
A Performance Study of Query Optimization Algorithms
on a Database System Supporting Procedures t

Anant Jhingran
EECS Department

University of California, Berkeley

Abstract relational model.
POSTGRES allows fields of a relation to have pro-

cedural (executable) objects. POSTQUEL is the query
language supporting access to these fields, and in this
paper we consider the optimizing process for such
queries. The simplest algorithm for optimization assumes
that the procedural objects are executed in full, whenever
needed. As a refinement to this basic process, we pro-
pose an algorithm wherein cost savings are achieved by
modifying the procedural queries before executing them.
In another direction of refinement, we consider the cach-
ing of the materialized results. Two caching strategies-
caching in tuples, and separate caching-are considered.
The fifth algorithm is flattening, where a POSTQUEL
query is modified into an equivalent flat query, and then
optimized through a traditional optimizer. We study the
relative performances of these algorithms under varying
conditions and parameters. Our results show that caching
wins when updates do not occur with a high frequency,
and that separate caching is, in general, better than cach-
ing in tuples. We further show that when the composition
of the objects in the procedural field is predictable and
parameterizable, flattening is a good option.

However, a number of recent proposals which
enhance Codd’s [CODD70] model require the
modification of the existing algorithms to optimize the
new set of queries that were not possible before. In this
paper we study the query optimization problem in one
such extended relational model, namely POSTGRES.
We present a number of algorithms for optimization of
queries in such an environment, and do a performance
study of each.

The rest of the paper is organized as follows. In
Section 2 we present the extensions in POSTGRES
relevant to our study. We also discuss the previous work
on optimization of queries on procedural objects. The
optimizing paradigm and the details of the algorithms
under consideration are then discussed in Section 3. In
Section 4 we present the framework in which we com-
pare the various algorithms. Section 5 presents the
results of our study. Finally, this paper ends with the
conclusions on the viability of each algorithm.

2. POSTGRES PROCEDURES

1. INTRODUCTION
Query optimization in relational database systems

has been a traditional research problem. A number of
algorithms for optimizing queries have been proposed
[SELI79, WONG761. They arc based on a variety of
paradigms [JARK841, and work well for the traditional

t This research was sponsored by tic Dcfcnse Advanced
Research Project Agency (DoD), Arpa Order No. 4781, monitored by
Space and Naval Warfare Systems Command under Contract N00039-
84-c-0089.

The relational model has been found deficient in
many areas of database applications (e.g., knowledge
management [ZANI85], and engineering applications
[STON83]). As a result, there have been several propo-
sals to enhance the relational model. These extensions
either address specihc deficiencies (e.g., ADT INGRES
[STON83]), or a broad spectrum of inadequacies (e.g.,
Starburst, EXODUS, GENESIS, DASDBS and
POSTGRES [lEEE87]).

POSTGRES [STON86], a new relational database
system currently being developed at Berkeley, extends
the relational model in several ways. The one relevant to
this study is the addition of procedural data types. Thus,
in addition to the standard data types permitted by all
systems (integer, real, character etc.) and abstract data
types permitted by some systems [STON83], fields of the
relations in POSTGRES can contain procedural objects.

Permission to copy without fee alI or Put of thin mat&l is
grPntedprovidsdthrtthecopieruenotmrdear~~for
direct commucid advatage, the VLDB cqyxight notice d
the title of the ~blication ad its date qpca, and notice ir giva~
thatcopyingisbypermissionoftheVuyLargeDataBus
Endowment. To copy othawisc, or to republish, requires a fee
d/orspccialpcrmissionfmmthcEndowment.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 88

Procedural objects are executable programming
constructs. In this paper we restrict ourselves to those
procedures that are queries on the underlying database.
The fields containing such queries are called POST-
QUEL fields. The presence of procedural objects lends a

high degree of flexibility to the design of a database
schema and allows many complex problems (e.g.,
storage of query plans, representation of hierarchical
information, and sharing of subobjects by complex
objects) to be naturally addressed [STON87].

Consider the following relations in a database
schema:
DEPT (number = ~10, name = ~10, mgr = ~10)
EMP (name = ~10, hobbies = POSTQUEL,

dept = PQSTQUEL)
SOFTBALL (name = ~10, day = ~10, position = ~10)
FOOTBALL (name = ~10, day = ~10, position = ~10)
MUSIC (name = ~10, instrument = c10)
The field day in SOFTBALL and FOOTBALL refers to
the day the person plays that game. Each employee has
zero or more hobbies. The field EMP.hobbies conse-
quently contains up to three POSTQUEL queries, one for
each hobby. Each employee belongs to exactly one
clliartment. For example, the relation EMP may look

name
John

hobbies

retrieve (SOFTBALL.day.
SOFl’BALLqosition)

where SOFTBALLname = “John”

retrieve (FOOTBALL.day,
FOOTBALL.position)

where FOOTBALL.namc = “John”

dept

r&eve @EPT.all)
where
DEPT.munber = 9

Mary retrieve (SOFTBALLday, retrieve @BpT.aB)
SOFTBALL.positicm) where

when: SORBALL.name = “Mary” DEPT.number = 8

retrieve (MUSIC.instmment)
where MUSIC.name = “Mary”

Table 1 gives a set of queries which would be used
to illustrate the optimizing algorithms.

2 retrieve (BMP.name) where
EMP.dept.name = “TOY”

Table 1: Example PQSTQUEL queries
Query 1 retrieves the days John plays something, and
query 2 retrieves the names of the cmployecs who work
in the “TOY” dcpartmcnt.

