
Distributed Concurrency Control Performance:
A Study of Algorithms, Distribution, and Replication

Michael J. Carey
Miron Livny

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT - Many concurrency control algorithms have been
proposed for use in distributed database systems. Despite the
large number of available algorithms, and the fact that distributed
database systems are becoming a commercial reality, distributed
concurrency control performance tradeoffs are still not well
understood. In this paper we attempt to shed light on some of the
important issues by studying four representative algorithms -
distributed 2PL, wound-wait, basic timestamp ordering. and a
distributed optimistic algorithm - using a detailed model of a
distributed DBMS. We examine the performance of these algo-
rithms for various levels of contention, “distributedness” of the
workload, and data replication. The results should prove useful
to designers of future distributed database systems.

1. INTRODUCTION
For the past decade, distributed databases have attracted a

great deal of attention in the database research community. Data
distribution and replication offer opportunities for imlxoving per-
formance through parallel query execution and load balancing as
well as increasing the availability of data. In fack these oppor-
tunities have played a significant role in driving the design of the
current generation of database machines (e.g., rera83,
DeWi861). Distribution and replication are not a panacea, how-
ever; they aggravate the problems of concurrency control and
crash recovery. In order to reap the potential performance
benefits, the cost of maintaining data consistency must be kept at
an acceptable level in spite of the added complexity of the
environment. In the concurrency control area, this challenge has
led to the development of a large number of concurrent y control

This research was parrially supported by the National Sciena
Foundation under grant IRI-8657323 and by grants from the Digital
Equipment Corporation and the Micmekctnmics and Computer Technol-
ogy Consortium (h4CC).

Permission to copy without fee all or part of this U is
granted provided that the copies are not made or diitributed for
direct commercial advantage, the.VIDB copyright notice and
the tide of the publication and its date appear, and notice is given
that copying is by permission of ,the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission tiom the Endowment.

algorithm proposals. This paper addresses some of the important
performance issues related to these algorithms.

Most distributed concurrency control algorithms fall into one
of three basic classes: &king algorithms [Mena78, Rose78.
Gray79, Ston79. Trai821. timetimp algorithms, mom79,
Bem80b, Reed83]. and o@tnistk (or certification) algorithms
[Bada79, Schl81. Ceri82, Sinh85]. Bernstein and Goodman
review many of the proposed algorithms and describe how addi-
tional algorithms may be synthesized by combiig basic
mechanisms from the locking and timestamp classes [Bem81].

Given the many proposed distributed concurrency control
algorithms, a mrmber of researchers have undertaken studies of
their performance. For example, the behavior of various distri-
buted locking algorithms was investigated in [Garc79, Ries79.
Lin82, Gsxu85. Noe87]. where algorithms with varying degrees
of centralixation of locking and approaches to deadlock handling
have been studied and compared with one another. Several dis-
tributed timestamp-based algorithms were examined in [Li87]. A
qualitative study addressing performance issues for a number of
distributed locking and timestamp algorithms was presented in
[Ben&la]. The performance of locking was compared with that
of basic timestamp ordering in [Gall82], with basic and multiver-
sion timestamp ordering in [Lin83], and with optimistic algo-
rithms in [Bhar82, Kohl85]. Several alternative schemes for han-
dling or pmventing deadlock in distributed locking algorithms
were studied in [Bah82].

While the distributed concutrency control performance stu-
dies to date have been informative, a number of important ques-
tions remain unanswered. These include:

(1) How do the performance characteristics of the various
basic algorithm classes compare under alternative
assumptions about the nature of the database, the work-
load, and the computational enviromnent?

(2) How does the distributed nature of transactions affect the
behavior of the various classes of concurrency control
algorithms?

(3) How much of a performance penalty must be incurred for
synchronization and updates when data is replicated for
availability or query performance reasons?

The first of these questions remains unanswered due to
shortcomings of past studies that have examined multiple algo-
rithm classes. The most comprehensive of these studies, [Lin83]

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988

and [Balt82], suffer from unrealistic modeling assumptions. In
particular, contention for physical resources such as CPUs and
disks was not captured in their models. Recent work has shown
that neglecting to model resources can drastically change the con-
clusions reached [Agra87]. In [Gal182], the model of resource
contention was artiticial and the study assumed fully replicated
data, extremely small transactions, and a very coarse conmmency
control granularity. In [Bhar82]. a central site wound-wait vari-
ant was compared with a distributed optimistic algorithm, mes-
sage costs were high. and restart costs were biased by buffering
assumptions. The results of [Kohl851 were obtained using a
lightly loaded two-site testbed system, and were strongly
influenced by the fact that both data and log records wem stored
on the same disk. The second question above remains open since
a number of previous studies have modeled transactions as exe-
cuting at a single site, makin remote data access requests as
needed (e.g., [Balt82. Gall82, Lin83]); few studies have carefully
considered distributed transaction structurea. Finally, the third
question remains open since previous studies have commonly
assumed either no replication (as in [Lin83, Balt821) or full repli-
cation (as in [Gal182]). and their simplifmd models of transaction
execution have often ignored important related overheads such as
that of the commit protocol.

In this paper, we report on the 6rst phase of a study aimed at
addressing the questions raised above. The study employs a per-
formance evaluation framework based on a fairly detailed model
of a distributed DBMS. The design goal for the framework was
to provide a facility for experimenting with and evaluating alter-
native transaction management algorithms on a common basis,
The framework captures the main elements of a distributed data-
base system: physical resources for storing and accessing the
data, e.g., disks, CPUs, and communications channels; the distri-
buted nature of transactions, including their access behavior and
the coordination of their distributed executiom and the database
itself, including the way that data is distributed and allocated to
sites. The design of the performance framework was influenced
heavily by previous results on the impartenco of realis& ccn-
cmrency control modeling assumptions, especially with respect
to system resources [Agra87]. Given the framework, we then
proceed to examine the perf ormance impact of varyins the sys-
tem load, the degree to which transactions are distributed, and the
level of data replication on the performance of a representative
set of distributed concurrency control algorithms. While we
address only a subset of the open questions, we feel that our
results constitute an important step towards understanding distri-
buted concurrency control performance issues.

We examine four concurrency control algorithms in this
study, including two locking algorithms, a tin~eatamp algorithm
and an optimistic algorithm. The algorithms considered span a
wide range of characteristics in terms of how conflicts are
detected and resolved. Section 2 describes our choice of con-
currency control algorithms. We use a simulator based on a
closed queuing model of a distritnued database system for our
performance studies. The structure and characteristics of our
model are described in Section 3. Section 4 presents our initial
performance experiments and the associated results. Finally,
Section 5 summarizes the main conchudons of this study and

raises questions that we plan to address in the future.

2. DISTRIBUTED CONCURRENCY CONTROL
ALGORITHMS

For this study we have chosen to examine four algorithms that
we consider to he rqnesentative of the basic design space for dis-
tributed wncmrency control mechanisms. We summarize the
salient aspects of these four algorithms in this section. In order to
do so, however. we must first explain the structure that we will
assume for distributed transactions.

