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Abstract 

Open-ended activities such as CAD/CAM, VLSI lay- 
out and software development require consistent con- 
current access and fault tolerance associated with data- 
base transactions, but their uncertain duration, uncer- 
tain developments during execution and long interac- 
tions with other concurrent activities break traditional 
transaction atomicity boundaries. We propose split- 
transaction as a new database operation that solves the 
above problems by permitting transactions to commit 
data that will not change. Thus an open-ended ac- 
tivity can release the committed data and serialize in- 
teractions with other concurrent activities through the 
committed data. 

1 Introduction 

Transactions provide atomicity in two senses: concur- 
rency atomicity (consistent concurrent access) and re- 
liability atomicity (fault-tolerance) in databases. How- 
ever, for several reasons these atomicity properties re- 
strict the applicability of the transaction concept in. 
open-ended activities, such as CAD/CAM projects, 
VLSI design and software development in programming 
environments, even though for these activities we still 
want consistent concurrent access and fault-tolerance. 
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Open-ended activities are characterized by: 

l uncertain duration (from hours to months), 

l uncertain developments (actions unforeseeable at 
the beginning), and 

l interaction with other concurrent activities. 

Each one of these characteristics introduces difficulties 
when constrained by traditional transaction atomicity 
properties. For example, uncertain duration results in 
long transactions’ with two specific problems. First, 
work done within a long transaction is vulnerable to 
crashes because of transaction rollback at abort. Sec- 
ond, long transactions become concurrency bottlenecks 
because updated resources are retained for the dura- 
tion of the transaction. Interaction with other con- 
current activities is even more difficult, since resource 
access from all other transactions must be serialized 
either before or after the transaction. 

One representative model of CAD transactions [l], 
developed by Bancilhon, Kim, and Korth, tries to solve 
these difficulties with an extended transaction model 
tailored for CAD activities. In this model, the CAD 
environment is divided into six hierarchical conceptual 
levels: project transactions, cooperating transactions, 
clients/subcontractors, short-duration transactions, se- 
quences of database operations, and system operations. 
Each level is composed of a set, a sequence, a hierarchy, 
or a directed-acyclic graph of components of the imme- 
diately lower level. Despite this sophisticated activity 
structure, aborting a transaction at any level implies 
aborting all the enclosed activities. In addition, inter- 
action with other concurrent activities is limited to the 

1 Informally defined M the transactions that last for about the 
same time magnitude as the mean time between failures of the 
computer system on which they run. 
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sibling transactions that are enclosed in the same par- 
ent transaction. 

Unpredictable developments in open-ended activi- 
ties reveal two serious problems intrinsic to traditional 
transactions. First, sometimes initial activities modify 
data early in the transaction, which will remain un- 
changed until commit. For instance, suppose we are 
developing two modules to be released together in a 
transaction, F and G. Module F has been coded and 
tested before module G is finished. In this case, trans- 
action abort due to crashes will cause the loss of mod- 
ule F. Second, some (or all) of the later activities may 
become independent of the previous activities. In the 
above example, module F may have been modified so it 
does not use module G any more. In this case, module 
F remains locked unnecessarily until transaction com- 
mits. In both cases, even though the original plan 
might commit F and G atomically, the developments 
lead us to want to commit module F, while continuing 
with module G. 

To solve the difficulties outlined above, we introduce 
the notion of split-transaction, which divides an ongo- 
ing transaction into two serializable transactions. In 
particular, resources read and updated by the origi- 
nal transaction are divided among the resulting trans 
actions into two or more sets., Thereafter, each one of 
the resulting transactions may proceed independently 
with its own data. We use split-transaction mainly to 
commit one of the new transactions and release useful 
results from the original transaction. The other new 
transaction continues. 

Split-transaction brings three major advantages into 
transaction-oriented open-ended activities: 

1. adaptive recovery, committing resources that will 
not change, 

2. added concurrency, releasing the committed re- 

sources, and 

3. serializable access to resources by all activities. 

The inverse operation of split-transaction, called 
join-transaction for historical reasons (as explained 
later), can combine results together and release 

them atomically. Using split-transactions and join- 

transactions we can exploit the three advantages enu- 
merated above to support open-ended activities. 

With split-transactions, we do not intend to settle 
the debate of whether serializability is too restrictive 
for open-ended activities. Nevertheless, powerful seri- 
alizable access is useful even in a system that admits 
non-serializable operations. Therefore, like a significant 
portion of previous work [1,4], we restrict our discussion 
‘0 serializable access. 

