUEL query, is generally 
possible if the structure of the objects in a POSTQUEL 
field is the same across all the tuples. Such query 
modilication is referred to as Jlaftening. It is similar in, 
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concept to the flattening of SQL queries introduced in 
[KIM82]. 

2.1. Previous Work 
Optimization of queries on procedural objects has 

been studied from a perspective different from ours in 
[SELL871 and [HANS88]. [SELL871 is an overview of 
the preliminary ideas on optimizing POSTQUEL 
queries. It discusses an optimizing strategy for POST- 
QUEL queries based on the decomposition and tuple 
substitution strategy in [WONG76]. This optimizer post- 
pones the evaluation of the extended clauses to the very 
end of the query plan. Furthermore, it is based on a 
greedy approach. Consequently, the plans that it pro- 
duces may be suboptimal. In contrast, our optimization 
strategies are based on an exhaustive search approach as 
used in System R, with the extended clauses integrated 
into such a framework. We have shown the viability and 
advantages of such an approach in [JHIN87]. 

A significant part of [SELL871 is devoted to dis- 
cussions on the caching strategies for materialized 
objects. Both finite and infinite cache space are con- 
sidered. However, the discussion is exploratory in nature 
and fails to reach specific conclusions. 

Hanson [HANS881 studies the relative pcrfor- 
mance of three algorithms for dealing with proceduraJ 
fields-Always Recompute, Cache and Invalidate, and 
Update Cache. The last two algorithms differ in the ways 
in which the cached set of objects is kept current. An ela- 
borate parameterized model is presented, which is then 
used to compare the three algorithms. The study 
assumes the availability of int’inite cache space and con- 
cludes that caching strategies win if the probability of 
update to the cached objects is low. 

Our study has points in common with Hanson’s, 
but is more extensive in many aspects. We study two 
Cache and Invalidate strategies (as opposed to just one in 
[HANS88]), and make the realistic assumption of 
bounded cache space. Furthermore, we discuss the actual 
query optimization problem. In [HANS881 the objective 
function for the optimization algorithms is the expected 
cost of accessing one procedural object. A similar 
assumption is made in [SELL871 when the caching alter- 
natives are discuss& We, however, have the objective 
function as the cost of an entire POSTQUEL query, 
which may involve processing many objects. In particu- 
lar, we identify two different classes of POSTQUEL 
queries which result in very different algorithm perfor- 
mance. We also discuss query modification strategies 
which reduce query costs substantially under some cir- 
cumstances. 

3. OPI’IMIZATION ALGORITHMS 
We have developed five basic algorithms for 

optimizing POSTQUEL queries. These algorithms treat 
ordinary clauses similarly; they differ only in their han- 
dling of the extended clauses. Each algorithm assumes a 
different query processing strategy. Accordingly, the dis- 
cussion of the optimization algorithms is also a discus- 
sion of the corresponding query processing strategies. 

3.1. The Basic Strategy 
The System R query optimizer looks through most 

of the viable query plans and estimates the cost of each. 
It then selects the plan with the least estimated cost 
[SELI79]. To do so, it needs the estimates of the selec- 
rivities of the clauses in the query. The cost of a plan is a 
function of the selectivities and the costs of relational 
accesses and joins. 

The functions used for sclectivities and costs must 
be modified in order to be applicable to extended clauses 
[JHIN87]. To discover if a tuple satislies an extended 
clause may involve execution of one or more procedural 
objects. Determining the cost and selectivity of this pro- 
cess requires some statistical information about the 
queries in the procedural fields. The execution of pro- 
cedural objects is also termed as materializarion. 

Ordinary clauses can be used to reduce the cost of 
relational accesses if suitable indexes are available 
[SELI79]. In other words, tuples not satisfying ordinary 
clause(s) may be filtered out by using a suitable access 
path. The same is not true for extended clauses, which 
can generally be tested for only after the tuples have 
been fetched. For example, while an index on EMP.name 
would help in Query 1 (where one may fetch only the 
tuples satisfying the clause), the clause in Query 2 can- 
not act as a filter for accessing tuples of EMP. For 
optimization purposes, extended clauses can be treated 
like ordinary clauses, provided the modified cost and 
selectivity functions are used, and the above limitation 
(of when extended clauses can be tested for) is kept in 
mind. All our algorithms (except FLAT) use this 
approach, but differ in their cost functions for evaluating 
extended clauses. They use an exhaustive search stra- 
tegy, and evaluate the extended clauses from left to right. 
For example, in Query 2 (having the extended clause 
Eh@.dept.name = “TOY”), a plan would involve fctch- 
ing a tuple of EMP and materializing the object in the 
dept field of that tuple to determine the matching tuple of 
DEPT. In case the extended clause is deeper, this process 
would continue further. 