2.1. Tbe Structure of Distributed Transactions
Figure 1 depicts a general distributed transaction in terms of

the processes involved in its execution. Each transaction has a
ma&r pnxxss (M) that runs at its site of origination. The master
pocess in turn Sets up a collection of Cohort processes (Ci) to
perform the actual processing involved in nnming the transaction.
Since virtually all query processing strategies for distributed data-
base systems involve accessing data at the site(s) where it resides.
rather than accessing it remotely, there is at least one such cohort
for each site where data is accessed by the transaction. We will
examine several query execution pattents; whether there is more
than one cohort per site, and whether cohorts execute sequentially
or in parallel, will depend on the query execution model of
interest. We will clarify this point further in describing the work-
load model in Section 3. For now, simply note that similar tran-
saction structures arise in R* [Lind84]. Distributed INGRES
[Ston79]. and Gamma [DeWi86]. These systems diier, however,
in the degree of parallelism involved in query execution.

In general, data may be replicated, in which case each cohort
that updatea any data items is assumed to have one or more
up&ate (Ui/) processes associated with it at other sites. In partic-
ular, a cohort will have an update process at each remote site that
stores a copy of the data items that it updates. It communicates
with its update processes for concurrency control purposes, and it
also sends them copies of the relevant updates during the 6rst
phase of the commit protocol described below.

In this study, we will assume the use of a centralized hvo-
phase commit protocol [Gray79], with the master acting as the
commit wordinator. This same protocol will be used in conjunc-
tion with each of the concurrency control algorithms examined.
Assuming no replication, the protocol works as follows [Gray79]:

Figure 1: Distributed transaction structure.

When a cohort finishes executing its Portion of a query. its sends
an “execution complete” message to the master. When the mas-
ter has received such a message from each cohort, it will initiate
the commit protocol by sending “prepare to commit” messages to
all sites. Assuming that a cohon wishes to commit, it sends a
“prepard message back to the master, and the master will send
“commit” messages to each cohort after receiving prepared mes-
sages from all cohorts. The protocol ends with the master receiv-
ing “committed” messages t3nn each of the cohorts. If any
cohort is unable to commit, it will return a “cannot commit” mes-
sage instead of a “prepared” message in the first phase, causing
the master to send “abort” instead of “commit” messages in the
second phase of the protocol.

When replica update processes are present, the commit proto-
col becomes a nested two-phase commit protocol as described in
[Gray79]: Messages flow bctwccn the master and the cohorts,
and the cohorts in turn interact with their updaters. That is, each
cohort sends “prepare to commit” messages to its updaters after
receiving such a message from the master, and it gathers the
responses from its updaters before sencimg a “prepan# message
back to the master; phase two of the protocol is similarly
modified. Again this is reminiscent of the “tree of processes”
transaction structure of R* [Lind84]. Copies of updated data
items are carried in the ,,prepare to commit” messages sent from
cohorts to updaters.

2.2. Distributed Two-Phase Locking (2PL)
The 8rst algorithm is the distributed “read any, write all”

two-phase locking algorithm described in [Gray79]. Transactions
set read locks on items that they read, and they convert their read
locks to write locks on items that need to be updated. To read an
item, it suffices to set a read lock on any copy of the item, so the
local copy is locked; to update an item, write locks are required
on all copies. Write locks are obtained as the transaction exe-
cutes, with the transaction blocking on a write request until all of
the copies of the item to be updated have been successfully
locked. All locks are held until the transaction has successfully
mn.mitted or aborted.

Deadlock is a possibility, of course, and we will handle it via
a variant of the centralized detection (or “Snoop”) scheme of Dis-
tributed INGRES [Ston79]. The scheme employed here is as fol-
lows: Local deadlocks are checked for any time a transaction
blocks, and are resolved when necessary by restarting the transac-
tion with the most recent initial startup time among those
involved in the deadlock cycle. (A cohort is restarted by aborting
it locally and sending an “abort” mcssagc to its master, which in
turn notifies all of the processes involved in the transaction.)
Global deadlock detection is handled by a “Snoop” process,
which periodically requests waits-for information from all sites
and then checks for and resolves any global deadlocks (using the
same victim selection criteria as for local deadlocks). Unlike
Distributed INGRES, we do not associate the “Snoop” responsi-
bility with any particular site. Instead, each site takes a turn
being the “Snoop” site and then hands this task over to the next
site. The “Snoop” responsibility thus rotates among the sites in a
round-robin fashion, ensuring that no one site will become a

bottleneck due to global deadlock detection costs.

2.3. Wound-Wait @VW)
The second algorithm is the distributed wound-wait locking

algorithm of [Rose78], again with the “read any, write all” rule.
It differs from 2PL in its handling of the deadlock problem:
Rather than maintaining waits-for information and then checking
for local and global deadlocks, deadlocks are prevented via the
use of timestamps. Each transaction is numbered according to its
initial startup time, and younger transactions are prevented from
making older ones wait. If an older transaction requests a lock,
and if the request would lead to the older transaction waiting for a
younger transaction, the younger transaction is “wounded” - it
is restarted unless it is already in the second phase of its commit
protocol (in which case the “wound” is not fatal, and is simply
ignored). Younger transactions can wait for older transactions,
however. The possibility of deadlocks is eliminated because any
cycle of waiting transactions would have to include at least one
instance where an older transaction is waiting for a younger one
which is blocked as well, and this is prevented by the algorithm.

2.4. Basic Timestamp Ordering (BTO)
The third algorithm is the basic timestamp ordering algorithm

of [BerngOb, Bern81J. Like wound-wait, it employs transaction
startup timestamps. but it uses them differently. Rather than
using a locking approach, BTO associates timestamps with all
recently accessed data items and requires that conflicting data
accesses by transactions be performed in timestamp order. Tran-
sactions that attempt to perform out-of-order accesses are res-
tarted. More specifically, each recently accessed data item has a
read timestamp, which is the most recent timestamp among its
readers, and a write timestamp, which is the timestamp of the
most recent writer. When a read request is received for an item,
it is permitted if the timestamp of the requester exceeds the
item’s write timestamp. When a write request is received, it is
permitted if the requester’s timestamp exceeds the read times-
tamp of the item; in the event that the timestamp of the requester
is less than the write timestamp of the item. the update is simply
ignored (by the Thomas write rule [Be&l]).

For replicated data, the “read any, write all” approach is used,
so a read request may be sent to any copy while a write request
must be sent to (and approved by) all copies. Integration of the
algorithm with two-phase commit is accomplished as follows
[Bem81]: Writers keep their updates in a private workspace until
commit time. Granted writes for a given data item are queued in
timestamp order without blocking the writers until they are ready
to commit, at which point their writes are dequeued and pro-
cessed in order. Accepted read requests for such a pending write
must be queued as well, blocking the readers. as readers cannot
be permitted to proceed until the update becomes visible. Effec-
tively. a write request locks out any subsequent read requests
with later timestamps until the correspondmg write. actually takes
place, which occurs when the updating transaction commits and
its writes are dequeued and processed.

