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ABSTRACT - Many concurrency control algorithms have been 
proposed for use in distributed database systems. Despite the 
large number of available algorithms, and the fact that distributed 
database systems are becoming a commercial reality, distributed 
concurrency control performance tradeoffs are still not well 
understood. In this paper we attempt to shed light on some of the 
important issues by studying four representative algorithms - 
distributed 2PL, wound-wait, basic timestamp ordering. and a 
distributed optimistic algorithm - using a detailed model of a 
distributed DBMS. We examine the performance of these algo- 
rithms for various levels of contention, “distributedness” of the 
workload, and data replication. The results should prove useful 
to designers of future distributed database systems. 

1. INTRODUCTION 
For the past decade, distributed databases have attracted a 

great deal of attention in the database research community. Data 
distribution and replication offer opportunities for imlxoving per- 
formance through parallel query execution and load balancing as 
well as increasing the availability of data. In fack these oppor- 
tunities have played a significant role in driving the design of the 
current generation of database machines (e.g., rera83, 
DeWi861). Distribution and replication are not a panacea, how- 
ever; they aggravate the problems of concurrency control and 
crash recovery. In order to reap the potential performance 
benefits, the cost of maintaining data consistency must be kept at 
an acceptable level in spite of the added complexity of the 
environment. In the concurrency control area, this challenge has 
led to the development of a large number of concurrent y control 
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algorithm proposals. This paper addresses some of the important 
performance issues related to these algorithms. 

Most distributed concurrency control algorithms fall into one 
of three basic classes: &king algorithms [Mena78, Rose78. 
Gray79, Ston79. Trai821. timetimp algorithms, mom79, 
Bem80b, Reed83]. and o@tnistk (or certification) algorithms 
[Bada79, Schl81. Ceri82, Sinh85]. Bernstein and Goodman 
review many of the proposed algorithms and describe how addi- 
tional algorithms may be synthesized by combiig basic 
mechanisms from the locking and timestamp classes [Bem81]. 

Given the many proposed distributed concurrency control 
algorithms, a mrmber of researchers have undertaken studies of 
their performance. For example, the behavior of various distri- 
buted locking algorithms was investigated in [Garc79, Ries79. 
Lin82, Gsxu85. Noe87]. where algorithms with varying degrees 
of centralixation of locking and approaches to deadlock handling 
have been studied and compared with one another. Several dis- 
tributed timestamp-based algorithms were examined in [Li87]. A 
qualitative study addressing performance issues for a number of 
distributed locking and timestamp algorithms was presented in 
[Ben&la]. The performance of locking was compared with that 
of basic timestamp ordering in [Gall82], with basic and multiver- 
sion timestamp ordering in [Lin83], and with optimistic algo- 
rithms in [Bhar82, Kohl85]. Several alternative schemes for han- 
dling or pmventing deadlock in distributed locking algorithms 
were studied in [Bah82]. 

While the distributed concutrency control performance stu- 
dies to date have been informative, a number of important ques- 
tions remain unanswered. These include: 

(1) How do the performance characteristics of the various 
basic algorithm classes compare under alternative 
assumptions about the nature of the database, the work- 
load, and the computational enviromnent? 

(2) How does the distributed nature of transactions affect the 
behavior of the various classes of concurrency control 
algorithms? 

(3) How much of a performance penalty must be incurred for 
synchronization and updates when data is replicated for 
availability or query performance reasons? 

The first of these questions remains unanswered due to 
shortcomings of past studies that have examined multiple algo- 
rithm classes. The most comprehensive of these studies, [Lin83] 
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and [Balt82], suffer from unrealistic modeling assumptions. In 
particular, contention for physical resources such as CPUs and 
disks was not captured in their models. Recent work has shown 
that neglecting to model resources can drastically change the con- 
clusions reached [Agra87]. In [Gal182], the model of resource 
contention was artiticial and the study assumed fully replicated 
data, extremely small transactions, and a very coarse conmmency 
control granularity. In [Bhar82]. a central site wound-wait vari- 
ant was compared with a distributed optimistic algorithm, mes- 
sage costs were high. and restart costs were biased by buffering 
assumptions. The results of [Kohl851 were obtained using a 
lightly loaded two-site testbed system, and were strongly 
influenced by the fact that both data and log records wem stored 
on the same disk. The second question above remains open since 
a number of previous studies have modeled transactions as exe- 
cuting at a single site, makin remote data access requests as 
needed (e.g., [Balt82. Gall82, Lin83]); few studies have carefully 
considered distributed transaction structurea. Finally, the third 
question remains open since previous studies have commonly 
assumed either no replication (as in [Lin83, Balt821) or full repli- 
cation (as in [Gal182]). and their simplifmd models of transaction 
execution have often ignored important related overheads such as 
that of the commit protocol. 

In this paper, we report on the 6rst phase of a study aimed at 
addressing the questions raised above. The study employs a per- 
formance evaluation framework based on a fairly detailed model 
of a distributed DBMS. The design goal for the framework was 
to provide a facility for experimenting with and evaluating alter- 
native transaction management algorithms on a common basis, 
The framework captures the main elements of a distributed data- 
base system: physical resources for storing and accessing the 
data, e.g., disks, CPUs, and communications channels; the distri- 
buted nature of transactions, including their access behavior and 
the coordination of their distributed executiom and the database 
itself, including the way that data is distributed and allocated to 
sites. The design of the performance framework was influenced 
heavily by previous results on the impartenco of realis& ccn- 
cmrency control modeling assumptions, especially with respect 
to system resources [Agra87]. Given the framework, we then 
proceed to examine the perf ormance impact of varyins the sys- 
tem load, the degree to which transactions are distributed, and the 
level of data replication on the performance of a representative 
set of distributed concurrency control algorithms. While we 
address only a subset of the open questions, we feel that our 
results constitute an important step towards understanding distri- 
buted concurrency control performance issues. 

We examine four concurrency control algorithms in this 
study, including two locking algorithms, a tin~eatamp algorithm 
and an optimistic algorithm. The algorithms considered span a 
wide range of characteristics in terms of how conflicts are 
detected and resolved. Section 2 describes our choice of con- 
currency control algorithms. We use a simulator based on a 
closed queuing model of a distritnued database system for our 
performance studies. The structure and characteristics of our 
model are described in Section 3. Section 4 presents our initial 
performance experiments and the associated results. Finally, 
Section 5 summarizes the main conchudons of this study and 

raises questions that we plan to address in the future. 

2. DISTRIBUTED CONCURRENCY CONTROL 
ALGORITHMS 

For this study we have chosen to examine four algorithms that 
we consider to he rqnesentative of the basic design space for dis- 
tributed wncmrency control mechanisms. We summarize the 
salient aspects of these four algorithms in this section. In order to 
do so, however. we must first explain the structure that we will 
assume for distributed transactions. 

