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ABSTRACT 

The general architecture of a monitor that enforces 
inclusion dependencies and referential integrity is de- 
scribed. The monitor traces the operations a user 
submits in a session and can either modify an opera- 
tion or propagate it, depending on additional infor- 
mation the database designer provided at design time. 
Propagation is implemented by executing new oper- 
ations when the session terminates, using summary 
data collected during normal processing. 

1. INTRODUCTION 

When the database designer specifies a conceptual 
schema, he may include a set of integrity constraints 
to capture when a database state correctly reflects the 
real world. A database state is consistent when it sat- 
isfies all integrity constraints. Therefore, any operation 
modifying the database must preserve consistency, that 
is, map consistent states into consistent states. 

An important feature of a database system would then 
be to automatically enforce constraints. Such feature 
would completely free users from worrying about 
consistency preservation and protect the information 
stored from incorrect operations. We can devise two 
basic strategies to accomplish this goal, depending on 
when constraints are taken into consideration. The 
difference between the two strategies is essentially be- 
tween compilation and interpretation. The system 
may incorporate a constraint enforcement pre-compiler 
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that accepts a user’s program and produces a new 
program that has new tests and operations, depending 
on the constraints of the schema. The new program 
would have the same basic behavior as the old pro- 
gram, but it would preserve consistency of the data- 
base. Such strategy would then help produce correct 
pre-defined update programs. In a second scenario, 
the system may have a constraint enforcement 
monitor, acting as a front-end to the DBMS, that 
controls (interprets) streams of operations guarantee- 
ing that the fmal database state is consistent. This 
second strategy would allow users to submit on-line 
streams of operations leaving to the monitor the 
problem of consistency preservation. 

However, it is very difficult to find an optimized 
enforcement strategy due to the intrinsic complexity 
of general integrity constraints. Therefore, it is rea- 
sonable to concentrate on small, but significant classes 
of constraints that can be enforced efficiently. 

This paper contributes to the investigation on the au- 
tomatic enforcement of constraints by describing the 
general architecture of a monitor that enforces inclu- 
sion dependencies and a variation of these dependen- 
cies that expresses referential integrity. Depending on 
additional information the database designer provides 
at design time, the monitor can reject operations or 
execute new operations. The monitor optimizes the 
process even when the stream consists of several dif- 
ferent operations submitted in any order, but it as- 
sumes that the underlying DBMS guarantees keys, 
type checking and absence of null values. 

In general, the motivation for the paper lies, in the 
unquestionable importance of inclusion dependencies 
for conceptual modelling and in that their enforcement 
offers an ample margin for optimization at many dii- 
ferent levels, not yet fully explored. 

To enforce constraints, the monitor uses two basic 
strategies: it can either modify the qualification of 
DML statements, an idea frost introduced in [St], or 
propagate the operation using summary data collected 
during the session by a technique similar to ftite dif- 
ferencing. Fast automatic maintenance of derived data 
by finite differencing, applied to the enforcement of 
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general constraints, is discussed in [KP,Pa]. A special 
case of this technique is discussed in [BBC]. The da- 
tabase designer must inform, for each inclusion de- 
pendency, which strategy the monitor must use. This 
idea and a general overview of referential integrity is 
contained in [Da]. New storage structures to speed up 
testing referential integrity are discussed in [BL]. 
Techniques to optimize the enforcement of general 
constraints are discussed, for example, in 
[BB,HI,HS,LB,QS]. A discussion on constraint 
compiling, using theorem proving techniques, is con- 
tained in [HMN]. The implementation of alerters is 
discussed in [BC] and delayed integrity checking in 
[La]. A discussion on integrity checking for deductive 
databases can be found in [ASM,Li]. Finally, the 
newer relational DBMS prototypes, such as 
POSTGRES [SAH] and STARBURST [LMP], offer 
interesting facilities to implement integrity checking. 

The paper is organized as follows. Section 2 intro- 
duces the notation and basic definitions used 
throughout the paper. Section 3 informally discusses 
important points such as the basic strategies for en- 
forcing inclusion dependencies, simple optimizations 
that can be done at execution time and problems re- 
lated to the processing of triggers. Section 4 describes 
the monitor. Finally, section 5 contains the conclu- 
sions. 

2. PRELIMINARIES 

We assume that the reader has some familiarity with 
the relational model and, thus, we just recall here a few 
basic concepts and notation. 