15

2.5. Distributed Certification (OPT)
The fourth algorithm is the distributed, timestampbased,

optimistic cc~ncurrency control algorithm from [Sinl185]~, which
operates by exchanging certification infcrmation during the com-
mit protocol. For each data item, a read timestamp and a write
timestamp are maintained. Transactions may read and update
data items freely, storing any updates into a local workspace until
commit time. For each read, the transaction must remember the
version identifier (i.e., write timestamp) associated with the item
when it was read. Then, when all of the transaction’s cohorts
have completed their work, and have repotted back to the master,
the transaction is assigned a globally unique timestamp. This
timestamp is sent to each cohort in the “prepare to commit” mes-
sage, and it is used to locally certify all of its reads and writes as
follows: A read request is certi8ed if (i) the version that was read
is still the current version of the item, and (ii) no write with a
newer time& has already been locally certified. A write
request is certified if (i) no later reads have been certified and
subsequently committed, and (ii) no later reads have been locally
certified already. The term ‘later” refers to timestamp time her%
so these conditions are checked using the timestamp given to the
trarmction when it started the commit protocol. These local
certification computations are performed in a critical section.

To handle replicated data, the algorithm requires updaters to
participate in certification. Updaters simply certify the set of
writes that they receive at commit time, and again the necessary
communication can be accomplished by passing information in
the messages of the commit protocol. Failure of the certitication
test by any cohort or updater is handled in OPT by having that
process send a “cannot commit” reply in response to the “prepare
to commit” message. causing the transaction to be restarted.

2.6. Some Observations
The four algorithms that we have selected span the three

major algorithm classes, and they represent a fairly wide range of
conflict detection and resolution methods and times. 2PL
prevents conflicts as they occur using locking, resolving global
deadlocks using a centralixed deadlock detection scheme. WW is
similar, except that it prevents deadlocks using timestamps and
restarts rather than checking for deadlocks and incurring the asso-
ciated message costs. BTO uses timestamps to order transactions
a prioi restarting transactions when conflicting. out-of-order
accesses occq read requests must occasionally block when they
request data from pending, uncommitted updates. Finally, OPT
always uses restarts to handle conflicts, checking for problems
only when a transaction is ready to commit. 2PL. WW. and BTO
all send write access requests between a cohort and its updaters
when a write request for replicated data is received at the cohort
site; in contrast, OPT defers communication between cohorts and
updaters until commit time, piggybacking its concurrency control
information on the messages of the commit protocol.

‘Actually. two such algorithms me proposed in [SinhsS]. We
chose theii first algorithm for this study, as it is the simpler of the two.

3. MODELING A DISTRIBUTED DBMS
As mentioned in Section 1, we have developed a single, uni-

form, distributed DBMS model for studying a variety of con-
currency control algorithms and performance tradeoffs. Figure 2
shows the general structure of the model. Each site in the model
has four components: a source, which generates transactions and
also maintains transaction-level performanoa infomration for the
site, a transaction manager, which models the execution behavior
of transactions, a concurrency control manager, which imple-
ments the details of a particular concurrency control algorithm,
and a resource menuger, which models the CPU and Vo
resources of the site. In addition to these per-site components,
the model also has a nehvork mger. which models the
behavior of the communications network. Figure 3 presents a
slightly mom detailed view of these components and their key
interactions. The component interfaces were designed to support
modularity, making it easy to replace one component (e.g.. the
concurrency control manager) without affecting the others. We
describe each component in turn in this section, preceded by a
discussion of how the database itself is modeled.

3.1. The Database Model
We model a distributed database as a collection of&r. A file

can be used to represent a relation, or it can represent a partition
of a relation in a system where relations are partitioned across
multiple sites (as in Gsrnma [DeWi86]). Files are assumed to be
the unit of data replication. Table 1 summarizes the parameters
of the database model, which include the number of sites and files
in the database and the sixes of the files. As indicated in the
table, files are modeled at the page level. The mapping of files to
sites is specified via the parameter Fikhxtions , a boolean array
in which FileLoc~io~~j is true if a copy of file i resides at site j .

3.2. The Source
The source is the component responsible for generating the

workload for a site. The workload model used by the source
characterixes transactions in terms of the files that they access
and the number of pages that they access and update in each file.

DDpMS site

Trantoction Manuger,

Figure 2: Distributed DBMS Model Structure.

16

I Resourcs Manager (OS)

~-U-O u==l--(ps)

Figure 3: A Closer Look at the Model.

~

Table 1: Database Model Parameters.

remaining per-class parameters characterize transactions of the
class as follows: ExecPattern specties the execution pattern,
either sequential or parallel. for transactions. (More will be said
about this shortly.) FileCount is the number of files accessed,
and FileProl+ gives the probability distribution (or relative file
weights) for choosing the actual files that the transaction will
access. The next two parameters determine the file-dependent
access characteristics for transactions of the class, including the
average number of pages read and the probability that an
accessed page will be updated. The last parameter specifies the
average amount of CPU time required for transactions of the
class to process a page of data when reading or writing it. The
actual number of pages accessed ranges uniformly between half
and twice the average, and the page CPU time is exponentially
distributed.

3.3. The Transaction Manager
Each transaction in the workload has the general structure

described in Section 2.1. with a master process, a number of
cohorts, and possibly a number of updaters. As described earlier,
the master resides at the site where the transaction was submitted.
Each cohort makes a sequence of read and write requests to one
or more files that are stored at its site; a transaction has one
cohort at each site where it needs to access data. Cohorts com-
municate with their updaters when remote write access permis-
sion is needed for replicated data, and the updaters then make the
required write requests for local copies of the data on behalf of
their cohorts. A transaction can execute in either a sequential or
parallel fashion, depending on the execution pattern of the tran-
saction class. Cohorts in a sequential transaction execute one

*. after anothera, whereas cohorts in a parallel transaction are started
Table 2 summarizes the key parameters of the workload mooer
for a site: each site has its own set of values for these parameters.
The NumTeminals parameter specifies the number of terminals
per site, and the ThinkTime parameter is the mean of an exponen-
tially distributed think time between the completion of one tran-
saction and the submission of the next one at a terminal. Nwn-
Classes gives the number of transaction classes for the site..

together and execute independently until commit time. A
sequential transaction might be thought of as representing a series
of steps in a relational query. A parallel transaction might be
thought of as modeling the kind of parallel query execution that
is seen in systems like Gamma [DeWi86] or the Teradata data-
base machine [Tera83].

The transaction manager is responsible for accepting transac-
tions from the source and modeling their execution. To choose
the execution sites for a transaction’s cohorts. the decision rule is:
If a file is present at the originating site. use the copy there; oth-
erwise, choose uniformly from among the sites that have remote
copies of the file. If the file is replicated, the transaction manager
will initiate updaters at sites of other copies when the cohort
accessing the file first needs to interact with them for concurrency
control reasons. The transaction manager also models the details
of the commit and abort protocols.

The ClassProb parameter specifies the probability that a
newly generated transaction will be of a given class. The

Per-Site Parameters
NumTenninals 1 Number of terminals ner site
ThinkTime
NumClawes

Think time for the terminals
Number of transaction classes

Per-Class Parameters
ClassProb Probability of this class
EkecPattern Sequential or parallel execution
F&Count Number of files accessed
Fi&Probi Access probability for file i
NumPagai Average number of file i pages read
WriteProbi Write probability for file i pages
PageCPU CPU time for processing a page of data

Table 2: Workload Model Parameters for a Site.