The first algorithm, Complete Materiaiizafion with 
No Caching (CM) is the simplest one. CM assumes that 
the cost of executing an object has to be paid in full 
every time materialization is needed. There is no concept 
of storing these materialized results for future use. For 
example, in Query 2, the cost of the plan in CM includes 
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the cost of fetching the tuples of EMP, the cost of exe- 
cuting the procedural object in each of these tuples, and 
the cost of checking for each of these materializations if 
the result has the name field as “TOY.” 

3.2. Restricted Materialization (REST) 
Materialization returns all the subobjects of a pro- 

cedural object. Sometimes we are not interested in the 
entire relation returned by the materialization of a POST- 
QUEL object; a subset of the tuples might suflice. Under 
these circumstances, it is possible that cost savings may 
be achieved by modifying the POSTQUEL object(s) 
before executing them so that they only return the tuples 
of interest. In Query 2, the plan in REST pays the cost 
of fetching the tuplcs of EMP, and for each tuple e in 
EMP, the cost of the following resrricted materialization: 

retrieve (DEPT.all) where 
DEPT.number = “emp-dcpt” 
and DEPT.name = “TOY” 

where “emp-dept” is the actual value of the parameter 
$dept-number in e. Note that under such a plan, there is 
no need to check if the tuplc(s) returned by the (res- 
tricted) materialization have their name field(s) as 
“TOY.” 

It is thus possible that the extended clause in a 
query can be used to modify some or all the objects that 
riced to be materialized. REST checks if such an object 
modification is semantically valid. If this is the case, the 
plan includes restricted materialization of these objects. 
Otherwise, it is similar to CM in all aspects. 

3.3. Caching Strategies 
The two algorithms mentioned above keep no his- 

tory. Consider the case where the employees “Mary” 
and “John” belong to the same department, and there- 
fore contain identical objects in their corresponding dept 
field. Moreover, assume that the tuple for “John” is 
accessed before that of “Mary” in answering Query 2. 
The POSTQUEL object in John’s tuplc will be executed 
first. If the result of this query execution could be stored, 
then the execution of the object in Mary’s tuple could be 
avoided. It is thus clear that caching of mat.erialized 
objects might help in reducing the cost of executing a 
POSTQUEL query. 

There is another important bcnelit of caching. 
Consider a sequence of queries, Q 1, . . . , Qn, which are 
not submitted as a batch (and hence global query optimi- 
zation algorithms such as in [SELL881 do not work). The 
processing of any query would involve materializing 
some objects. It is possible that the execution of a query 
Qi can utilize one or more of the objects materialized by 
the queries (Qi:i ci). Of course, updates will invalidate 
materialized objects, but where they arc infrcqucnt, 
caching is likely to be bcnclicial [SELL87, STON87]. 

Caching strategies can be broadly classified into 
result caching and plan caching. In this study, only the 
former is considered since our model does not take into 
account the cost of generating a plan. Even result cach- 
ing can be accomplished in various ways. Here we dis- 
cuss two result caching strategies, which lead to two dif- 
ferent optimizing algorithms. Both these algorithms 
materialize an object only if its current version does not 
exist in cache. In all other aspects, they are similar to 
CM. 

3.3.1. Complete Materialization-Cache Separately 
(W 

In CS, the materialized objects are cached in a 
separate cache relation on the disk. Each object in the 
database has a unique-id which is a function of the 
query_block (the structure of the object), and 
list-ofgarameters (the set of parameters that uniquely 
identify a particular object within the objects that have 
the same query-block). The unique-id is the input to a 
hash function that determines the slot in the cache rela- 
tion where the object should be cached. 