A relational schema is a pair S= (R,C) where R is a 
set of relation schemes and C is a set of integrity con- 
straints. A relation scheme is a statement of the form 
WA, ,..., A,.,] where R is the name and A,,...,A, is 
the list of attributes of the scheme. A database state 
d over S is a function that assigns an n-ary relation to 
each scheme in S with r~ attributes. The state d is 
consistent iff it satisfies all constraints of S. 

The classes of integrity constraints considered in this 
paper will be keys, statements indicating the type of 
an attribute and whether it admits null values, inclu- 
sion dependencies and references. We assume that the 
reader is familiar with the fust two classes and leave 
them undefined. 

We require that the conceptual schema specify, for 
each relation scheme, a unique key, called the primq 
key of the scheme, the type of each attribute of the 
scheme and whether it admits null values or not. By 
assumption, no attribute participating in the key ad- 
mits null values. 

We now define inclusion dependencies and references. 
Let R[A, ,..., A,] and SIB1 ,..., B,] be relation 
schemes (not necessarily distmct) of a relational 
schema S, X be a sequence of k distinct members of 
A, ,.-.,A, and Y be a sequence of k distinct members 
of B,,..., B,. Let d be a database state of S that as- 
signs the relations r and s to R and S. 

We call the statement S[Y] E R[X] an incIusion de- 
pendency (IND for short) [CFP]. The state d satisfies 
S[Y] E R[X] iff s[Y] is a subset of r[X]. 

Assume now that X is a key of R. We call the state- 
ment S[Y]+R[X] a reference (REF for short) and 
say that Y is a foreign key of S. The state d satisfies 
S[Y]-,R[X] iff s[Y] - {h} E r[X]. In words, the 
projection of s on Y, excluding all tuples with a foreign 
key composed of just null values, must be a subset of 
the projection of r on X. Therefore, a REF is not an 
IND, unless we allow more general relational ex- 
pressions on the left-hand side of INDs. 

Given either an IND of the form S[Y] s R[X] or a 
REF of the form S[Y]+R[X], we say that a tuple u 
in s references a tuple t in r iff U[Y] = t[X]. 

We will adopt an SQL-like notation to describe oper- 
ations that depart from the SQL standard [SQL] in 
many points. In particular, we will use two non- 
standard statements: 

V := <select statement> 
meaning “store in V the result of the select statement” 

insert into R tuples {t,, . . . ,t,) 
meaning “insert into R tuples tl,..., t,“. 

Finally, we assume throughout the paper that updates 
cannot modify key values. 

3. PROBLEMS WITH THE MONITORING OF 
OPERATIONS 

3.1 Blocking versus Propagation of 
Operations 

One of the fust problems one must face when design- 
ing an automatic constraint enforcement subsystem is 
that the declaration of a constraint says nothing about 
how to preserve it. Consider, for example, the refer- 
ence S[Y] +R[K]. If a deletion from R violates the 
reference, one can block the deletion, propagate the 
deletion by deleting tuples from S or propagate the 
deletion by setting to null the Y-value of tuples in S. 
The mere declaration of the reference does not indicate 
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which choice the constraint enforcement subsystem 
should take. 

To solve this first problem, one may prioritize the re- 
lation schemes and dictate that operations can propa- 
gate only from the higher priority schemes to the lower 
priority ones [~a]. But this strategy does not distin- 
guish between the two propagation options above, for 
example. A second alternative, which we adopt fol- 
lowing [Da], is to require that the database designer 
explicitly declare which option he wants. 

Considering that insertions to R and deletions from S 
cannot violate an IND of the form S[Y] C_ R[X], the 
options are: 

block deletion, meaning “do not delete or update 
the X-value of a tuple in R if it is the last tuple 
referenced by some tuple in S”; 
block insertion, meaning “do not insert, or up- 
date the Y-value of a tuple in S if it will not 
reference any tuple in R”; 
propagate deletion, meaning “propagate the de- 
letion, or update of the X-value of a tuple in R 
by deleting those tuples in S that no longer ref- 
erence any tuple in R”; 
propagate insertion, meaning “propagate the in- 
sertion or the update of a tuple u in S by creat- 
ing a tuple t in R such that u[Y] = t[X], if u now 
references no tuple in R”. In this case, the 
monitor will prompt the user to supply the other 
attribute values of t. 