To understand how transaction execution is modeled, let us
follow a typical transaction from beginning to end. When a tran-
saction is initiated. the set of files and data items that it will
access are chosen by the source. The master is then loaded at the

2 In this paper, sequential transactions will have just one cohon, a
cohoxt that accesses a collection of files residing at a single site. ‘lhe
model is capahle of handling the mom general case. however.

17

originating site. and it sends “load cohort” messages to initiate
each of its cohorts. Each cohort makes a series of read and write
accesses. A read access involves a con currency control request
to get access permission, followed by a disk Uo to read the page,
followed by a period of CPU usage for processing the page.
Write requests are the same except for the disk m, the I/O
activity for writes takes places asynchronously a&r the transac-

tion has committed.’ A concurrency control request for a read or
write access is always granted in the case of the OPT algorithm,
but this is not the case for the other algorithms. When a con-
currency control request cannot be granted immediately, due to
conflicts or remote write requests, the cohort will wait until the
request is granted by the concurrency control manager. If the
cohort must be restarted, the concurrency control manager
notifies the transaction manager, which then invokes the abort
protocol. Once the transaction manager has linished aborting the
transaction, it delays the master for a period of time before letting
it attempt to rerun the transaction; as in [Agra87], we use one
average transaction response time (as observed at the master site
in this case) for the length of this period.

3.4. The Resource Manager
The resource manager can be viewed as a model of the

operating system for a site; it manages the physical resources of
the site, including its CPU and its disks. The resource manager
provides CPU and I/O service to the transaction manager and
concurrency control manager, and it also provides message-
sending services (which involve using the CPU resource). The
transaction manager uses CPU and IK) resources for reading and
writing disk pages, and it also sends messages. The concutrency
control manager uses the CPU resource for processing requests.
and it too sends messages.

The parameters of the resour~ manager are summarixed in
Table 3. Each site has NumDis~ disks plus one CPU. The CPU
service discipline is first-come, first-served (FIFO) for message
service and processor sharing for all other services, with message
processing being higher Priority. Each of the disks has its own
queue, which it serves in a FIFO manner; the resource manager
assigns a disk to serve a new request randomly, with all disks
being equally probable, so our I/O model assumes that the files
stored at a site are evenly balanced across the disks. Disk access
times for the disks are uniform over the range [MinDiskTime.

~~

Table 3: Resource Manager Parameters.

3 We *ssume sufficient buffer space to allow the mtentim of up-
dates until a3mmit time, and we also asnume the USC of a log-based
recovery scheme where only log pagcn must be forced prior to cemmit.
We do not model logging, aa we assume it is not the hettleneck.

MaxDiskTime]. Disk writes are given priority over disk reads (to
ensure that the system keeps up with the demand for asynchro-
nously writing updated pages back to disk after the updater has
committed). The parameter hifWriteCPV models the CPU over-
head associated with initiating a diik write for an updated page.
Finally, MsgCPVTime captures the cost of protocol processing
for sending or receiving a message.

3.5. The Network Manager
The network manager encapsulates the model of the commun-

ications network. Our network model is currently quite simplis-
tic, acting just as a switch for routing messages from site to site.
This is because our experiments assume a local area network,
where the actual time on the wire for messages is neglible,
although we do take the CPU overhead for message processing
into account at both the sendmg and receiving sites. This cost
assumption has become fairly common in the analysis of locally
distributed systems, as it has been found to provide reasonably
accurate performance results despite its simplicity [Lazo86]. Of
course, given that the characteristics of the network are isolated
in this module, it would be a simple matter to replace our current
model with a more sophisticated one in the future.

3.6. The Concurrency Control Manager
The concurrency control manager captures the semantics of a

given concurrency control algorithm, and it is the only module
that must be changed from algorithm to algorithm. As was illus-
trated in Figure 3, it is responsible for handling concurrency con-
trol requests made by the transaction manager. including read and
write access requests. requests to get permission to commit a
transaction, and several types of of master and cohort manage-
ment requests to initialize and terminate master and cohort
processes. We have implemented a total of five concurrency con-
trol managers, including four for the concurrency control algo-
rithms described in Section 2 and one that we will refer to as
NONE. NONE has a message-passing structure identical to the
locking and timestamp algorithms, but it grants all requests; it
will provide useful performance bound information for the other
algorithms. as will be seen shortly.

The concurrency control manager has a variable number of
parameters. One parameter, CCReqCPV , specifies the amount of
CPU time required to process a read or write access request; this
parameter is present for all of our algorithms. Each algorithm
then has zero or more additional parameters. Of the algorithms
studied in this paper, only 2PL uses another parameter. Its
second parameter is Detectionhtervul, which determines the
amount of time that a site should wait, after becoming the next
“Snoop” site, before gathering global waits-for information and
performing global deadlock detection.

4. EXPERIMENTS AND RESULTS
In this section, we present our initial performance results for

the four concurrency control algorithms of Section 2 under vari-
ous assumptions about data replication. CPU cost for sending and
receiving messages. transaction locality, and sequential versus
parallel execution. The simulator used to obtain these results was

18

written in the DeNet simulation language [Livn88], which
allowed us to preserve the modular structure of our model when
implementing it. We describe the performance experiments and
resuhs following a discussion of the performance metrics of
interest and the parameter settings used.

4.1. Metrics and Parameter Settings
The primary performance metric employed in thii paper is the

throughput (transaction completion rate) of the system.* Several
additional metrics are used to aid in the analysis of the experi-
mental results. One is the restart ratio, giving the average
number of times that a transaction has to restart per commit, com-
puted by dividing the number of transaction restarts by the
number of commits. We also examine the message ratio, com-
puted similarly. which gives the average number of messages per
commit. Finally. in our last experiment, we employ ratios of
response times to illustrate the costs and benefits of parallel exe-
cution. The response time is computed there as the completion
time of the transaction’s master process minus the time when it
was initiated at a terminal.

Table 4 gives the values of the key simulation parameters in
our experiments. We consider a database which is distributed
over 8 sites. The database contains 24 files. organized into 8
groups of 3 files, where each file contains 800 pages of data.
There are 50 terminals per site, and the mean terminal think time
is varied from 0 to 5 seconds in each experiment in order to vary
system load. In terms of the workload, a transaction accesses 3
files; it reads an average of 6 pages of each file and updates each
page with a probability of l/4. Thus, each transaction involves
an average of 18 reads and 4.5 writes. This transaction size was
chosen as being relatively small, as transactions tend to be in
transaction processing environments, but not so small as to be
unrealistic. The corresponclmg file sixes were selected so as to
provide an interesting level of data contention. Finally, it takes
transactions an average of 8 milliseconds of CPU time to process
each page read or written. More information regarding transac-
tion classes and data placement will be provided in the descrip-
tion of each experiment.