2.1. Tbe Structure of Distributed Transactions 
Figure 1 depicts a general distributed transaction in terms of 

the processes involved in its execution. Each transaction has a 
ma&r pnxxss (M) that runs at its site of origination. The master 
pocess in turn Sets up a collection of Cohort processes (Ci) to 
perform the actual processing involved in nnming the transaction. 
Since virtually all query processing strategies for distributed data- 
base systems involve accessing data at the site(s) where it resides. 
rather than accessing it remotely, there is at least one such cohort 
for each site where data is accessed by the transaction. We will 
examine several query execution pattents; whether there is more 
than one cohort per site, and whether cohorts execute sequentially 
or in parallel, will depend on the query execution model of 
interest. We will clarify this point further in describing the work- 
load model in Section 3. For now, simply note that similar tran- 
saction structures arise in R* [Lind84]. Distributed INGRES 
[Ston79]. and Gamma [DeWi86]. These systems diier, however, 
in the degree of parallelism involved in query execution. 

In general, data may be replicated, in which case each cohort 
that updatea any data items is assumed to have one or more 
up&ate (Ui/) processes associated with it at other sites. In partic- 
ular, a cohort will have an update process at each remote site that 
stores a copy of the data items that it updates. It communicates 
with its update processes for concurrency control purposes, and it 
also sends them copies of the relevant updates during the 6rst 
phase of the commit protocol described below. 

In this study, we will assume the use of a centralized hvo- 
phase commit protocol [Gray79], with the master acting as the 
commit wordinator. This same protocol will be used in conjunc- 
tion with each of the concurrency control algorithms examined. 
Assuming no replication, the protocol works as follows [Gray79]: 

Figure 1: Distributed transaction structure. 



When a cohort finishes executing its Portion of a query. its sends 
an “execution complete” message to the master. When the mas- 
ter has received such a message from each cohort, it will initiate 
the commit protocol by sending “prepare to commit” messages to 
all sites. Assuming that a cohon wishes to commit, it sends a 
“prepard message back to the master, and the master will send 
“commit” messages to each cohort after receiving prepared mes- 
sages from all cohorts. The protocol ends with the master receiv- 
ing “committed” messages t3nn each of the cohorts. If any 
cohort is unable to commit, it will return a “cannot commit” mes- 
sage instead of a “prepared” message in the first phase, causing 
the master to send “abort” instead of “commit” messages in the 
second phase of the protocol. 

When replica update processes are present, the commit proto- 
col becomes a nested two-phase commit protocol as described in 
[Gray79]: Messages flow bctwccn the master and the cohorts, 
and the cohorts in turn interact with their updaters. That is, each 
cohort sends “prepare to commit” messages to its updaters after 
receiving such a message from the master, and it gathers the 
responses from its updaters before sencimg a “prepan# message 
back to the master; phase two of the protocol is similarly 
modified. Again this is reminiscent of the “tree of processes” 
transaction structure of R* [Lind84]. Copies of updated data 
items are carried in the ,,prepare to commit” messages sent from 
cohorts to updaters. 

2.2. Distributed Two-Phase Locking (2PL) 
The 8rst algorithm is the distributed “read any, write all” 

two-phase locking algorithm described in [Gray79]. Transactions 
set read locks on items that they read, and they convert their read 
locks to write locks on items that need to be updated. To read an 
item, it suffices to set a read lock on any copy of the item, so the 
local copy is locked; to update an item, write locks are required 
on all copies. Write locks are obtained as the transaction exe- 
cutes, with the transaction blocking on a write request until all of 
the copies of the item to be updated have been successfully 
locked. All locks are held until the transaction has successfully 
mn.mitted or aborted. 

Deadlock is a possibility, of course, and we will handle it via 
a variant of the centralized detection (or “Snoop”) scheme of Dis- 
tributed INGRES [Ston79]. The scheme employed here is as fol- 
lows: Local deadlocks are checked for any time a transaction 
blocks, and are resolved when necessary by restarting the transac- 
tion with the most recent initial startup time among those 
involved in the deadlock cycle. (A cohort is restarted by aborting 
it locally and sending an “abort” mcssagc to its master, which in 
turn notifies all of the processes involved in the transaction.) 
Global deadlock detection is handled by a “Snoop” process, 
which periodically requests waits-for information from all sites 
and then checks for and resolves any global deadlocks (using the 
same victim selection criteria as for local deadlocks). Unlike 
Distributed INGRES, we do not associate the “Snoop” responsi- 
bility with any particular site. Instead, each site takes a turn 
being the “Snoop” site and then hands this task over to the next 
site. The “Snoop” responsibility thus rotates among the sites in a 
round-robin fashion, ensuring that no one site will become a 

bottleneck due to global deadlock detection costs. 

2.3. Wound-Wait @VW) 
The second algorithm is the distributed wound-wait locking 

algorithm of [Rose78], again with the “read any, write all” rule. 
It differs from 2PL in its handling of the deadlock problem: 
Rather than maintaining waits-for information and then checking 
for local and global deadlocks, deadlocks are prevented via the 
use of timestamps. Each transaction is numbered according to its 
initial startup time, and younger transactions are prevented from 
making older ones wait. If an older transaction requests a lock, 
and if the request would lead to the older transaction waiting for a 
younger transaction, the younger transaction is “wounded” - it 
is restarted unless it is already in the second phase of its commit 
protocol (in which case the “wound” is not fatal, and is simply 
ignored). Younger transactions can wait for older transactions, 
however. The possibility of deadlocks is eliminated because any 
cycle of waiting transactions would have to include at least one 
instance where an older transaction is waiting for a younger one 
which is blocked as well, and this is prevented by the algorithm. 

2.4. Basic Timestamp Ordering (BTO) 
The third algorithm is the basic timestamp ordering algorithm 

of [BerngOb, Bern81J. Like wound-wait, it employs transaction 
startup timestamps. but it uses them differently. Rather than 
using a locking approach, BTO associates timestamps with all 
recently accessed data items and requires that conflicting data 
accesses by transactions be performed in timestamp order. Tran- 
sactions that attempt to perform out-of-order accesses are res- 
tarted. More specifically, each recently accessed data item has a 
read timestamp, which is the most recent timestamp among its 
readers, and a write timestamp, which is the timestamp of the 
most recent writer. When a read request is received for an item, 
it is permitted if the timestamp of the requester exceeds the 
item’s write timestamp. When a write request is received, it is 
permitted if the requester’s timestamp exceeds the read times- 
tamp of the item; in the event that the timestamp of the requester 
is less than the write timestamp of the item. the update is simply 
ignored (by the Thomas write rule [Be&l]). 