Another non-goal of this paper is the philosophical 
discussion of whether in principle an “atomic” trans- 
action can be split completely. We only remind the 
gentle reader that in Physics atoms were split years 
ago. 

The rest of this paper is organized as follows. In 
section 2 we define terms and the concepts of split- 
transaction and join-transaction. In section 3 we ap- 
ply split-transactions to several open-ended activities 
to demonstrate its usefulness. In section 4 we integrate 
consistent database access by long and short trans- 
actions using split-transactions. In section 5 we discuss 
the implementation of split-transaction to show it is 
practical. In section 6 we compare split-transaction to 
other work on transactions for design activities. Section 
7 concludes the paper. 

2 SpW’IYansaction and 
Join-Transact ion 

2.1 Definitions and Assumptions 

Our database is a set of objects, which are accessed by 
transactions. The results in this paper apply to trans- 
action processing, independent of the data model and 

schemas supported by the database. Since we assume 
a simple database model with the basic read and write 
(update) operations, we believe our results can be ex- 
plored further in object bases (also called persistent ob- 
jects). The recent body of work on object bases [17], 
inspired by object-oriented languages [6], emphasizes 
navigation through complex structures as well as the 
exploitation of semantics of high-level operations to in- 
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crease reliability and concurrency. In this aspect, our 
approach is orthogonal to the object base work. 

Each object is a sequence of uersioris; each version 
is produced by an update operation. Even though we 
make this standard assumption about the versions, we 
do not impose any particular concurrency control meth- 
ods on the database. The operations that the database 
manager supports are: 

l Begin-Transaction, 

0 Commit-Transaction, 

l Abort-Transaction, 

The split-transaction operation on transaction T pro 
duces the new transactions A and B. The inverse op- 
eration, join-transaction, finishes executing the trans- 
action T (like a commit-transaction) and makes its re- 
sults part of the target transaction S. The syntax of the 
split-transaction and join-transaction is: 

Split-Transaction( 
A:(AReadSet, AVriteSet, AProcedure), 
B:(BReadSet, BUriteSet, BProcedure)) 

Join-Transaction(S:TID) 

For semantic simplicity, even though T may not have 
completed all its activities, we assume T is in a quies- 
cent state (similar to abort or commit) when it is split. 
In other words, the resources will not change during the 
split-transaction. AReadSet, AVriteSe.t, BReadSet, 
and BVriteSet are sets of objects accessed in A and 
B. AProcedure and BProcedure are the starting points 
of code in which A and respectively B will continue to 
execute. 

For simplicity of presentation, we describe only the 
two-way split-transaction. To split a transaction n 
ways, we can apply the twclway split n - 1 times in 
succession. Because of the semantics of split (explained 
below), the n-way split-transaction may be seen as syn- 
tactic sugar for the successive twoway split. 

The split-transaction operation divides all the activi- 
ties completed in T into two subsets, A and B. The ob- 
ject sets associated with A (respectively, B) are the ob- 
jects accessed by A (B). From the definition, the union 

of object sets in A and B must equal the set of objects 
accessed by T so far. Without loss of generality, we 
assume that A precedes B in the following discussion 
on the intersection of the object sets in A and B: 

1. AUriteSet ll BYriteSet = BUriteLast 

2. AReadSet n BVriteSet = 8 

3. BReadSet n AariteSet = ShareSet 

In property 1, objects in BUriteLast are updated last 
by B. This property says that A should not clobber 
B’s output, but B is allowed to write over A’s output. 
Property 2 says that A can be serialized before B, since 
A has not seen any of the results produced by B. Prop- 
erty 3 says that B may see the results from A; in other 
words, A is the preceding transaction and B the follow- 
ing transaction. 

The above properties 1, 2, and 3 serialize A before B. 
Since the database system guarantees the serializabil- 
ity of T, if A and B can be serialized with each other 
then they can be serialized with respect to all other 
transactions. 

If both ShareSet and BUriteLast are empty, we call 
this the independent case, in which there is no object 
access conflict between A and B, so they can be seri- 
alized in either order. Since A and B are independent, 
they can both continue without additional restrictions. 

If either ShareSet or BUriteLast is not empty, we 
call this the serial case, in which B follows A because 
of data access dependencies. In the serial case, each 
object in the ShareSet must remain unchanged in A 
after split-transaction. Otherwise, B would be using 
uncommitted data. Also in the serial case, if A aborts 
at some time, B must be aborted since otherwise B 
would be relying on aborted data. 