The PQSTQUEL fields can contain arbitrary
PQSTQUEL queries. To distinguish between the POST-
QUEL queries present in the procedural fields (such as
those in EMP.hobbics) and the queries used to access
these fields (such as those in Table l), we refer to the
former as objects and the latter as queries.

POSTQUEL extends QUEL in many ways
[ROWE87]. The extension which deals with the pro-
cedural objects is the multiple dot notation (like GEM
lZANI831). The execution of the queries in the pro-
cedural fields in a multiple dot notation is implicit. For
example, in Query 1, the target field EMP.hobbies.day
can only be determined after the queries in EMP.hobbies
are executed.

The depth of a field is one less than the number of
dots in its multiple dot representation. Thus EMP.name
is at depth zero, and EMP.hobbies.day is at depth one.
Clauses containing fields with depth greater than zero are
called extended clauses. The rest are called ordinary
clauses.

The two PQSTQUEL fields in EMP are fundamen-
tally different in terms of the nature of the objects they
contain. EMP.hobbies contains objects of unpredictable
composition. For example, as the database evolves,
employees may take up new hobbies, and give up old
ones. As a result, the set of queries that occupy
EMP.hobbies may change dynamically, and can only be
determined after each tuple in EMP is fetched and exam-
ined. In contrast, the composition of objects in EMP.dept
is fixed-each tuple of EMP contains exactly one object
of the form:

retrieve (DEPT.all) where
DEPT.number = $dept-number

where $dept-number may differ across the tuples.
In the case of EMP.dept, it makes sense to store

only the parameter $dept-number instead of the entire
POSTQUEL query. The relation EMP would thus con-
tain:

name
John

hobbies dept

retrieve (SOFTBALL.day. SOFTBALLposition) 9

where SOFTBALLname = “John”

retrieve (FOOTBALLday. FOOTBALLposition)
where FOOTBALL.name = “John”

Mary retrieve (SOFlBALL.day. SOFTBALL.position) 8

where SOFTBALLname = “Mary”

retrieve (MUSIC.instmment)
where MUSIC.name = “Mary”

Now consider Query 2. It can be converted into the fol-
lowing “flattened” query:

retrieve (EMP.name) where
EMP.dept = DEPT.number and
DEPT.name = “TOY”

This sort of query modification, which removes the
extended clauses in a PQSTQUEL query, is generally
possible if the structure of the objects in a POSTQUEL
field is the same across all the tuples. Such query
modilication is referred to as Jlaftening. It is similar in,

89

concept to the flattening of SQL queries introduced in
[KIM82].

2.1. Previous Work
Optimization of queries on procedural objects has

been studied from a perspective different from ours in
[SELL871 and [HANS88]. [SELL871 is an overview of
the preliminary ideas on optimizing POSTQUEL
queries. It discusses an optimizing strategy for POST-
QUEL queries based on the decomposition and tuple
substitution strategy in [WONG76]. This optimizer post-
pones the evaluation of the extended clauses to the very
end of the query plan. Furthermore, it is based on a
greedy approach. Consequently, the plans that it pro-
duces may be suboptimal. In contrast, our optimization
strategies are based on an exhaustive search approach as
used in System R, with the extended clauses integrated
into such a framework. We have shown the viability and
advantages of such an approach in [JHIN87].

A significant part of [SELL871 is devoted to dis-
cussions on the caching strategies for materialized
objects. Both finite and infinite cache space are con-
sidered. However, the discussion is exploratory in nature
and fails to reach specific conclusions.

Hanson [HANS881 studies the relative pcrfor-
mance of three algorithms for dealing with proceduraJ
fields-Always Recompute, Cache and Invalidate, and
Update Cache. The last two algorithms differ in the ways
in which the cached set of objects is kept current. An ela-
borate parameterized model is presented, which is then
used to compare the three algorithms. The study
assumes the availability of int’inite cache space and con-
cludes that caching strategies win if the probability of
update to the cached objects is low.

Our study has points in common with Hanson’s,
but is more extensive in many aspects. We study two
Cache and Invalidate strategies (as opposed to just one in
[HANS88]), and make the realistic assumption of
bounded cache space. Furthermore, we discuss the actual
query optimization problem. In [HANS881 the objective
function for the optimization algorithms is the expected
cost of accessing one procedural object. A similar
assumption is made in [SELL871 when the caching alter-
natives are discuss& We, however, have the objective
function as the cost of an entire POSTQUEL query,
which may involve processing many objects. In particu-
lar, we identify two different classes of POSTQUEL
queries which result in very different algorithm perfor-
mance. We also discuss query modification strategies
which reduce query costs substantially under some cir-
cumstances.

3. OPI’IMIZATION ALGORITHMS
We have developed five basic algorithms for

optimizing POSTQUEL queries. These algorithms treat
ordinary clauses similarly; they differ only in their han-
dling of the extended clauses. Each algorithm assumes a
different query processing strategy. Accordingly, the dis-
cussion of the optimization algorithms is also a discus-
sion of the corresponding query processing strategies.

3.1. The Basic Strategy
The System R query optimizer looks through most

of the viable query plans and estimates the cost of each.
It then selects the plan with the least estimated cost
[SELI79]. To do so, it needs the estimates of the selec-
rivities of the clauses in the query. The cost of a plan is a
function of the selectivities and the costs of relational
accesses and joins.

The functions used for sclectivities and costs must
be modified in order to be applicable to extended clauses
[JHIN87]. To discover if a tuple satislies an extended
clause may involve execution of one or more procedural
objects. Determining the cost and selectivity of this pro-
cess requires some statistical information about the
queries in the procedural fields. The execution of pro-
cedural objects is also termed as materializarion.