The options for a REF of the form S[Y]+R[K] dif- 
fer from those just described because K is a key of R 
and, hence, by assumption an update to R never 
modifies K-values, and because a tuple in S may have 
a null Y-value. Therefore, in addition to those listed 
above, REFs have the following option: 

l propagate by nullifying, meaning “propagate the 
deletion of a tuple in R by nul.lifjGng the 
Y-value of those tuples in S that referenced it”. 

Note that the database designer must specify a valid 
option for deletions from R and a valid option for in- 
sertions into S, thus generating four different possibil- 
ities for INDs and six for REFs. 

Finally, we will use the term trigger to refer to an op- 
eration automatically executed to implement a propa- 
gation, and the term firing to refer to the act of 
invoking a trigger. 

3.2 A First Look at the Problem of 
Monitoring Operations 

The monitor described in section 4 tries to reduce the 
cost of enforcing constraints by: (i) rolling back the 
session as early as possible and when there is no other 
alternative; (ii) never directly testing if a state is con- 
sistent. Intuitively, the monitoring strategy adopted 
will be as follows: 

1. for each operation 0 the user submits: 

a. for each constraint C with a block option 
for 0, modify 0 to preserve C; 

b. for each constraint C with a propagate 
option for 0, collect the values necessary 
to propagate 0; 

C. execute 0; 

2. when the user signals that he has terminated the 
session, execute all triggers resulting from prop- 
agated operations, using the values collected 
during the processing. 

The monitor will use in-core data structures similar to 
differential files to efficient and correctly propagate 
operations and speed up certain tests needed for 
blocking operations. 

The rest of this subsection contains a preliminary 
analysis of the problem of monitoring operations that 
will be refined and revised in the next subsections. 
The analysis will be based on examples that cover all 
block and propagate options for a REF (since the 
treatment of INDs is more complex than that of 
REFs). 

Let R[A,B] and S[A,B] be two relation schemes, 
with key A and subjected to S [ B] + R [ A]. Consider 
the deletion: 

DRl. delete from R where Q 

Suppose initially that the database designer selected 
the option block deletion. 

We first observe that this option does not require re- 
jecting an operation 0 if just some of the tuples 0 
deletes or modifies cause a consistency violation. It 
leaves open the possibility of modifying 0 to reject 
deleting or modifying just those tuples that would 
cause problems (we shall see in section 3.4 that this 
approach does not work correctly for triggers, though). 
The monitor will adopt this second alternative, imple- 
mented by query modification [St] and optimized 
when possible. 

In the example, the monitor will modify DRl to: 
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DR2. delete from R 
where Q 

Since, except for this point, it is fairly similar to the 
previous case, we move to the options involving in- 

and not exists sertions into S. 
(select * from S 

where S.B = R.A) The option block insertion can be treated by query 
modification without problems. For example, given 

which reads “delete from R those tuples satisfying Q the insertion: 

and which are not referenced by any tuple in S’. Note 
that, since A is a key of R, each tuple in S references 

IS6. insert into S values (k',k) 

exactly one tuple in R. This is not true about INDs. the monitor will proceed as follows. If the attribute 

Consider now the option propagate deletion from R. 
value k is null, then the monitor executes I S6 un- 
changed, otherwise it executes: 

The monitor will implement the propagate deletion 
option for REFs by keeping a set V containing the key IS7. Z := select * from R 
values of the tuples deleted by an operation and by where R.A = k 

deleting those tuples in S whose foreign key is in V. ifZ+0 
(Keeping such sets is also important to solve problems then 
to be discussed in the next two subsections). insert into S values (k',k) 

The monitored execution of DRl for the propagate 
deletion option will be equivalent to: 

Finally, the option propagate insertion requires 
prompting the user to supply the missing attribute 

DR3. V := select R.A from R where Q 
values for the tuple to be inserted into R. 

delete from R where Q 3.3 Monitoring Multiple User Operations 
. . . 

DS3. delete from S where S.B in V 

Note that the monitor must obviously retrieve the sets 
of values necessary to fne triggers before actually 
processing the operation since otherwise it would lose 
the needed values. Also note that V may contain 
values not referenced by tuples in S, thus increasing 
the cost of DS3. However, we consider that the cost 
of filtering out such tuples does not compensate since 
it would require replacing DR3 by: 

DR4. V := select S.B from S, R 
where R.A = S.B and Q 

delete from R where Q 

which, unlike DR3, involves a join between S and R. 