Whenever an object needs to be evaluated, CS 
determines its unique-id and then hashes into cache. If a 
current version of the materialized object is found, it is 
retrieved and the cost of executing the object is avoided. 
If such a version does not exist, the object is materialized 
and stored in cache if space permits. Note that under 
these assumptions, one page access is required to cheek 
if a result is cached. The number of page accesses to 
retrieve a cached relation, of course, depends on its size. 

3.3.2. Complete Materialization-cache in Tuples 
(CT) 

In this approach, the materialized objects are 
stored in the tuples themselves. When the results are 
small and there is some free space in each page, the 
materialized result can be cached in the same page as the 
tuple containing the object. As a result, if a small object 
is cached, it can often be retrieved without paying any 
extra cost of I/O. For large objects, WC make the 
assumption that the first page of the cached object is 
stored clustered with the tuple. Under these assump- 
tions, it follows that the number of page accesses 
required to retrieve a cached object in CT is one less than 
the number of accesses required in CS. We refer to the 
extra cost in CS as the cost of cache lookup. Note that in 
CS, this cost has to be paid cvcn if the object is not 
cached. 

On the other hand, if the fraction of all objects that 
are cached is cachedfraction, then CT may need to 
cache many more objects (and hence require much more 
space) to achicvc the same cachedfracfion as CS. This 
happens because objects may be repeated across tuples. 
For example, consider the objects in EMP.dept. If there 
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are 100,000 employees, and 500 dcpartmcnts, then to 
achieve a cachedfraction equal to one, CS would need 
to cache 500 objects. whereas CT would need 100,000. 

3.4. Flattening (FLAT) 
Flattening as a means of evaluating a POSTQUEL 

query has been discussed in Section 2. A flattened ver- 
sion of a POSTQUEL query can be passed through a 
traditional optimizer and a plan gencratcd. This plan can 
be no worse than the plan of CM and REST. The other 
algorithms evaluate an extended clause in a top down 
approach (i.e., from left to right). This order of relational 
accesses is just one of the many options available in 
FLAT query. If the other options are cheaper, then 
FLAT would do better. 

Consider Query 2, and its flattened version: 
retrieve (EMP.name) where 
EMP.dcpt = DEPTnumber and 
DEPT.name = “TOY” 

The other algorithms pick a tuple of the EMP relation, 
and for each tuple, fetch the “matching” tuples of 
DEPT. This is equivalent to a nested loop join in a FLAT 
strategy with EMP as the outer relation, and DEPT as the 
inner relation. The cost of an inner fetch in FLAT 
corresponds exactly to the cost of a (resuictcd) materiali- 
zation in REST. FLAT is likely to win if a merge join 
(i.e., join after sorting EMP and DEPT on the fields 
EMP.dcpt and DEPT.numbcr respectively), or a bottom 
up evaluation (i.e., using DEPT as the outer and EMP as 
the inner relation) is cheaper. 

There are two factors that mitigate the seeming 
superiority of FLAT. The first is that there is no hope of 
caching materialized objects. Thus, while FLAT would 
certainly be better than REST or CM, it may be worse 
than CS or CT. The second is a more practical reason. If 
the number of objects in a tuple is large, and/or their 
composition is unpredictable, then flattening is unviable. 
For example, consider Query 1. Since the set and struc- 
ture of queries in EMP.hobbics may change dynamically, 
it is not possible to store the parameters of these objects 
in suitable field(s). 

Techniques for flattening a POSTQUEL query 
parallel various view modifcation algorithms [STON75], 
and their discussion is beyond the scope of this paper. 

4. MODEL 
In order to compare the various algorithms, we 

have constructed opdmizcrs of limited functionalitics 
which gencratc the cheapest plan and its expected cost. 
This cxpcctcd cost is the yardstick used to evaluate the 
corresponding processing strategy. To simplify our 
evaluation task, we have made certain assumptions and 
parametcrized some conditions. Thcsc parameters 
characterize the POSTQUEL query and other system and 

database characteristics. In this section we discuss our 
model in detail. 