Ordinary clauses can be used to reduce the cost of
relational accesses if suitable indexes are available
[SELI79]. In other words, tuples not satisfying ordinary
clause(s) may be filtered out by using a suitable access
path. The same is not true for extended clauses, which
can generally be tested for only after the tuples have
been fetched. For example, while an index on EMP.name
would help in Query 1 (where one may fetch only the
tuples satisfying the clause), the clause in Query 2 can-
not act as a filter for accessing tuples of EMP. For
optimization purposes, extended clauses can be treated
like ordinary clauses, provided the modified cost and
selectivity functions are used, and the above limitation
(of when extended clauses can be tested for) is kept in
mind. All our algorithms (except FLAT) use this
approach, but differ in their cost functions for evaluating
extended clauses. They use an exhaustive search stra-
tegy, and evaluate the extended clauses from left to right.
For example, in Query 2 (having the extended clause
Eh@.dept.name = “TOY”), a plan would involve fctch-
ing a tuple of EMP and materializing the object in the
dept field of that tuple to determine the matching tuple of
DEPT. In case the extended clause is deeper, this process
would continue further.

The first algorithm, Complete Materiaiizafion with
No Caching (CM) is the simplest one. CM assumes that
the cost of executing an object has to be paid in full
every time materialization is needed. There is no concept
of storing these materialized results for future use. For
example, in Query 2, the cost of the plan in CM includes

90

the cost of fetching the tuples of EMP, the cost of exe-
cuting the procedural object in each of these tuples, and
the cost of checking for each of these materializations if
the result has the name field as “TOY.”

3.2. Restricted Materialization (REST)
Materialization returns all the subobjects of a pro-

cedural object. Sometimes we are not interested in the
entire relation returned by the materialization of a POST-
QUEL object; a subset of the tuples might suflice. Under
these circumstances, it is possible that cost savings may
be achieved by modifying the POSTQUEL object(s)
before executing them so that they only return the tuples
of interest. In Query 2, the plan in REST pays the cost
of fetching the tuplcs of EMP, and for each tuple e in
EMP, the cost of the following resrricted materialization:

retrieve (DEPT.all) where
DEPT.number = “emp-dcpt”
and DEPT.name = “TOY”

where “emp-dept” is the actual value of the parameter
$dept-number in e. Note that under such a plan, there is
no need to check if the tuplc(s) returned by the (res-
tricted) materialization have their name field(s) as
“TOY.”

It is thus possible that the extended clause in a
query can be used to modify some or all the objects that
riced to be materialized. REST checks if such an object
modification is semantically valid. If this is the case, the
plan includes restricted materialization of these objects.
Otherwise, it is similar to CM in all aspects.

3.3. Caching Strategies
The two algorithms mentioned above keep no his-

tory. Consider the case where the employees “Mary”
and “John” belong to the same department, and there-
fore contain identical objects in their corresponding dept
field. Moreover, assume that the tuple for “John” is
accessed before that of “Mary” in answering Query 2.
The POSTQUEL object in John’s tuplc will be executed
first. If the result of this query execution could be stored,
then the execution of the object in Mary’s tuple could be
avoided. It is thus clear that caching of mat.erialized
objects might help in reducing the cost of executing a
POSTQUEL query.

There is another important bcnelit of caching.
Consider a sequence of queries, Q 1, . . . , Qn, which are
not submitted as a batch (and hence global query optimi-
zation algorithms such as in [SELL881 do not work). The
processing of any query would involve materializing
some objects. It is possible that the execution of a query
Qi can utilize one or more of the objects materialized by
the queries (Qi:i ci). Of course, updates will invalidate
materialized objects, but where they arc infrcqucnt,
caching is likely to be bcnclicial [SELL87, STON87].

Caching strategies can be broadly classified into
result caching and plan caching. In this study, only the
former is considered since our model does not take into
account the cost of generating a plan. Even result cach-
ing can be accomplished in various ways. Here we dis-
cuss two result caching strategies, which lead to two dif-
ferent optimizing algorithms. Both these algorithms
materialize an object only if its current version does not
exist in cache. In all other aspects, they are similar to
CM.

3.3.1. Complete Materialization-Cache Separately
(W

In CS, the materialized objects are cached in a
separate cache relation on the disk. Each object in the
database has a unique-id which is a function of the
query_block (the structure of the object), and
list-ofgarameters (the set of parameters that uniquely
identify a particular object within the objects that have
the same query-block). The unique-id is the input to a
hash function that determines the slot in the cache rela-
tion where the object should be cached.

Whenever an object needs to be evaluated, CS
determines its unique-id and then hashes into cache. If a
current version of the materialized object is found, it is
retrieved and the cost of executing the object is avoided.
If such a version does not exist, the object is materialized
and stored in cache if space permits. Note that under
these assumptions, one page access is required to cheek
if a result is cached. The number of page accesses to
retrieve a cached relation, of course, depends on its size.

3.3.2. Complete Materialization-cache in Tuples
(CT)

In this approach, the materialized objects are
stored in the tuples themselves. When the results are
small and there is some free space in each page, the
materialized result can be cached in the same page as the
tuple containing the object. As a result, if a small object
is cached, it can often be retrieved without paying any
extra cost of I/O. For large objects, WC make the
assumption that the first page of the cached object is
stored clustered with the tuple. Under these assump-
tions, it follows that the number of page accesses
required to retrieve a cached object in CT is one less than
the number of accesses required in CS. We refer to the
extra cost in CS as the cost of cache lookup. Note that in
CS, this cost has to be paid cvcn if the object is not
cached.

