
An Implementation for Nested Relational Databases

Anand Deshpande
Dirk Van Gucht

Computer Science Department
Indiana University

Bloomington, IN 4’7405, USA
deshpandOiuvax.cs.indiana.edu

vgucht@iuvax.cs.indiana.edu

Abstract 1 Introductim

We propose an architecture for implementing nested re-
lational databases. In particular, we discuss the storage
structures, their organization and an access language
for specifying access plans.

The featurw of our implementation are:

In this paper we propose an implementation, ANDA’
for the Nested Relational Data Model(NRJ3M). In par-
titular, we diicuaa the storage structures, their orga-
nization, and an access language for specifying access
plans. The motivation for our design comes from these
observations:

A notation for hierarchical tuple identification.

One value-driven indexing structure (VALTREE) for
the entire database.

A main-memory based component (CACHE) for ma-
nipulating hierarchical tuple-identifiers.

A hashing scheme (RECLISTS) for fast access to
data specified by tuple-identifiers.

An access language based on the VALTREE, the
RECLIST and the CACHE to define access plans for
execution of queries.

l In the NHDM, select, join and neat are ‘value-
driven’ operations while project and unneat are
not. To implement the value-driven operations it
is crucial to efficiently determine which attribute
and tuplea are associated with a particular ‘value’.
In contrast, for ‘structure-oriented’ operations like
project and unnest, it is required to efficiently ac-
cess tuples and their components irrespective of
the values contained in them. Data-structures that
are well suited for project and unneat are unfortu-
nately not always suitable for the value-driven op-
erations. Hence our proposal for two storage struc-
tures where one supports value-driven requests
effectively, while the other supports structure-
oriented operations.

Pemusaon to copy without fee all ar put of this
granted pvided that the oopies are not made or disrritutcd for
direct commercial advantage, the VLDB cop&ht notice md
the title of the public&m and its date s~~eer, and notice L given
that copying is by permission of the Very Large Data Base
Endowment. To copy otbawise. or to republish. mquires a fee
ml/or special pcnnizzion fmm the Edowment.

l Primary storage on computers has become fairly
inexpensive while a disk access is still conaider-
ably more expensive than a memory access. We
exploit this availability of main memory and indi-
cate methods that use the cache to perform queries
more efficiently.

We chose to implement the NRDM from scratch rather
than map it to some other &sting database implemen-

‘ANDA - Acronymafor a Nested Database Architecture. In
Hindi, ANDA me- en egg, romching you ace likely to find in
* neat.

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 76

tations for the following reasons:

l Tuple components are not necessarily atomic,
making the mapping to the relational model dif-
ficult [22].

l Query optimizations that exploit the nested rela-
tional model cannot be used when the underlying
storage structure is relational [3].

l Selections are often made on components deeply
nested within tuples [12, 19, 201.

l Hierarchical and network models were not devel-
oped with high level non-procedural languages in
mind [8].

In Section 2 we discuss the architecture of ANDA. In
Section 3 we describe a notation for tuple identification
and then discuss the storage components of ANDA -
VALTREE, RECLIST and CACHE. In Section 4 we discuss
the operations on these three components and define
our access language. In Section 5 we demonstrate how
some queries could be implemented in the access lan-
guage. Finally, in Section 6 we discuss important ob-
servations about this implementation and discuss issues
that need further investigation.

2 The ANDA Architecture

The
are:

major components of ANDA as shown in Figure 1

VALTREE - a tree structure storing all the atomic
values present in the tuples and sub-tuples of the
database,

RECLIST - record-list structures which store data
as tuples and sub-tuples,

CACHE - the main memory component of the im-
plementation where tuple-ids are manipulated,

DATA-DICTIONARY - stores all the important infor-
mation about structure definitions,

ACCESS LANGUAGE INTERPRETER - interprets in-
structions described in the access language,

l QUERY LANGUAGE OPTIMIZER - this optimizes the
query language expression into an access plan,

l GRAPHICAL QUERY LANGUAGE - this is the one of
the user interfaces which maps to the optimizer,

. Figure 1: Components of ANDA

l OBJECT-ORIENTED INTERFACE - This uses the
NRDM as the back-end.

The typical execution of a query would involve the fol-
lowing steps:

1.

2.

3.

4.

77

A query is specified to the system by the user
in the OBJECT-ORIENTED IHTERFACE or in the
GRAPHICAL QUERY LANGUAGE.

The QUERY LANGUAGE OPTIMIZER will optimize
this query into an optimized access plan. While
research in the nested algebra optimization is still
in its infancy, several results from relational alge-
bra optimization (13,141 can be extended to nested
relations. [3, 18, 211

The optimized query obtained from the previ-
ous step is mapped to an access plan in the ac-
cess language of the system. As it is possible
to come up with several alternative access plans
the QUERY LANGUAGE OPTIMIZER uses information
from the DATA DICTIONARY and knowledge of the
data structures to come up with an optimal ac-
cess plan. Heuristics for generating access plans
for nested relational databases will have to be col-
lected.

The access plans specified in the access lan-
guage are interpreted by the ACCESS LANGUAGE
INTERPRETER. The interpreter communicates with
the VALTREE, the RECLIST, the DATA DICTIONARY,
and the CACHE.