Continuing through the parameters in Table 4, each site has
two disks, and each disk has an average access time of 20 mil-
liseconds. Initiating a disk write for an updated page takes 2 mil-
liseconds of CPU time, and the mean CPU time for message pro-
tocol processing on each end is varied from 1 to 10 milliseconds.
The concurrency control CPU overhead is assumed to be negligi-
ble, for all algorithms, compared to the 8 millisecond CPU time
for page processing. Lastly, the global deadlock detection inter-
val for 2PL is 1 second

The I/o and CPU cost parameter values for the experiments
reported here were chosen so that, messages aside, the system
will operate in an &D-bound region. In particular, when the disks
are fully utilized, only about 80% of the CPU capacity of the

’ Since we am using a closed queueing model, the inverse relation-
ship between throughput and resporw time makes either a sufficient per-
hrmnnce metric.

t

NumFiles I 8 sites
24 files (8 groups of 3) I

FileSizei 1 800 pages per file
NumTerminak 1 50terminalspersite
ThinkTime
FileCount
FileProbi
Nwnpagesi
WriteProb;
PageCPU’ 1 S~milliseconds
NU??&DiSkS 1 2disksnersite
MinDiskTime
MaxDiskTime
InitWriteCPU

10 milli’seconds
30 milliseconds
2 milliseconds

MsgCPUTime 1.4, and 10 milliseconds
CCReqCPU negligible (0)
DetectionInterval 1 second

Table 4: Simulation Parameter Settings.

system is utilized. However, since the workload is not heavily
&0-bound, we will see that it is possible for message-related
CPU costs to shift the system into a region of CPU-bound opera-
tion. Such a shift changes the performance profile of the system.
We have run a number of experiments with a larger page CPU
time as well, where the system is CPU-bound regardless of com-
munication activity. Space limitations prevent us from including
those results in detail, but we will comment on them throughout
this Section. Lastly, our workload consists only of update-
oriented transactions. While we recognixe that replication can
lead to performance advantages for read-intensive workloads by
reducing dependence on remote data and providing an opportun-
ity for load balancing [Care86]. we wish to focus our attention
here on the cost issues related to concurrency control.

4.2. Experiment 1: Algorithms and Replication
The purpose of this experiment is to investigate the perfor-

mance of the four algorithms as the system load varies, and to see
how performanw is impacted by different levels of data replica-
tion. In this experiment. each group of three files is placed at a
site as follows: There are eight sites, Si,lIi<8. and eight groups
of files, Gi,l<i18. In the one 00py case, the three files Fil, Fi2,
Fi3 comprising group Gi are stored at site Si . When we consider
two copies of each file, the files in group Gi are stored both at site
Si and site Sci d 8)+t. In the three copy case, an additional COPY

is stored at site S,i -+ ma. Transactions execute sequentially in
this experiment. Furthermore, they execute locally: Transactions
originating at site Si xxxss the files in group Gi, not needing to
touch remote data except to update other copies. Thus, the one
copy case examined here is basically a centralized concurrency
control situation. except that global deadlock checking is taking
place in 2PL. In the case of replicated data, the distributed nature
of the system is used only to improve availability. We assume
efficient communications software, using a value of 1 millisecond
for MsgCPUTime in this experiment.

Figure 4 presents the transaction throughput results for the
one copy case. Since think time is used to vary the load, the

19

system becomes more heavily loaded going from right to left!
along the curves. As expecti the results indicate that the
throughput for each algorithm initially increases as the system
load is increased, and then it decreases. The increase is due to
the fact that better performance is obtained when a site’s CPU
and disks are utilized in parallel; throughput then degrades for all
four of the concurrency control algorithms due to transaction res-
tarts caused by data contention. These trends are natural for a
centralized DBMS [C&.84, Agra87]. The NONE curve indicates
how the system would perform if no concurrency control
conflicts were to occur. increasing at first and then leveling off
without degrading due to restarts. Among the concurrency con-
trol algorithms studied, Figure 4 indicates that 2PL provides the
best performance, followed by BTO and WW (which are virtu-
ally indistinguishable), followed by OPT.

To understand the relative throughput ordering of the algo-
rithms, Figure 5 presents their restart ratios. The results am
easily explained based on these ratios. 2PL has the lowest restart
ratio by far, and consequently performs the best. BTO and WW
have higher restart ratios, providing the next best throughput
results. OPT has the highest restart ratio. and thus has the lowest
throughput among the algorithms. Since OPT restarts transruz-
tions at commit time. rather than earlier as in BTO and WW. it
does not take a very big difference in the restart ratios to cause
the signi8cantly lower throughput seen under high loads for OPT.
The reason that BTO and WW perform alike despite having dif-
ferent restart ratios is similar - while WW has a higher ratio of
restarts to commits, it always selects a younger transaction to res-
tart, making its individual restarts less costly than those of BTO.
These results indicate the importance of restart ratios as a perfor-
mance determinant.

Figures 6 and 7 present the throughput results for the two and
three copy cases, respectively. Increasing the number of copies
increases both the amount of Uo involved in updating the data-
base and the level of synchronixation-related message traftic
required. As a result, three trends are evident in the figures:
Fit, increasing replication leads to decreased performance due
to the additional update work. This is particularly significant
given the ~-bound nature of our workload, as increasing the
number of copies strains the bottleneck resource. Due to the low
message CPU time here, the system remains f/O-bound even in
the three copy case. Second, the differences between algorithms
decrease as the level of replication is increased. The explanation
for this is again restart-related: Successfully completing a tran-
saction in the presence of replication involves all the work of the
one copy case, plus the additional work of updating remote
copies of data. Since remote updates occur only after a success-
ful commit, the relative cost of a restart decreases as the number
of copies increases. This is because the amount of effort wasted
becomes a smaller fraction of the transaction’s total required
effort. Third, the performance of OPT suffers a bit less than that

’ Note that load increases in tk. oppdc dirccliun here tha if the
numbe-r of terminals or multiimmming level was being v&d. The
most heavily loaded opemting region is where the thii time b zero.

of the other algorithms. This is due to the fact that the presence
of copies implies inter-site concurrency control messages for
each write in 2PL, WW. and BTO. whereas these per-write mes-
sages are not present in OPT. This last point will become much
more evident in Experiment 2.

Our CPU-bound versions of these experiments produced the
same relative ordering of the algorithms, but the performance
differences and trends were somewhat different. The separation
between the algorithms was greater in the CPU-bound version of
the one copy case, as CPU is a more critical resource than I/O -
that is, one CPU can be a more stringent bottleneck than two
disks. Thus, the performance impact of restarts was greater here.
In addition, in the two and three copy cases, the differences
between algorithm performance did not shrink to the same extent.
This is because end-of-transaction updates have less impact on
CPU than on m. and CPU was the bottleneck. OPT again suf-
fered the least due to replication, an effect more evident here
since additional messages imply additional CPU cost.

4.3. Experiment 2: Message Cost Considerations
This experiment examines the impact of message cost on the

performance of the algorithms. The data layout, workload, and
transaction execution pattern used here are identical to those of
Experiment 1. However, instead of using a value of 1 mil-
lisecond for MsgCFUTime , we use values of 4 milliseconds and
10 milliseconds in this experiment. We remind the reader that
this parameter determines the CPU time to send or receive a mes-
sage, meaning that the 4 and 10 millisecond values place 8 or 20
millisecond lower bounds on message transfers; the latter time
represents the upper end of the message cost spectrum. We do
not present one copy results here, as the increased message over-
head only affects performance when remote updates are involved
(since transactions execute at their site of origin).

