
Scheduling Real-time Transactions: a Performance Evaluation

Robert Abbott and Hector Garcia-Molina

Department of Computer Science
Princeton University
Princeton, NJ 08544

Abstract

Ivfanaging transactions with real-time requirements
presents many new problems. In this paper we focus on
two: How can we schedule transactions with deadlines?
How do the real-time constraints affect concurrency con-
trol? We describe a new group of algorithms for
scheduling real-time transactions which produce serialix-
able schedules. We present a model for scheduling tmn-
sactions with deadlines on a single processor memory
resident database system, and evaluate the scheduliing
through detailed simulation experiments.

1. Introduction

Transactions in a dambase system can have real-
time constraints. Consider for example program trading,
or the USC of computer programs to initiate trades in a
financial market with little or no human intervention [8].
A financial market (e.g., a stock market) is a complex
process whose state is partially captured by variables
such as current stock prices, changes in stock prices,
volume of trading, trends, and composite indexes. These
variables and others can be stored and organized in a
database to model a financial market.

One type of process in this system is a sensor/input
process which monitors the state of the physical system
(i.e. the stock market) and updates the database with new
information. If the database is to contain an accurate
representation of the current market then this monitoring
process must meet certain real-time constraints.

A second type of process is an analysis/output pro-
cess. ln general terms this process reads and analyzes
database information in order to respond to a user query
or to initiate a trade in the stock market. An example of
this is a query to discover the current bid and ask prices

Permission to copy without fee all or part of this mataial is
granted Provided that the copies are not made or distrihed for
direct commercial advantage, the VLDB cepyri&t notice aul
the tide of the publication and its due appear, md notice is given
that copying is by pennissiun of the Vcq Large Data Base
Bndowment. To copy othawk, or to republish, rcquira a fee
and/or special permission fmm the Endowment

of a particular stock. This query may have a real-time
response requirement of say 3 seconds. Another example
is a program that searches the dambase for arbitrage
opportunities. Arbitrage trading involves finding
discrepancies in prices for objects, often on different
markets. For example, an ounce of silver might sell for
$10 in London and fetch $10.50 in Chicago. Price
discrepat~ies are normally very short-lived and to exploit
them one must trade large volumes on a moments notice.
Thus the detection and exploitation of these arbitrage
opportunities is certainly a real-time task

Another kind of real-time database system involves
threat analysis. For example, a system may consist of a
radar to track objects and a computer to perform some
image processing and control. A radar signature is col-
bed and compared against a dambase of signatures of
known objects. The data collection and signature look up
must be done in real-time.

A real-time database system (RTDBS) has many
similarities with conventional database management sys-
tems and with so called real-time systems. However, a
RTDBS lies at the interface and is not quite the same as
either type of conventional system. Like a database sys-
tem, a RTDBS must process transactions and guarantee
that the database wnsistency is not violated. However,
conventional dambase systems do not emphasize the
notion of time constraints or deadlines for transactions.
The performance god of a system is usually expressed in
temx3 of desired average response tunes rather than con-
straints for individual transactions. Thus, when the sys-
tem makes scheduling decisions (e.g., which transaction
gets a lock, which transaction is aborted), individual
real-time constraints are ignored.

Conventional real-time systems do take into
account individual transaction constraints but ignore data
consistency problems. Furthermore, real-time systems
typically deal with simple tmnsactions (called processes)
that have simple and predictable data (or resource)
requirements. For a RTDBS we assume that transactions
make unpredictable data acu%ses (by far the more com-
mon situation in a database system). This makes the
scheduling problem much harder, and this leads to
another difference between a conventional real-time sys-
tem and a RTDBS. The former usually attempts to

Proceedings of the 14th VLDB Conference
Los Angeles, California 1988 1

ensure that n0 time constraints are violated, i.e., con-
straints are viewed as “hard.” [7] In a RTDBS, on the
other hand, it is very difficult to guarantee all time con-
straints, so we strive to minimize the ones that are
ViOl&Xi.

In die previous paragraphs we have “defined” what
we mean by a RTDBS (our definition will be made more
precise in Section 2). However, note that other
definitions and assumptions are possible. For instance,
one could decide to have hard time constraints and
instead minimize the number of data consistency viola-
tions. However, we believe that the type of RTDBS that
we have sketched better matches the needs of applica-
tions like the ones mentioned earlier. For instance, in the
financial market example, it is probably best to miss a
few good trading opportunities rather than permanently
compromise the correctness of the dambase, or restrict
the types of transactions that can be run.

We should at this point make two comments about
RTDBS applications. It may be argued that real-time
applications do not access databases because they are
“too slow.” This is a version of the “chicken and the egg”
problem. Current database systems have few real-time
facilities, and hence cannot provide the service needed
for real-time applications. The way to break the cycle is
by studying a RTDBS, designing the proper facilities,
and evaluating the performance (e.g., what is the price to
be paid for seriahzability?).

It is also important to note that with good real-time
facilities, even applications one does not typically con-
sider “real-time” may benefit. For example, consider a
banking transaction processing system. In addition to
meeting average response time requirements, it may be
advantageous to tell the system the urgency of each tran-
saction so it can be processed with the corresponding
@or&y. As a matter of fact, a “real” banking system may
already have some of these facilities, but not provided in
a coherent fashion by the database management system.

The design and evaluation of a RTDBS presents
many new and challenging problems: What is the best
data model? What languages can we use to specify real-
time constraints? What mechanisms are needed for
describing and evaluating triggers (a trigger is an event
or a condition in the database that causes some action to
occur)? How are transactions scheduled? How do the
real-time constraints affect concurrency control?