For replicated data, the “read any, write all” approach is used, 
so a read request may be sent to any copy while a write request 
must be sent to (and approved by) all copies. Integration of the 
algorithm with two-phase commit is accomplished as follows 
[Bem81]: Writers keep their updates in a private workspace until 
commit time. Granted writes for a given data item are queued in 
timestamp order without blocking the writers until they are ready 
to commit, at which point their writes are dequeued and pro- 
cessed in order. Accepted read requests for such a pending write 
must be queued as well, blocking the readers. as readers cannot 
be permitted to proceed until the update becomes visible. Effec- 
tively. a write request locks out any subsequent read requests 
with later timestamps until the correspondmg write. actually takes 
place, which occurs when the updating transaction commits and 
its writes are dequeued and processed. 
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2.5. Distributed Certification (OPT) 
The fourth algorithm is the distributed, timestampbased, 

optimistic cc~ncurrency control algorithm from [Sinl185]~, which 
operates by exchanging certification infcrmation during the com- 
mit protocol. For each data item, a read timestamp and a write 
timestamp are maintained. Transactions may read and update 
data items freely, storing any updates into a local workspace until 
commit time. For each read, the transaction must remember the 
version identifier (i.e., write timestamp) associated with the item 
when it was read. Then, when all of the transaction’s cohorts 
have completed their work, and have repotted back to the master, 
the transaction is assigned a globally unique timestamp. This 
timestamp is sent to each cohort in the “prepare to commit” mes- 
sage, and it is used to locally certify all of its reads and writes as 
follows: A read request is certi8ed if (i) the version that was read 
is still the current version of the item, and (ii) no write with a 
newer time&amp has already been locally certified. A write 
request is certified if (i) no later reads have been certified and 
subsequently committed, and (ii) no later reads have been locally 
certified already. The term ‘later” refers to timestamp time her% 
so these conditions are checked using the timestamp given to the 
trarmction when it started the commit protocol. These local 
certification computations are performed in a critical section. 

To handle replicated data, the algorithm requires updaters to 
participate in certification. Updaters simply certify the set of 
writes that they receive at commit time, and again the necessary 
communication can be accomplished by passing information in 
the messages of the commit protocol. Failure of the certitication 
test by any cohort or updater is handled in OPT by having that 
process send a “cannot commit” reply in response to the “prepare 
to commit” message. causing the transaction to be restarted. 

2.6. Some Observations 
The four algorithms that we have selected span the three 

major algorithm classes, and they represent a fairly wide range of 
conflict detection and resolution methods and times. 2PL 
prevents conflicts as they occur using locking, resolving global 
deadlocks using a centralixed deadlock detection scheme. WW is 
similar, except that it prevents deadlocks using timestamps and 
restarts rather than checking for deadlocks and incurring the asso- 
ciated message costs. BTO uses timestamps to order transactions 
a prioi restarting transactions when conflicting. out-of-order 
accesses occq read requests must occasionally block when they 
request data from pending, uncommitted updates. Finally, OPT 
always uses restarts to handle conflicts, checking for problems 
only when a transaction is ready to commit. 2PL. WW. and BTO 
all send write access requests between a cohort and its updaters 
when a write request for replicated data is received at the cohort 
site; in contrast, OPT defers communication between cohorts and 
updaters until commit time, piggybacking its concurrency control 
information on the messages of the commit protocol. 

‘Actually. two such algorithms me proposed in [SinhsS]. We 
chose theii first algorithm for this study, as it is the simpler of the two. 

3. MODELING A DISTRIBUTED DBMS 
As mentioned in Section 1, we have developed a single, uni- 

form, distributed DBMS model for studying a variety of con- 
currency control algorithms and performance tradeoffs. Figure 2 
shows the general structure of the model. Each site in the model 
has four components: a source, which generates transactions and 
also maintains transaction-level performanoa infomration for the 
site, a transaction manager, which models the execution behavior 
of transactions, a concurrency control manager, which imple- 
ments the details of a particular concurrency control algorithm, 
and a resource menuger, which models the CPU and Vo 
resources of the site. In addition to these per-site components, 
the model also has a nehvork mger. which models the 
behavior of the communications network. Figure 3 presents a 
slightly mom detailed view of these components and their key 
interactions. The component interfaces were designed to support 
modularity, making it easy to replace one component (e.g.. the 
concurrency control manager) without affecting the others. We 
describe each component in turn in this section, preceded by a 
discussion of how the database itself is modeled. 

3.1. The Database Model 
We model a distributed database as a collection of&r. A file 

can be used to represent a relation, or it can represent a partition 
of a relation in a system where relations are partitioned across 
multiple sites (as in Gsrnma [DeWi86]). Files are assumed to be 
the unit of data replication. Table 1 summarizes the parameters 
of the database model, which include the number of sites and files 
in the database and the sixes of the files. As indicated in the 
table, files are modeled at the page level. The mapping of files to 
sites is specified via the parameter Fikhxtions , a boolean array 
in which FileLoc~io~~j is true if a copy of file i resides at site j . 

3.2. The Source 
The source is the component responsible for generating the 

workload for a site. The workload model used by the source 
characterixes transactions in terms of the files that they access 
and the number of pages that they access and update in each file. 

DDpMS site 

Trantoction Manuger, 

Figure 2: Distributed DBMS Model Structure. 
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Figure 3: A Closer Look at the Model. 
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Table 1: Database Model Parameters. 

remaining per-class parameters characterize transactions of the 
class as follows: ExecPattern specties the execution pattern, 
either sequential or parallel. for transactions. (More will be said 
about this shortly.) FileCount is the number of files accessed, 
and FileProl+ gives the probability distribution (or relative file 
weights) for choosing the actual files that the transaction will 
access. The next two parameters determine the file-dependent 
access characteristics for transactions of the class, including the 
average number of pages read and the probability that an 
accessed page will be updated. The last parameter specifies the 
average amount of CPU time required for transactions of the 
class to process a page of data when reading or writing it. The 
actual number of pages accessed ranges uniformly between half 
and twice the average, and the page CPU time is exponentially 
distributed. 

3.3. The Transaction Manager 
Each transaction in the workload has the general structure 

described in Section 2.1. with a master process, a number of 
cohorts, and possibly a number of updaters. As described earlier, 
the master resides at the site where the transaction was submitted. 
Each cohort makes a sequence of read and write requests to one 
or more files that are stored at its site; a transaction has one 
cohort at each site where it needs to access data. Cohorts com- 
municate with their updaters when remote write access permis- 
sion is needed for replicated data, and the updaters then make the 
required write requests for local copies of the data on behalf of 
their cohorts. A transaction can execute in either a sequential or 
parallel fashion, depending on the execution pattern of the tran- 
saction class. Cohorts in a sequential transaction execute one 

*. after anothera, whereas cohorts in a parallel transaction are started 
Table 2 summarizes the key parameters of the workload mooer 
for a site: each site has its own set of values for these parameters. 
The NumTeminals parameter specifies the number of terminals 
per site, and the ThinkTime parameter is the mean of an exponen- 
tially distributed think time between the completion of one tran- 
saction and the submission of the next one at a terminal. Nwn- 
Classes gives the number of transaction classes for the site.. 

together and execute independently until commit time. A 
sequential transaction might be thought of as representing a series 
of steps in a relational query. A parallel transaction might be 
thought of as modeling the kind of parallel query execution that 
is seen in systems like Gamma [DeWi86] or the Teradata data- 
base machine [Tera83]. 