4.1. POSTQUEL queries 
We restrict our study to the POSTQUEL qucrics of 

two types: 

retrieve (REL.Procf ield.Ordf ield ,) whcrc 

Ordfieldl is an ordinary field in the target list of the 
POSTQUEL queries in the POSTQUEL field 
REL.Procfield. Ordfieldz is an ordinary attribute of 
REL . In queries of Type 1, all the objects in the POST- 
QUEL field of the selected tuplc of REL need to be 
materialized. In contrast, in queries of Type 2, the 
materialization process can stop as soon as a match is 
found. The relative performance of the algorithms is 
highly dependent on the type of the query involved. 
More complicated queries (deeper and/or more extended 
clauses) are beyond the scope of this paper, and further, 
their behavior is often similar to the simpler ones of our 
choice. 

Apart from the Type, there is one more parameter 
associated with the POSTQUEL queries. For queries of 
Type 1, Selbot is the selectivity of the clause in the 
qualification. In Type 2 queries, Selbot is the selectivity 
of the clause that is used to modify a POSTQUEL object 
in REST. The relative performance of the query 
modilication algorithms (both REST and FLAT) is 
dependent on this parameter. 

4.2. Update Model 
Updates to the underlying database invalidate 

some or all of the objects materialized by the POST- 
QUEL queries. This section discusses the model for 
studying the performance of the caching algorithms in 
the presence of updates. 

4.2.1. Object Invalidation 
When an object is materialized and cached for the 

first time, I-locks (Invalidation locks) arc set on the 
tuples and index intervals read during the execution of 
that object. Updates to the tuples and index intervals 
involve invalidation of all those objects which have I- 
locks on them. Updates do not remove the I-locks set on 
the tuplcs, and hence only the first materialization and 
caching of an object requires the setting of I-locks. How- 
ever, all updates do involve paying the extra cost of 
invalidation over the case where no caching is done. 
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With the passage of time, the number of objects 
that have been materialized and cached at least once 
increases. We make the simplifying assumption that all 
the objects have been cached at least once before we 
begin comparing the pcrformancc (in other words, we 
ignore the transient behavior). Thus the cost of setting 
I-locks does not enter our calculations. 

4.2.2. Query Sequence 

Consider a random sequence of queries, where 
each query is an update with probability Pr(UPDATE) 
and a retrieve with probability 1 - Pr(UPDATE). All 
retrieve queries are POSTQUJZL queries made solely of 
either Type 1 or of Type 2 queries (depending on the 
experiment under consideration). All updates are POST- 
QUEL replace commands (without any extended 
clauses, though) which update a fraction of the tuples in 
the relation(s) touched during the materialization of 
POSTQUEL objects. This fraction is fixed at 0.01 for the 
remainder of the study. The tuples that are updated are 
selcctcd at random. 

The fundamental nature of the caching algorithms 
is best brought out by their avcragc case responses; and 
not the responses to some particular query sequence. 
Therefore, for a fixed set of parameters, we have used 
random query sequences of length hundred, and then 
averaged the behavior over a hundred such sequences. 
The average responses arc fairly stable at this point. 

4.3. Database Structure 

The relations in the database contain the fields 
required to make the objects and the qucrics syntactically 
correct. The indexes on the various fields can be of the 
type Primary (PRIM), Clustered Secondary (C-SEC), 
Non Clustered Secondary (NC-SEC) or non-existent 
(NEXISTJ. In the absence of any index of these types, a 
relation can be accessed through a SEGMENT scan 
[SELI79]. The assumptions of the cost of relational 
access through these indexes (as well as for joins) are the 
same as in [SELI79]. 

The POSTQUEL field contains objectsger tuple 
POSTQUEL objects in a tuple of REL. These cbjects 
are simple selections and projections on a (set of) 
relation(s) such that the POSTQUEL queries of Type 1 
and 2 are syntactically valid. Each object is a single 
relation query containing cxacrly one qualilication 
clause--a selection. Thus its structure is: 

rctricvc (ObjReLOrdf ield 1) where 
ObjRel.Ordf ield3 operator value 

The number of tuples returned by an object is fixed at ten 
for the remainder of this study. (Note that within the 
same column, ObjRel may not bc the same in all the 
objects. For example, EMP.hobbies contains objects with 
ObjRel as SOFTBALL, FOOTBALL and MUSIC.) A 

top down query plan accesses the tuples of REL , and for 
each such tuple, determines the matching tuples of 
ObjRel by materializing (if necessary) the object(s) in 
REL.Procfield. A bottom up plan accesses ObjRel 
before REL . Such a bottom up plan is possible only in a 
flattened query. 