In this paper we focus on the last two questions. In
particular, if several transactions are ready to execute at a
given time, which one runs first? If a transaction
requests a lock held by another transaction, do we abort
the holder if the requester has greater urgency? If tran-
ations can provide an estimate of their running time,
can we use it to tell which transaction is closest to miss-

ing a deadline and hence should be given higher priority?
If we do use run time estimates, what happens if they are
incorrect? How am the various strategies affected by the
load, the number of dambase conflicts, and the tightness
of the deadlines?

In the next section we summarize our transaction
model and basic assumptions. In Section 3 we develop a
group of new scheduling/concurrency control algorithms
for RTDBS. The performance of the various algorithms
has been studied via detailed event driven simulations,
Section 4 contains the results as well as some answers to
the questions posed in the previous paragraph.

2. Model and Assumptions
In this section we describe our basic assumptions

and real-time transaction model. We assume that tran-
sactions are scheduled dynamically on a single processor
ma&ii with enough main memory to accommodate the
entire database. Our main justification for studying a sin-
gle processor and a memory resident database is that thii
reduces the number of parameters (no multiple proces-
sors, buses, or disks to model) and makes it easier to
understand the scheduling options and their impact on
performance. However, we believe that these are reason-
able restrictions for a first study of real-time database
scheduling. Most existing real-time systems currently
hold all their data in memory. Furthermore, since
memory prices are steadily dropping, memory sixes are
growing and memory residence becomes less of a restric-
tion. Along similar lines, multiple processor real-time
systems do exist, but it is important to understand the sin-
gle processor case first.

A transaction is characterized by its timing con-
suaints and its data and computation requirements. The
timing constraints are a release time t and a deadline d.
A computation requirement is represented by a run time
estimate E which approximates the amount of ccmputa-
tion required by the transaction. These characteristics,
release time, deadline and run time estimate am known to
the scheduler when a task enters the system. The last
characteristic, data requirements, is not known before
hand but is discovered dynamically as the transaction
executes. Our decision to assume knowledge of compu-
tation requirements but no knowledge of data require-
ments is justified because it is easier to estimate the exe-
cution time of a transaction than to predict its data access
pattern. And in any case, E is simply an estimate that
could be wrong or not given at all.

Our goal is to minimize the number of transactions
that miss their deadlimes, i.e., that finish after time d. If
transactions can miss their deadlines, one must address
the question of what happens to transactions that have
already missed their deadlines but have not finished yet.

3

There are two alternatives. One is to assume that a tran-
saction that has missed its deadline, i.e., is tardy, is
worthless and can be aborted. This may be reasonable in
our arbitrage example. Suppose that a transaction is sub-
mitted to buy and sell silver by 1 l:OOam. If the deadline
is missed, it may be best not to perform the operation at
all; after all the conditions that triggered the decision to
go ahead may have changed. The user who submitted
the transaction may wish to reconsider the operation.

A second option is to assume that all transactions
must be completed eventually, regardless of whether they
are tardy or not. This may be the correct mode of opera-
tion in, say, a banking system where customers would
rather do the transaction late than not at all. (Of course,
the user may on his own decide to abort his transaction,
but this is another matter.) If tardy transactions must be
executed, there is still the question of their priority.
Tardy transactions could receive higher and higher
urgency as their tardiness increases. On the other hand,
since they already missed the deadline anyway, they may
simply be postponed to a later, more convenient time
(e.g., execute at night).

In this paper we will study both cases, when tardy
transactions must be completed and when they can be
aborted. If they must complete, we will assume that their
priority increases as the tardiness increases (they are not
put off). (Incidentally, 111 discusses a more detailed
deadline model where users can specify how the “value”
of a transaction changes over time, both as the deadline
approaches and passes.)

We assume that transaction executions must be
serializable [2]. For most applications we believe that it
is desirable to maintain database consistency. It is possi-
ble to maintain consistency without serializable
schedules but this requires more specific information
about the kinds of transactions being executed [33.
Since we have assumed very little knowledge about tran-
sactions, serializability is the best way to achieve con-
sistency.

Finally, we assume that serializability is enforced
by using a locking protocol. Our purpose is not to do a
comparative study of concurrency mechanisms. Instead
we have chosen a well-understood and widely-used
mechanism and explored the different ways that transac-
tions can be scheduled using this mechanism. Of course,
it is conceivable that some other algorithm, like an
optimistic protocol, may be better for a RTDBS, but this
will have to be addressed by further research.

3. Some Scheduling Algorithms
Our scheduling algorithms have three components:

a policy to de&mine which tasks are eligible for service,
a policy for assigning priorities to tasks and a con-

currency control mechanism. The concurrency control
mechanism can be thought of as a policy for resolving
conflicts between two (or more) transactions that want to
lock the same data object. Some concurrency control
mechanisms permit deadlocks to occur. For these a
deadlock detection and resolution mechanism is needed.

Each component may use only some of the avail-
able information about a transaction. In particular we dis-
tinguish between policies which do not make use of E,
the run time estimate, and those that do. A goal of our
research is to understand how the accuracy of the run
time estimate affects the algorithms that use it.