The transaction manager is responsible for accepting transac- 
tions from the source and modeling their execution. To choose 
the execution sites for a transaction’s cohorts. the decision rule is: 
If a file is present at the originating site. use the copy there; oth- 
erwise, choose uniformly from among the sites that have remote 
copies of the file. If the file is replicated, the transaction manager 
will initiate updaters at sites of other copies when the cohort 
accessing the file first needs to interact with them for concurrency 
control reasons. The transaction manager also models the details 
of the commit and abort protocols. 

The ClassProb parameter specifies the probability that a 
newly generated transaction will be of a given class. The 

Per-Site Parameters 
NumTenninals 1 Number of terminals ner site 
ThinkTime 
NumClawes 

Think time for the terminals 
Number of transaction classes 

Per-Class Parameters 
ClassProb Probability of this class 
EkecPattern Sequential or parallel execution 
F&Count Number of files accessed 
Fi&Probi Access probability for file i 
NumPagai Average number of file i pages read 
WriteProbi Write probability for file i pages 
PageCPU CPU time for processing a page of data 

Table 2: Workload Model Parameters for a Site. 

To understand how transaction execution is modeled, let us 
follow a typical transaction from beginning to end. When a tran- 
saction is initiated. the set of files and data items that it will 
access are chosen by the source. The master is then loaded at the 

2 In this paper, sequential transactions will have just one cohon, a 
cohoxt that accesses a collection of files residing at a single site. ‘lhe 
model is capahle of handling the mom general case. however. 
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originating site. and it sends “load cohort” messages to initiate 
each of its cohorts. Each cohort makes a series of read and write 
accesses. A read access involves a con currency control request 
to get access permission, followed by a disk Uo to read the page, 
followed by a period of CPU usage for processing the page. 
Write requests are the same except for the disk m, the I/O 
activity for writes takes places asynchronously a&r the transac- 

tion has committed.’ A concurrency control request for a read or 
write access is always granted in the case of the OPT algorithm, 
but this is not the case for the other algorithms. When a con- 
currency control request cannot be granted immediately, due to 
conflicts or remote write requests, the cohort will wait until the 
request is granted by the concurrency control manager. If the 
cohort must be restarted, the concurrency control manager 
notifies the transaction manager, which then invokes the abort 
protocol. Once the transaction manager has linished aborting the 
transaction, it delays the master for a period of time before letting 
it attempt to rerun the transaction; as in [Agra87], we use one 
average transaction response time (as observed at the master site 
in this case) for the length of this period. 

3.4. The Resource Manager 
The resource manager can be viewed as a model of the 

operating system for a site; it manages the physical resources of 
the site, including its CPU and its disks. The resource manager 
provides CPU and I/O service to the transaction manager and 
concurrency control manager, and it also provides message- 
sending services (which involve using the CPU resource). The 
transaction manager uses CPU and IK) resources for reading and 
writing disk pages, and it also sends messages. The concutrency 
control manager uses the CPU resource for processing requests. 
and it too sends messages. 

The parameters of the resour~ manager are summarixed in 
Table 3. Each site has NumDis~ disks plus one CPU. The CPU 
service discipline is first-come, first-served (FIFO) for message 
service and processor sharing for all other services, with message 
processing being higher Priority. Each of the disks has its own 
queue, which it serves in a FIFO manner; the resource manager 
assigns a disk to serve a new request randomly, with all disks 
being equally probable, so our I/O model assumes that the files 
stored at a site are evenly balanced across the disks. Disk access 
times for the disks are uniform over the range [MinDiskTime. 

~~ 

Table 3: Resource Manager Parameters. 

3 We *ssume sufficient buffer space to allow the mtentim of up- 
dates until a3mmit time, and we also asnume the USC of a log-based 
recovery scheme where only log pagcn must be forced prior to cemmit. 
We do not model logging, aa we assume it is not the hettleneck. 

MaxDiskTime]. Disk writes are given priority over disk reads (to 
ensure that the system keeps up with the demand for asynchro- 
nously writing updated pages back to disk after the updater has 
committed). The parameter hifWriteCPV models the CPU over- 
head associated with initiating a diik write for an updated page. 
Finally, MsgCPVTime captures the cost of protocol processing 
for sending or receiving a message. 

3.5. The Network Manager 
The network manager encapsulates the model of the commun- 

ications network. Our network model is currently quite simplis- 
tic, acting just as a switch for routing messages from site to site. 
This is because our experiments assume a local area network, 
where the actual time on the wire for messages is neglible, 
although we do take the CPU overhead for message processing 
into account at both the sendmg and receiving sites. This cost 
assumption has become fairly common in the analysis of locally 
distributed systems, as it has been found to provide reasonably 
accurate performance results despite its simplicity [Lazo86]. Of 
course, given that the characteristics of the network are isolated 
in this module, it would be a simple matter to replace our current 
model with a more sophisticated one in the future. 

3.6. The Concurrency Control Manager 
The concurrency control manager captures the semantics of a 

given concurrency control algorithm, and it is the only module 
that must be changed from algorithm to algorithm. As was illus- 
trated in Figure 3, it is responsible for handling concurrency con- 
trol requests made by the transaction manager. including read and 
write access requests. requests to get permission to commit a 
transaction, and several types of of master and cohort manage- 
ment requests to initialize and terminate master and cohort 
processes. We have implemented a total of five concurrency con- 
trol managers, including four for the concurrency control algo- 
rithms described in Section 2 and one that we will refer to as 
NONE. NONE has a message-passing structure identical to the 
locking and timestamp algorithms, but it grants all requests; it 
will provide useful performance bound information for the other 
algorithms. as will be seen shortly. 

The concurrency control manager has a variable number of 
parameters. One parameter, CCReqCPV , specifies the amount of 
CPU time required to process a read or write access request; this 
parameter is present for all of our algorithms. Each algorithm 
then has zero or more additional parameters. Of the algorithms 
studied in this paper, only 2PL uses another parameter. Its 
second parameter is Detectionhtervul, which determines the 
amount of time that a site should wait, after becoming the next 
“Snoop” site, before gathering global waits-for information and 
performing global deadlock detection. 

4. EXPERIMENTS AND RESULTS 
In this section, we present our initial performance results for 

the four concurrency control algorithms of Section 2 under vari- 
ous assumptions about data replication. CPU cost for sending and 
receiving messages. transaction locality, and sequential versus 
parallel execution. The simulator used to obtain these results was 
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written in the DeNet simulation language [Livn88], which 
allowed us to preserve the modular structure of our model when 
implementing it. We describe the performance experiments and 
resuhs following a discussion of the performance metrics of 
interest and the parameter settings used. 

4.1. Metrics and Parameter Settings 
The primary performance metric employed in thii paper is the 

throughput (transaction completion rate) of the system.* Several 
additional metrics are used to aid in the analysis of the experi- 
mental results. One is the restart ratio, giving the average 
number of times that a transaction has to restart per commit, com- 
puted by dividing the number of transaction restarts by the 
number of commits. We also examine the message ratio, com- 
puted similarly. which gives the average number of messages per 
commit. Finally. in our last experiment, we employ ratios of 
response times to illustrate the costs and benefits of parallel exe- 
cution. The response time is computed there as the completion 
time of the transaction’s master process minus the time when it 
was initiated at a terminal. 