111 lhe first phase of the implementation we have built
a prototype of the ACCESS LANGUAGE INTERPRETER in
Scheme with the VALTREE, the RECLIST, the DATA
DICTIONARY and the CACHE in the main memory. This
provided us with insights that were valuable in design-
ing the access language.

In the second phase we are currently building these
four components in C, this time with VALTREE and the
RECLIST on the secondary storage.

3 Components of ANDA

This section defines a notation for tuple and component
ideutification and describes the VALTREE, the RECLIST,
and the CACHE.

3. x A Notation for Tuple and Compo-
nent Identification

In the nested relational model queries and updates can
be performed on values that are deeply nested. To ef-
ficiently handle this request, it is important for tuple-
identifiers at the sub-tuple level to be logically related
to the tuple-identifiers of their super-tuples. Some of
the components of the tuple could be sets, which in
turn could have sets as their components therefore tu-
ple identifiers cannot be flat but must be hierarchi-
cal. For the purpose of of identifying tuples and their
compouenta, we introduce the following notation. Let
the database consist of a finite set of nested relational
structures Jr, s, t, . ..I. The notation for the identifica-
tion of tuples and their components uses these relation
names tagged with subscripts and superscripts. The
subscripts take us down the tuples and the superscripts
take us across the components.

We introduce two nested structures, AIRLIBE-IMFO
and SCHEDULE as shown in Figure 2 and Figure 3.
The AIRLINE-INFO structure stores information about
cities, flights departing the city and airlines for which
the city is a hub, while the SCHEDULE structure stores in-
formation about universities their nearest airports and
their away football games.

Thus, for the structure t corresponding to the
AIRLINE-INFO structure of Figure 2 the tuples would
be identified as tr, ts, is and t4 Each tuple is made up of
lhree components: a CITY component, a FLIGHT com-
ponent and AIRLINE-HUBS component. Thus, the first
tuple tl has three components tlO, tl* and trC, where
tl” corresponds to the CITY component, tl’ corresponds

FLIGETS

CITY DESTIBATIDI AIRLIlIES AIRLIBE-EUBS

hdy Chicago TWA
United

TWA
united

NewYork United
E-tern

New York

ba
32

st. Louir TWA

Detroit Northwest

Los Angclcr United

New York I& TWA TWA
Eastem United

Eastern
st. Louis TWA Delta

Detroit Northwest

Cinciauoti Delta
Eastem

Atlanta Delta
Eastern

Figure 2: The AIRLINE-INFO structure

to the FLIGHTS component and tic corresponds to the
AIRLINE-HUBS component. Each of these components
is either an atomic value or a structure. In our ex-
ample tl’ is an atomic value, whereas tl” and tic are
structures. The structures tlb and tie consists of sub-
tuples, so we need to descend one level. The tuples of
the structure tl” are identified as tl*l, tl*l and tl’a.
The identifiers for the components of the tuple 11’1 are
tl*l’ and tlblb corresponding to the DESTINATION and
AIRLINES components.

In Figure 2, the notation is illustrated on the
AIRLINE-INFO structure. An interesting feature of this
notation is that once we get a tuple or component iden-
tifier, we can trace which tuplea or sub-tuples the tuple

78

T&AH

Indiana

Purdue

IEAREST-AIRPORTS TEAHS-TO-PLAY

hdy Purdue
Cincinnati Michigan
Louisville Wisconsin

hdy MiMCSOL8
Chicago Iowa

Michigan

Northwestern Chicago Ohio State
Iowa

Minnesota

Michigan Detroit Micigan State
Ohlo State
Wisconsin

Michigan State Detroit Indiana
Purdue

Iowa

Illinois Chicago
St. Louis

Indiana
Ohio State

Northwestern

Figure 3: The SCEEDULE structure

or component identifier belongs to by going through the
superscript strings and the subscript strings.

3.2 The VALTREE Structure

Traditional relational database management systems
use indexing techniques to improve access time. Typi-
cally, indexes are built on all or some of the attributes
of a relation. A value of the index maps to a list of
tuple-identifiers of tuples that contain the value of the
indexed attribute. Our approach to indexing follows
the domain based approach suggested by Missikoff [16]
and Missikoff and Scholl [17] for relational databases.
In their approach, an atomic value maps to a list of tu-
ple identifiers of tuples in all relations in the database
which contain that value. .We generalize this approach
by storing in the VALTREE, a mapping from a value to a
list of all tuple identifiers of tuples in all structures and
sub-structures in the nested relational database which
contain that value. Hence, given an atomic value, the
VALTREE returns a set of hierarchical tuple-identifiers,
which enables us to determine directly which tuples or
sub-tuples the value is stored in. Unlike the conven-
tional database scheme where we have a separate tree
for each indexed attribute, our scheme has only one
tree, denoted VALTREE, that spans over all the atomic
values of the database.

Valduries, Khoshafian and Copeland [25, 241 have sug-
gested processing ‘Join Indices’ in main memory to
improve the performance of joins in relational sys-

VALTREE
levels

Airline Names City Namer Team Names
DOMAIN

I

STRUCTURE A-,rFO ’
A-INFO A-INFO SCHED

1

Figure 4: The VALTREE structure

terns; ‘Inverted Files’ have been used by the ADABAS
database management system [l]. Our implementa-
tion of the VALTREE is a generalization of both these
schemes. The CACHE allows us to perform some of the
operations in main memory to improve performance.