Finally, note that if the DBMS offered a deletion- 
and-retrieve command, then we could simplify DR3 io: 

DR5. delete from R 
retrieve R.A into V 

where Q 

The statement DR5 deletes from R all tuples satisfying 
Q and, at the same time, saves their A-values in V. 

The discussion in section 3.2 must be revised, first of 
all, because the user may himself create several oper- 
ations that together preserve consistency, thus making 
it unnecessary to modify or propagate operations in 
certain cases. 

For example, consider again the two relation schemes 
NAB1 and WW, with key A and subjected to 
S[B]-+R[A]. A ssume that the options selected are 
block insertion into S and propagate deletion from R. 

We first illustrate how the modification of an opera- 
tion may become unnecessary. Using a strategy simi- 
lar to that described in section 3.2, if the user submits 
a sequence of insertions of the form: 

IRl. insert into R values (k,b) 
ISl. insert into S values (k',k) 

the monitor will process IRl without modification, 
but it will unnecessarily change IS1 to: 

IS2. z := select * from R 
where R.A = k 

ifZ#0 
then 

insert into S values (k',k) 

The option propagate by nullifying raises problems of 
its own, specially when two foreign keys overlap. 

Indeed, the qualification of IS2 is trivially satisfied in 
view of IRl. 
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It is very difficult to completely avoid unnecessary tests 
because we would have to take into account not only 
insertions, but also complex updates. Therefore, we 
adopted a compromise solution. The monitor will 
maintain in core the set w of all foreign key values 
that it knows to be in the database because of the op- 
erations it has already processed. It will then use such 
set to speed up the acceptance test for insertions. 

In the case of the current example, the monitor will 
then produce the following stream of operations when 
processing IRl and ISl: 

IR3. W := {k}; 
insert into R values (k,b) 

IS3. if k occurs in W 
then 

insert into S values (k',k) 
else 

begin 
Z := select * from R 

where R.A = k 
ifZ+O 

then 
insert into S values (k',k) 

end 

An identical problem occurs with deletions, which the 
monitor will minimize by keeping the set of all foreign 
key values that it knows not to be in the database be- 
cause of the operations it has already processed. 

Modifications may also be wrongly applied if oper- 
ations are submitted in the wrong order, as would be 
the case if IS1 were submitted before I Rl. The 
monitor will not avoid this problem, however, since it 
will always modify an operation before processing it, 
for each constraint with a block option foi that type 
of operation. 

We now turn to operation propagation, which creates 
a different source of problems. Indeed, if the monitor 
fires triggers immediately after an operation, it may be 
anticipathg a corrective action that will become un- 
necessary or even wrong due to an operation that the 
user will still submit. 

For example, suppose that the user intends to submit 
the following sequence of operations: 

DR4. delete from R where R.A = k 
us4. update S set S.6 = null 

where S.B = k 
DR4'. delete from R where R.A = k' 

Intuitively, the database designer may have decided 
that deletions from R propagate to deletions from S 

when he specified the propagate deletion option. But 
the user, for this particular session, decided that the 
deletion of a tuple with key k from R propagates by 
nullifying the foreign key values of the appropriate 
tuples of S. 

Firing triggers right after operations would imply exe- 
cuting statement DS4 below before processing US4: 

DS4. delete from S where S.B = k 

But DS4 wrongly deletes all tuples US4 will process. 

To avoid such problems, the monitor will: (i) post- 
pone firing triggers until the user signals that he has 
terminated the session; (ii) maintain the set of values 
needed to fire triggers using a technique similar to that 
used to implement differential files [Pa]. 

In the current example, the monitor will then produce 
the following stream of operations ( V is the set of key 
values of the tuples deleted from R) : 

DR5. V := {k} 
delete from R where R.A = k 

us5. update S set S.B = null 
where S.0 = k 

DR5'. V := V U {k'} 
delete from R where R.A = k' 

/* session ends - fire triggers */ 

DS5. ifV#@ 
then 

delete from S where S.B in V 

In this particular case, DS5 will delete only those 
tuples in S whose foreign key value is k’ since, after 
US5, no tuple whose foreign key value is k remains in 
S. Note that we could, again in this particular case, 
easily deduce that k can be removed from v after ex- 
ecuting US5. 