Table 4 gives the values of the key simulation parameters in 
our experiments. We consider a database which is distributed 
over 8 sites. The database contains 24 files. organized into 8 
groups of 3 files, where each file contains 800 pages of data. 
There are 50 terminals per site, and the mean terminal think time 
is varied from 0 to 5 seconds in each experiment in order to vary 
system load. In terms of the workload, a transaction accesses 3 
files; it reads an average of 6 pages of each file and updates each 
page with a probability of l/4. Thus, each transaction involves 
an average of 18 reads and 4.5 writes. This transaction size was 
chosen as being relatively small, as transactions tend to be in 
transaction processing environments, but not so small as to be 
unrealistic. The corresponclmg file sixes were selected so as to 
provide an interesting level of data contention. Finally, it takes 
transactions an average of 8 milliseconds of CPU time to process 
each page read or written. More information regarding transac- 
tion classes and data placement will be provided in the descrip- 
tion of each experiment. 

Continuing through the parameters in Table 4, each site has 
two disks, and each disk has an average access time of 20 mil- 
liseconds. Initiating a disk write for an updated page takes 2 mil- 
liseconds of CPU time, and the mean CPU time for message pro- 
tocol processing on each end is varied from 1 to 10 milliseconds. 
The concurrency control CPU overhead is assumed to be negligi- 
ble, for all algorithms, compared to the 8 millisecond CPU time 
for page processing. Lastly, the global deadlock detection inter- 
val for 2PL is 1 second 

The I/o and CPU cost parameter values for the experiments 
reported here were chosen so that, messages aside, the system 
will operate in an &D-bound region. In particular, when the disks 
are fully utilized, only about 80% of the CPU capacity of the 

’ Since we am using a closed queueing model, the inverse relation- 
ship between throughput and resporw time makes either a sufficient per- 
hrmnnce metric. 

t 

NumFiles I 8 sites 
24 files (8 groups of 3) I 

FileSizei 1 800 pages per file 
NumTerminak 1 50terminalspersite 
ThinkTime 
FileCount 
FileProbi 
Nwnpagesi 
WriteProb; 
PageCPU’ 1 S~milliseconds 
NU??&DiSkS 1 2disksnersite 
MinDiskTime 
MaxDiskTime 
InitWriteCPU 

10 milli’seconds 
30 milliseconds 
2 milliseconds 

MsgCPUTime 1.4, and 10 milliseconds 
CCReqCPU negligible (0) 
DetectionInterval 1 second 

Table 4: Simulation Parameter Settings. 

system is utilized. However, since the workload is not heavily 
&0-bound, we will see that it is possible for message-related 
CPU costs to shift the system into a region of CPU-bound opera- 
tion. Such a shift changes the performance profile of the system. 
We have run a number of experiments with a larger page CPU 
time as well, where the system is CPU-bound regardless of com- 
munication activity. Space limitations prevent us from including 
those results in detail, but we will comment on them throughout 
this Section. Lastly, our workload consists only of update- 
oriented transactions. While we recognixe that replication can 
lead to performance advantages for read-intensive workloads by 
reducing dependence on remote data and providing an opportun- 
ity for load balancing [Care86]. we wish to focus our attention 
here on the cost issues related to concurrency control. 

4.2. Experiment 1: Algorithms and Replication 
The purpose of this experiment is to investigate the perfor- 

mance of the four algorithms as the system load varies, and to see 
how performanw is impacted by different levels of data replica- 
tion. In this experiment. each group of three files is placed at a 
site as follows: There are eight sites, Si,lIi<8. and eight groups 
of files, Gi,l<i18. In the one 00py case, the three files Fil, Fi2, 
Fi3 comprising group Gi are stored at site Si . When we consider 
two copies of each file, the files in group Gi are stored both at site 
Si and site Sci d 8)+t. In the three copy case, an additional COPY 

is stored at site S,i -+ ma. Transactions execute sequentially in 
this experiment. Furthermore, they execute locally: Transactions 
originating at site Si xxxss the files in group Gi, not needing to 
touch remote data except to update other copies. Thus, the one 
copy case examined here is basically a centralized concurrency 
control situation. except that global deadlock checking is taking 
place in 2PL. In the case of replicated data, the distributed nature 
of the system is used only to improve availability. We assume 
efficient communications software, using a value of 1 millisecond 
for MsgCPUTime in this experiment. 

Figure 4 presents the transaction throughput results for the 
one copy case. Since think time is used to vary the load, the 
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system becomes more heavily loaded going from right to left! 
along the curves. As expecti the results indicate that the 
throughput for each algorithm initially increases as the system 
load is increased, and then it decreases. The increase is due to 
the fact that better performance is obtained when a site’s CPU 
and disks are utilized in parallel; throughput then degrades for all 
four of the concurrency control algorithms due to transaction res- 
tarts caused by data contention. These trends are natural for a 
centralized DBMS [C&.84, Agra87]. The NONE curve indicates 
how the system would perform if no concurrency control 
conflicts were to occur. increasing at first and then leveling off 
without degrading due to restarts. Among the concurrency con- 
trol algorithms studied, Figure 4 indicates that 2PL provides the 
best performance, followed by BTO and WW (which are virtu- 
ally indistinguishable), followed by OPT. 

To understand the relative throughput ordering of the algo- 
rithms, Figure 5 presents their restart ratios. The results am 
easily explained based on these ratios. 2PL has the lowest restart 
ratio by far, and consequently performs the best. BTO and WW 
have higher restart ratios, providing the next best throughput 
results. OPT has the highest restart ratio. and thus has the lowest 
throughput among the algorithms. Since OPT restarts transruz- 
tions at commit time. rather than earlier as in BTO and WW. it 
does not take a very big difference in the restart ratios to cause 
the signi8cantly lower throughput seen under high loads for OPT. 
The reason that BTO and WW perform alike despite having dif- 
ferent restart ratios is similar - while WW has a higher ratio of 
restarts to commits, it always selects a younger transaction to res- 
tart, making its individual restarts less costly than those of BTO. 
These results indicate the importance of restart ratios as a perfor- 
mance determinant. 

Figures 6 and 7 present the throughput results for the two and 
three copy cases, respectively. Increasing the number of copies 
increases both the amount of Uo involved in updating the data- 
base and the level of synchronixation-related message traftic 
required. As a result, three trends are evident in the figures: 
Fit, increasing replication leads to decreased performance due 
to the additional update work. This is particularly significant 
given the ~-bound nature of our workload, as increasing the 
number of copies strains the bottleneck resource. Due to the low 
message CPU time here, the system remains f/O-bound even in 
the three copy case. Second, the differences between algorithms 
decrease as the level of replication is increased. The explanation 
for this is again restart-related: Successfully completing a tran- 
saction in the presence of replication involves all the work of the 
one copy case, plus the additional work of updating remote 
copies of data. Since remote updates occur only after a success- 
ful commit, the relative cost of a restart decreases as the number 
of copies increases. This is because the amount of effort wasted 
becomes a smaller fraction of the transaction’s total required 
effort. Third, the performance of OPT suffers a bit less than that 

’ Note that load increases in tk. oppdc dirccliun here tha if the 
numbe-r of terminals or multiimmming level was being v&d. The 
most heavily loaded opemting region is where the thii time b zero. 

of the other algorithms. This is due to the fact that the presence 
of copies implies inter-site concurrency control messages for 
each write in 2PL, WW. and BTO. whereas these per-write mes- 
sages are not present in OPT. This last point will become much 
more evident in Experiment 2. 