The VALTREE is made up of five different levels as shown
in Figure 4. The top-most level is called the DOMAIN
level. This level separates the non-compatible domains
into separate sub-trees. The second level, the VALUE

level, stores all the atomic values of the database. The
third level is the ATTRIBUTE level. At this level, we
store all the attributes that a particular value of the
VALUE level belongs to. As the same attribute may
belong to more than one structure, we have the fourth
level called the STRUCTURE level. Finally, the fifth and
the lowest level consists of all the tuple-identifiers (tid)
that correspond to the the atomic value stored at the
VALUE level; this level is called the IDENTIFIER level.
The advantage of using the VALTREE is that given a
value it provides us rapid access to the list of tuple-
identifiers corresponding to all occurrences of the value
throughout the entire database. For further details the
user is refered to (111

79

3.3 The RECLIST Structure

As the VALTREE is a suitable data structure for per-
forming value-driven operations. RECLIST structures
have the following requirements:

l Each structure in the nested relational database
has a separate RECLIST structure.

l Given a tuple-identifier and an attribute, the num-
ber of disk accesses to access the component of the
tuple associated with the tuple-identifier and at-
tribute should be minimal.

l The number of disk accesses to retrieve an entire
tuple should be minimal.

l It should be easy to do structure-oriented opera-
tions.

l It should be possible to traverse through the entire
structure a tuple at a time.

There are several storage structures that can be used
to achieve these goals. Tsichritsis and Lochovsky [23]
and Wiederhold [26] h ave a detailed description of some
of these structures. Carey, Dewitt et.al. [S] have also
suggested a storage structure for the Exodus project.
The RECLIST in ANDA is inspired by some of the stor-
age structures proposed by Dadam et.al. and Deppisch
et.al. [7, 10).

The objective of the RECLIST is to provide a mapping
from the hierarchical tuple-identifier to the actual phys-
ical address. ANDA uses Linear Hashing Scheme [15)
for the RECLIST. Tuples are stored into buckets ob-
tained by hashing tuple-ids. Tuples from a structure
may be divided into fragments depending on the granu-
larity of the desired operations. It is convenient, though
not necessary to have uniform bucket sizes. Breaking
the tuple into smaller fragments allows the user to get
to a value more directly and inserts do not have to ac-
count for overflows. Smaller fragments, however require
multiple disk accesses to reconstruct the entire tuple.
A decision on the granularity of the tuples is made by
taking these trade-offs into account.

To insert a new tuple in the RECLIST, one has to gener-
ate a new hierarchical tuple-id before the tuple can be
mapped into an appropriate bucket. To keep track of
the tids used and the next one available, a bitmap with
bita corresponding to existing sub-tuples is associated
with each sub-tuple and is stored along with the sub-
tuple. Deletions are performed by toggling the bitmap.
The bitmap allows a apace efficient method allocating

tuple-ids and reclaiming them during deletion. The
reader is referred to Deshpande and Van Gucht [ll]
for details of the hashing scheme used for ANDA.

3.4 The Cache

The CACHE is the primary storage component of the
implementation. To improve performance of nested al-
gebra expressions it is important to reduce accesses
to the secondary storage components - VALTREE and
RECLIST, and perform as many operations as possible
in the cache.

We have the following goals for the CACHE:

l The storage utilization of the CACHE should be as
efficient as possible.

l Since the total amount of available primary stor-
age space is limited the cache should only store as
much information as required.

l The organization of the cache should be simple yet
should allow the flexibility to handle complex op-
erations.

l Complex reorganization and garbage collection
should be kept to a minimum.

The tuple-ids described in the previous subsection carry
information regarding the exact location of the value in
a tuple. Given two tuple-ids it is possible to determine
if they belong to the same tuple or the same sub-tuple.
For this reason, we store only tuple-ids obtained from
the VALTREE in the CACHE and never store actual values
or tuples. After manipulating these tuple-ids in the
CACHE the results corresponding to the tuple-ids are
extracted from the RECLIST.

In ANDA the CACHE consists of a set of stacks. We
choose stacks to be the cache as stacks provide a simple
implementation with minimal pointer overhead, and no
garbage collection.

Several interesting queries can be processed by com-
paring tuple-ids as will be shown in the next section.
Ideally, our queries are processed in the following three
steps:

l Retrieve tuple-ids from the VALTREE and place
them in the cache,

l Process tuple-ids in the cache, and

80

l Retrieve required parts of the structure corre-
sponding to the tuple-ids in the CACHE is retrieved
from the RECLIST.

Details of some of the important CACHE operations are
described in the next section.

4 The Access Language

In this section we discuss some important operations
on the storage structures. The access language used
for specifying the access plans consists of instructions
for operations on the storage structures and condition
and iteration statements.

4.1 VALTREE functions

The Access Language has functions to insert, delete and
retrieve from the VALTREE. To maintain consistency the
insert and delete functions of the VALTRBE are not used
directly by the user but are used by the insert and delete
functions of the RBCLIST. Conditions can be specified
with vt-retrieve to allow complex selections. The
vt-insert and vt-delete functions ensure that there
are no duplicates adn no empty sub-trees.

vt-retrievefdomain, value-cond,
attribute-cond, structure-cond,
granularity, stack)

vt-insert(domain, value, attribute,
structure, t id)

vt-delete (domain, value, attribute,
structure, tid)

The arguments to these procedure are:

- domain : corresponds to the domain at the DOMAIN
level to be selected.