Figure 8 presents the throughput results obtained by repeating
the two copy case from Experiment 1 with MsgCPUl’ime = 4
milliseconds. The only messages involved in the one copy case
occur for global deadlock detection in 2PL. so the results that we
obtained in the one copy case were really no differems than those
of Figure 4. However, the results in Figure 8 are quite different
than those of Figure 6. The performance of each of the algo-
rithms is worse in Figure 8 because of the additional message
cost. However, OPT suffers the least from the additional cost
due to its use of commit protocol messages; thus, we 8nd that
OPT actually does a bit better than WW and BTO here, and the
difference between OPT and 2PL is less dramatic. Figure 9
shows the average number of messages per completed transac-
tion, making it clear that OPT requires significantly fewer mes-
sages. Looking deeper, when we examined the resource utiliza-
tion levels in this case, we discovered that 2PL, BTO, WW. and
NONE all become CPU-bound here due to the CPU cost associ-
ated with their message activity; OPT, on the other hand,

’ The message overhead due to deadlo& detection in 2PL is not
sufficient to signiticantly alter its performance here, even with bfsgcpu-

Time = 10 milliseconds.

20

Graph Key:

2pL -

ww *--
BTO + - +

OFT -
Nom A------A

36

T
h
r 24
6
u

:
P 12
u
t

0.60
R
e
s
t

; 0.40

t
S

I

C
0 0.20
m
m
i
t

36-

1
&T&e

4 5 1 TdnkTAe 4 5

Figure 4: Throughput, 1 Copy. Figure 5: Restart Ratio, 1 Copy.
(100% Local. MsgCPUTime = 1 ms) (100% Local. MsgCPUTiie = 1 ms)

36- 36.

T T
h h
r r 24
0 0

U U U

f : f

p 12. P 12. P 12’
u U U

t t t

M
e

1 T&tkTAe 4 5 1 &T&e 4 5 1 T&kTAe 4 5

Figure 6: Throughput, 2 Copies. Figure 7: Throughput, 3 Copies. Figure 8: Throughput, 2 Copies.
(100% Local, MsgCPUTime = 1 ms) (100% Local, MsgCPUTime = 1 ms) (100% Local, MsgCPUTime = 4 ms)

36 36
M

T
h
r 24
0

U

e

S

S

7
C
0

m

m
i
t

a 24 g
e
S
I
C
0 12
m
m

t

s i
t

1 TkkTit!te 4 5 1 &Tie 4 5 1 ‘l&k T&e 4 5

Figure 9: Message Ratio, 2 Copies. Figure 10: Throughput, 3 Copies. Figure 11: Message Ratio, 3 Copies.
(100% Local. MsgCPUTime = 4 ms) (100% Local. MsgCPUTime = 4 ms) (100% Local, MsgCPUTime = 4 ms)

21

remains I/O-bound. Thus, not only does OPT require fewer mes-
sages, but messages have a lesser performance impact for OPT
since CPU is not the performance bottleneck.

Figures 10 and 11 present the corresponding results for this
message cost in the three copy case. The trenda that began in
Figures 8 and 9 are more pronounced here. Again, all algorithms
suffer performance-wise as compared with Experiment 1 due to
the increased message cost, and again OPT suffers the least. In
fact, because of the large number of messages required by 2PL.
BTO, and WW to interact with remote copy sites, OPT outper-
forms the other algorithms here. This is especially clear since
OPT outpe.rform NONE in this case - recall that NONE com-
municates with copy sites on each write access, like DD. WW.
and BTO. but with write permission always being granted. The
implication is that the performance loss in OFT due to end-of-
transaction restarts is more than compensated for by the message
savings in this case, where messages are moderately expensive
and three copies of each data file exist. This is aided by the fact
that restarts become less serious for OPT in thii case: Since
remote updates are only performed after a successful commit,
these are not done (and thus not undone) when OPT restarts a
transaction. However, all of the CPU-related message activity
required to obtain remote write permission in the other algo-
rithms must be redone in the event of an abort, and these algo-
rithms are CPU-bound due to the high message CPU cost. These
additional messages are visible, especially for BTO and WW. at
thelowthinktimesinFigures9and11.

Figures 12 and 13 present the throughput results for the two
and three copy cases with a MsgCPUTime of 10 milliseconds.
The message ratio results are not affected by the message cost, so
we refer the reader to Figures 9 and 11 for this data The shift in
results is similar to that observed in previous curves, except that
they are heavily amplified here due to the even higher cost asso-
ciated with message processing. While all algorithms suffer
some performance loss due to message overhead, OPT suffers the
least by far. OPT outperforma the other algorithms significantly
here in both the two and three copy cases due to its minimal com-
munication requirements.

4.4. Experiment 3: Nonlocal Data Access
This experiment considers a situation where a transaction may

access non-local data. The data layout and transaction execution
pattern used here are the same as in Experiments 1 and 2. and all
of the files needed by a given transaction still reside on a single
site. However, the workload parameters are set so that, in the one
copy case, a given transaction has a 70% chance of using local
data and a 30% chance of needing to use non-local data instead!
In the latter case, the file group accessed by the transaction is
chosen randomly from among the seven remote groups, with each
being equally likely. We consider only the 4 millisecond
MsgCPUTitne setting here, and examine both the two and three

’ The probability of a given transaction requiring non-local access
drops somewhat with replication, as one or two file groups that were
non-local in the are copy case will now be replicated at this site as well.

copy cases. While we also reran the 1 millisecond MsgCPUTime
experiments with this nonlocal data access pattern the results
were virtually identical to the purely local case; the message cost
associated with remote execution added very little to the overall
transaction path length in this case.

Figures 14 and 15 present the throughput results for the two
copy case and the three copy case, respectively. Comparing these
curves to the strictly local execution cases of Figures 8 and 10.
we find the results to be similar except in the relationship of OPT
to the other algorithms in Figure 14. In Figure 8, OPT performs a
bit better than WW and BTO, but it is still noticeably worse than
2PL in its performance. In Figure 14, however, OFT and 2PL
actually perform comparably. This is because, with a 4 mil-
lisecond message cost and two copies of data, all algorithms
except OPT end up being CPU-bound in this case; their perfor-
mance thus worsens as a result of the additional messages associ-
ated with remote cohort execution. The relative performance of
2PL compared to NONE is also a bit worse here, as additional
message overhead causes transactions to hold locks somewhat
longer. As before, OPT exhibits the best performance in Figure
15. Synchronizing three copies of data is very expensive for the
other algorithms with this message cost.

4.5. Experiment 4: Parallel Execution
The purpose of this experiment is to investigate performance

under a parallel transaction execution pattern. In this case, the
data layout is different, and a bit more complex. We consider
only the one COPY cake here: The three files Fir. Fir,. Fis compris-
ing group Gi are stored at sites Si, Sc d s)+r. and Sc mod s)ea,
respectively. The workload is arranged so that transactions ori-
ginating at site Si BCWSS group Gi, as always, but in this case the
implication is that the transaction will have three cohorts, two of
which will execute at remote sites. These three cohorts will exe-
cute in parallel with one another. We examine results for the one
copy case for the 1 and 4 millisecond MsgCPVTime settings
here.