Our CPU-bound versions of these experiments produced the 
same relative ordering of the algorithms, but the performance 
differences and trends were somewhat different. The separation 
between the algorithms was greater in the CPU-bound version of 
the one copy case, as CPU is a more critical resource than I/O - 
that is, one CPU can be a more stringent bottleneck than two 
disks. Thus, the performance impact of restarts was greater here. 
In addition, in the two and three copy cases, the differences 
between algorithm performance did not shrink to the same extent. 
This is because end-of-transaction updates have less impact on 
CPU than on m. and CPU was the bottleneck. OPT again suf- 
fered the least due to replication, an effect more evident here 
since additional messages imply additional CPU cost. 

4.3. Experiment 2: Message Cost Considerations 
This experiment examines the impact of message cost on the 

performance of the algorithms. The data layout, workload, and 
transaction execution pattern used here are identical to those of 
Experiment 1. However, instead of using a value of 1 mil- 
lisecond for MsgCFUTime , we use values of 4 milliseconds and 
10 milliseconds in this experiment. We remind the reader that 
this parameter determines the CPU time to send or receive a mes- 
sage, meaning that the 4 and 10 millisecond values place 8 or 20 
millisecond lower bounds on message transfers; the latter time 
represents the upper end of the message cost spectrum. We do 
not present one copy results here, as the increased message over- 
head only affects performance when remote updates are involved 
(since transactions execute at their site of origin). 

Figure 8 presents the throughput results obtained by repeating 
the two copy case from Experiment 1 with MsgCPUl’ime = 4 
milliseconds. The only messages involved in the one copy case 
occur for global deadlock detection in 2PL. so the results that we 
obtained in the one copy case were really no differems than those 
of Figure 4. However, the results in Figure 8 are quite different 
than those of Figure 6. The performance of each of the algo- 
rithms is worse in Figure 8 because of the additional message 
cost. However, OPT suffers the least from the additional cost 
due to its use of commit protocol messages; thus, we 8nd that 
OPT actually does a bit better than WW and BTO here, and the 
difference between OPT and 2PL is less dramatic. Figure 9 
shows the average number of messages per completed transac- 
tion, making it clear that OPT requires significantly fewer mes- 
sages. Looking deeper, when we examined the resource utiliza- 
tion levels in this case, we discovered that 2PL, BTO, WW. and 
NONE all become CPU-bound here due to the CPU cost associ- 
ated with their message activity; OPT, on the other hand, 

’ The message overhead due to deadlo& detection in 2PL is not 
sufficient to signiticantly alter its performance here, even with bfsgcpu- 

Time = 10 milliseconds. 
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remains I/O-bound. Thus, not only does OPT require fewer mes- 
sages, but messages have a lesser performance impact for OPT 
since CPU is not the performance bottleneck. 

Figures 10 and 11 present the corresponding results for this 
message cost in the three copy case. The trenda that began in 
Figures 8 and 9 are more pronounced here. Again, all algorithms 
suffer performance-wise as compared with Experiment 1 due to 
the increased message cost, and again OPT suffers the least. In 
fact, because of the large number of messages required by 2PL. 
BTO, and WW to interact with remote copy sites, OPT outper- 
forms the other algorithms here. This is especially clear since 
OPT outpe.rform NONE in this case - recall that NONE com- 
municates with copy sites on each write access, like DD. WW. 
and BTO. but with write permission always being granted. The 
implication is that the performance loss in OFT due to end-of- 
transaction restarts is more than compensated for by the message 
savings in this case, where messages are moderately expensive 
and three copies of each data file exist. This is aided by the fact 
that restarts become less serious for OPT in thii case: Since 
remote updates are only performed after a successful commit, 
these are not done (and thus not undone) when OPT restarts a 
transaction. However, all of the CPU-related message activity 
required to obtain remote write permission in the other algo- 
rithms must be redone in the event of an abort, and these algo- 
rithms are CPU-bound due to the high message CPU cost. These 
additional messages are visible, especially for BTO and WW. at 
thelowthinktimesinFigures9and11. 

Figures 12 and 13 present the throughput results for the two 
and three copy cases with a MsgCPUTime of 10 milliseconds. 
The message ratio results are not affected by the message cost, so 
we refer the reader to Figures 9 and 11 for this data The shift in 
results is similar to that observed in previous curves, except that 
they are heavily amplified here due to the even higher cost asso- 
ciated with message processing. While all algorithms suffer 
some performance loss due to message overhead, OPT suffers the 
least by far. OPT outperforma the other algorithms significantly 
here in both the two and three copy cases due to its minimal com- 
munication requirements. 

4.4. Experiment 3: Nonlocal Data Access 
This experiment considers a situation where a transaction may 

access non-local data. The data layout and transaction execution 
pattern used here are the same as in Experiments 1 and 2. and all 
of the files needed by a given transaction still reside on a single 
site. However, the workload parameters are set so that, in the one 
copy case, a given transaction has a 70% chance of using local 
data and a 30% chance of needing to use non-local data instead! 
In the latter case, the file group accessed by the transaction is 
chosen randomly from among the seven remote groups, with each 
being equally likely. We consider only the 4 millisecond 
MsgCPUTitne setting here, and examine both the two and three 

’ The probability of a given transaction requiring non-local access 
drops somewhat with replication, as one or two file groups that were 
non-local in the are copy case will now be replicated at this site as well. 

copy cases. While we also reran the 1 millisecond MsgCPUTime 
experiments with this nonlocal data access pattern the results 
were virtually identical to the purely local case; the message cost 
associated with remote execution added very little to the overall 
transaction path length in this case. 

Figures 14 and 15 present the throughput results for the two 
copy case and the three copy case, respectively. Comparing these 
curves to the strictly local execution cases of Figures 8 and 10. 
we find the results to be similar except in the relationship of OPT 
to the other algorithms in Figure 14. In Figure 8, OPT performs a 
bit better than WW and BTO, but it is still noticeably worse than 
2PL in its performance. In Figure 14, however, OFT and 2PL 
actually perform comparably. This is because, with a 4 mil- 
lisecond message cost and two copies of data, all algorithms 
except OPT end up being CPU-bound in this case; their perfor- 
mance thus worsens as a result of the additional messages associ- 
ated with remote cohort execution. The relative performance of 
2PL compared to NONE is also a bit worse here, as additional 
message overhead causes transactions to hold locks somewhat 
longer. As before, OPT exhibits the best performance in Figure 
15. Synchronizing three copies of data is very expensive for the 
other algorithms with this message cost. 