- value-cond : If the value at the VALUE level satis-
fies the value-cond then this value is selected and
the subtree corresponding to the ATTRIBUTE, the
STRUCTURE and the TUPLE levels is traversed oth-
erwise the subtree corresponding to this value is
ignored.

- attribute-cond : If the attribute
at the ATTRIBUTE level for a selected value at the
VALUE level satisfies the attribute-cond then this
attribute is selected and the subtree corresponding

to the STRUCTURE and TUPLE level is traversed oth-
erwise the subtree corresponding to this attribute
is ignored.

- structure-cond : If the structure-name at the
STRUCTURE level satisfies the structure-cond then
the tuple-ids corresponding to the selected (do-
main, value, attribute, structure) are placed on
the stack otherwise the tuple-ids corresponding
to the structure are ignored.

- stack : This is the name of the stack in the cache
that is used to store the result - the set of tuple-ids,
obtained from this retrieve.

- granularity : This can be one of domain, value,
attribute, structure or tuple. This specifies
the granularity of the elements placed on the stack.
If structure is used as the granularity for the re-
trieve then each set of selected tuple-ids obtained
at the STRUCTURE level is placed on the stack as a
separate element. If value is used as the granular-
ity then all the sets of tids obtained for different
attributes and structures for this particular value
are unioned together and stored as one element on
the stack.

4.2 RECLIST functions

We use the hashing scheme with bitmaps stored along
with data values as discussed in Section 3.3 for our
implementation of the RECLIST. As we have two data
structures - the VALTREE and the RECLIST, it is impor-
tant to keep the information in both the data structures
consistent at all times. To ensure consistency all in-
serts and deletes are performed on the RECLIST. These
procedures in turn call the vt-insert and vt-delete
procedures. To ensure that inserts and deletes are done
at the correct place in the RECLIST, the RECLIST pro-
cedures call the vt-retrieve procedure.

4.2.1 Reclist Retrieve

This procedure returns sub-tuples from appropriate
RECLIST that correspond to the tuple-ids in the top
element of the stack

rl-retrieve (stack)

4.2.2 Reclist Insert/ Delete

This inserts/deletes the template in the appropriate
structure ensuring that the hierarchical database prop-

81

erties are maintained. The template is constructed af-
ter consulting the DATA-DICTIOBARY. This procedure
also generates a list of commands that correspond to
vt-inserts/ vt-deletes in the VALTREE. While it is
possible to have null values in the template, these val-
ues are not allowed for key values at any level.

rl-insert (structure, template)
rl-delete (structure, template)

4.3 CACHE functions

The cache is organized as a collection of stacks in the
main memory.

4.3.1 Standard Stack Operations

create-stack

destroy-stack
push (element, stack)

pop (stack)
empty? (stack)
full? (stack)

4.3.2 Set Operations

These are binary operations and are performed on the
top two elements (sets of tids) of the stack and places
the result on top of the stack. The tid-window-f ormat
specifies parts of the tuple-id that are considered when
performing the operation.

union (stack, tid-window-format)
intersection (stack, tid-window-format)
difference (stack, tid-window-format)

product (stack)

- tid-window-format : specifies the window for
these operators. Wild-cards like ‘*’ are used to
indicate ‘don’t-care’ values. When performing
a union of tuple-ids with different formats but
matching tid-window-f ormat the tuple-ids with
more information (subscripts/superscripts) is re-
tained. Thus, if we specify the tid-window-format
to be P., then when forming the union, tuple-ids
with common first subscript and ‘a’ as the first su-
perscript merge in the union. Therefore the union
of Pa61 and t”aba is t”a but, the union of t”a and
t* b 2 1 is taaba. In other words the tid-window-
format tells you which parts of the tids should
be used for the union. This operation performs
a union and project in one step. The utility of this
operation will be clear after observing the exam-
ples in the next section.

4.3.3 Filter, transform and copy instructions

This group of stack commands allow us to perform some
miscellaneous functions to make the specification of the
access plans easier.

filter (stack, filter-format)

Given a filter-format this procedure removes tids that
do not satisfy the format from the top element of the
stack.

transform (stack transformed-format)

This procedure transforms the tide from the top of the
stack and transforms them to correspond to the format,
specified by the transformed-format. If the structure
is defined as a structure tree then then it is possible
to transform the tuple into its siblings, its ancestors,
and siblings of its ancestors. This procedure is used for
projections.

copy (stacki, stack2)

This instruction copies the top element of stack1 and
copies it to the top of stack2. If both stack1 and
stack2 are the same, then this stack would have two
identical elements as the top two elements of the stack.

sort (stack)

This procedure sorts all the tuple-ids in the top element
of the stack.

one-of (stack)

This procedure picks one tuple-id from the top element
of the stack and discards the rest.

Several procedures like for-each (element of the stack)
do, repeat until, if - then - else and functional
combinators etc. may be required.

5 Access plans for some NRDM
operations

The following examples apply to the AIRLINE-INFO and
SCHEDULE structures.