The join-transaction is conceptually simpler than 
split-transaction. Transaction T joins the target trans- 
action S to commit (or abort) the results of T atomi- 
cally with S. T can be thought as a subtransaction of 
S. Alternatively, T and S are sibling transactions un- 
der the same supertransaction. An example of the use 
of join-transaction is to group the results from several 
designers for a release. After the atomic commit of 
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their results they can immediately split again, regain- 
ing their own transactions to proceed independently, if 
the information exchanged between the designers dur- 
ing the supertransaction is serializable. 

We have used the abstract term “computation” to 
denote the activities in both A and B. The nature of 
computation depends on the transaction model, and it 
will be described in detail in the following sections. 

2.2 Sequential Transaction Model 

In this section, we describe computations involving 
the split-transaction operation for a simple transaction 
model. In the next section we extend it to the general 
case. In this simple model, a transaction is a (linear) 
sequence of database operations. 

For the independent case, A and B are subsequences 
of the transaction; objects accessed by A have not been 
accessed by B, and vice versa. For the serial case, A 
has not accessed any objects updated by B, all values 
read by B from A’s objects will not change until after 
A’s commit, and if A aborts then B must abort. 

Because of typical uncertainties in open-ended activ- 
ities, we want to give to the transaction programmer 
(for example, the designer using a CAD database) the 
ability to specify the readset and writeset of both A 
and B. Once the split-transaction operation is called, 
the database manager checks the external operations 
on objects using an optimistic concurrency control algo 
rithm, either centralized [9] or distributed (21, to certify 
the serializability between A and B. This certification 
sweeps the external operations recorded on the log or 
versions to verify the three properties enumerated in 
section 2.1, which ensure serializability. 

Version-based recovery algorithms record read ac- 
cesses as well as write accesses. But typical log-based 
database systems register only the write accesses. For 
the above automatic checking algorithm to work, we 
need to record the long-transaction read accesses on 
the log to verify the three properties. In caSe the 
programmer-specified split is not serializable, the da- 

tabase manager can modify the set A or B and calcu- 
late some serializable splits, using closure algorithms, 

as suggestions to the programmer. In practice, the pro- 
grammer may request a split and choose the appropri- 
ate split from a menu. 

We should recognize that even though external ac- 
cesses conform to the three properties, rigorously 
speaking the algorithm in general does not guarantee 
serializability between A and B. The reason is that as 
part of the same original transaction, A and B may 
have exchanged information through shared variables. 
To guarantee serializability in the rigorous sense, we 
need to record all data access (as in an undo log for an 
editing session) in the long-transaction and perform a 
data flow analysis on the internal operations in T. 

The abstract description of split-transaction may not 
give us an immediate intuition of its usefulness. So let 
us consider a few examples in which split-transaction 
yields a desirable result. For example, let us divide T 
into twoconsecutive subsequences, A and B. We assume 
the division is such that property 1 holds. If A and B 
are independent, they can commit independently. Oth- 
erwise, since all object accesses in A precede all accesses 
in B, they trivially satisfy our property 2. Also, after 
B has started A did nothing, so A can commit at any 
time and then B can commit. This case is so important 
that we call A a prejz of T relative to B. A prefix can 
be split and committed, saving its results and releasing 
them to the world outside T. 

A slightly more general case is when the operations 
in A and B interleave, but for each object, A’s accesses 
constitute a prefix of T relative to B. Assuming that 
between the interleaved operations all information ex- 
change is from A’s blocks to B’s blocks, we can rear- 
range the blocks to make A a prefix of B. This case may 
happen when modifications to a group of objects must 
be committed atomically for an interim release, but fur- 
ther work continues on the same objects. This case also 
motivates the more general model of transactions with 
concurrent operations that we shall describe in the next 
section. 

In the sequential model, join-transaction is also sim- 
ple. For a transaction T to join another transaction S, 
T finishes its operations with the join-transaction call, 
instead of commit-transaction. T’s results will be incor- 
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porated into S and committed/aborted atomically with 
S. Whether S makes use of the objects inherited from 
T or not is up to the open-ended activity in progress in 
S. 