3.1. Determining Eligibility
The scheduler is invoked whenever a transaction

terminates and, for preemptive scheduling, whenever a
new transaction arrives. The concurrency control
mechanism is invoked to resolve lock conflicts whenever
one occurs. The tirst action of the scheduler is to divide
the set of ready transactions into two lists, those that are
eligible for scheduling and those that are not. All ineligi-
ble transactions are aborted and their locks released. Eli-
gible transactions remain in the system and are eligible
for service. If a transaction never becomes ineligible then
it is eventually executed. Finally, an eligible transaction
may become ineligible but an ineligible transaction can-
not become eligible. We consider three different policies
for determining eligibility.
Ail Eligible. All jobs am eligible for service. This means
that no job is unilaterally aborted.
Nor Tardy. All jobs which currently are not tardy are eli-
gible for service. Jobs that have already missed their
deadlines are aborted.
Feusible Deadlines. All jobs with feasible deadlines are
eligible for service. A transaction T has a feasible dead-
line if t+E-PSd where P is the amount of service
time that T has received. In other words, based on the
run time estimate there is enough time to complete the
transaction before its deadline. Jobs with infeasible
deadlines are aborted. Note that this policy uses E, the
run time estimate.

3.2. Assigning Priorities
There are many ways to assign priorities to real-

time tasks. [5,6] We have studied three.
First Come First Serve. This policy assigns the highest
priority to the transaction with the earliest release time. If
release times equal arrival times then we have the tradi-
tional version of FCFS.

The primary weakness of FCFS is that it does not
make use of deadline information. FCFS will discrim-
inate against a newly arrived task with an urgent deadline

in favor of an older task which may not have such an
urgent deadline. This is not desirable for real-time sys-
tems.

Earliest Deadline. ‘Ihe transaction with the earliest
deadline has the highest priority. A major weakness of
this policy is that it can assign the highest priority to a
task that has already missed or is about to miss its dead-
line. One way to solve this problem is to use the eligibil-
ity policy Not Tardy or Feasible Deadlines to screen out
transactions that have missed or are about to miss their
deadlines.
Least Slack. For a transaction T we &fine a slack time
S=d-(t+E-P). Theslacktimeisanestimateofhow
long we can delay the execution of T and still meet its
deadline. If S 2 0 then we expect that if T is executed
without interruption then it will finish at or before its
deadline. A negative slack time is an estimate that it is
impossible to make the deadline. A negative slack time
results either when a transaction has already missed its
deadline or when we estimate that it cannot meet its
dcadline.

Least Slack is similar to Earliest Deadline in that it
can assign high priorities to tasks which have missed or
about to miss their dead-lines. Again we can use the eligi-
bility policies Not Tardy and Feasible Deadlines to
ameliorate this problem. Using Not Tardy disallows jobs
with negative slack times that result from missed dead-
lines. Feasible deadlines disallows all jobs with negative
slack times. Least Slack is very different from Earliest
Deadline in that the priority of a task depends on how
much service time it has received. Thus restarting a tran-
saction changes its priority. We return to this issue in the
next section.

33. Concurrency Control
If transactions are executed concurrently then we

need a concurrency control mechanism to order the
updates to the database so that the final schedule is a seri-
alizable one. We now discuss three possible solutions.
Once again we distinguish between policies which make
use of the rtmtime estimate E and those that do not.
Serial Execution. The simplest way to resolve conflicts
is not to let them happen in the 6x9 place. The way to
achieve this and maintain dambase consistency is to exe-
cute transactions serially and without preemption. Once
the highest priority transaction gains the processor it runs
to completion. This method is efficient only if no tran-
sactions are forced to wait for data transfers from disk to
memory and back. If the entire database is memory
resident then this may be a good method for maintaining
serializability at low cost. A drawback of this method is
that an arriving task with an urgent deadline must wait
until the current task (possibly one with a less urgent

de&line and a large remaining computation) completes.
It may be possible to improve performance by exe-

cuting transactions concurrently. If this is done then we
can expect conlIicts to occur. In the following discussions
let TH denote a transaction which holds a lock on data
object X. Let TR be a @arts&on which is requesting a
lock on X. We now present two methods to resolve
conflicting transactions.
High Priority. The idea of this policy is to resolve a
conflict in favor of the transaction with the higher prior-
ity. The favored transaction, the winner of the conflict,
gets the resources, both data locks and the processor, that
it needs to proceed. The loser of the conflict relinquishes
control of any resources that are needed by the winner.
We implement this policy by comparing transaction
priorities at the time of the conflict. If the priority of TR
is gmater than the priority of TH then we abort TH
thereby freeing the lock for TR. TR can resume pmeess-
ing; TH is rolled back and scheduled for restart If the
priority of TR is less than or equal to the priority of TH
then we let TH keep its lock and TR blocks to wait for TH
to finish and release its locks.

Consider the following set of transactions with
release time r, deadline d, runtime estimate E and data
requirements.

-I

4

Example 1.

Note that transactions A and B both update item X.
Therefore these transactions must be serialized. If we use
Earliest Deadline to assign priority and High Priority to
resolve conflicts then the following schedule is produced.
(It assumes that estimates are peafect and ignores the
time required to make scheduling decesions or rollback
transactions.)

, lock X; conflict; A aborted
a

A B I A I C
I

0 I 3 5.6 8

In this schedule, A runs in the 6rst time unit during which
it acquires a lock on item X. Transaction B gains the pro-
cessor at time 1 (it has an earlier deadline) and requests a
lock on item X. Thus a conflict is created which is
resolved by rolling baclt A thereby freeing the lock on X.
Transaction B continues processing and completes before
its deadline. After B completes at time 3, A is restarted.
Trans&ons B and C meet their deadlines but A is tardy.