4.5. Experiment 4: Parallel Execution 
The purpose of this experiment is to investigate performance 

under a parallel transaction execution pattern. In this case, the 
data layout is different, and a bit more complex. We consider 
only the one COPY cake here: The three files Fir. Fir,. Fis compris- 
ing group Gi are stored at sites Si, Sc d s)+r. and Sc mod s)ea, 
respectively. The workload is arranged so that transactions ori- 
ginating at site Si BCWSS group Gi, as always, but in this case the 
implication is that the transaction will have three cohorts, two of 
which will execute at remote sites. These three cohorts will exe- 
cute in parallel with one another. We examine results for the one 
copy case for the 1 and 4 millisecond MsgCPVTime settings 
here. 

Figure 16 presents the throughput results for the 1 millisecond 
case, and Figure 17 compares the performance results for parallel 
execution with those obtained for serial execution in Experiment 
1. Specifically. Figure 17 shows the percentage improvement in 
response time* in the parallel case as compared to the serial case. 
As is evident in the figure, parallelism provides significant perfor- 
mance gains - of more than 50% - when the system is lightly 
loaded. At high loads. however, parallel execution actually leads 
to a slight degradation in response time. Figures 18 and 19 
present the same information for the case where MsgCPUTime = 
4 milliseconds. Given this four-fold message wst increase, 
parallelism is seen to be significantly less attractive. The gains 
under light loads have decreased quite a bit, and the performance 
penalty associated with parallel execution versus serial execution 
at higher loads has increased dramatically. For both message 
costs, the performance degradation can be attributed in part to the 

s Response time is the interesting metric here because parallelism 
is employed in database machines to improve query response times. 
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additional overhead involved in initiating several cohorts and 
coordinating their commit. However, this is not a complete 
explanation; the distributed nature of transactions also turns out 
to have sn interesting impact on algorithm behavior. 

In the case of OPT, an examination of the restart ratios under- 
lying these curves revealed that the frequency of restarts is higher 
here than for serial execution. We believe that this is due to the 
following scenerio: In OPT, given a pair of trsnssctions that each 
have multiple cohorts, a poblem can arise if their cohorts con- 
currently attempt to read and then update common data - the 
cohorts can end up being locally certified in opposite orders at 
their different sites. If this happens, both transactions will end up 
being restarted, as they each see the other as potentially invalidat- 
ing their readset. This is not a problem in the local case, as the 
transactions will certify in one o&r or the other (in a critical sec- 
tion) in this case, leading to only one of them being restarted. 
Further, this problem is exacerbated when the message cost is 
increase ss this cost determines the period of time needed for 
cetication and it is during this period when transactions are 
vunerable to the problem. This hypothesis was borne out by an 
examination of the restart ratios. OPT was found to have a very 
significant increase in its restart ratio in going from the 1 mil- 
lisecond case to the 4 millisecond case. Moreover, the additional 
messages involved in rumring the transaction commit protocol in 
the parallel case are enough to move OPT from I/O-bound to 
CPU-bound operation in the 4 milliiecond case. This makes its 
restarts relatively more expensive than in the serial case. 

2PL is also negatively affected, at least to some extent, by 
parallelism under high loads. In particular, a comparison of Fig- 
ure 16 to Figure 4 reveals that 2PL’s throughput drops off more 
significantly under high loads in the parallel case. This is due to 
the fact that, if one cohort of a transaction has difficulty obtaining 
locks while other cohorts of the same transaction are successful, 
the others will eventually become blocked as well - waiting for 
the commit protocol to begin, while holding all of their locks. As 
a result. the average numbet of locked items is higher in the case 
of the parallel execution pattern causing more blocking (and also 
deadlocks) and leading to a drop in the utilization of the 
bottleneck resource under heavy loads. This effect was indeed 
visible in the resource utilixations in the parallel case, which fell 
off for 2PL at the 0 and 1 second think time points. We also 
instrumented our 2PL implementation to keep track of the 
number of locked items, and we found the average number of 
locked items to be 3540% higher in the parallel case than in the 
sequential case with a think time of zero. WW suffers Ram a 
related phenomenoq but only marginally so because it uses a mix 
of blocking and restarts to handle conflicting requests. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper we have tried to shed light on distributed con- 

currency control perftmnance tradeoffs by studying the perfor- 
mance of four representative algorithms - distributed 2PL, 
wound-wait, basic timestamp ordering, and a distributed optimis- 
tic algorithm - using a common performance framework. We 
examined the performance of these algorithms under various 
degrees of contentioq data replicatior& and workload 

“distributedness.” 

In terms of the relative performance of the algorithms, we 
found that 2PL and OPT dominated BTO and WW. When the 
cost of sending and receving messages was low, 2PL was the 
superior performer due to its avoidance of transaction restarts. 
However, when the message cost was high and data was repli- 
cated, OPT was seen to outperform 2PL due to its ability to 
exchange the necessary synchronization information using only 
the messages of the two-phase commit protocol. In such cases, 
for our workload, the work lost due to restsrts was more than 
compensated for by the savings due to avoiding costly messages. 
The combination of these results suggests that “optimistic lock- 
ing,” where transactions lock remote copies of data only as they 
enter into the commit protocol (at the risk of end-of-transaction 
deadlocks), may actually be the best performer in replicated data- 
bases where messages are costly, We plan to investigate this 
conjecture in the future. Finally, BTO and WW performed 
almost indistinguishably in our initial experiments. 

In terms of replication, increasing the number of copies had 
the expected negative effect on performance due to update costs. 
However, we found that increasing the number of copies of data 
did not change the relative ordering of the algorithms at the 
lowest or highest message costs, where (respectively) 2PL and 
OPT dominated the otha algorithms. When the message cost 
was such that increasing the number of copies moved the system 
from an ~-bound situation into a CPU-bound one. changing the 
number of copies was sufficient to move OPT into the perfor- 
mance leadership position. 

Turning to distribution and parallelism, we examined two 
cases: One whae transactions executed serially, but sometimes 
nonlocally, and the other where transactions executed in parallel 
at several sites. In the nonlocal case. only minor differences were 
observed compared to strictly local execution. In the parallel 
case, we observed some interesting behavior. Our results indi- 
cated that, as one would expect, parallelism is only beneficial 
unda light loads, especially if messages are expensive. We also 
observed some algorithm-related phenomena. Multiple cohorts 
were found to increase the likelihood of restarts for OPT, espe- 
cially under higher message costs. This was attributed to the lack 
of a single critical section, as it is possible for concurrently cetti- 
fymg transactions to restart one another. In 2PL an increase in 
waiting due to lock contention was observed in the case of paral- 
lel execution. We intend to examine these effects more fully in 
the future+ for workloads with greater parallelism, to investigate 
concntrency control problems that may arise in parallel database 
machines. 

REFERENCES 
[Agra87] Agrawal, R.. Carey, M., and Livny. M.. “Concurrency 
Control Performance Modeling: Alternatives and Implications,” 
ACM Trans. on Databave Sys. 12 4, Dec. 1987. 