Example 1 Select CITY, DESTINATION paira huuing
‘Ewtern’ FLIGHTS leaving born ‘TWA ’ AIRLINE-HUBS.

In this example, different parts of the query are not at
the same level. We have to project the CITY and the ap-
propriate DESTINATION pairs where ‘Eastern’ is one of
the AIRLINES and ‘TWA’ is one of the AIRLINE-HUBS.

The access pl& for this query is:

82

l.vt-retrieve(Airline-Name, Eastern, AIRLINES,
AIRLINE-INFO, structure, Sl)

2. transform(S1. t.b.s)
3. vt-rrtrieve(Airline-Name. TWA, AIRLINE-HUBS,

AIRLINE-INFO,structure, Sl)
4.transform(S1,t.b)
5. intersection(S1, t.b)
6. copy(Sl,Sl)
7.transt orm(S1. 1.O)
8.union(Sl, t.‘,‘)
S.sort(Sl)

10. rl-retrieve (Sl)

The corresponding state of the CACHE:

1. Sl = ({t Ib2b2a,t2b2b2a,f3blb2~,t, 1 2 ,
bba

b b a
t4 I 2 , t.bsb2a))

2. s1 = ({tlb2y tzb,-, hblS, t*blL, t,b*E, trbi=))
3. Sl =({t*Cla)tle,a,t,C1a),

Ib20, t2b20,t3bLo,t,b,a,t,b,=,t, b

4. Sl = I;l‘b, tlb, t,L)
b "1)

{t, b20 , tlblo, Lb?, tabto, t*b,a I hbba})

5. Sl = ({tlb2- ,t2b20,t.b,a,t,b,a, t,‘bE))

6. Sl =({tlbp" , t2b20,t4b1a,t,b,e, hbba},

{h b2a , tlblar tablo, IlbhCI, trbre})

7. Sl = ({t,” ,t2-, ho}, {tlbla, t2b2*, tablo, tabao, trbsa))

8. Sl = ({tl=,tt”, t,“, t,b20,t2b20, t,bla,t,b,a,t4b3a})

9. s1 = ({t,a,t‘b2a, t2=,t2b20,t,b,t,bla,t,b,~, trb,Ja})
10. [tl” = Indianapolis, tLb2a = New York,

t2- = St Louis t2b20 = New York,
tr” = New Yo+k, tlbla = Indianapolis,

bo
tr 4 = Cincinnati, tgbba = Atlanta]

In this example the two vt-retrieves extract the re-
quired tuple-ids. The transform functions bring the
tuple-ids to a form appropriate for intersection. Steps
G-10 are required to output the right parts of the tuple.
The copy function is required when projecting more
than one attribute because the transform function is
destructive.

Example 2 For each airport in the SCHEDULE &UC-
twe, lisl all learns close lo it.

This example involves a sequence of unnest and nest
operations. The access plan for this query is as follows:

1. Qt-retrieQ0 (City-Name, + , NEAREST-AIRPORTS,
SCHEDULE, structure, Sl)

2. repeat
(a)copy(Sl,Sl)
(b)one-of(S1)
(c)rl-retrieve(S1)
(d) transform(S1.s.a)
(c)rl-retrieve(S1)
until empty?(Sl)

The corresponding state of the CACHE:

1. Sl = ({Slb2y s3b1a, Sb I b O}, {Slbla), {SlbP, Slibla}*

{Slbla,S2blo},{S,b3a},{~bb2-)~

2. The state of the stack for the flrst iteration;
these steps are repeated until the stack is

empty
bo bo ba (a)Sl =({a2 2 ,a I ,a I 18

br bo
(a 2 , a 1 , dbblO), (a b2a),

(34 1 b a,Sbb1=},{S‘bla,~2b,o},

(81 b30}, (sbb2’))

(b) Sl = ({SEEPS), {52b20, ebl=, seb/), {abaa),

t s4
bo

1 , IbbLa}n {SLbF, Slbl%

{Jlb3-}, {Jsb2”})

(4 132 2 b a =Chicago]
Sl= ((d2b2a,S2bL=,da 1 b -}, {a b2a),

be
{a I ,~bbIW Slblo,J2bla),

(SLbJE}, {Ssb2a})

(d) Sl = ({~;~;4’, JO”), {31~2-),

(84 I ,~lblOh t S,b10,v2b10)#

{SLb3a), {usboa))

(e) [a~~ = Purdue, cl a = Nortwestern,
o = Illinois]

L({ 51b2a}, {Sib,-, Sbbla},

{SI bl O, Jablo), (31 b3a},

(a b2’}>

In this example the first vt-retrieve operation re-
trieves sets of tuple-ids. Each set corresponds to an
airport and each element of the set corresponds to the
teams that have that city as the IEAREST-AIRPORT. As
we are interested in both the NEAREST-AIRPORT and
TEAMS we need the copy operation.

Example 3 For each city from Ihe SCHEDULE structure
find the teams close to it and the Airlines that can be
wed to reach that city.