On the other hand, if the fraction of all objects that
are cached is cachedfraction, then CT may need to
cache many more objects (and hence require much more
space) to achicvc the same cachedfracfion as CS. This
happens because objects may be repeated across tuples.
For example, consider the objects in EMP.dept. If there

91

are 100,000 employees, and 500 dcpartmcnts, then to
achieve a cachedfraction equal to one, CS would need
to cache 500 objects. whereas CT would need 100,000.

3.4. Flattening (FLAT)
Flattening as a means of evaluating a POSTQUEL

query has been discussed in Section 2. A flattened ver-
sion of a POSTQUEL query can be passed through a
traditional optimizer and a plan gencratcd. This plan can
be no worse than the plan of CM and REST. The other
algorithms evaluate an extended clause in a top down
approach (i.e., from left to right). This order of relational
accesses is just one of the many options available in
FLAT query. If the other options are cheaper, then
FLAT would do better.

Consider Query 2, and its flattened version:
retrieve (EMP.name) where
EMP.dcpt = DEPTnumber and
DEPT.name = “TOY”

The other algorithms pick a tuple of the EMP relation,
and for each tuple, fetch the “matching” tuples of
DEPT. This is equivalent to a nested loop join in a FLAT
strategy with EMP as the outer relation, and DEPT as the
inner relation. The cost of an inner fetch in FLAT
corresponds exactly to the cost of a (resuictcd) materiali-
zation in REST. FLAT is likely to win if a merge join
(i.e., join after sorting EMP and DEPT on the fields
EMP.dcpt and DEPT.numbcr respectively), or a bottom
up evaluation (i.e., using DEPT as the outer and EMP as
the inner relation) is cheaper.

There are two factors that mitigate the seeming
superiority of FLAT. The first is that there is no hope of
caching materialized objects. Thus, while FLAT would
certainly be better than REST or CM, it may be worse
than CS or CT. The second is a more practical reason. If
the number of objects in a tuple is large, and/or their
composition is unpredictable, then flattening is unviable.
For example, consider Query 1. Since the set and struc-
ture of queries in EMP.hobbics may change dynamically,
it is not possible to store the parameters of these objects
in suitable field(s).

Techniques for flattening a POSTQUEL query
parallel various view modifcation algorithms [STON75],
and their discussion is beyond the scope of this paper.

4. MODEL
In order to compare the various algorithms, we

have constructed opdmizcrs of limited functionalitics
which gencratc the cheapest plan and its expected cost.
This cxpcctcd cost is the yardstick used to evaluate the
corresponding processing strategy. To simplify our
evaluation task, we have made certain assumptions and
parametcrized some conditions. Thcsc parameters
characterize the POSTQUEL query and other system and

database characteristics. In this section we discuss our
model in detail.

4.1. POSTQUEL queries
We restrict our study to the POSTQUEL qucrics of

two types:

retrieve (REL.Procf ield.Ordf ield ,) whcrc

Ordfieldl is an ordinary field in the target list of the
POSTQUEL queries in the POSTQUEL field
REL.Procfield. Ordfieldz is an ordinary attribute of
REL . In queries of Type 1, all the objects in the POST-
QUEL field of the selected tuplc of REL need to be
materialized. In contrast, in queries of Type 2, the
materialization process can stop as soon as a match is
found. The relative performance of the algorithms is
highly dependent on the type of the query involved.
More complicated queries (deeper and/or more extended
clauses) are beyond the scope of this paper, and further,
their behavior is often similar to the simpler ones of our
choice.

Apart from the Type, there is one more parameter
associated with the POSTQUEL queries. For queries of
Type 1, Selbot is the selectivity of the clause in the
qualification. In Type 2 queries, Selbot is the selectivity
of the clause that is used to modify a POSTQUEL object
in REST. The relative performance of the query
modilication algorithms (both REST and FLAT) is
dependent on this parameter.

4.2. Update Model
Updates to the underlying database invalidate

some or all of the objects materialized by the POST-
QUEL queries. This section discusses the model for
studying the performance of the caching algorithms in
the presence of updates.

4.2.1. Object Invalidation
When an object is materialized and cached for the

first time, I-locks (Invalidation locks) arc set on the
tuples and index intervals read during the execution of
that object. Updates to the tuples and index intervals
involve invalidation of all those objects which have I-
locks on them. Updates do not remove the I-locks set on
the tuplcs, and hence only the first materialization and
caching of an object requires the setting of I-locks. How-
ever, all updates do involve paying the extra cost of
invalidation over the case where no caching is done.

92

With the passage of time, the number of objects
that have been materialized and cached at least once
increases. We make the simplifying assumption that all
the objects have been cached at least once before we
begin comparing the pcrformancc (in other words, we
ignore the transient behavior). Thus the cost of setting
I-locks does not enter our calculations.

4.2.2. Query Sequence

Consider a random sequence of queries, where
each query is an update with probability Pr(UPDATE)
and a retrieve with probability 1 - Pr(UPDATE). All
retrieve queries are POSTQUJZL queries made solely of
either Type 1 or of Type 2 queries (depending on the
experiment under consideration). All updates are POST-
QUEL replace commands (without any extended
clauses, though) which update a fraction of the tuples in
the relation(s) touched during the materialization of
POSTQUEL objects. This fraction is fixed at 0.01 for the
remainder of the study. The tuples that are updated are
selcctcd at random.

The fundamental nature of the caching algorithms
is best brought out by their avcragc case responses; and
not the responses to some particular query sequence.
Therefore, for a fixed set of parameters, we have used
random query sequences of length hundred, and then
averaged the behavior over a hundred such sequences.
The average responses arc fairly stable at this point.