The cost of an object depends on (among other 
things) the index on the attribute in its qualification. This 
index is called Object-Index, and its type determines the 
cost of the objects: 
[l] Easy: These objects have Object-Zndex as C-SEC, 

and typically cost 2-3 page accesses for their 
materialization. 

[2] Hard: These objects have Object-Index as NEX- 
IST, and cost a complete SEGMENT scan for 
materialization. 

A PROC-MZX fraction of the objects in each POST- 
QUEL field are hard, and 1 - PROC-MIX are easy. 
Thus a PROC-MIX near zero represents a majority of 
easy objects, and a PROC-MIX near one, a majority of 
hard objects. 

Use-Fuctor is the expected number of times each 
object is repeated in a column. Thus if there are P dis- 
tinct objects (i.e., no two having the same query-block 
and list-ofparameters) in REL.Procf ield , then 

Use-Factor = I REL I xobjectsger-tuple I P 

In the absence of updates and with limited Size Cache, 
the cachedfractions in CS and CT are in this ratio. 

There is one more parameter of inlerest- 
Flat-Index. This is the index on the fields that store the 
parameters for FLAT. The bottom up plan in FLAT is 
aided by the presence of indexes on these fields. For 
example. a FlatJndex = C-SEC means that there exists 
a clustered secondary index on EMP.dept when it stores 
the parameter $dept-number. In a bottom up query plan 
for the flattened version of Query 2, a tuple e in EMP 
that matches a tuple d in DEPT satisfies the following 
condition: e.dept = “particular-dept-number.” Here 
“particular-dcpt-number” is the value in the field 
d.number. A nested loop/merge join is facilitated by the 
presence of Flat-Index. 

4.4. Parameters of Study 

Table 2 shows the parameters of the study. along with 
their default values. On the basis of some fixed parame- 
ters (not shown above), the size of the database relation 
is about 50 MBytes. 

5. PERFORMANCE RESULTS 
In this Section, the results of the performance 

analysis of the optimizing algorithms is presented. The 
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Query Parameters I 
Name Default 
Type lor2 

Selbot 0.1 
Database Parameters 

Name Default 
objects per tuple 1 

Other Parameters 
Name Default 

Size Cache 10 MBytes 
Pr(UPDATE) 0.2 

Table 2: Paramctcrs of Study 

cost of an algorithm is the estimated cost of the plan it 
generates. The lower this cost, the better the algorithm is. 
We first discuss the cost characteristics of the algorithms 
as functions of some of the important paramcters- 
PROC-MIX, Pr (UPDATE ), Size-Cache and 
Use-Factor. In the accompanying graphs, all costs have 
been normalized such that Cost(CM) = 1 at the smallest 
x coordinate. We next study the behavior of these algo- 
rithms as functions of pairs of these parameters. Finally, 
the effects of the other parameters not included in the list 
above are discussed. 

5.1. Cost of the Objects 
Figure l(a) plots the normalized costs as a function 

of PROC-MIX for queries of Type 1, while Figure l(b) 
does the same for queries of Type 2. Note that 
PROC-MIX is an indicator of the expected cost of 
materialization of the procedural objects. 

5.1.1. Type 1 Queries 
For these types of queries, a top down plan 

involves restricting REL using the qualilication, and then 
executing the objects in the selected tuples to determine 
the target field values. No modilication of the objects (as 
desired in REST) is possible, and hence REST performs 
identically to CM. CT and CS are better than CM for all 
choices of PROC-MIX. Thus caching is a clear winner 
under these circumstances. 

At low PROC-MIX, Ihe extra cost of cache 
lookup is a significant fraction of the total cost. As a 
result, CT performs better than CS, in spite of having a 
lower cachedfraclion . At higher PROC-MIX, the 
lookup cost is negligible, and the higher 

cachedfraction for CS makes it win. 
As mentioned before, the cost of an inner fetch in 

a top down, nested loop join in FLAT is the same as the 
cost of a materialization in REST (and hence, the same 
as CM). Thus if PROC-MIX is low, then this plan is the 
cheapest for FLAT. Since this plan is identical to CM’s, 
FLAT follows the curve of CM. When PROC-MIX 
becomes sufficiently large, nested loop join is no longer 
the cheapest, and flat switches to merge scan, while 
maintaining a top down access of relations. For higher 
values of PROC-MIX, it abandons the top down 
approach altogether, and does a bottom up query evalua- 
tion. Under these circumstances, the cost of FLAT 
becomes independent of the cost of the objects. 