2.3 Nested and Concurrent 
Transaction Model 

The sequential model of transactions has been extended 
to include parallelism and nesting [Il,l3]. In the con- 
current model, a transaction is a set of database opera- 
tions. Typically, nested transactions are introduced to 
serialize object access within a transaction. A subtrans- 
action is a subset of operations that form an atomic 
unit with respect to the enclosing transaction (par- 
ent) and the sibling subtransactions. For example, in 
design activities, parts of the design may be carried 
out by different agents (tools or personnel using tools). 
The nested transactions model has been extended to 
include super-transactions [12]. A supertransaction en- 
closes two transactions and makes them appear atomic 
to transactions outside the supertransaction. One ap- 
plication of the supertransaction is to implement the 
join-transaction operation. 

The same properties of split-transaction described in 
Section 2.1, relating the object sets in A and B, hold 
for the concurrent model. For the independent case, A 
and B are subsets of the transaction’s operations that 
access disjoint sets of objects. For the serial case, A and 
B are subsets of operations such that for each resource, 
all updates in A precede the first read in B. 

The join-transaction operation remains simple in the 
concurrent transaction model, since the operation can 
be invoked only at the end of the transaction, when all 
concurrency has ceased. In contrast, nondeterminism 
in the set of operations makes the syntactic checking of 
split-transaction even more difficult. We will consider 
first the case corresponding to prefix in the sequential 

model. 

To model the prefix, we describe the set of operations 
as a directed-acyclic graph (DAG). An arrow represents 
each dependency between operations. There are no cy- 
cles since such a computation would be impossible to 

carry out. An isolated node in the graph represents 
an operation independent of other operations on the 
database. A prefix of computations in the DAG is a 
subset of nodes such that each node is either a source 
node (a node without any incoming arrows), or con- 
nected to a source node through a path entirely in the 
subset. In other words, the extended prefix contains 
only operations that are independent of the rest of the 
computation. One simple example of this extended def- 
inition of prefix is a subset of connected components in 
the DAG, which corresponds to the independent case. 
Since the two subsets are disconnected, there is no de- 
pendency between them, so they can be serialized either 
way. The serial case corresponds to a cut in the DAG, 
with the source part as transaction A and the sink part 
transaction B. Since A does not depend on B, A can be 
serialized before B. 

For the general case, we really need the log of op- 
erations in T for the data flow analysis. Since the log 
records data access in a serial order, the same algo- 
rithms from the sequential model suffice. The same 
observation applies to the external data object access. 

3 Applications 

3.1 Editing 

One of the simplest open-ended activities is the modifi- 
cation of a text file, known as editing. The fundamental 
problem in enclosing an editing session within a trans- 
action is that if the machine crashes in the middle of 
the session, all the typing effort would have been lost 
due to abort rollback. Typical text editors provide the 
explicit-rollback aspect of transactions with an “undo” 
facility and the fault-tolerance aspect by periodically 
saving consistent intermediate results on disk (some- 
times called a “checkpoint”). In the editing of a single 
text file, a consistent state is defined by the completion 
of all previous editor commands. 

To provide the same functionality of saving inter- 
mediate results of a single text file, we can split- 
transaction after any editor command. At that point, 
the consistent version is split into A’s writeset and the 
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current state (which happens to be the same) into B’s 
readset. Committing A saves the consistent version on 
disk, and B continues the editing transaction, as if it 
has started from the version A has just written to disk. 

Although “undo” and “checkpoint” is probably the 
best model for editing of a single text file, split- 
transaction becomes more useful when the user is edit- 
ing several files that depend on each other for consis- 
tency, to coordinate the checkpointing of multiple files. 

3.2 CAD/CAM/CASE Databases 

We mentioned in the introduction that open-ended ac- 
tivities are characterized by uncertain duration, uncer- 
tain developments, and interaction with other concur- 
rent activities. One example of uncertain duration is 
that a design activity in computer-aided design, manu- 
facturing or software engineering (CAD/CAM/CASE) 
may take arbitrarily long - it may even be set aside by 
the designer for arbitrary periods of time, without com- 
mitting, while he works on some higher priority task. 
The problem with traditional transactions is that no 
information can be released while the design remains 
in the drawer. Split-transaction would allow partial 
results to be published by committing transaction A 
while the unfinished part stays under wraps in trans- 
action B. 