Figure 16 presents the throughput results for the 1 millisecond
case, and Figure 17 compares the performance results for parallel
execution with those obtained for serial execution in Experiment
1. Specifically. Figure 17 shows the percentage improvement in
response time* in the parallel case as compared to the serial case.
As is evident in the figure, parallelism provides significant perfor-
mance gains - of more than 50% - when the system is lightly
loaded. At high loads. however, parallel execution actually leads
to a slight degradation in response time. Figures 18 and 19
present the same information for the case where MsgCPUTime =
4 milliseconds. Given this four-fold message wst increase,
parallelism is seen to be significantly less attractive. The gains
under light loads have decreased quite a bit, and the performance
penalty associated with parallel execution versus serial execution
at higher loads has increased dramatically. For both message
costs, the performance degradation can be attributed in part to the

s Response time is the interesting metric here because parallelism
is employed in database machines to improve query response times.

22

Graph Key:

1-1
w o--4

BTO + - -3

I OPT -
1 Nom A------A 1

36- 36

T
h

p 12.
U

t

T
h
r 24
0

U

ii

p 12
U

t

36-

1 TAlkTilL 4 5
Figure 12: Throughput, 2 Copies.

(1005% Local, MsgCPUTime = 10 ms)

36-

1 T&&T&e 4 5
Figure 13: Throughput, 3 Copies.

(1009L Local, MsgCPUTime = 10 ms)

36-

T T
h h

r 24.
0

U

: :

p 12. p 12.
U U

t t

I
T
h
r 24:
0

U

f

p 12.
U

t

4

1 T&AT&e 4 5 1 T&&T&e 4 5
Figure 14: Throughput, 2 Copies. Figure 15: Throughput, 3 Copies.
(70% Local MsgCPUTiie = 4 ms) (70% L.ocal, MsgCPUTime = 4 ms)

1
&T&e 4 i

Figure 16: Throughput, 1 Copy (Dist.).
(Parallel Execution, MsgCPUTime = 1 ms)

*1 3(

R
e
S

P

T
h
r 24
0

I U

m
P E
r -60. P 12
0 U

V t

e

I

6l

R
e
S

P 0

I
m
P
r -60
0

V

e

1 T&&T&e 4 5 1 TliukTiie 4 5 1 TlkkTAe 4 5
Figure 17: Improvement, 1 Copy (Dist.). Figure 18: ‘lboughput, 1 Copy (Diit.). Figure 19: Improvemenf 1 Copy (DA.).
(Parallel Execution, MsgCPUTime = 1 ms) (Parallel Execution, MsgCPUTime = 4 mu) (Parallel Execution, MsgCPUTime = 4 ms)

23

additional overhead involved in initiating several cohorts and
coordinating their commit. However, this is not a complete
explanation; the distributed nature of transactions also turns out
to have sn interesting impact on algorithm behavior.

In the case of OPT, an examination of the restart ratios under-
lying these curves revealed that the frequency of restarts is higher
here than for serial execution. We believe that this is due to the
following scenerio: In OPT, given a pair of trsnssctions that each
have multiple cohorts, a poblem can arise if their cohorts con-
currently attempt to read and then update common data - the
cohorts can end up being locally certified in opposite orders at
their different sites. If this happens, both transactions will end up
being restarted, as they each see the other as potentially invalidat-
ing their readset. This is not a problem in the local case, as the
transactions will certify in one o&r or the other (in a critical sec-
tion) in this case, leading to only one of them being restarted.
Further, this problem is exacerbated when the message cost is
increase ss this cost determines the period of time needed for
cetication and it is during this period when transactions are
vunerable to the problem. This hypothesis was borne out by an
examination of the restart ratios. OPT was found to have a very
significant increase in its restart ratio in going from the 1 mil-
lisecond case to the 4 millisecond case. Moreover, the additional
messages involved in rumring the transaction commit protocol in
the parallel case are enough to move OPT from I/O-bound to
CPU-bound operation in the 4 milliiecond case. This makes its
restarts relatively more expensive than in the serial case.

2PL is also negatively affected, at least to some extent, by
parallelism under high loads. In particular, a comparison of Fig-
ure 16 to Figure 4 reveals that 2PL’s throughput drops off more
significantly under high loads in the parallel case. This is due to
the fact that, if one cohort of a transaction has difficulty obtaining
locks while other cohorts of the same transaction are successful,
the others will eventually become blocked as well - waiting for
the commit protocol to begin, while holding all of their locks. As
a result. the average numbet of locked items is higher in the case
of the parallel execution pattern causing more blocking (and also
deadlocks) and leading to a drop in the utilization of the
bottleneck resource under heavy loads. This effect was indeed
visible in the resource utilixations in the parallel case, which fell
off for 2PL at the 0 and 1 second think time points. We also
instrumented our 2PL implementation to keep track of the
number of locked items, and we found the average number of
locked items to be 3540% higher in the parallel case than in the
sequential case with a think time of zero. WW suffers Ram a
related phenomenoq but only marginally so because it uses a mix
of blocking and restarts to handle conflicting requests.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have tried to shed light on distributed con-

currency control perftmnance tradeoffs by studying the perfor-
mance of four representative algorithms - distributed 2PL,
wound-wait, basic timestamp ordering, and a distributed optimis-
tic algorithm - using a common performance framework. We
examined the performance of these algorithms under various
degrees of contentioq data replicatior& and workload

“distributedness.”

In terms of the relative performance of the algorithms, we
found that 2PL and OPT dominated BTO and WW. When the
cost of sending and receving messages was low, 2PL was the
superior performer due to its avoidance of transaction restarts.
However, when the message cost was high and data was repli-
cated, OPT was seen to outperform 2PL due to its ability to
exchange the necessary synchronization information using only
the messages of the two-phase commit protocol. In such cases,
for our workload, the work lost due to restsrts was more than
compensated for by the savings due to avoiding costly messages.
The combination of these results suggests that “optimistic lock-
ing,” where transactions lock remote copies of data only as they
enter into the commit protocol (at the risk of end-of-transaction
deadlocks), may actually be the best performer in replicated data-
bases where messages are costly, We plan to investigate this
conjecture in the future. Finally, BTO and WW performed
almost indistinguishably in our initial experiments.

In terms of replication, increasing the number of copies had
the expected negative effect on performance due to update costs.
However, we found that increasing the number of copies of data
did not change the relative ordering of the algorithms at the
lowest or highest message costs, where (respectively) 2PL and
OPT dominated the otha algorithms. When the message cost
was such that increasing the number of copies moved the system
from an ~-bound situation into a CPU-bound one. changing the
number of copies was sufficient to move OPT into the perfor-
mance leadership position.

Turning to distribution and parallelism, we examined two
cases: One whae transactions executed serially, but sometimes
nonlocally, and the other where transactions executed in parallel
at several sites. In the nonlocal case. only minor differences were
observed compared to strictly local execution. In the parallel
case, we observed some interesting behavior. Our results indi-
cated that, as one would expect, parallelism is only beneficial
unda light loads, especially if messages are expensive. We also
observed some algorithm-related phenomena. Multiple cohorts
were found to increase the likelihood of restarts for OPT, espe-
cially under higher message costs. This was attributed to the lack
of a single critical section, as it is possible for concurrently cetti-
fymg transactions to restart one another. In 2PL an increase in
waiting due to lock contention was observed in the case of paral-
lel execution. We intend to examine these effects more fully in
the future+ for workloads with greater parallelism, to investigate
concntrency control problems that may arise in parallel database
machines.