5.1.2. Type 2 Queries 
In a flattened version of a query of Type 2, there is 

a restriction on ObjRel. This, together with the presence 
of a default secondary index on REL.Procfield 
(Flat-Index = NC-SEC), makes the bottom up plan the 
best for a FLAT query. Since this plan is unaffected by 
PROC MIX, the curve for FLAT is a horizontal line, 
which% substantially lower than the other curves. Thus 
FLAT is definitely superior for queries of Type 2. espe- 
cially for high PROC MIX. CS and CT show a behavior 
similar to Type 1 queries. 

For queries of Type 2, REST is always cheaper 
than CM. This is primarily due to the fact that the cost of 
materializing modified objects is never more than that of 
the corresponding objects. The extra clause (a selection 
on ObjRel.Ordf ieldl) helps in reducing the cost of 
materialization if an index exists on ObjRel.Ordf ield 1, 
and if the access of ObjRel through such an index is 
cheaper than the other indexes. The default parameters 
provide for an NC-SEC on ObjRel.Ordfieldl. At low 
PROC-MIX, a scan of ObjRel through this index is not 
the cheapest, but beyond a certain PROC-MIX, this is 
the best plan. From the figure we note that for 
PROC-MIX > 0.1, materialization of a modified object 
is cheaper than the corresponding object, and is indepen- 
dent of PROC-MIX. For very high PROC-MIX, REST 
is even better than the caching algorithms. 

5.2. Updates 
Figure 2 plots the curves for Type 1 query as a 

function of Pr(UPDATE). It can be seen that as 
Pr (UPDATE) increases, the two caching algorithms 
deteriorate. With an increase in the frequency of 
updates, there is an increase in the number of objects 
being invalidated. This has a two-fold effect. First, 
invalidation costs increase. Second, a retrieve query sees 
fewer cached objects on the average; and hence has to do 
more materialization, and pay a higher processing cost. 

An update in a query sequence invalidates a higher 
number of cached objects if they are being cached in 
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tuples compared to when they are cached separately (in 
an approximate ratio of Use-Factor ). As a consequence, 
updates penalize CT more than CS. 

5.3. Size of the Cache 
According to the parameters, CS requires a cache 

space of = 12.5 MBytes to achieve a cachedfraction of 
one. At sizes more than this, only CT benelits. Figure 3 
plots the cost characteristics of the two caching algo- 
rithms and CM as a function of Size Cache. The curves 
for REST and FLAT are omitted forthe sake of clarity. 
CT is better than CS for either very small Size-Cache 
(where the performance penalties of extra lookup are 
more than the extra caching benelits of CS); or for a very 
large Size-Cache (= 22 Mbytes), where the 
cachedfraction in CT is close to one. 

5.4. Level of Sharing 
An increase in Use-Factor has a two-fold effect 

on the cost of CS. First, for a given Size-Cache, the 
cachedfraction increases. Second, an update causes a 
lower number of invalidations. Thus it is obvious that as 
Use-Factor increases, CS would be more and more 
appealing. Figure 4 plots ‘OS’ CT 7I7d&i as a function of the 
Use-Factor for the four possible choices of PROC-MIX 
and query type. The significant point of note is the earlier 
flattening in low PROC-MIX queries. Thus for inexpen- 
sive objects, CT gives a comparable performance to CS, 
for all values of Use-Factor. 

We have seen various reasons why CT, in general, 
performs worse than CS. .In Figure 5 we attempt to cap- 
ture these reasons for a high PROC-MIX query of Type 

1. Note how the ratio falls as Size-Cache is raised to 25 
MBytes (which is sufficient to cache all objects in CT). 
Even with this Size-Cache, the curve of 
Cost(CT)/Cost(CS) is above one. The reason for this is 
the extra penalties of updates in CT. When 
Pr (UPDATE) is made zero (and Size-Cache is still 25 
MBytes), the ratio of costs drops to below one. This 
curve represents the ideal conditions for a caching 
algorithm-enough cache space, and no updates. Under 
these circumstances, CT is definitely superior. 