[Bada79] Badal, D., “Correctness of Concurrency Control and 
Implications in Distributed Databases,” Ptoc. COMPSAC ‘79 
Co& Chicago, IL, Nov. 1979. 

24 



malt821 Baiter, R.. Berard. P., and Decitre. P., “Why Control of 
the Concurrency Level in Distributed Systems is More Funda- 
mental than Deadlock Management,” Proc. 1st ACM SIGACT- 
SIGOPS Symp. on Principles of Dist. Camp.. Aug. 1982. 

[Bem8Oa] Bernstein P.. and Goodman, N.. Fundamental Algo- 
rithm for Concurrency Control in Distributed Database Systems, 
Tech. Rep., Computer Corp. of America, Cambridge, MA, 1980. 

[BernSOb] Bernstein, P.. and Goodman. N., ‘Timestamp-Based 
Algorithms for Concurrency Control in Distributed Database 
Systems,” Proc. 6th VLDB Cot& Mexico City, Mexico, Oct. 
1980. 

[Bern811 Bernstein, P.. and Goodman, N., “Concurrency Control 
in Distributed Database Systems,” ACM Cotnp. Surveys 13. 2, 
June 1981. 

[Bhar82] Bhargava, B.. “Performance Evaluation of the Gptimis- 
tic Approach to Distributed Database Systems and its Com- 
parison to Locking,” Proc. 3rd Int’l. Conf. on Dist. Cow. Sys.. 
Miami, FL, October 1982. 

[Care841 Carey, M.. and Stonebraker, M., ‘The Performance of 
Concurrency Control Algorithms for Database Management Sys- 
tems,” Proc. 10th VLDB Coqf.. Singapore, Aug. 1984. 

[Care.861 Carey, M., and Lu, H.. “Load Balancing in a Locally 
Distributed Database System,” Proc. ACM SIGMOD Co&. 
Washington, DC. May 1986. 

[Ceri82] Ceri. S.. and Chvicki. S., “On the Use of Optimistic 
Methods for Concurrency Control in Distributed Databases,” 
Proc. 6th Berkeley Workshop on Dirt. Data Mgmt. and Camp. 
Networks, Feb. 1982. 

[DeWi86] Dewitt, D.. et al, “GAMMA - A High Performance 
Backend Database Machine,” Proc. 12th VLDB Cotf., Kyoto. 
Japan. Aug. 1986. 

[Gall821 Caller, B.. Concurrency Control Pe#mmnce Issues, 
Ph.D. Thesis, Comp. Sci. Dept., Univ. of Toronto, Sept. 1982. 

[Garc79] Garcia-Molina, H., Petformance cf Update Algorithm 
for Replicated Data in a Distributed Database, Ph.D. Thesis, 
Comp. Sci. Dept., Stanford Univ., June 1979. 

[Gray791 Gray, J., “Notes On Database Gperating Systems,” in 
Operating Systems: An Advanced Course, R. Bayer, R. Graham, 
and G. Seegmuller, eds.. Springer-Verlag, 1979. 

[Kohl851 Kohler, W.. and Jenq. B., Per@mance Evaluation qf 
Integrated Concurrency Control and Recovery Algorithms Using 
a Distributed Tranwction Processing Testbed, Tech. Rep. No. 
CS-85-133. Dept. of Elec. and Comp. Eng., Univ. of Mas- 
sachusetts, Amherst, 1985. 

[L,am86] Lamwska, E., et al, “File Access Performance of Diak- 
less Workstations,” ACM Trans. on Camp. Sys. 4.3. Aug. 1986. 

[Li87] Li, V.. “Performance Model of TiiestampGrdering Con- 
currency Control Algorithms in Distributed Databases,” IEEE 
Trans. on Camp. C-36.9, Sept. 1987. 

[Lin82] Lii W.. and Nolte. J., “Performance of Two Phase 
Locking,” Proc. 6th Berkeley Workshop on Dist. Data Ugmt. and 
Coq. Network, Feb. 1982. 

[Lin83] Lin, W., and Nolte, J., “Basic Timestamp, Multiple Ver- 
sion Tiestamp, and Two-Phase Locking,” Proc. 9th VLDB 
Co@. Florence, Italy, Nov. 1983. 

[Lind84] Lindsay, B., et al, “Computation and Communication 
in R*,” ACM Tram. on Cmp. Sys. 2,l. Feb. 1984. 

[Livn88] Livny. M.. DeNet User’s Guide, Version 1.0. Comp. 
Sci. Dept., Univ. of Wisconsin, Madison, 1988. 

[Mena78] Menasce, D.. and Muntz. R., “Locking and Deadlock 
Detection in Distributed Databases,” Proc. 3rd Berkeley 
Workshop on Dist. Data Mgmt. and Camp. Networks, Aug. 1978. 

woe.871 Noe, J.. and Wagner, D., “Measured Performance of 
Time Interval Concurrency Control Techniques,” Proc. 13th 
VLDB Conf., Brighton, England, Sept. 1987. 

[Oszu85] Oszu, M., “Modeling and Analysis of Distributed 
Database Concurrency Control Algorithms Using an Extended 
Petri Net Formalism,” IEEE Trans. on So@. Eng. SE-11, 10, 
Oct. 1985. 

[Reed831 Reed, D.. “Implementing Atomic Actions on Decen- 
tralized Data,” ACM Trans. on Comp. Sys. 1, 1, Feb. 1983. 

[Ries79] Ries. D., ‘The Effects of Concurrency Control on the 
Performance of a Distributed Data Management System,” Proc. 
4th Be&&y Workshop on Dist. Data Mgmt. and Comp. Net- 
works, Aug. 1979. 

[Rose781 Rose&art@ D.. Stearns, R., and Lewis, P., “System 
Level Concurrency Control for Distributed Database Systems,” 
ACM Trans. on Database Sys. 3.2. June 1978. 

[Schlll] Schlageter, G.. “Optimistic Methods for Concurrency 
Control in Distributed Database Systems,” Proc. 7th VLDB 
Con& Cannes, France, Sept. 1981. 

[Sinh85] Sinha, M.. et al, ‘Timestamp Based Certification 
Schemes for Transactions in Distributed Database Systems,” 
Proc. ACM SIGMOD Conf., Austin, TX, May 1985. 

[Ston79] Stonebraker, M.. “Concurrency Control and Con- 
sistency of Multiple Copies of Data in Distributed INGRES,” 
IEEE Trans. on Sojhv. Eng. SE-5.3. May 1979. 

Vera831 Teradata DBCt1012 Data Base Computer Concepts & 
Facilities, Teradata Corp. Document No. CO2-0001-00,1983. 

mm791 Thomas, R.. “A Majority Consensus Approach to 
Concurrency Control for Multiple Copy Databases,” ACM Tram. 
on Database Sys. 4. Z June 1979. 

[Trai82] Traiger, I., et al, ‘Transactions and Consistency in Dis- 
tributed Database Systems,” ACM Trans. on Database Sys. 7.3. 
Sept. 1982. 

25 