An example of uncertain developments arises in 
CASE when a programmer sets out to fix a bug. He 
normally goes through a cycle where he examines the 
program’s operation in a debugger, reads certain source 
files that he guesses are related to the bug, modifies 
some subset of these files, compiles and links, runs 
test cases, discovers that the patch doesn’t work, backs 

up to the previous versions of some or all of these 
files, reads other source files (perhaps overlapping with 
the first set), modifies some subset, etc., until he’s fi- 
nally satisfied with the results and commits all changes. 
Split-transaction allows the programmer to back up by 
aborting transaction A while keeping the changes he’s 
currently happy with in the ongoing transaction B. In 
the case of fixing multiple bugs, he may commit some 
subset of the changes along the way to allow other pro- 
grammers to take advantage of the code already fixed. 

In a traditional transaction, in contrast, the solutions 
become public only when all the changes are commit- 
ted. Note also that all source files read would remain 
locked until commit - even if they turn out irrelevant 
to the bug(s)! The former problem can be avoided by 
publishing each part of the change as soon as it is made, 
but this might lead to a catastrophic cascading rollback 
if the programmer decided his solution was incorrect 
and aborted the transaction. The latter problem can 
be avoided by using optimistic concurrency control, but 
then the programmer might discover when it came time 
to commit (1) that his changes were invalidated by ac- 
tivities of other programmers or (2) if multiple versions 
are used, that he is faced with a complicated merge. 

Although traditional transactions are clearly inap- 
propriate, CAD/CAM/CASE still needs the fault tol- 
erance associated with transactions. Consider a VLSI 
layout tool that has been given a specification and is 
now busy laying out. Such tools often run for several 
hours, so it’s desirable to save intermediate results if (1) 
it is possible for the tool to continue from the saved re- 
sults, or (2) the intermediate results include error mes- 
sages that it would be useful for the human designer to 
see -to correct his specifications- even though the full 
set of error messages was not generated due to a crash. 
This applies to CASE as well, where the “layout” tool 
becomes a long system generation job (e.g., using make 
(3]), where the appropriate split-transaction points are 
the distinct command lines. However, an individual 
linking or compilation job can run very long, and rea- 
sonable split-transaction points are not so obvious - 
and in fact only (2) applies to most instances of these 
tools. Atomic transaction would rollback everything in 
the case of a crash. 

3.3 Programming Environments 

The class of systems called “programming environ- 
ments” includes single-user CASE tools as a subset. 
Here we are concerned with another subset of pro 
gramming environments: those that support coopera- 
tion among multiple programmers working together on 
the same large software system. The same issues come 
up in office automation systems in regards to report 
production and other computer-supported cooperative 
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work. 

A simple example of cooperation among multiple 
users is when a programmer has finished a hash-table 
package that she is going to use in some larger pro- 
gram. Somebody else discovers her package and wants 
to use it. Even though this has not been planned be- 
forehand, she can split the transaction with the hash- 
table in transaction A, to be committed and released, 
while continuing her own work in transaction B. If she 
had used an atomic transaction, her manager would 
have to foresee the usefulness of the hash-table package 
and therefore enclose it in a separate transaction. 

For a more complex example, consider a coordinated 
change to modules F and G, where programmer Bob 
is responsible for F and programmer Alice for G. Bob 
needs to use the new version of G and Alice needs to 
use the new version F. When we treat Bob’s work and 
Alice’s work as a pair of traditional transactions, we 
arrive at a deadlock. 

However, most modern programming languages pro 
vide language constructs for separating the specifica- 
tion portion of a module from its implementation, and 
enforce the constraint that one module can depend only 
on the specification part of another and can in no way 
depend on the details hidden in another module’s im- 
plementation part [15]. This works well using the split- 
transaction: Bob and Alice simultaneously modify their 
specifications; the transactions are then split making 
the new specifications public; finally, Bob and Alice 
modify their implementations using the new specifica- 
tions. If we had used simple nested transactions, only 
the immediately enclosing transaction would be able to 
see the specification, instead of the public. 

This simple split at the specification/implementation 
level does not work well for changes involving large 
numbers of programmers - say, more than twenty - 
because too many programmers could be held up wait- 
ing for all the others to finish their specifications so the 
transactions can split. This problem can be solved by 

dividing the programmers into groups whose modules 
most closely depend on each other [a]. Only program- 
mers within the same group see the new version of a 
module, while others initially use the old version; only 

the members of the same group must split their trans- 
actions at the same time. A further set of splits is 
made later when the groups coordinate to make their 
new versions public to all the other groups so they can 
complete the necessary modifications. 

Another reason to split an ongoing transaction is 
management m-organization. For instance, one project 
transaction may have to be split into two when another 
manager is designated to share part of the responsibil- 
ities. If the project can be separated into two seri- 
alizable parts, then split-transaction would define the 
responsibilities clearly. 