From now on, we restrict ourselves to 
Size-Cache I 1OMBytes. This is in keeping with our 
assumption of a bounded cache space. The larger sizes 
which we encountered so far were used only to bring out 
the fundamental differences in the algorithms. 

5.5. Regions of Optimal Performance 
We now turn to the behavior of the algorithms as 

functions of pairs of the above parameters by plotting the 
regions where each algorithm performs the best. 

In Figures 6(a) and 6(b), the regions as functions 
of Pr (UPDATE) and Use-Factor are shown for queries 
of Type 1. It is clear that for a sufficiently high 
Pr (UPDATE ), the caching algorithms would prove to be 
non-competitive. Referring to Figure 6(a), consider a 
horizontal line drawn through Use-Factor = 2. CT is the 
best algorithm until Pr(UPDATE) = 0.4. Then CS 
becomes the best. As Pr (UPDATE) increases further, 
even CS fails to be better than the other algorithms. 
Note that for Use-Factor < 1.5, CS never wins. 

When the objects are expensive (Figure 6(b)), CT 
is never preferred. CS is the best for high Use Factor 
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and/or low Pr (UPDATE ). From both the figures, it is 
clear that if the Use-Factor > 100, CS is extremely 
competitive unless Pr (UPDATE) = 1. 

Figure 7 plots the regions as a function of the two 
most important parameters for the caching algorithms- 
Pr(UPDATE) and Size Cache. It can be seen that for 
low Pr(UPDATE), CT% better than CS for low cache 
sizes. Taking a vertical slice, (say at 
Size-Cache = 10 MBytes), for Pr (UPDATE) c 0.4, CT 
is the best, for 0.4 < Pr (UPDATE) c 0.6, CS is the best, 
and for Pr (UPDATE) > 0.6, the non-caching algorithms 
perform the best. This result is similar to what was 
obtained in Figure 6(a) along the line Usefactor = 2. 

The next figure (Figure 8) captures the behavior as 
function of PROC-MIX and Pr (UPDATE). In the upper 
left comer, note how an increase in PROC MIX makes 
CS more and more competitive. This is-because as 
PROC-MIX increases, so dots the cost of materializa- 
tion. Consequently, the benefits of caching go up. This 
continues until the bottom up algorithm for FLAT beats 
any caching approach (also see Figure la). 

5.6. Other Parameters 
In this subsection we briefly discuss the other 

parameters of our study. 

5.6.1. Number of Objects per Tuple 
FLAT has been shown to be distinctly superior in 

case of queries of Type 2 and under some circumstances 
for queries of Type 1. This is partly a result of the default 

choice of objectsger-tuple = 1. We now discuss the 
implications of objectsger-zuple > 1 on FLAT. Con- 
sider the following schema: 
PAIRS (seed = i4, partners = PQSTQUEL) 
h4EN (seed = i4, name = ~10, country = ~10) 
WOMEN (seed = i4, name = ~10, country = ~10) 
which describes the players taking part in a tennis tour- 
nament. PAIRS contains the data about the mixed double 
tournament, and MEN and WOMEN about the singles 
tournament for men and women respectively. 
PAIRS .partners contains two queries of the form: 

retrieve (MENall) where 
MEN.name = $paraml 

retrieve (WOMEN.all) where 
WOMEN.name = $param2 

The PQSTQUEL query 
retrieve (PAIRS.seed) where 
PAIRS.partner.seed < 5 

returns the seeds of the mixed double teams where either 
partner has a seed better than 5 in his/her respective tour- 
nament. Assume that we store the parameters of these 
objects (instead of the full queries) in the fields 
PAIRS.male and PAIRS.female. We have seen before 
that FLAT performs similar to REST if it chooses a top 
down approach. This holds even if 
objectsger-tuple > 1, as is in this case. 