4

An interesting problem arises when we use Least
Slack to prioritize transactions. Recall that under this pol-
icy, a transaction’s priority depends on the amount of ser-
vice time that it has received. Rolling back a transaction
to its beginning reduces its effective service time to 0 and
mises its priority under the Least Slack policy. Thus a
transaction TH, which loses a conflict and is aborted to
allow a higher priority transaction TR to proceed, can
have a higher priority than TR immediately after the
abort The next time the scheduler is invoked, TR will be
preempted by TH. TM may again conflict with TR initiat-
ing another abort and rollback.

Our solution to this problem is to compare the
priority of TR against that of TH assuming that TH were
aborted. We can write this new conflict resolution policy
as follows:

High Priority Conflict Resolution Policy.

VP(TH)<P(TR)~~~~(TAH)<P(TR)
then

Abort TH
Run TR

else
TR blocks
Run TH

The function p (TM) is the priority of TH and p (Z$) is the
priority of TH were it to be aborted. Using this revised
policy, the schedule produced by Least Slack is as fol-
lows:

lock X, conflict; B waits

AB A B C

0 1 1.5 3.1 4.6 7

Now when the conflict occurs at time 1.5, E has a slack
of 1 but A were it aborted has a slack of .9. So A is not
aborted but is assigned to the processor while B waits for
A to finish. Transaction B is unblocked when A finishes at
time 3.1. Transactions A and C meet their deadlines but B
is tardy.

For FCFS and Earliest Deadline policies,
p (TH) = p (TAH), so it does not matter if we use the origi-
nal High priority resolution rule or the modified one
above. Since the modified rule is clearly superior for
Least Slack priority assignment, we will use it for our
performance evaluations.

We make two final observations about High Frior-
ity. First, if TR waits for TH it is possible that TH is not a
ready transaction. That is, TH may be blocked waiting for
a lock held by another transaction T,. In this case the
conflict resolving mechanism is applied again except that

TH is lwlw the lock requesting transaction and T, is the
lock holder. And second, because transactions wait for
for locks, deadlock is a possibility. Deadlock detection
can be done using one of the standard algorithms [4].
Victim selection, however, should be done with con-
sideration of the time constraints of the tasks involved in
the deadlock.
Conditional Restart

Sometimes High priority may be too conservative.
Let us assume that we have chosen the first branch of the
algorithm, i.e., TR has a greater priority than TH and T$.
We would like to avoid aborting TH because we lose all
the service time that it has already consumed. We can be
a little cleverer by using a conditional restart policy to
resolve conflicts. The idea here is to estimate if T,,, the
transaction holding the lock, can be finished within the
amount of time that TR, the lock requester, can afford to
Wait LetSRbetheslackOfT,andletEH-PPHbethe
estimated remaining time of TH. If Ss 2 EH - P,, then we
estimate that TH can finish within the slack of TR. If so
then we let TH proceed to completion, release its locks
and then let TR execute. ‘Ihis saves us from restarting TH.
If TH cannot be finished in the slack time of TR then we
restart TH and run TR (as in the previous algorithm). This
modification yields the following algorithm:

Conditional Restart Conjlict Resolution Policy.

WP(TH) <P (TR)~~~P(T$) <P(TR)
then

ifEH-PHSSR
then

TR blocks
Run TH

else
Abort TM
Run TR

else
TR blocks
Run TH

The following example illustrates the idea of this policy.
Again we use Earliest Deadline to assign priority. (We
continue to assume that estimates are exact and schedul-
ing decisions and rollbacks am done instantly.)

Example 2.

5

k lock X; conflict; B waits

A B A B I C
I

0 1 1.5 2.5 4 7

A conflict occurs when B requests a lock on X at time
1.5. The algorithm calculates the slack time for B as
S = 4 - 1.5 -1.5 = 1. This equals exactly the remaining
run time for A. Therefore B waits for A to finish and
release its locks. A finishes at time 2.5 and B, with 1.5
time units left to compute, regains the processor and
completes at time 4. All transactions meet their dead-
lines.

In this example the runtime estimate was an excel-
lent approximation of the actual computation time of A.
If the actual computation time for A was a little longer
than the runtime estimate then B would miss its deadline.
Thus the ability of this algorithm to successfully exploit
slack time information in order to avoid aborting and res-
tarting transactions is dependent on the accuracy of the
nmtime estimates. Note that Conditional Restart allows
transactions to wait for locks, thus deadlock is a possibil-
ity.

As described the Conditional Restart policy has
two problems. First, we assumed that only one job TH
has to run before Z’R. In fact TH may be waiting for a lock
held by another transaction TJ and we must decide how
to resolve the conflict between TH and T,. More gen-
erally, let D = T1 ,Tz. T,, be a chain of tasks such that
T1 is waiting for a lock held by T2 which is waiting for a
lock held by T3, which is waiting for a lock held by
T,,. (We assume that this chain is deadlock free but we
make no assumptions about the relative priorities of the
tasks in the chain.) Let To with slack time S be the
currently executing task and say it requests a lock held by
T1. ‘Ihe idea of the conditional restart algorithm is to
compute the maximum number of tasks in the chain
which can be completed in the slack of To. Because of
the serializability constraint we assume the Ti must be
either completed or aborted before Ti-1 ,can continue.

Let j be the greatest integer such that i(Ei -Pi) IS.
il

We execute in order the tasks Tj, Tj-1, T1. If j <n
then we must first abort Tj+l in order to free the lock for
Tj. When T 1 completes the lock is released for To.

The second problem with conditional abort is illus-
trated by the following set of tasks and the schedule pro-
duced by using Earliest Deadline and Conditional Res-
tart.