This query involves a join and then a restructuring of
the structures. The VALTREE stores all ATTRIBUTES that
corresponding to a value at the attribute level. There-
fore, the join is essentially performed by traversing the
VALTREE and extracting tuple-ids for values that have
both the required attributes at the attribute level. The
access plan for this query is as follows:

l.vt-retrieve (City-Name. *, ({ DESTINATION,
NEAREST-AIRPORT) s ATTRIBUTES).
*, structure, Sl)

2. repeat
(a)copy(Sl,Sl)
(b) one-of 61)
(c)rl-retrieve@11
(d) transform(S1, Lbeb)
(e)rl-rstrieve(S1)
(f) transf orm(S1, 3:)
(g)rl-retrieve@11
until empty?(stack)

83

The state of the CACEE:

1. Sl = ({tlbla, tablo), (sabaa, abl-, Jeb2),
(t4 b4a}, (a baa),

2. The state of the stack for the first iteration;
these steps are repeated until the stack is empty.
(a) Sl = ({‘<a”, hbla},(hbla, faLla},

(sz 7 , dSbla, Qb?), {t4b40),
{Slbar},{tab.a,tab4a)1

bo
{s4 1 , ebl% {taba-, bblart4blo),

{a 1 b O, 6ab1a), {hbaa, isbaa, t4b2’), (alb2a))