4.3. Database Structure

The relations in the database contain the fields
required to make the objects and the qucrics syntactically
correct. The indexes on the various fields can be of the
type Primary (PRIM), Clustered Secondary (C-SEC),
Non Clustered Secondary (NC-SEC) or non-existent
(NEXISTJ. In the absence of any index of these types, a
relation can be accessed through a SEGMENT scan
[SELI79]. The assumptions of the cost of relational
access through these indexes (as well as for joins) are the
same as in [SELI79].

The POSTQUEL field contains objectsger tuple
POSTQUEL objects in a tuple of REL. These cbjects
are simple selections and projections on a (set of)
relation(s) such that the POSTQUEL queries of Type 1
and 2 are syntactically valid. Each object is a single
relation query containing cxacrly one qualilication
clause--a selection. Thus its structure is:

rctricvc (ObjReLOrdf ield 1) where
ObjRel.Ordf ield3 operator value

The number of tuples returned by an object is fixed at ten
for the remainder of this study. (Note that within the
same column, ObjRel may not bc the same in all the
objects. For example, EMP.hobbies contains objects with
ObjRel as SOFTBALL, FOOTBALL and MUSIC.) A

top down query plan accesses the tuples of REL , and for
each such tuple, determines the matching tuples of
ObjRel by materializing (if necessary) the object(s) in
REL.Procfield. A bottom up plan accesses ObjRel
before REL . Such a bottom up plan is possible only in a
flattened query.

The cost of an object depends on (among other
things) the index on the attribute in its qualification. This
index is called Object-Index, and its type determines the
cost of the objects:
[l] Easy: These objects have Object-Zndex as C-SEC,

and typically cost 2-3 page accesses for their
materialization.

[2] Hard: These objects have Object-Index as NEX-
IST, and cost a complete SEGMENT scan for
materialization.

A PROC-MZX fraction of the objects in each POST-
QUEL field are hard, and 1 - PROC-MIX are easy.
Thus a PROC-MIX near zero represents a majority of
easy objects, and a PROC-MIX near one, a majority of
hard objects.

Use-Fuctor is the expected number of times each
object is repeated in a column. Thus if there are P dis-
tinct objects (i.e., no two having the same query-block
and list-ofparameters) in REL.Procf ield , then

Use-Factor = I REL I xobjectsger-tuple I P

In the absence of updates and with limited Size Cache,
the cachedfractions in CS and CT are in this ratio.

There is one more parameter of inlerest-
Flat-Index. This is the index on the fields that store the
parameters for FLAT. The bottom up plan in FLAT is
aided by the presence of indexes on these fields. For
example. a FlatJndex = C-SEC means that there exists
a clustered secondary index on EMP.dept when it stores
the parameter $dept-number. In a bottom up query plan
for the flattened version of Query 2, a tuple e in EMP
that matches a tuple d in DEPT satisfies the following
condition: e.dept = “particular-dept-number.” Here
“particular-dcpt-number” is the value in the field
d.number. A nested loop/merge join is facilitated by the
presence of Flat-Index.

4.4. Parameters of Study

Table 2 shows the parameters of the study. along with
their default values. On the basis of some fixed parame-
ters (not shown above), the size of the database relation
is about 50 MBytes.

5. PERFORMANCE RESULTS
In this Section, the results of the performance

analysis of the optimizing algorithms is presented. The

93

Query Parameters I
Name Default
Type lor2

Selbot 0.1
Database Parameters

Name Default
objects per tuple 1

Other Parameters
Name Default

Size Cache 10 MBytes
Pr(UPDATE) 0.2

Table 2: Paramctcrs of Study

cost of an algorithm is the estimated cost of the plan it
generates. The lower this cost, the better the algorithm is.
We first discuss the cost characteristics of the algorithms
as functions of some of the important paramcters-
PROC-MIX, Pr (UPDATE), Size-Cache and
Use-Factor. In the accompanying graphs, all costs have
been normalized such that Cost(CM) = 1 at the smallest
x coordinate. We next study the behavior of these algo-
rithms as functions of pairs of these parameters. Finally,
the effects of the other parameters not included in the list
above are discussed.

5.1. Cost of the Objects
Figure l(a) plots the normalized costs as a function

of PROC-MIX for queries of Type 1, while Figure l(b)
does the same for queries of Type 2. Note that
PROC-MIX is an indicator of the expected cost of
materialization of the procedural objects.

5.1.1. Type 1 Queries
For these types of queries, a top down plan

involves restricting REL using the qualilication, and then
executing the objects in the selected tuples to determine
the target field values. No modilication of the objects (as
desired in REST) is possible, and hence REST performs
identically to CM. CT and CS are better than CM for all
choices of PROC-MIX. Thus caching is a clear winner
under these circumstances.

At low PROC-MIX, Ihe extra cost of cache
lookup is a significant fraction of the total cost. As a
result, CT performs better than CS, in spite of having a
lower cachedfraclion . At higher PROC-MIX, the
lookup cost is negligible, and the higher

cachedfraction for CS makes it win.
As mentioned before, the cost of an inner fetch in

a top down, nested loop join in FLAT is the same as the
cost of a materialization in REST (and hence, the same
as CM). Thus if PROC-MIX is low, then this plan is the
cheapest for FLAT. Since this plan is identical to CM’s,
FLAT follows the curve of CM. When PROC-MIX
becomes sufficiently large, nested loop join is no longer
the cheapest, and flat switches to merge scan, while
maintaining a top down access of relations. For higher
values of PROC-MIX, it abandons the top down
approach altogether, and does a bottom up query evalua-
tion. Under these circumstances, the cost of FLAT
becomes independent of the cost of the objects.