3.4 Monitoring Triggers 

On a frost approximation, the monitor may treat a 
trigger 0 as if it were part of the stream of operations 
the user submitted. In particular, and this is very im- 
portant, the monitor must check: (i) if 0 may violate 
a constraint C and apply the appropriate block or 
propagate option; (ii) if 0 requires changing one of the 
sets of values kept to fire further triggers (such as v in 
the examples in sections 3.2 and 3.3). This is done 
exactly as for user operations, except for the differences 
discussed in what follows. 
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First, unlike a user operation, the monitor cannot 
modify a trigger as otherwise the final state may be 
inconsistent. Therefore, if any block option applies to 
a trigger, the monitor must perform a test to decide if 
the trigger can run unchanged. If not, the monitor has 
to abort and rollback the complete session or to return 
to the user for corrective act&. 

For example, consider the three relation schemes 
R[A,B], S[A,B] and T[A,B], with key A and sub- 
jetted to S[B]+R[A] and T[B]+S[A]. Suppose 
that the options are propagate deletion from R and 
block deletion from S. 

Let DRl be a deletion of the form: 

DRl. delete from R where Q 

Then, the monitor will proceed as follows: 

DRZ. V := select R.A from R 
where Q 

delete from R where Q 

/* session ends - fire triggers */ 

DS2. W := 
select * from S 
where S.B in V 

and exists 
(select * from T 

where S.A = T.B) 

if&V=@ 
then 

delete from S where S.B in V 
else 

rollback 

In DS2, the monitor fust tests if the deletion of any 
tuple from S needed to propagate DR2 violates con- 
sistency. If not, the monitor will execute the deletion 
from S, otherwise it will abort execution. This course 
of action is necessary as otherwise the propagation 
from DR2 would be executed only partially thus pos- 
sibly not fully restoring consistency with respetit to 
S[B]-+R[A]. 

The last problem we illustrate is trigger interference. 
Assume the same scenario as in the previous example, 
but suppose that the options are propagate deletion 

from R and propagate insertion into S. 

Consider the sequence of operations: 

DR3. delete from R where R.A = k 

IS3. insert into S values (k',k) 

During normal processing, the monitor executes: 

DR4. V := (k} 

delete from R where R.A = k 

IS4. W := {k} 
insert into S values (k',k) 

When the session terminates, the monitor will then fire 
the triggers in some order, for instance: 

DS4. delete from S where S.B in V 

IR4. for each x in W do 
begin 

Z := select * from R 
where R.A = x 

ifZ=0 
then 

begin 
ask the user for 

the B-value y of the tuple 
to be inserted with key x 

insert into R values (x,y) 
end 

end 

But the two triggers interfere with each other. If, as 
written above, the monitor executes DS4 before IR4, 
the tuple ( k ’ , k) inserted by IS4 is deleted by DS4, 
making the firing of IR4 no longer necessary. 

On the other hand, if the monitor executes I R4 before 
DS4, then DS4 need not execute at all because R will 
again have a tuple with key value k. 

The monitor will resolve interference by having trig- 
gers modify the values kept to fire further triggers. It 
will also give preference to insertion triggers to avoid 
firing deletion triggers unnecessarily. 

Therefore, the monitor will execute (modified) triggers 
in the following order: 

IR5. for each x in W do 
begin 

ask the user for 
the B-value y of the tuple 
to be inserted with key x 

insert into R values (x,y) 
end 
V := v- w 

DS5. delete from S where S.B in V 

In this specific example, we have V= W= (k} just 
before the execution of the triggers. Thus, the firing 
of DS5 becomes vacuous, as desired, since V will be- 

43 



come empty just be-fore the execution of this state- 
ment . 

Finally, we observe that the strategy of keeping the sets 
of values required to process triggers also copes, with- 
out change, with the recursive firing of triggers. 

4. DESCRIPTION OF THE MONITOR 

4.1 The Basic Data Structure of the Monitor 

The monitor will process block options by modifying 
an operation, if necessary, as soon as it is submitted. 
To process propagate options, the monitor will main- 
tain, during normal processing, summary information 
and, when the session terminates, it will process all 
triggers required to restore consistency as if they were 
user operations, with the differences pointed out in 
section 3.4. 