(b) Sl = ({tlbl”}, (hblO, fable), (Jabaa,Sabla,abla),

{tlbla}, {albaa},

{ta;4:, tab4y, {S4bla,Slbla},

~~~b~.;;~:;:~~~b;r), {Ssb2.a)) 
b % {Slb18, Sib?), 

(c) [tIb‘- = Chicago] 
Sl = ({tlb‘-,tabla),{~abaa,~bb~a,~bb~~~, 

{t4bla), {SIblo), 

{tab40,15b4a},{b4b10,~bb~~}, 

tta:a:, tSblo,t4bla), {SIblo, sabto), 

(d) S1 = I;;‘~l’,t~~~~~~:r:lb:a,~~ I , 3ebra}, 
t b “I I”bb$’ 

{tlb4=), tnba-}, 

(4 rt1;1: 

h I 

s1 = ({ebaa ,S5bla,S*b‘a},{t4b48), 

(g) [:la = Purf~, SS* = Northwestem, 81“ = Illinois] 
= (It4 4 }, {able), thb4=,tab4a}, 

ba 
(34 1 , JllbP}, {t7b30, hb1a,t4b1a}, 

ba 
(31 I ,S~bl-},{t*b~a,tSbJ~,t4b~-}, 

{Qbaa}) 

In this example the first vt-retrieve groups the tuple- 
ids into pairs of sets that participate in the join. The 
next steps in the loop rearrange the structure to the 
desired form. It is interesting to observe that the join 
operation is O(nr + r~s) where nr is the number of el- 
ements at the VALUE level for the City-lame domain 
and na is the number of elements that participate as 
pivot element3 in the join. 

Here are some observations about the access language: 

1. 

2. 

6 

The results obtained from the rl-retrieve pro- 
cedure could be displayed on the screen in the ap- 
propriate format. Details of the display routines 
for outputing the results in the nested relational 
form have not been included in this paper. If the 
results obtained from the rl-retrieve procedure 
are temporary or need to saved in new structures 
then they could be inserted into new REXLISTS. 

Conversion from the query language to an efficient 
access plan is hardly a trivial task. Efforts are 
being made to determine if algebra is the right in- 
termediate step for optimisation. 

Discussion 

In this section, we discuss how our storage structure 
is suitable to effectively handle some other important 
DBMS issues. 

6.1 The VALTREE as a Nested Relational 
Structure 

The VALTREE itself can be thought of as a nested rela- 
tion as shown in Figure 7. This allows one to perform 
nested relational algebraic operations on the VALTEEE. 
This allows for example to consider other indexing 
schemes like the standard (attribute, value) pairs by 
simply restructuring the VALTREE using the nested re- 
lational algebra. 

If fast implementations for the RECLIST structure be- 
come available, the VALTREE can be implemented as a 
RECLIST and all the VALTREE operations can be per- 
formed by performing algebraic operations on VALTEEE 
stored as a EECLIST. 

6.2 Object-Oriented Databases 

Object-Oriented Databases are becoming increasingly 
popular. Our research would be beneficial to the imple- 
mentation of object-oriented databases in the following 
two ways: 

1. Several current implementations of object-oriented 
databases [2] map the object oriented systems to 
relational databases. While this is possible, de- 
signers of such systems have problems mapping 
complex objects to flat relations. We feel that the 
mapping from object-oriented databases to nested 

84 



2. 

DOHAII VALUE ATTRIBUTE STRUCTURE {IDESTIFIBB} 

City Name Atlanta Destination Airline-Info { tl *la} 

Chicago City Airline-Info { ts “} 

Destination Airline-Jnfo {t~b~a,t~b~a} 

Nearest-Airport* Schedule (~1 *a*, $5 *I *, se *I “} 

Cincinnati Destination Airline-Info {t* **-} 

Nearest-Airports Schedule {at *o=) 

Detroit Destination Airline-Info {t~b~a,t~b~a} 

Nearert-Airports Schedule {4b10,~6b1aI 

hdy City Airllnc-Info {tt “} 

Destination Airline-Info {t~b3a,tgbla,t4bla 1 

Nearest-Airports Schedule ~~lbla,~3*la~ 

Los Angeles Destination Airline-Info (ts *ea} 

LouisviUe Nearest-Airports Schedule {Sl*3=) 

New York City Airline-Info { tr “} 

Destination Airline-Info {tl *Jo, tibia, tabpa} 

St. Louir City Airline-hfo { tza} 

Destination Airline-Info {t~b3a,t~b~d,t~b~a} 

Nearest-Airports Schedule {ebla) 

Airline Name . . . . . . . . . {-**I 

TeamName . . . . . . . . . {***I 

Figure 5: The VALTREE as a nested relational structure 

relational databases, though not entirely trivial, 
is much cleaner than the mapping to a relational 
model [4]. This is because the nested relational 
paradigm models sets which are fundamental to 
object-oriented systems. 

The problems faced by designers building ‘pure’ 
object-oriented systems [9] are very similar to the 
problems that are faced in the representation of 
the nested relational model. Data-structures like 
the VALTREE and the RECLIST with some modifica- 
tions could be used for designing object-oriented 
databases. The notation for tuple-identifiers is 
similar to the tagged notation used for creating 
object-identifiers. 

Some more interesting solutions for problems with 
object-oriented systems, such as object sharing, can 
be handled by associating object-ids explicitly with ob- 
jects and storing these object-identifiers in the VALTREE 

as though they were the values. 

6.3 Granularity of the Database 

While it may be ideal to save every atomic value in the 
VALTREE and have a pointer for each atomic value in 
the structure node of the RECLIST, this may not be ap- 
propriate or feasible. It is therefore left to the DBA to 
adjust the granularity of indexing. Thus tuples which 
are always accessed together and never as components 
may be stored as a single entity in the RECLIST and the 
key value for the tuple may be stored in the VALTREE 
instead of storing all individual values. 

85 



6.4 Intermediate Results 

Most database queries are performed in stages, thus 
intermediate results are very important. As our algo- 
rithms depend on the use of two data structure9 it may 
be important to maintain the two data-structures for 
all partial results. We have not yet studied the issue 
of intermediate results in detail. Several approaches to 
this problem could include: 

1. 

2. 

3. 

6.5 

Do not maintain any new data-structures on par- 
tial results; use tids and extract from the same 
VALTREE and RECLIST all the values as and when 
needed. 

Assume that the partial result is a new structure 
and store the structure as a RECLIST and add val- 
ues to the existing VALTREE. 

Generate new, small and temporary VALTREE and 
RECLIST structures which survive only until the 
expression has been evaluated. 

Query Optimization 

This is another issue that has not been studied in de- 
tail for nested relational models. The VALTREE and the 
RECLIST are an integral part of our storage scheme and 
they should be exploited to perform query optimiza- 
tion. Furthermore, while the algebraic properties for 
the nested algebra are fairly well understood, as was 
demonstrated in some of the examples of the previous 
section, alternate query plans for the same query are 
possible. We believe that query optimization should 