Example 3.

, lock X; conflict; R waits

H R H T I H R

0 1 1.5 2 4 5.5 7

At time 1.5 the scheduler decides to run H because it can
be completed within the slack time of R. Transaction H
only fllns for a short time before it is preempted by an
arriving transaction T with an earlier deadline and there-
fore a higher priority than H. (R is not considered in this
priority assignment because it is not a ready task.)
Scheduling T and H before R causes R to miss its dead-
line. The problem lies in the assumption that H would not
be preempted while it was executing during the slack
time of R. The way we correct this problem is by letting
R remain in the ready queue and be considered for
scheduling. Since T has a later deadline than R then R
will be scheduled, When R begins execution it requests a
lock that is still held by H. If H can still be completed
within the slack of R then it is executed while R waits.
Thus H ultimately regains the processor and is not
preempted by T. This revised algorithm is illustrated by
the following schedule.

, lock X; conflict; R waits
i

H R H R T

0 1 1.5 3.5 5 7

The examples we have used to illustrate the dif-
ferent algorithms are greatly simplified. They were
presented to motivate the algorithms, not to prove that
one algorithm is better than another. For instance, in real-
ity transactions may update several items or none at all
(i.e. readonly), and this will obviously affect the perfor-
mance of the algorithms. In the next section we discuss a
detailed simulation model that can help us to compare the
various scheduling and concurrency control options.

4. Simulation Results
To study the algorithms we have built a program to

simulate a RTDBS. To focus on the issues of con-
currency control and scheduling we have simulated a sin-
gle processor, memory resident database system.

Three parameters control the configuration of the
database system. The first Arr-rute is the average arrival
rate of new transactions entering the system. The second,

6

DB-size controls the number of objects in the database.
The third, Reborr, controls the amount of time needed to
abort or restart a transaction. Aborting a transaction con-
sists of rolling it back and removing it from the system.
The transaction is not executed. When a transaction is
restarted it is rolled back and placed again in the ready
queue. Aborts are generated by eligibility screening. res-
tarts result from lock conflicts. The program does not
explicitly account for time needed to execute the lock
manager, conflict manager, and deadlock detection
manager. These routines are executed on a per data
object basis and we assume that the costs of these calls
are included in the variable that states how much CPU
time is needed per object that a transaction accesses.
Context switching and the time to execute the scheduler
is also ignored.

Transactions enter the system with exponentially
distributed inter-arrival times and they am ready to exe-
cute when they enter the system (i.e., release time equals
arrival time). The number of objects updated by a @an-
s&on (at least one, i.e., there are no readonly transac-
tions) is chosen from a normal distribution and the actual
database items are chosen uniformly from the database.
A transaction has an execution profile which alternates
lock requests with equal sixe chunks of computation, one
for each object accessed. Thus the total computation time
is directly related to the number of items accessed. The
axracy of a transaction’s runtime estimate E with
respect to to the actual computation time C is controlled
by the parameter Run-err and is computed as follows:
E = C * (1 + Run-err). Note E = 0 when Run-err= -1,
E = C when Run-err = 0, and E > C when Run-err > 0.
The assignment of a deadline is controlled by two param-
etm Min-slack and Max~slack which set a lower and
upper bound respectively on a transaction’s slack time. A
deadline is assigned by choosing a slack time uniformly
from the range specified by the bounds.

In the following sections we discuss some of the
results of four different experiments that we performed.
Due to space considerations we cannot present all our
results but have selected the graphs which best illustrate
the differences and performance of the algorithms. For
example, we have omitted the results of an experiment
that varied the size of the database, and thus the number
of conflicts, because they only cottErm and not increase
the knowledge yielded by other experiments. Each exper-
iment exercises a different parameter: Arr rate,
Run-err, Mm-slack, and Rebort. For each expe&ent
we ran the simulation with the same parameters for 20
different random number seeds. Each run continued until
at least 500 transactions were executed. For each algo-
rithm tested. numerous performance statistics were col-
lected and averaged over the 20 runs. In particular we
measured the percentage of transactions which missed

their deadlines, the number of restarts caused by lock
conflicts and the overall throughput. The percentage of
missed deadlines is calculated with the following equa-
tion: sbtissed = l()() * tmdy jobs +&Orts - -

jobs processed ’
A job is

processed if either it executes completely or it is aborted.
It is these averages and 95% confidence intervals that are
plotted in the following figures.

In this study we have included tardy jobs and
aborted jobs together in the Bmissed metric. For some
applications it may be useful to describe a separate
metric for aborted jobs as they represent tasks which
were never completed and as such may be more serious
than simply tardy jobs. Another intersting metric is mean
tardy time for transactions. For reasons of space we do
not study these other metrics here. Note that we are not
particularly interested in transaction response times as
conventional performance evaluations of concurrency
control mechanisms are. The reason is that response time
is not critical as long as a transaction meets its deadline.
We are interested in learning how the various strategies
are affected by load, the number of database conflicts and
the tightness of deadlines. Also, for the algorithms which
use E, we am interested in learning how the accuracy of
the run time estimate affects performance.

For many of the experiments the base values for
parameters determining system conEguration and tran-
saction characteristics are shown in Table 1.

Arrival rate (jobs/set) 18
Database size 200

1 Restart/abort cost (ms) IOI
I Undates oer transaction (mean) I 15 I

Computation/update (ms) 3
Runtime estimate error 0
Min slack as fraction of total nmtime 0.5
Max slack as fraction of total runtime 5.0

Table 1. Base parameter values.