The summary information will take the form of a list 
f i re whose entries will be quadruples with the format 
(t,R,X, V) where t is either d (for deleted) or i (for 
inserted), R is a relation name, X is a list of attributes 
of R and V is a set of X-values. Briefly, the entries in 
f i re will serve the following purposes: 

l keep information needed to fire triggers; 
0 avoid trigger interference; 
0 solve the problem of recursive propagation of 

triggers; 
l speed up testing if an operation can run un- 

modsed. 

The rest of this section details how the monitor main- 
tains the list f i re. 

Let s= (R,C) be the relational schema in question. 
For each constraint C of S, if C is an IND of the form 
S[Y] E R[X] or a REF of the form S[Y]+R[X], the 
monitor will maintain the following entries in fire 
(the two cases are not mutually exclusive): 

Case 1: C has one of the options - propagate deletion 
or propagate by nullifying from R, or block insertion 
into s. 

Let Ye indicate the value of R in a state f and sf the 
valueofS inf: 

The monitor will maintain an entry in fire of the 
form (d,R,X,V) in such a way that the following as- 
sertion is an invariant: 

Y E V iff there is a state d previous to the current 
state c such that there is td in rd with td[X] = v 
and there is no tc in rc with t,[X] = V. 

It is then possible to prove that: 

Lemma 1: Let fbe any state during the processing. 
Then: 

foranyuinsf ,u[Y]isin Vathereisno tin 
r, such that u[Y] = t[X]. 

Thus, in particular, any tuple u in sf such that 
u[Y]e V must be deleted or have its Y-value null&ed, 
depending on the option chosen. 

We now describe how the monitor maintains c/ to 
satisfy the above assertion, considering each possible 
operation over R. Intuitively, the monitor must in- 
clude in V a value v iff v was in the projection of R 
on X before, but not after, the operation is executed 
(in all situations below, the reader must remember 
that, when C is an IND of the form S[Y] E R[X], X 
is not a key of R and, hence, there may be more than 
one tuple in R with the same X-value). 

CareA: delete from R where Q 

/* 
select X-values deleted from R[X] 

*/ 
V' := 

select R.X from R 
where Q 

and not exists 
(select * from R R' 

where R.X = R'.X 
and not Q[R'/RJ) 

/* 
add them to V 

*/ 
V := v u V’ 

where the notation Q[ R ’ /R J indicates Q with all oc- 
currences of R replaced by R ' . 

CaseB:insert into R tuples {t,,...,t,} 

/* 
remove inserted X-values from V 

*/ 
V := v - {t,[X], . . . ,t,[X]} 
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CaseC: update R set P where Q 

/* 
select X-values deleted from R[X] 

*/ 
:= 

select R.X from R 
where Q 

kl 

and not exists 
(select * from R R' 

where R.X = R'.X 
and not Q[R'/R]) 

/* 
select X-values inserted into R[X] 

*/ 

V” := select PX from R where Q 
/* 

add X-values deleted and 
remove those inserted 

*/ 
V := (V u V’) - V” 

where PX indicates the projection on X of the result 
of applying the changes described by P on each tuple. 

The qualifications enclosed within a box in cases A 
and C become unnecessary if the following condition 
holds: 

(*) (Vt E R)(Vu E R) 
UQPI A WI = WI) + Q[ul) 

that is, when for any two tuples in R with the same 
X-value, if one satisfies Q so does the other. Two 
simple and sufficient conditions for (+) are: 

(*. 1) X functionally determines all other attributes 
used in Q; 

(*.2) Q is a condition involving only attributes in 
X. 

Note that, when C is a REF of the form 
S[Y]4R[X], condition (*.l) is satisfied since X is a 
key of R. Therefore, the qualifications within boxes 
above may all be dropped. 

Case 2: C has one of the options block deletion from 
R or propagate insertion into S. 

The monitor will maintain an entry in fire of the 
form (i ,S ,Y, W) in such a way that the following as- 
sertion is an invariant: 

w E w iff there is a state d previous to the cur- 
rent state C such that there is no ud in sd with 
+[Y] = W and there is 2.4, in S, with u,[Y] = W. 

In this case, it is possible to prove that: 

Lemma 2: Let f be any state during the processing. 
Then: 

for any 24 in sf , if there is no t in of such that 
u[Y] = t[X] then u[Y] is in W. 