REFERENCES
[Agra87] Agrawal, R.. Carey, M., and Livny. M.. “Concurrency
Control Performance Modeling: Alternatives and Implications,”
ACM Trans. on Databave Sys. 12 4, Dec. 1987.

[Bada79] Badal, D., “Correctness of Concurrency Control and
Implications in Distributed Databases,” Ptoc. COMPSAC ‘79
Co& Chicago, IL, Nov. 1979.

24

malt821 Baiter, R.. Berard. P., and Decitre. P., “Why Control of
the Concurrency Level in Distributed Systems is More Funda-
mental than Deadlock Management,” Proc. 1st ACM SIGACT-
SIGOPS Symp. on Principles of Dist. Camp.. Aug. 1982.

[Bem8Oa] Bernstein P.. and Goodman, N.. Fundamental Algo-
rithm for Concurrency Control in Distributed Database Systems,
Tech. Rep., Computer Corp. of America, Cambridge, MA, 1980.

[BernSOb] Bernstein, P.. and Goodman. N., ‘Timestamp-Based
Algorithms for Concurrency Control in Distributed Database
Systems,” Proc. 6th VLDB Cot& Mexico City, Mexico, Oct.
1980.

[Bern811 Bernstein, P.. and Goodman, N., “Concurrency Control
in Distributed Database Systems,” ACM Cotnp. Surveys 13. 2,
June 1981.

[Bhar82] Bhargava, B.. “Performance Evaluation of the Gptimis-
tic Approach to Distributed Database Systems and its Com-
parison to Locking,” Proc. 3rd Int’l. Conf. on Dist. Cow. Sys..
Miami, FL, October 1982.

[Care841 Carey, M.. and Stonebraker, M., ‘The Performance of
Concurrency Control Algorithms for Database Management Sys-
tems,” Proc. 10th VLDB Coqf.. Singapore, Aug. 1984.

[Care.861 Carey, M., and Lu, H.. “Load Balancing in a Locally
Distributed Database System,” Proc. ACM SIGMOD Co&.
Washington, DC. May 1986.

[Ceri82] Ceri. S.. and Chvicki. S., “On the Use of Optimistic
Methods for Concurrency Control in Distributed Databases,”
Proc. 6th Berkeley Workshop on Dirt. Data Mgmt. and Camp.
Networks, Feb. 1982.

[DeWi86] Dewitt, D.. et al, “GAMMA - A High Performance
Backend Database Machine,” Proc. 12th VLDB Cotf., Kyoto.
Japan. Aug. 1986.

[Gall821 Caller, B.. Concurrency Control Pe#mmnce Issues,
Ph.D. Thesis, Comp. Sci. Dept., Univ. of Toronto, Sept. 1982.

[Garc79] Garcia-Molina, H., Petformance cf Update Algorithm
for Replicated Data in a Distributed Database, Ph.D. Thesis,
Comp. Sci. Dept., Stanford Univ., June 1979.

[Gray791 Gray, J., “Notes On Database Gperating Systems,” in
Operating Systems: An Advanced Course, R. Bayer, R. Graham,
and G. Seegmuller, eds.. Springer-Verlag, 1979.

[Kohl851 Kohler, W.. and Jenq. B., Per@mance Evaluation qf
Integrated Concurrency Control and Recovery Algorithms Using
a Distributed Tranwction Processing Testbed, Tech. Rep. No.
CS-85-133. Dept. of Elec. and Comp. Eng., Univ. of Mas-
sachusetts, Amherst, 1985.

[L,am86] Lamwska, E., et al, “File Access Performance of Diak-
less Workstations,” ACM Trans. on Camp. Sys. 4.3. Aug. 1986.

[Li87] Li, V.. “Performance Model of TiiestampGrdering Con-
currency Control Algorithms in Distributed Databases,” IEEE
Trans. on Camp. C-36.9, Sept. 1987.

[Lin82] Lii W.. and Nolte. J., “Performance of Two Phase
Locking,” Proc. 6th Berkeley Workshop on Dist. Data Ugmt. and
Coq. Network, Feb. 1982.

[Lin83] Lin, W., and Nolte, J., “Basic Timestamp, Multiple Ver-
sion Tiestamp, and Two-Phase Locking,” Proc. 9th VLDB
Co@. Florence, Italy, Nov. 1983.

[Lind84] Lindsay, B., et al, “Computation and Communication
in R*,” ACM Tram. on Cmp. Sys. 2,l. Feb. 1984.

[Livn88] Livny. M.. DeNet User’s Guide, Version 1.0. Comp.
Sci. Dept., Univ. of Wisconsin, Madison, 1988.

[Mena78] Menasce, D.. and Muntz. R., “Locking and Deadlock
Detection in Distributed Databases,” Proc. 3rd Berkeley
Workshop on Dist. Data Mgmt. and Camp. Networks, Aug. 1978.

woe.871 Noe, J.. and Wagner, D., “Measured Performance of
Time Interval Concurrency Control Techniques,” Proc. 13th
VLDB Conf., Brighton, England, Sept. 1987.

[Oszu85] Oszu, M., “Modeling and Analysis of Distributed
Database Concurrency Control Algorithms Using an Extended
Petri Net Formalism,” IEEE Trans. on So@. Eng. SE-11, 10,
Oct. 1985.

[Reed831 Reed, D.. “Implementing Atomic Actions on Decen-
tralized Data,” ACM Trans. on Comp. Sys. 1, 1, Feb. 1983.

[Ries79] Ries. D., ‘The Effects of Concurrency Control on the
Performance of a Distributed Data Management System,” Proc.
4th Be&&y Workshop on Dist. Data Mgmt. and Comp. Net-
works, Aug. 1979.

[Rose781 Rose&art@ D.. Stearns, R., and Lewis, P., “System
Level Concurrency Control for Distributed Database Systems,”
ACM Trans. on Database Sys. 3.2. June 1978.

[Schlll] Schlageter, G.. “Optimistic Methods for Concurrency
Control in Distributed Database Systems,” Proc. 7th VLDB
Con& Cannes, France, Sept. 1981.

[Sinh85] Sinha, M.. et al, ‘Timestamp Based Certification
Schemes for Transactions in Distributed Database Systems,”
Proc. ACM SIGMOD Conf., Austin, TX, May 1985.

[Ston79] Stonebraker, M.. “Concurrency Control and Con-
sistency of Multiple Copies of Data in Distributed INGRES,”
IEEE Trans. on Sojhv. Eng. SE-5.3. May 1979.

Vera831 Teradata DBCt1012 Data Base Computer Concepts &
Facilities, Teradata Corp. Document No. CO2-0001-00,1983.

mm791 Thomas, R.. “A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases,” ACM Tram.
on Database Sys. 4. Z June 1979.

[Trai82] Traiger, I., et al, ‘Transactions and Consistency in Dis-
tributed Database Systems,” ACM Trans. on Database Sys. 7.3.
Sept. 1982.

25