These values are not meant to model a specific real-time
application but were chosen as reasonable values within a
wide range of possible values. In particular we wanted
transactions to access a relatively large fraction of the
database (7.5% on average) so that conflicts would occur
frequently. The high conflict rate allows the concurrency
control meachanism to play a signiEcant role in schedul-
ing performance. We chose the arrival rate so that the
corresponding computational load (an average 0.81
seconds of computation arrive per second) is high enough
to test the algorithms. It is more interesting to test the
algorithms in a heavily loaded rather than lightly loaded
system. (We return to this issue in the conclusions sec-
tion.)

7

Section 3 proposed three different methods each
for determining eligibility, assigning priority and manag-
ing concurrency. Taking the cross product yields 27 dif-
ferent algorithms. However, in our model, using FCFS
scheduling with High Priority or Conditional Restart is
equivalent to FCFS with Serial Execution. This elim-
inates six algorithms, leaving 21. Table 2 summarizes the
methods of Section 3 and provides the abbreviations that
we will use when referring to them.

Eligibility AE - All Eligible
NT - Not Tardy
FD - Feasible Deadlines

Priority FCFS - First Come First Serve
ED - Earliest Deadline
LS - Least Slack

Concurrency SE - Serial Execution
HP - High Priority
CR - Conditional Restart

Table 2. Summary of scheduling policies.

Arrival rate experiment

In this experiment we varied the arrival rate from 4
job&c to 22 jobs& in increments of 2. This
corresponds to a range in load of 0.18 to 0.99 seconds of
computation arriving per second.

Our simulation experiments show that the eligibil-
ity tests NT and FD substantially reduce the number of
deadlines missed compared with the AE policy. Aborting
a few late transactions helps all other jobs meet their
deadlines. This is illustrated in Figure 1 which shows the
three eligibility policies for FCFS scheduling. All three
algorithms perform equally well when the arrival rate is
low but when the load is higher, NT and FD yield a 40-
50% demase in 96 missed deadlines over AE. The
improvement is due entirely to the eligibility policy since
the concurrency control used is SE. This same behavior
holds true for the other priority assignment policies as
well.

Scheduling transactions concurrently is better than
serial execution because it allows transactions with more
urgent deadlines to preempt transactions with less urgent
deadlines. This is true for the ED scheduling policy. Fig-
ure2showsthatCRandHParebothbetterthanSEand
CRisbetterthanHP.

The situation is somewhat different when LS is
used to assign priority. Figure 3 shows that at low arrival
rates, the concurrent versions perform better than SE.
However, at higher arrival rates SE is comparable to HP
and CR, the concurrent versions. Under high loads the
time lost to restarts that result from lock conflicts causes
the concurrent versions to lose their performance edge

over SE.
The relative performance of the priority policies is

affected by the type of concurrency allowed. Under SE,
ED and LS perform comparably, Figure 4. When the
load is small they both perform better than FCFS but
when the load is high all three algorithms perform the
same. The reason for this is that under high load all algo-
rithms start to fall behind It does not pay to make smart
scheduling decisions (ED, LS), since transactions with
the earliest deadlines (or least slack) are likely to miss
their deadlines anyway.

When non-serial execution is allowed the results
are different, Figure 5. Under CR, ED is clearly the
superior policy for priority assignment. It performs
better than LS at both low and high load levels. At the
highest load LS and FCFS are comparable and ED is
better than both.

Figure 6 plots restarts against arrival rate for ED,
HP. The number of restarts climbs steeply and is similar
for all policies up to an arrival rate of 12. After this point
the number of restarts declines sharply for AE , declines
slightly for NT and flattens out for FD. The reason for the
sharp decline for AE is that when the arrival rate is high
many deadlines are being missed and the system falls
behind. It is less likely that an arriving transaction will
have an earlier deadline than the currently executing job.
Thus fewer jobs are preempted and there are fewer
opportunities for restarts.

Figure 7 shows that throughput is highest for AE, it
declines with NT and FD. Since we are using serial exe-
cution no job is aborted once it has started, so the
decreases in throughput are not due to wasted computa-
tion time. The throughput declines because the algo-
rithms choose not to execute jobs that have missed or are
about to miss their deadlines. This is true even if there is
only one job (say a tardy one) in the ready queue. Ignor-
ing this job empties the ready queue and idles the CPU
until the next arrival. With increased idle time, the
throughput drops.

Run time estimate experiment
In this experiment we varied Run-err ftom -1 to

0.8 by increments of 0.2. Recall that when Run-err = -1,
E = 0 and when Run-err = 0.8, E = 1.8 * C. ‘Ihe other
parameters had the values in Table 1. The run time esti-
mate can affect each component of a scheduling algo-
rithm: of the eligibility policies, FD, of the priority
assignment, LS, and of the concurrency control policies,
CR. We would expect the accuracy of the estimate to
have a large effect on the policy FD. The eligibility pol-
icy is responsible for aborting transactions and since
aborted transactions are counted as having missed their
deadlines, the policy directly affects the performance.

8

m-

10 -

o-
I I I I I I I I I

4 6 8 10 12 14 16 18 20 22

hhlf8ICfjObShC)

Fipre 1. FCFS. SE

- - SE SE

. CR CR

10 10 - -

I I I I I I I I I I I I. I I I I.
4 4 6 8 6 8 10 12 10 12 14 14 16 16 18 18 20 20 22 22

AIhltUCtjObhC) AIhltUCtjObhC)

Futue3.Is.FD.