not only take into account the algebraic properties but 
should also consider heuristics and the current state 
of the database. We are currently involved in study- 
ing this problem. While it is possible to draw parallels 
from the query optimization techniques for the rela- 
tional model, these techniques cannot be mapped di- 
rectly to the NRDM as additional problems need to be 
addressed. 

6.6 Partitioning and Parallelism 

Nested structures inherently partition the data horizon- 
tally. Another level of partitioning of the data occurs in 
the VALTREE. For instance, the tuples in a structure are 
partitioned according to the values they have. We can 
elrectively set up locks at each value level thereby allow- 
ing us to use concurrent processes to perform our op- 
erations. When we are performing an update, we need 

to lock only the concerned values and do not need to 
lock the entire database. This approach lets us localize 
in memory our most active and interacting processes. 
Furthermore, partitioning of the database allows us to 
perform several operation9 in parallel. 

We have been investigating a parallel implementation of 
ANDA, PANDA on the massively parallel Data Struc- 
ture Machine (DSM) which is being built at Indiana 
University [5]. 

7 Acknowledgements 

We would like to think Jose Blakeley, Timothy Bridges, 
Umeshwar Dayal, Paul DeBra, Patrick Fischer, Hank 
Korth, Ravi Krishnamoorthy, Nancy Martin and Jan 
Paradaens for their suggestions. Jan Bond, Ng Chook, 
Vivian Howat, Ryan Hou, Shirley Lee, Edy Liongosari, 
Norma MacKay, Prab Sal, Lin-Long Shyu helped with 
the implementation. 

References 

PI 

PI 

PI 

Fl 

Shaku Atre. Data Bare: Structured Techniques 
for Design, Performance, and Management. John 
Wiley and Sons, Inc, second edition, 1988. 

Francois Bancilhon. Object-oriented database 
systems. In Proceeding3 of the Seventh ACM 
SIGACT-SIGMOD-SIGART Symposium on Prin- 
ciples of Database Systems, Austin, pages 152-162, 
March 1988. 

Nicole Bidoit. Efficient evaluation of relational 
queries using %ested relations”. INRIA internal 
report, 1985. 

Jose Blakeley, Pedro Celia, Latha Colby, Anand 
Deshpande, Ieming Jeng, Sidney W. Kitchel, 
Nancy Martin, David Plaisier, and Dirk Van 
Gucht. An object-oriented database using a nested 
relational backend. An extended abstract submit- 
ted to the 2nd International Workshop on Object- 
Oriented Databases, April 1988. 

[5] Timothy R. Bridges and Anand Deshpande. 
An efficient implementation of nested relational 
databases on the massively parallel data structure 
machine. submitted to the International Sympo- 
sium on Databases in Parllel and Distributed Sys- 
tems, May 1988. 

86 



[S] M.J. Carey, D.J. Dewitt, J.E. Richardson, and 
E.J. Shekita. Object and file management in the 
EXODUS extensible database system. In Proceed- 
ings of the Twelfth International Conference on 
Very Large Databases, Kyolo, pages 91-100, Au- 
gust 1980. 

[7] P. Dadam, K. K&pert, F. Andersen, H. Blanken, 
Ft. Erbe, J. Guenauer, V. Lum, P. Pi&or, and 
G. Walch. A DBMS prototype to support extended 
NF2 relations: An integrated view on flat tables 
and hierarchies. In Proceedings of ACM-SIGMOD 
‘86 International Conference on Management of 
Data, Washington, D.C., pages 356-367, 1986. 

[8] C.J. Date. Why is it, so difficult to provide a rela- 
tional interface to ims? InfolMS, 4(4), 1984. 4th 
Quarter. 

[9] Umeshwar Dayal, Frank Manola, Alejandro Buch- 
mann, Upen Chakravarthy, David Goldhirsch, 
Sandra Heiler, Jack Orenstein, and Arnon Rosen- 
thal. Simplifying complex objects: The PROBE 
approach to modelling and querying them. In Pro- 
ceedings of Ihe Conference on Datenbank-Systeme 
fir Biiro, Technik und Wissenschafl, Darmstadt, 
Informalik Fachberichte. Springer-Verlag, April 
1987. 

[lo] U. Deppisch, H.-B. Paul, and H.-J. Schek. A stor- 
age system for complex objects. In Proc. of Ihe 
Inl’l Workshop on Object- Oriented Database Sys- 
lem, Pacific Grove, pages 183-195, 1986. 

[l l] Anand Deshpande and Dirk Van Gucht. An imple- 
mentation for nested relational databases. Tech- 
nical Report 243, Computer Sceince Department, 
Indiana University, Bloomington, February 1988. 

[12] Vinay Deshpande and Per-Ake Larson. An alge- 
bra for nested relational databases. Technical re- 
port, University of Waterloo, Waterloo, Canada, 
November 1987. 

[13] M. Jarke and J. Koch. Query optimization in 
in database systems. ACM Computing Surveys, 
16(2):111-152, June 1984. 

[14] W. Kim, D.S. Reiner, and D.S. Batory. Query 
Processing in Database Systems. Springer-Verlag, 
Berlin Heidelberg, 1985. 

[15] Per-Ake Larson. Dynamic hash tables. Communi- 
calions of 1he ACM, 31(4):446-457, April 1988. 

[16] M. Missikoff. A domain baaed internal schema 
for relational database. In Proceedings of ACM- 
SIGMOD 1983 International Conference on Man- 
agement of Data, San Jose, pages 215-224, 1982. 

[17] M. Missikoff and M. Scholl. Relational queries in 
domain based DBMS. In Proceedings of AChf- 
SIGMOD 1983 International Conference on Man- 
agement of Data, San Jose, pages 219-227, 1983. 

[18] Jan Paredaens and Dirk Van Gucht. Possibilities 
and limitations of using flat operators in nested 
algebra expressions. In Proceedings of the Seventh 
ACM SIGACT-SIGMOD-SIGART Symposium on 
Principles of Database Systems, Austin, pages 29- 
38, 1988. 

[19] Peter Pi&or and F. Anderson. Designing a gener- 
aIized NF2 model with an SQL-type language in- 
terface. In Proceedings of Ihe Twelfth International 
Conference on Very Large Databases, Kyoto, pages 
278-285, August 1986. 

[20] Mark A. Roth, Henry F. Korth, and Don S. Ba- 
tory. SQL/NF: A query language for -1NF rela 
tional databases. Information Systems, 12( 1):99- 
114, 1987. 

[21] Marc H. Scholl. Theoretical foundation of al- 
gebraic optimization utilizing unnormalized rela- 
tions. In International Conference on Database 
Theory, Rome (Lecture Notes in Computer Sci- 
ence 2431, pages 380-396. Springer-Verlag, 1986. 

[22] K.E. Smith and S.B. Zdonik. Intermedia: A 
case study of the difference between relational 
and object-oriented database systems. In Proc. of 
OOPSLA, Miami, Fl., 1987. 

[23] D.C. Tsichritzis and F.H. Lochovsky. Dala Base 
Management Systems. Academic Press, Inc., 1977. 

[24] P. Valduriez. Join indices. ACM ZYansaclions on 
Database Systems, 12(2):218-246, June 1987. 

[25] Patrick Valduriez, Setrag Khoshafian, and George 
Copeland. Implementation techniques of complex 
objects. In Proceedings of the Twelfth Interna- 
tional Conference on Very Large Databases, Ky- 
oto, pages 101-110, August 1986. 

[26] Gio Wiederhold. File Organization for Database 
Design. McGraw-Hill Book Company, 1987. 

87 