5.1.2. Type 2 Queries
In a flattened version of a query of Type 2, there is

a restriction on ObjRel. This, together with the presence
of a default secondary index on REL.Procfield
(Flat-Index = NC-SEC), makes the bottom up plan the
best for a FLAT query. Since this plan is unaffected by
PROC MIX, the curve for FLAT is a horizontal line,
which% substantially lower than the other curves. Thus
FLAT is definitely superior for queries of Type 2. espe-
cially for high PROC MIX. CS and CT show a behavior
similar to Type 1 queries.

For queries of Type 2, REST is always cheaper
than CM. This is primarily due to the fact that the cost of
materializing modified objects is never more than that of
the corresponding objects. The extra clause (a selection
on ObjRel.Ordf ieldl) helps in reducing the cost of
materialization if an index exists on ObjRel.Ordf ield 1,
and if the access of ObjRel through such an index is
cheaper than the other indexes. The default parameters
provide for an NC-SEC on ObjRel.Ordfieldl. At low
PROC-MIX, a scan of ObjRel through this index is not
the cheapest, but beyond a certain PROC-MIX, this is
the best plan. From the figure we note that for
PROC-MIX > 0.1, materialization of a modified object
is cheaper than the corresponding object, and is indepen-
dent of PROC-MIX. For very high PROC-MIX, REST
is even better than the caching algorithms.

5.2. Updates
Figure 2 plots the curves for Type 1 query as a

function of Pr(UPDATE). It can be seen that as
Pr (UPDATE) increases, the two caching algorithms
deteriorate. With an increase in the frequency of
updates, there is an increase in the number of objects
being invalidated. This has a two-fold effect. First,
invalidation costs increase. Second, a retrieve query sees
fewer cached objects on the average; and hence has to do
more materialization, and pay a higher processing cost.

An update in a query sequence invalidates a higher
number of cached objects if they are being cached in

94

0.00001 0.0001 0.001 0.01 0.1 1.0
PROC-MIX

Query Type 1

Figure 1: Normalized Costs

0.d i 8
o.oooo1 0.0001 0.001 0.01 0.1 1.0

PROC-MIX

Query Type 2

as a function of PROC-MlX

tuples compared to when they are cached separately (in
an approximate ratio of Use-Factor). As a consequence,
updates penalize CT more than CS.

5.3. Size of the Cache
According to the parameters, CS requires a cache

space of = 12.5 MBytes to achieve a cachedfraction of
one. At sizes more than this, only CT benelits. Figure 3
plots the cost characteristics of the two caching algo-
rithms and CM as a function of Size Cache. The curves
for REST and FLAT are omitted forthe sake of clarity.
CT is better than CS for either very small Size-Cache
(where the performance penalties of extra lookup are
more than the extra caching benelits of CS); or for a very
large Size-Cache (= 22 Mbytes), where the
cachedfraction in CT is close to one.

5.4. Level of Sharing
An increase in Use-Factor has a two-fold effect

on the cost of CS. First, for a given Size-Cache, the
cachedfraction increases. Second, an update causes a
lower number of invalidations. Thus it is obvious that as
Use-Factor increases, CS would be more and more
appealing. Figure 4 plots ‘OS’ CT 7I7d&i as a function of the
Use-Factor for the four possible choices of PROC-MIX
and query type. The significant point of note is the earlier
flattening in low PROC-MIX queries. Thus for inexpen-
sive objects, CT gives a comparable performance to CS,
for all values of Use-Factor.

We have seen various reasons why CT, in general,
performs worse than CS. .In Figure 5 we attempt to cap-
ture these reasons for a high PROC-MIX query of Type

1. Note how the ratio falls as Size-Cache is raised to 25
MBytes (which is sufficient to cache all objects in CT).
Even with this Size-Cache, the curve of
Cost(CT)/Cost(CS) is above one. The reason for this is
the extra penalties of updates in CT. When
Pr (UPDATE) is made zero (and Size-Cache is still 25
MBytes), the ratio of costs drops to below one. This
curve represents the ideal conditions for a caching
algorithm-enough cache space, and no updates. Under
these circumstances, CT is definitely superior.

From now on, we restrict ourselves to
Size-Cache I 1OMBytes. This is in keeping with our
assumption of a bounded cache space. The larger sizes
which we encountered so far were used only to bring out
the fundamental differences in the algorithms.

5.5. Regions of Optimal Performance
We now turn to the behavior of the algorithms as

functions of pairs of the above parameters by plotting the
regions where each algorithm performs the best.

In Figures 6(a) and 6(b), the regions as functions
of Pr (UPDATE) and Use-Factor are shown for queries
of Type 1. It is clear that for a sufficiently high
Pr (UPDATE), the caching algorithms would prove to be
non-competitive. Referring to Figure 6(a), consider a
horizontal line drawn through Use-Factor = 2. CT is the
best algorithm until Pr(UPDATE) = 0.4. Then CS
becomes the best. As Pr (UPDATE) increases further,
even CS fails to be better than the other algorithms.
Note that for Use-Factor < 1.5, CS never wins.