Since the lemma holds in just one direction, to prop- 
agate insertions into S, the monitor has to synthesize 
a trigger that tests if tuples need at all be inserted into 
R. 

The maintenance of w depends only on the oper- 
ations over S to satisfy the above assertion. Intu- 
itively, the monitor must include in w a value w iff 

w is in the projection of S on Y after the operation is 
executed, but it was not there before (the reader must 
again remember that there may be more than one 
tuple in S with the same Y-value): 

CaseA: delete from S where Q 

/* 
select Y-values deleted from S[YJ 

*/ 
I 

wsii 

/* 

remove them from W 
*/ 
w := w - W’ 
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CaseB: insert into S tuples (u~,...,u,) 

/* 

4.2 Synthesis of Triggers and Modification 
of Operations 

select Y-values already in S[Y] 
*/ 
W' := 

For the sake of clarity, the exposition considers sepa- 
rately each possible block/propagate alternative for 
INDs and REFs, omitting repetitive details as much 
as possible. 

select S.Y from S where S.Y in 

k, I?1 9 * * - 9 qlCYI) 
/* 

Case I: Consider an IND of the form S[YJ E R[X]. 

add Y-values inserted, 
except those already in S[Y) 

"1 
w := w u (bqP1, * * * ,$JYl~ - W') 

Case 1.1: propagate deletion from R and block in- 
sertion into S. 

Case C: update S set P where Q 

Recall from section 4.1 that the monitor will maintain 
an entry in f i re of the form (d,R,X, V). Then, in 
view of Lemma 1, to propagate deletions from R, the 
monitor must synthesize a trigger of the form: 

/* 
select Y-values deleted from S[YJ 

*/ 
I 

wsii, 

/* 

DS. delete from S where S.Y in V 

Now, to block insertions into S, the monitor has to 
modify both insertions and updates as follows. 

Case A: let IS be a multiple insertion statement of the 
form: 

IS. insert into S tuples (u,,...,~,} 

If IS is an operation submitted by the user, the mon- 
itor will modify IS to: 

ISl. z := 

select Y-values inserted into S[Y], 
except those already there 

*/ 
W" := 

select Py from S 
where Q 

select R.X from R 
where R.X in {uIIY],...,u,[Y]} 

ISl. for each Ui in {q,...,~,) 
such that Ui[Y] 5s not in Z do 

insert into S values 24i 
end 

and not exists 
(select * from S S' 

where S'.Y = Py 
and not Q[S'/S]) 

/* 

But if IS is a trigger, the monitor will first perform the 
following acceptance test: 

TSl. Z := 
select R.X from R 

add new Y-values and 
remove those deleted 
but not re-inserted 

*/ 

where R.X in (uIIY],...,u,[Y]) 

w := (W - W') u W" 

If Z is not equal to {u~[Y],...,z+,[Y]}, then some tuple 
to be inserted by IS will not reference any tuple in R 
and, hence, the monitor must reject IS and rollback 
the whole session. 

All conditions enclosed within a box above again be- The monitor can also use the entry (d,R,X,V) to 

come unnecessary when a condition similar to that speed up rejecting IS in both cases. Indeed, if 
introduced in the previous case holds. Ui[Y]E V holds., then by definition of v there is no 

. 
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tuple t in the current value of R such that 
t[X] = Ui[Y]* 

Case B: let UP be an update statement of the form: 

UP.. update S set P where Q 

If UP is an operation submitted by the user that 
changes Y-values, the monitor will modify it to: 

UPl. update S set P 
where Q 

and exists 
(select * from R 

where R.X = Py) 

But if UP is a trigger, the monitor performs acceptance 
tests whose qualification is similar to that added above. 

Case 1.2: propagate insertion into S and block deletion 
from R. 

Recall from section 4.1 that the monitor will maintain 
an entry in f i re of the form (i ,S,Y, W). Therefore, 
to propagate insertions into S, since Lemma 2 holds 
in just one direction, the monitor has to synthesize a 
trigger that tests if tuples need at all be inserted into 
R: 

IR. W’ := select R.X from R 
where R.X in W 

W := w- W’ 
for each w E W do 
begin 

construct a tuple t 
with X-value equal to w and 
with the other attribute values 
supplied by the user 

insert into R values t 
end 

Note that, if the monitor also maintains an entry in 
f i re of the form (d,R,X, V) then, by definition of v, 
it could speed up IR as follows (Z and z’ are just 
temporary variables): 

IR’. Z :=wnv 
Z’ :=w-v 
W’ := select R.X from R 

where R.X in Z’ 
W :=W’ u z 
for each w E W do 
. . . 