Join-transactions are useful when two open-ended 
activities turn out to relate to each other through 
some consistency constraints, after the activities have 
started. For example, modules from two programmers 
may need to be bundled together in an emergency re- 
lease for the unexpected development of a demo for a 
potential customer. If the programmers knew they were 
bound by the same consistency constraints at the be- 
ginning, they could have created two subtransactions 
nested in a larger one, which maintains the consistency 
constraints. However, due to uncertain developments 
in open-ended transactions, the flexibility to join origi- 
nally separate transactions is desirable. In our example, 
the demo may require a set of modules that work with 
each other and some ad hoc utility programs that show 
off those modules. Join-transaction can group a partic- 
ular subset of modules that have been tested together 
and release them to the utility programs. 

4 Integrating Long and Short 
Transactions 

Besides their direct use in applications mentioned in the 
previous section, split-transaction and join-transaction 
can also help in the design of the database system to 
support open-ended activities. Open-ended activities 
involve both long and short (traditional) transactions 
and, in any case, are likely to operate simultaneously on 
the same database as other applications involving only 
short transactions. If an open-ended activity has access 
to several resources, which are required by a pending 
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short transaction, the activity must not unduly hold up 
the short transaction. 

TO solve this problem with split-transactions, there 
are two possibilities: 

l to continue the open-ended activity until the next 
opportunity for a split-transaction, 

l or to rollback the open-ended activity to the pre- 
vious point in its history where a split-transaction 
would be consistent. 

In either case the resources are committed at the split, 
the short transaction makes its brief access to the re- 
sources, and the open-activity reacquires the necessary 
subset of these resources to continue its operation. In 
comparison, atomic long transactions cannot be subdi- 
vided, so short transactions have to wait for the long 
transactions to either commit or abort. There are no 
other alternatives. 

Our first case is appropriate when the future time of 
the next opportunity for split-transaction can be rea- 
sonably predicted and the short transaction can afIord 
to wait this long. The former requires application- 
specific capabilities for the relevant “real-time” predic- 
tions, while the latter is realistic only when the short 
transaction is part of a batch job rather than a user 
query session. This first case permits the least disrup- 
tion of the user carrying out the open-ended activity, 
since the short transaction can take place during the 
user’s “think time”. 

We believe the second case will be more common. 
Here, a history must be maintained for each long trans- 
action and the time to analyze this history to find the 
most recent point for the split-transaction must also be 
very short, the same order of magnitude as traditional 
concurrency control overhead. Further, it is desirable 
although not strictly necessary to be able to automat- 

ically redo the part of the transaction that was rolled 
back, rather than requiring the user to repeat some op- 
erations. The analysis may or may not be application- 
specific; a non-application-specific analysis would con- 
sider only the standard reads and updates. 

One possibility is to automatically checkpoint at all 
updates, so such analysis does not hold up the short 

transaction but instead only cuts down the efficiency 
of the long transaction (which is probably as it should 
be). This also has the advantage of minima1 work lost 
in crashes. 

Unfortunately, frequent checkpoints leads to a pro- 
liferation of versions of the updated resources. Many 
of these versions will never be seen by any transactions 
except the open-ended activity and such “obsolete ver- 
sions” may be garbage collected automatically at in- 
tervals [5], perhaps when the database load is low or 
the storage media is nearly full. Alternatively, if a 
checkpoint-induced version has not been seen nor will 
be seen by any past or current transaction, it can be 
overwritten by the next checkpoint-induced version. 

We have developed a framework for application- 
specific behavior in the second case, where the history 
of the long transaction is analyzed to select the best 
point for split-transaction. Our framework extends the 
notion of atomic transactions for abstract data types 
[18]. The most significant difference is we treat rela- 
tively large tools that manipulate the internal repre- 
sentation of multiple data types, rather than being re- 
stricted to individual operations on a single data type. 
Most existing tools used for open-ended activities fall 
into the former category. For example, a compiler reads 
a source program data structure and produces an er- 
ror message data structure and/or an object code data 
structure. A debugger reads the object code produced 
by the compiler and generates traces. 

The framework is based on a two-dimensional ma- 
trix, where the axes are the data types and the tools 
that update the data types. The values in the matrix 
are boolean, where “true” means it is possible to repro- 
duce the object automatically by invoking the tool on 
appropriate other objects and “false” means this is not 
possible. In general, false entries correspond to interac- 
tive tools such as drawing utilities and true entries to 
non-interactive tools such as routers. 