In contrast, in a bottom up plan (i.e., accessing 
MEN and WOMEN before PAIRS), FLAT needs to 
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. ------------------.----------.----3---------------------------~~-----~ 
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Figure 7: Regions of best performance Figure 8: Regions of best performance 
as functions of Sire-Cache and Pr(UPDATE) as functions of PROC-MIX and Pr(UPDATE) 

(Type 1 Queries, PROC~MIX=O.OOOl) (Type 1 Queries) 
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execute (an equivalent of) the following two queries: 
retrieve (PAIRS.seed) where 
PAIRS.male = MEN.name and 
MEN.seed < 5 

retrieve (PAIRSseed) where 
PAIRS.female = WOMENname and 
WOMEN.seed < 5 

Assuming the availability of indexes on PAIRS.male and 
PAIRS.female, the best plan for each subquery is bottom 
up. If the total cost of these two subqueries is more than 
a top down plan, the latter is chosen. Otherwise, FLAT 
chooses the option of executing these two subqucries. 

In general, for low objectsger-tuple , a sequence 
of subqueries performing an equivalent task would be 
cheaper. As objectsger-tuple increases (and so does 
the number of subqueries), the bottom up approach is no 
longer the best, and then FLAT switches to top down and 
performs similar to REST. This is confirmed in Figure 9. 

5.6.2. Flat Index 
Figure 10 plots the curve for FLAT and CM as a 

function of Selbot for different choices of Fiat Index. 
In queries of Type 2, FLAT has a bottom up pl6 if the 
clause on ObjRel is highly selective. As this clause 
becomes less selective, the cost of the bottom up plan 
increases, and after a point FLAT switches to top down. 
As we have seen before, a Flat-Index helps lower the 
cost of a bottom up plan. Consequently, FLAT maintains 

a competitive edge till a high value of Selbot if 
Flat Index is C-SEC. On the other hand, the absence of 
this index makes FLAT switch to a top down plan at low 
values of Selbot . 

As objectsger-tuple increase, a Flat Index is 
needed on each field that stores a parameter, iFFLAT is 
to perform better than other algorithms. 

6. CONCLUSIONS 
We have shown that the caching algorithms are 

competitive in situations of low to moderate update pro- 
bability. In this, our conclusions are similar to 
lFIANS881. Moreover, it has been demonstrated that 
separate caching is better than caching in tuples under 
most circumstances. This is especially true when the 
cache size is limited and Use-Factor is high because 
separate caching is able to achieve a higher 
cachedfraction. Furthermore, updates penalize CT 
more than they do CS. There are two factors that may 
mitigate this superiority of CS. First, if the objects are 
cheap, then CS would suffer because of the extra lookup 
costs. The second factor is the implementation problems 
of CS. We have assumed the availability of “hashing” 
into a cache relation. As the objects become more com- 
plex, so would the hashing strategy. Since our model 
does not take this into account, its effects have not 
entered the picture. 

In cases where the number of objects in a tuple is 
near one and their composition is predictable and easily 
parameterizable, it has been further shown that flattening 

0.0 ! 1 
1 2 3 4 5 6 

objectsger-tuple 

Figure 9: Effect of objectsger-tuple 

(Query Type 2, PROC MIX =O.OOOl) 

Selbot 

Figure 10: Effect of Flat_lndex on FLAT 
(Query Type 2, PROC-MIX =O.OOOl) 
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is a good option. This is especially true if the query is 
best solved by a bottom up approach. As the number of 
objects per tuple increases, FLAT loses its competitive 
edge. To emphasize again, flattening is not possible 
when the composition of the objects is unpredictable. 

It is clear that CM is the preferred alternative in 
presence of frequent updates, and where flattening is not 
viable. REST is never worse than CM, but its marginal 
utility is often negligible Moreover, if the cost of gen- 
erating the plans (which has not cntercd our picture) is 
also a criterion, then REST would perform worst than it 
does in our studies. 

It may seem that caching and restricted materiali- 
zation are orthogonal (and thus the two may be applied 
together in a strategy). However, it can be shown that 
caching benefits restricted materialization only within a 
query (Section 3.3) with inter query bcnclits being highly 
unlikely. We consider the latter as much more important, 
and have therefore not examined this possibility. 

A real query optimizer will, in general, be based 
on one or more of the above strategies. The actual 
choice(s) of the strategies will depend strongly on the 
factors discussed in this study. It is necessary to deter- 
mine these parameters before such a choice can be made. 

Though we have discussed the optimizing algo- 
rithms in a specific environment, the discussion on the 
various strategies should extend to any system support- 
ing procedural objects. 
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