When the objects are expensive (Figure 6(b)), CT
is never preferred. CS is the best for high Use Factor

95

0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr(UPDATE)

1000.0

,100.o

a

: 10.0
0

Figure 2: Costs vs. Pr(UPDATE)

(Type 1 Queries, PROC-MlX=OA)

0.1 4
1 2 4 8 16 32 64 128

Use-Factor
Figure 4: Cost(CT)/Cost(CS) vs Use-Factor

Pr(UPDATE)

6(a): PROC-MIX = 0.0001

a.0 0.2 0.4 0.6 0.8
Pr(UPDATE)

6(b): PROC-MIX = 0.4
Figure 6: Regions of best performance as functions of

Use-Factor and Pr (UPDATE)

Figure 3: Costs vs. Sire-Cache

(Type 1 Queries, PROC_MIX=O.OOOl)
lo()c)O --.--__- T ________ T -_---_-_ :‘---~ ----: -_-- ‘--~-: -____ ~---: _________:

1 ! ! j i ! ! i

1.0

0.14 : : : : i 1 i
1 2 4 8 16 32 64 128

Use-Factor
Figure 5: Dependence of Cost(CT)/Cost(CS) on

Size-Cache and Pr(UPDATE)

96

and/or low Pr (UPDATE). From both the figures, it is
clear that if the Use-Factor > 100, CS is extremely
competitive unless Pr (UPDATE) = 1.

Figure 7 plots the regions as a function of the two
most important parameters for the caching algorithms-
Pr(UPDATE) and Size Cache. It can be seen that for
low Pr(UPDATE), CT% better than CS for low cache
sizes. Taking a vertical slice, (say at
Size-Cache = 10 MBytes), for Pr (UPDATE) c 0.4, CT
is the best, for 0.4 < Pr (UPDATE) c 0.6, CS is the best,
and for Pr (UPDATE) > 0.6, the non-caching algorithms
perform the best. This result is similar to what was
obtained in Figure 6(a) along the line Usefactor = 2.

The next figure (Figure 8) captures the behavior as
function of PROC-MIX and Pr (UPDATE). In the upper
left comer, note how an increase in PROC MIX makes
CS more and more competitive. This is-because as
PROC-MIX increases, so dots the cost of materializa-
tion. Consequently, the benefits of caching go up. This
continues until the bottom up algorithm for FLAT beats
any caching approach (also see Figure la).

5.6. Other Parameters
In this subsection we briefly discuss the other

parameters of our study.

5.6.1. Number of Objects per Tuple
FLAT has been shown to be distinctly superior in

case of queries of Type 2 and under some circumstances
for queries of Type 1. This is partly a result of the default

choice of objectsger-tuple = 1. We now discuss the
implications of objectsger-zuple > 1 on FLAT. Con-
sider the following schema:
PAIRS (seed = i4, partners = PQSTQUEL)
h4EN (seed = i4, name = ~10, country = ~10)
WOMEN (seed = i4, name = ~10, country = ~10)
which describes the players taking part in a tennis tour-
nament. PAIRS contains the data about the mixed double
tournament, and MEN and WOMEN about the singles
tournament for men and women respectively.
PAIRS .partners contains two queries of the form:

retrieve (MENall) where
MEN.name = $paraml

retrieve (WOMEN.all) where
WOMEN.name = $param2

The PQSTQUEL query
retrieve (PAIRS.seed) where
PAIRS.partner.seed < 5

returns the seeds of the mixed double teams where either
partner has a seed better than 5 in his/her respective tour-
nament. Assume that we store the parameters of these
objects (instead of the full queries) in the fields
PAIRS.male and PAIRS.female. We have seen before
that FLAT performs similar to REST if it chooses a top
down approach. This holds even if
objectsger-tuple > 1, as is in this case.

In contrast, in a bottom up plan (i.e., accessing
MEN and WOMEN before PAIRS), FLAT needs to

l*ol __________ ___-_____ _____-_.___ ~‘--~~ ____________- _ ________ _ ___-_____ ~:
. ------------------.----------.----3---------------------------~~-----~

0.8. ___ ______ _ _______ __ _______________ 1. _______-______-.-________ _ _______ j

T .
E

_______._________ _ ____ CL-~ __..________________------..------;
) 0.2. _____-__ -____---. _ ____-- _ -__._---- 3 ___. __ ~~-_-_.-~~~~_.~-~~~~~.~~~~~~ j

.--...................i..................................I
o.o* 4

0.1 1.0 10.0 o.OOoO1 0.0001 0.001 0.01 0.1 1.0
Size-Cache (MBytes) PROC_MIX

Figure 7: Regions of best performance Figure 8: Regions of best performance
as functions of Sire-Cache and Pr(UPDATE) as functions of PROC-MIX and Pr(UPDATE)

(Type 1 Queries, PROC~MIX=O.OOOl) (Type 1 Queries)

97

execute (an equivalent of) the following two queries:
retrieve (PAIRS.seed) where
PAIRS.male = MEN.name and
MEN.seed < 5

retrieve (PAIRSseed) where
PAIRS.female = WOMENname and
WOMEN.seed < 5

Assuming the availability of indexes on PAIRS.male and
PAIRS.female, the best plan for each subquery is bottom
up. If the total cost of these two subqueries is more than
a top down plan, the latter is chosen. Otherwise, FLAT
chooses the option of executing these two subqucries.

In general, for low objectsger-tuple , a sequence
of subqueries performing an equivalent task would be
cheaper. As objectsger-tuple increases (and so does
the number of subqueries), the bottom up approach is no
longer the best, and then FLAT switches to top down and
performs similar to REST. This is confirmed in Figure 9.

5.6.2. Flat Index
Figure 10 plots the curve for FLAT and CM as a

function of Selbot for different choices of Fiat Index.
In queries of Type 2, FLAT has a bottom up pl6 if the
clause on ObjRel is highly selective. As this clause
becomes less selective, the cost of the bottom up plan
increases, and after a point FLAT switches to top down.
As we have seen before, a Flat-Index helps lower the
cost of a bottom up plan. Consequently, FLAT maintains

a competitive edge till a high value of Selbot if
Flat Index is C-SEC. On the other hand, the absence of
this index makes FLAT switch to a top down plan at low
values of Selbot .