Now, to block deletions from R, the monitor has to 
modify both deletions and updates as follows: 

Case A: let DR be a deletion statement of the form: 

DR. delete from R where Q 

The monitor will proceed as follows. 

If DR is an operation submitted by the user, the mon- 
itor will modify OR to: 

DRl. delete from R 
where Q and 
not (exists 

(select * from S 
where S.Y = R.X) 

and 
not exists 
(select * from R R' 

where R'.X = R.X 
and not Q[R'/R])) I 

If DR is a trigger, the monitor wi.U perform the follow- 
ing acceptance test: 

TRl. Z := 
select S.Y from R,S 
where Q 

and S.Y = R.X 

and 
not exists 
(select * from R R' 

where R'.X = R.X 
and not Q[R'/R)) 

Note: as in section 4.1, the qualifications enclosed 
within boxes may be dropped if condition (*) holds. 

If Z is not empty, then some tuple DR deletes is the 
last one referenced by some tuple in S and, hence, the 
monitor must reject DR and rollback the whole session. 

In a particular situation, the monitor can use the entry 
(i ,S,Y, W) to speed up rejecting DR in both cases. 
Indeed, suppose that the qualification Q is equivalent 
to the disjunction "R.X=c, or...or R.X=c,". 
Then, if Ci E W, for some i, DR must be rejected be- 
cause, by definition of W, there is a tuple u in the 
current value of S such that u[Y] = Cia 
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Care B: let UP be an update statement 
of the form: 

UP. update R set P where Q 

If UP is a user operation and it changes X-values, the 
monitor modifies it as follows: 

DRl. update R set P 
where Q and 
not (exists 

(s;:;;," ; yfrom S 
. = R.X) 

and 
not exists 
(s;;;;," * from R R' 

or (R.X = Px[R'/R] 
and Q[WRI))) 

But if UP is a trigger, the monitor performs acceptance 
tests similar to those already discussed. 

Case 1.3: block deletion from R and block insertion 
into s. 

The monitor will maintain entries in f i re of the form 
(d,R,X,V) and (i,S,Y,W) just to speed up rejection 
tests as in cases 1.1 and 1.2. 

Case 1.4: propagate deletion from R and propagate 
insertion into S. 

The monitor will maintain entries in f i re of the form 
(d,R,X, V) and (i ,S,Y, W) to process propagations as 
in cases 1.1 and 1.2. 

Case 2: Consider a REF of the form S[Y] +R[K] 

The treatment of REFs is similar to that of INDs, but 
considerably simpler because K is the key of R, which 
implies that: 

l no two tuples in R have the same K-value; 
l updates do not affect, by assumption, K-values. 

However, we must also take into account the fact that 
tuples in S may have null Y-values. We refer the 
reader to the full paper for the details [CFT]. 

5. CONCLUSIONS 

A monitor that enforces INDs and REFs for single 
operation transactions has already been implemented 
[FCT]. The monitor is coupled with a design helper 
that automatically maps an entity-relationship schema 
into a relational schema and that incorporates opti- 
mization features at the design level. We began to ex- 
tend the monitor to control streams consisting of 
multiple operations, along the lines of this paper, and 
also to enhance the design helper to cope with other 
optimization strategies at the design level. 

The monitoring strategy can be enhanced along many 
lines. First, the strategy may be locally improved in 
many points, such as ordering acceptance tests based 
on their estimated cost. 

Second, the strategy can be further elaborated to cope 
with more sophisticated options. We may introduce 
immediate propagation options that force the ftig of 
triggers immediately after operations, as an alternative 
to the deferred propagation options we defined in sec- 
tion 3.1. We may also create different 
block/propagation options for different classes of us- 
ers. Finally, we may introduce modify options that 
explicitly indicate how to modify certain types of op- 
erations. 

The monitor can obviously be extended to cope with 
other classes of constraints. Naturally the qualification 
modification algorithms and the synthesis of triggers 
would have to be reworked. But the maintenance and 
the general idea behind the basic data structure, 
f i re, might possibly remain the same. 
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