” ’ ” I’ ’ ”

- FCFS

4 6 8 10 12 14 16 18 20 22

hiWl*fjObdMC)

F@es.lcFsnRDvsLS.NT,aL

“F-----T
- SE

1s -
I - SE . I

IS
w-w-- HP

. CR
1

10
4

x .:’

,,I’,.’

II

111

,x;.:”
Xy..l’

z~~.-r~~~~”

0 rlqTs:’

10 -

II-

o-
I” I I I II

4 6 8 10 12 14 16 18 20 22 4 6 8 10 12 14 16 18 20 22

M

2s

2a

IS

10

s

0

AlTin)mw@b&cc)

Fimnez BD,FD. Fimnez BD,FD.
I 1 I I I I I I I I 1 I I I I I I I

-FcFs -FcFs

J ’ ’ ’ ’ ’ ’ ’ ’ ’ J ’ ’ ’ ’ ’ ’ ’ ’ ’
4 4 6 6 8 8 10 10 12 12 14 14 16 16 18 18 20 20 22 22

AlliVdntrfjddBfS)

F~~~I~~.FCFSV~EDVO~S.NT,SE

” ” ’ ’ “I’

: '."
. . . . "

,... _

: - $1

I....,

-

:
3-4

~~

-AE

-m-w- NT FD
0

I I I I I ’ 1 l ’
4 6 8 10 12 14 16 18 20 22

Anivalmlcgobd~)

FigWC6.ED.HP.

When the run time estimate for jobs is zero, FD behaves
like NT, aborting jobs only if they have missed their
deadlines. when the estimate is high, FD thinks that jobs
are much longer than they are and will judge incorrectly,
that they have infeasible deadlines. Thus jobs with feasi-
ble deadlines are unnecessarily aborted. This behavior is
contirmed in Figure 8 which shows the results of the
three forms of ED which use Feasible deadlines. The
algorithms perform best when the estimate is perfect and
less well when the estimate is too small or too large. The
relative performance of the three concurrency control
policies remains the same. This is despite the fact that CR
also uses the run time estimate.

We would expect the effect of the accuracy of the
run time estimate on the CR policy to be less pronounced
than the effect on FD because the estimate is used only
when transactions conflict, not every time a scheduling
decision is made. To better observe the effect on the con-
currency control policy CR we reduced the size of the
database from 200 to 40 in order to increase the number
of conflicts. Figure 9 shows the performance of ED, HP
which does not use the the estimate against ED, CR. The
eligibility policy is NT, and does not use the estimate.

When the estimate is perfect CR performs better
than HP. When the estimate is high, CR will rarely (in
the limit, never) judge that the transaction holding the
lock can finish in the slack of the lock requester. Thus
conflicts are always resolved by restarting the lock holder
and CR behaves exactly like HP. When the estimate is
low, CR nearly always decides that the lock holder can
finish within the slack time of the requester. In this case
our experiment shows that CR performs slightly better
than HP. We conclude that the performance penalty paid
for always waiting for locks is comparable to the penalty
paid in lost computation time that results from using HP.

Slack time experiment
The average amount of slack in job deadlines

affects all scheduling algorithms. If all deadlines are
extremely tight then most algorithms will perform poorly.
Similarly, if all deadlines are very loose than most algo-
rithms will perform well. Figure 10 shows the perfor-
mance of the three priority assignment polices combined
with FD and CR as the upper bound for slack time
increases. When the slack is 0.5 (and deadlines are tight)
the three algorithms perform comparably. As the slack
increases, the performance of all three betters but ED is
clearly the superior priority assignment policy. If the
slack is very much greater (not shown) then the three
curves would converge to zero because no deadlines
would be missed.

Restart/abort cost experiment
In this experiment the cost of restarting or aborting

a transaction ranges from 0 ms (i.e. no cost) to 27 ms in
increments of 3. For reference, when the cost is 15 it is
equal to one-third the average transaction computation
time.

The cost of restarting or aborting a transaction
affects the eligibility polices NT and FD, and the con-
currency control polices HP and CR. It follows that as
the cost of restarting or aborting increases, the perfor-
mance of algorithms which use any of the above policies
will deteriorate. This is indeed the case as shown by Fig-
ure 11 which plots the results for the three different con-
currency policies of ED using FD. When the restart/abort
cost is zero, CR and HI am both better than SE, and CR
is best. The performance of SE decreases slowly because
it only performs aborts and not restarts. The concurrent
algorithms perform both aborts and restarts. As the cost
increases SE outperforms I-P and eventually equals CR.

Cost of serializability
In a final experiment we moditied the simulation

program so that serializability was not enforced. Thus a
transaction was never denied a lock request and no tran-
saction was restarted due to a lock conflict. Figure 12
shows the performance of the serialized and unserialized
versions of the best algorithm, FD, ED, CR. The unseri-
alized version performs somewhat better than the serial-
ized. Thus serializabilty does cause the algorithms to
miss more deadlines. However, missed deadlines is only
one cost metric. Database inconsistency occurs as a result
of unserialized schedules. For some applications the cost
of database inconsistency may far outweigh the perfor-
mance benefit in terms of missed deadlines gained by
ignoring concurrency control.

5. Conclusions
In this paper we have presented various transaction

scheduling options for a real-time database system. Our
simulation results have illustrated the tradeoffs involved,
at least under one representative database and transaction
model. Before reaching some general conclusions, we
would like to make two observations.