This matrix is used when there is a short transaction 
that needs to update an object of a particular data type 
and an ongoing long transaction is holding the object. 
The history of the long transaction is examined for the 
most recent update operation performed by any tool 
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on that object where the corresponding matrix entry is 
“false”. It is safe to split-transaction after this update, 
but not before, since updates after the split point will 
have to be redone after the short transaction commits. 
For example, it is ok for a short transaction to interrupt 
a bug-fixing transaction after the programmer has fin- 
ished his last edit on a source code file, since subsequent 
operations on that file such as pretty-printing, style- 
checking and compilation can be re-run automatically 
with minimal disruption but the actual edits should not 
be automatically invalidated by the system. 

Note that if a tool with a false entry is currently in 
operation, all work done so far during that tool invo 
cation - or since the last checkpoint - will have to 
be repeated later. The case where the short transaction 
only needs to read an object is much simpler - the roll- 
back of currently executing tools is handled just like a 
crash in the previous section on fault tolerance. For- 
tunately, we expect that most short transactions that 
access the same objects as long transactions to be in 
fat t read-only. 

5 Implementation Issues 

In the first place, we note that the split-transaction is 
an operation that is independent of any particular con- 
currency control or crash recovery methods. Regardless 
of the implementation technique chosen in a database 
system, as long as it guarantees serializability and reli- 
ability atomicity, split-transaction and join-transaction 
can be added to the database system. 

The general algorithm for split-transaction contains 
three steps. Frist, we create a new unique transaction 
id (TID), say for B. Second, we add B’s TID to the 
reader’s list of all the objects in BReadSet. Third, 
we reassign B’s TID to be the writer of all the ob- 
jects in BUriteSet. Specifically, for two-phase locking, 
we just add or assign B’s TID to the appropriate lock 
owner list. For timestamp-based methods, we update 
the timestamps for the objects with B’s TID. For opti- 
mistic certification methods, we just create the new sets 
for B. Transaction A retains T’s original transaction id. 

Threads of control in A and B are transferred to .4Pro- 

cedure and BProcedure, respectively. 

From the concurrency control point of view, the 
transfer is relatively straightforward. We will consider 
the three major techniques: two-phase locking, times- 
tamps and optimistic concurrency control. For two- 
phase locking, the database system simply changes the 
ownership of the locks in BReadSet and BWriteSet to 
the new transaction. For timestamps, the database 
system needs to assign a new timestamp to B, prefer- 
ably immediately after A’s timestamp. Multidimen- 
sional timestamps [lo] is one of the techniques that pro- 
vides this capability. For optimistic concurrency con- 
trol, since synchronization is done only at commit, the 
only thing to be done at split-transaction is to move 
the workspaces of BWriteSet to the new transaction. 

From the crash recovery point of view, the transfer 
is also simple. For recovery systems based on versions 
(which is what we have assumed in this discussion), we 
simply make B the creator of the versions in BWriteSet. 
For systems based on logging, the recovery manager 
needs to write a special “transaction record” to the log, 
marking the transition of BWriteSet objects from the 
old transaction to the new transaction. During the log 
processing for recovery, the transition record should be 
read during the backward pass, and then the log records 
on BWriteSet written by the old transaction will be 
translated correctly as B’s records. 

The algorithms to verify the three properties of sec- 
tion 2.1 are exactly the same of the certification al- 
gorithms of optimistic concurrency control methods. 
Given the history of data access for both A and B, 
we build the access dependency graphs and check for 
conflicts. For rigorous serializability, we need to per- 
form data flow analysis on the internal access to shared 
variables. 

We note that even though we have introduced the 
need for logging of read access and possibly shared 
variable access, this kind of overhead is imposed only 
on long-transactions. Since long-transactions have low 

throughput by definition, the additional overhead will 
not become a bottleneck. 

Another important concern is the restricted case of 
cascaded aborts introduced by the serial case (Section 
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2.1). If A aborts then B must abort, since B has 
read objects written by A. Fortunately, this restricted 
case is much easier to handle than general cascaded 
aborts. Specifically, the database system does not have 
to maintain the dependencies among all transactions. 
It is sufficient to remember only the dependency be- 
tween transactions that have split, given to the data- 
base manager explicitly by the split-transaction oper- 
ation. Transactions that have not split are protected 
by the usual concurrency control mechanism. Conse- 
quently, if the “native” concurrency control prevents 
cascaded aborts (e.g. strict two-phase locking), then 
the cascaded aborts are restricted exclusively to trans- 
actions that have split. 