As objectsger-tuple increase, a Flat Index is
needed on each field that stores a parameter, iFFLAT is
to perform better than other algorithms.

6. CONCLUSIONS
We have shown that the caching algorithms are

competitive in situations of low to moderate update pro-
bability. In this, our conclusions are similar to
lFIANS881. Moreover, it has been demonstrated that
separate caching is better than caching in tuples under
most circumstances. This is especially true when the
cache size is limited and Use-Factor is high because
separate caching is able to achieve a higher
cachedfraction. Furthermore, updates penalize CT
more than they do CS. There are two factors that may
mitigate this superiority of CS. First, if the objects are
cheap, then CS would suffer because of the extra lookup
costs. The second factor is the implementation problems
of CS. We have assumed the availability of “hashing”
into a cache relation. As the objects become more com-
plex, so would the hashing strategy. Since our model
does not take this into account, its effects have not
entered the picture.

In cases where the number of objects in a tuple is
near one and their composition is predictable and easily
parameterizable, it has been further shown that flattening

0.0 ! 1
1 2 3 4 5 6

objectsger-tuple

Figure 9: Effect of objectsger-tuple

(Query Type 2, PROC MIX =O.OOOl)

Selbot

Figure 10: Effect of Flat_lndex on FLAT
(Query Type 2, PROC-MIX =O.OOOl)

98

is a good option. This is especially true if the query is
best solved by a bottom up approach. As the number of
objects per tuple increases, FLAT loses its competitive
edge. To emphasize again, flattening is not possible
when the composition of the objects is unpredictable.

It is clear that CM is the preferred alternative in
presence of frequent updates, and where flattening is not
viable. REST is never worse than CM, but its marginal
utility is often negligible Moreover, if the cost of gen-
erating the plans (which has not cntercd our picture) is
also a criterion, then REST would perform worst than it
does in our studies.

It may seem that caching and restricted materiali-
zation are orthogonal (and thus the two may be applied
together in a strategy). However, it can be shown that
caching benefits restricted materialization only within a
query (Section 3.3) with inter query bcnclits being highly
unlikely. We consider the latter as much more important,
and have therefore not examined this possibility.

A real query optimizer will, in general, be based
on one or more of the above strategies. The actual
choice(s) of the strategies will depend strongly on the
factors discussed in this study. It is necessary to deter-
mine these parameters before such a choice can be made.

Though we have discussed the optimizing algo-
rithms in a specific environment, the discussion on the
various strategies should extend to any system support-
ing procedural objects.

Acknowledgements
The author wishes to thank his advisor. Professor
Michael Stonebraker, for his advice on the work and on
the preliminary drafts of this paper. Thanks are also due
to the anonymous referees for their valuabIc suggestions.

REFERENCES
[CODD70] Codd, E.F., “A Relational Model of Data

for Large Shared Data Banks,” Comm. of
ACM, June 1970.

[HANS883 Hanson, E., “Processing Qucrics against
Database Proccdurcs: A Performance
Analysis,” Proc. ACM-SIGMOD Confer-
ence on Managcmcnt of Data, June 1988.

[IEEE871 Bulletin of the Computer Society of the
IEEE TC on Database Engineering, Special
Issue on Extensible Database Systems,
Carey, M. cd., June 1987.

[JARK84] Jarke, M., and Koch, J., “Query Optimiza-
tion in Database Systems,” ACM Comput-
ing Surveys, June 1984.

[JHIN87] Jhingran, A., “A Compile Time Optimizer
for Database Systems Supporting Pro-
CedlUeS,” Master’s Report, University of

California at Berkeley, May 1987.
[KIM821 Kim, W., “On Optimizing an SQL-like

Nested Query,” ACM Trans. on Database
Systems, 7.3, Sept. 1982.

[ROWE871 Rowe, L., and Stonebraker, M., “The

[SELI79]

[SELL871

[SELL881

@TON751

[STON83]

[STON86]

[STON87]

WONG761

POSTGRES Data Model,” Proc. 13th
VLDB Conf., Brighton, 1987.
Selinger, P. et al., “Access Path Selection in
a Relational Database Management Sys-
tem,” Proc. ACM-SIGMOD Conference on
Management of Data, 1979.
Sellis, T., “Efficiently Supporting Pro-
cedures in Relational Database Systems,”
Proc. ACM-SIGMOD Conference on
Management of Data, May 1987.
Sellis, T., “Multiple-Query Optimization,”
ACM Trans. on Database Systems, 13.1,
March 1988.
Stonebraker, M., “Implementation of Views
and Integrity Control by Query
Modification,‘* Proc. ACM-SIGMOD
Conference on Management of Data, 1975.
Stonebraker, M., et al., “Application of
Abstract Data Types and Abstract Indices to
CAD Databases,” Proc. ACM-SIGMOD
Conference on Engineering Design Applica-
tions, 1983.
Stonebmker, M., and Rowe, L., “Design of
POSTGRES,” Proc. ACM-SIGMOD
Conference on Management of Data, 1986.
Stonebmker, M., et al., “Extending a Data-
base System with Procedures,” ACM Trans.
on Database Systems, Sept. 1987
Wong, E., and Youssefi, K.,
“Decomposition-A strategy for query pro-
cessing,” ACM Trans. on Database Sys-
tems, Sept. 1976

[ZANI83] Zaniolo, C., “The Database Language
GEM,” Proc. ACM-SIGMOD Conference
on Management of Data, 1983.

[ZANI853 Zaniolo, C., “The Representation and
Deductive Retrieval of Complex Objects,”
Proc. International Conference on VLDB,
1985.

99