The first observation is that our base parameters
represent a high load scenario (relatively high number of
conflicts, relatively tight deadlines). One could argue
that such a scenario is “unrealistic.” However, we
believe that for designing real-time schedulers, one must
look at precisely these high load situations. Even though
they may not arise frequently, one would like to have a
system that misses as few deadlines as possible when
these peaks occur. In other words, when a “crisis” hits
and the database system is under pressure is precisely

10

14 -

, ,

\ .

t

, , 4’
I#

16 -

14 -
I I I I I I I 1 1

-100-7s -50 -2s 0 25 so 75 loo 12s

RUllliUlC OIlbW(QCWOf)

lQWe9.ED.NT.

Ill III II 1 I-

- SE

o-
I I I I I I I 1 I

0 3 6 9 12 15 18 21 24 27

RdloftEoIl

F@cll.ED.FD.

HP
t

es---

. CR

o-
I I I I I I I l 1

-100-80&0-40-20 0 20 40 60 80
lbmtime cahnur(%enw)

Fiiule 6. ED, PD.

0
I I I I I 1 I I I

0,s 1 1.5 2 25 3 3.5 4 4.5 5

Max dad (fdal dIalal luntime)

Figu~lO.FCFSvrEDnIS.FD,CR

a
4 6 8 10 12 14 16 I8 20 22

AIliVdf8WtjdWh4

Fii 12m,mcx.

11

when making a few extra deadlines could he most impor-
tant.

It could also be argued that some of the differences
between the various scheduling options is not striking. In
many cases, the difference between one option and
another one is a few percentage points. If we were dis-
cussing transaction response times, then a say 10 percent
improvement would not be considered impressive by
some. However, our graphs show missed deadlines (m
most cases) and we believe that this is a very different
situation. Again, the difference between missing even
one deadline and not missing it could be significant. (In
our introductory trading example, we did state that it was
permissible to miss a few deadlines. But we would still
like to miss the very fewest trading opportunities.) Thus,
if we do know that some scheduling options reduce the
number of missed deadlines, why not go with the best
one?

And which are the best options? It is difficult to
make any absolute statements, but we believe the follow-
ing statements hold under most of the parameter ranges
we tested. (All our additional results not shown in this
papex also substantiate these statements.)

Of the tested priority policies for real-time data-
base systems, Earliest Deadline (ED) is the best
overall. It always performed better than or at least
the same as the other policies. Last Slack (IA) is
the second choice for assigning priorities. It per-
forms better than simple First Come First Served
(FCFS) under all but the highest load conditions.
Of the concurrency control policies we tested,
Conditional Restart (CR) is the best overall. Its
success depeuds on the accuracy of the run time
estimate, but even when the estimate is totally
incorrect CR will not perform worse that the two
other concurrency control policies (HP, SE). It has
very stable performance.
There is one case where Serial execution (SE) may
be superior to Conditional Restart (CR). This
occurs when there is a high cost for restarting tran-
sactions. However, SE does not become a better
method until the cost of restarting is more than half
of the computation time of average transactions.
We believe that this will usually not be the case.
(Note that if the database is on disk, not our
assumption here, then SE may be even less desir-
able that what our results show.)
Using an eligibility test to screen out transactions
that have missed (NT) or are about to miss their
deadlines (FD) greatly improves system perfor-
mance. FD performs better than or the same as
NT, unless the execution estimates for transactions
aremcxethau6Opercentgreaterthattheactual

computation time. Of course, in some applications
we may be forced to use the less efficient All Eligi-
ble (AE) test because transactions must be exe-
cuted even if they miss their deadlines.

Acknowledgements
The authors would like to thank Alex Buchmann,

Umesh Dayal, and the referees for their valuable com-
ments.

This research was supported by the Defense Advanced
Research P@xts Agency of the Department of Defense and by
the Office of Naval Research under Contracts Nos. NOOO14-
85-C-0456 and N00014-85-K-0465. and by the National Sci-
ence Foundation under Cooperative Agreement No. DCR-
8420948. The views and conclusions contained in this docu-
ment me those of the authors and should not be interpreted as
neceasxily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

References

1.

2.

3.

4.

5.

6.

7.

8.

Abbott, Robert and Hector Garcia-Molina,
“Scheduling Real-time Transactions,” SIGMOD
Record, ACM, March 1988.
Eswaran, K. P.. J. N. Gray, R. A. Lorie, and I. L.
Traiger, “The Notions of Consistency and Precli-
cate Locks in a Database System,” CACM, vol. 19,
no. 11, pp. 624-633, November 1976.
Garcia-Molina, Hector, “Using semantic
knowledge for transaction processing in a distri-
buted database,” ACM Transactions on Database
Systems, vol. 8, pp. 186-213, ACM, June, 1983.
Isloor, Sreekaanth S. and T. Anthony Marsland,
“The Deadlock Problem: An Overview,” IEEE
Computer, pp. 58-78, IEEE, September, 1980.
Jensen, E. Douglas, C. Douglass Locke, and
Hideyuki Tokuda, “A time-driven scheduler for
real-time operating systems,” Proceedings IEEE
Real-time System Symposium, pp. 112-122, IEEE,
1986.
Liu, CL. and J.W. Wayland. “Scheduling algo-
rithms for multiprogramming in hard real-time
environment,” Journal of the ACM, vol. 20, pp.
4661, ACM, January, 1973.
Mok, Aloysius. “Fundamental Design Problems of
Distributed Systems for the Hard Real-time
environment,” MIT Laboratory for Computer Sci-
ence, MlT, May 1983.
Voelcker, John, “How Computers Helped Stam-
pede the Stock Market,” IEEE Spectrum, vol. 24,
pp. 30-33, IEEE, December 1987.

12