The implementation of jointransaction is also 
straightforward. Say that the database system is try- 
ing to join-transaction T and S. It can add TReadSet 
to SReadSet and TWriteSet to SWriteSet. If S is aware 
of T’s joining, then S can start accessing objects read 
and written by T. This general algorithm works for all 
the concurrency control methods and crash recovery 
techniques mentioned above for split-transaction. 

6 Comparison 

The development of tools and concepts for open-ended 
activities, including CAD/CAM and programming en- 
vironments, motivated work in both the database com- 
munit,y and the object-oriented programming languages 

community. Both areas have embraced the term 
“object-oriented data bases” or object bases as the 
standard support for what we call open-ended activ- 
ities. Our work is orthogonal to the object base work 
since we concentrate on a new way to maintain serial- 
izable access to a database instead of complex object 
st,ructures and exploitation of sophisticated operation 
semantics. 

For several reasons split--transaction is orthogonal to 
the hierarchical model proposed by Bancilhon et al. [l] 

(summarized in section 1). First, in their model abort 
and commit of each level imply the abort and com- 
mit of all constituents. In contrast, split-transaction 
introduces the possibility of committing partial results. 

Second, their model allows data sharing at each level, 
but not beyond. Split-transaction may commit partial 
results and share data broadly thereafter. Finally, we 
emphasize that split-transactions maintain the trans- 
action serializability, as does their model. 

Another representative work on long transactions is 
Sagas by Garcia-Molina and Salem at Princeton (41. 
Sagas are long transactions that consist of a sequence 
of relatively independent steps, where each step does 
not have to observe the same consistent database state. 
Therefore, the results from the previous steps may be 
“committed” and released to the rest of the concurrent 
transactions. If interrupted, a saga may try to proceed 
by executing the missing steps. There is no difficulty 
with such a forward recovery. However, in some cases 
a saga may be unable to proceed with forward recovery 
and it has to abort with backward recovery, in which 
case client-supplied compensation transactions are re- 
quired. 

Split-transaction is also orthogonal to sagas. Sagas 
are composed of normal, short-duration transactions 
that form the steps. Split-transaction is an operation 
internal to any kind of atomic transaction, including 
the short-duration ones. More technically, sagas may 
observe intermediate results of other sagas, while split- 
transaction produces atomic transactions by definition. 

Altruistic locking [14] is an extension to two-phase 
locking that permits early release of locks without sac- 
rificing serializability. Short transactions are allowed 
to execute in the wake of a long transaction that al- 
truistically releases locks that it will not use again. In 
comparison, split-transaction is not an extension of any 
particular method, and applies to both crash recovery 
and concurrency control. 

To the best of our knowledge, the earliest use of the 
term split and jotn of transactions was in a technical 
report by Jessop et al. [7]. However, the emphasis of 
that work was on the Eden Transactional File System 
and they described these operations very informally; 
the split corresponded roughly to our independent case. 
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7 Conclusion 

We have informally introduced the class of open-ended 
activities, which include CAD/CAM design and pro- 
gram development in CASES. These activities have be- 
come an important application area for which the next 
generation of databases are aiming (e.g. POSTGRES 
Pd)~ 

To provide consistent database access in open-ended 
activities, we have introduced the notions of split- 
transaction and join-transaction. Split-transaction di- 
vides the objects in an atomic transaction into two sets 
of objects contained in two serializable transactions. 
We have defined the syntax of these operations, their 
semantics, and the properties that they should satisfy. 
We also outlined the algorithms that implement these 
operations and gave examples of safe split-transactions. 

We have demonstrated the use ofsplit-transactions in 
several real-world problems in the class of open-ended 
activities, such as editing, computer aided design, and 
program development. The split-transaction solved 
problems in single-user design activities and multiple- 
user coordination. 

In summary, traditional transaction access to da- 
tabases provides concurrency atomicity and reliabil- 
ity atomicity, both very desirable properties for open- 
ended activities. However, the uncertain duration, un- 
certain developments, and interaction with others in 
open-ended activities are formidable challenges to the 
traditional transactions. With split-transactions, we 
hope to take advantages of transaction atomicity for 
consistency and reliability at the same time as we in- 
crease flexibility in the saving of completed work, early 
release of results to the world, and consistent interac- 
tion with concurrent activities. 
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