
A Dual Space Representation for Geometric Data

Oliver Gunther and Eugene Won
EECS Department, 231 Cory Hal ‘i

University of California
Berkeley CA 94720

Abstract

Thie paper presents a representation echeme for
polyhedral objects in arbitrary dimensions. Each object
ie represented as the algebraic sum of convex polyhedra
(cells). Each cell in turn ie represented ae the intereec-
tion of halfspacee and encoded in a vector. The notion of
vertices is abandoned completely aa it ie not needed for
the eet and eearch operators we intend to support. We
ehow how thie approach allows UB to decompose set
operations (such aa intersection) on polyhedral objecta
into two atepe. The first step consists of a collection of
vector operations; the second step is a garbage collec-
tion where vectors that represent empty celle are elim-
inated.

1. Introduction

Modern database eyeteme are no longer limited to
bueinese applications. Non-standard applications euch
as computer-aided design, computer vision, or geo-
graphic data proceeeing are becoming increasingly
important, and geometric data play a crucial role in
many of theee new applications. For efficiency reaeone
it is essential that the special properties of geometric
data be fully utilized in the data base management eye-
tern. It ie important to view geometric object6 (such aa
points, lines, or polygons) aa integral entitiee and not
aa tuplee of numbers that may be used to represent
them.

Furthermore, the special operators that are
defined on these objects need to be eupported. Common
examples include eet operators such a8 union or inter-
section or eearch operators such a8 range eearch or

This research was sponsored under research contract
DAAG29-85-0223 and, in the case of the first author, a
scholarship from the German National Scholarship Foun-
dation.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.

To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

point location. These operators are substantially
different from the operators defined on numerical data.
They are often harder to compute, and it ie not trivial
to determine the smalleet domain on which they are
closed. Even the regularized* set operators, for exam-
ple, are not closed on the set of simple polyhedra; eee
figure 1.1.

Fig. 1.1: The intersection of two simple polyhedra is
not neceeearily a simple polyhedron.

In short, to deal with geometric data effectively
requires some recognition of geometry, and nowhere is
thie more important than in the representation of
geometric objects, which can be interpreted a8 the map-
ping of the original data objects into a set of objecta
that facilitates the computation of a particular claee of
operators. The significance of representation echemee
for efficient data management has been discussed by
Requicha [RequBOl. A survey of various repreeentation
echemes for two- and three-dimeneional geometric data
can be found in [Besl851. In this paper we develop this
theme in connection with a particular representation
scheme for an important claee of geometric objecte, viz.,

* The regularized set operatore, as defined by Tilove
[TiloBOl , include intersection, union, and difference.
They differ from the correeponding simple set operators
by an additional step making the result regular, i.e. the
closure of its interior. This way, the dimension of the
result is equal b the lowest dimension of any of the
operands. In this paper, all set operators that are defined
on point sets are aesumed to be regularized.

501

polyhedra.

In eection 2, we deecribe the concept of polyhedral
chains where a polyhedral object is repreeented as an
algebraic sum of simple polyhedra (cells). Section 3
introduces a repreeentation echeme for convex celle;
each cell is repreeented aa an intereection of halfepacee
and encoded in a vector. Section 4 ehowe how eet
operations are carried out ueing this repreeentation
echeme, and eection 5 contains our conclueione.

2. Polyhedral Chains

We extend the notion of polyhedron in the follow-
ing way. A d-dimensional polyhedral chain in
Euclidean space Ed [Whit571 ie an expreeeion of the
form

=P = &i

Here, the pi are d-dimensional regular polyhedra in Ed
that are not neceeearily bounded. We consider a point
tcEd inside the polyhedral chain P if and only if it ie
inside any of the polyhedra pi, i.e.

tfP e tCpi for some i=l . . m

Thie way, each polyhedral chain represents a
polyhedral point set. Two polyhedral chains P and Q
are equivalent if they represent the same point set, i.e.
if

Polyhedral chains are a simple and powerful tool
to deecribe varioue kinds of polyhedral objects. They
may be used to describe any simple (i.e. non eelf-
intereecting) polyhedral point eet in Ed (fig. 2.1), ae
well as eelf-intersecting polyhedra of any shape (fig.
2.2, 2.3).

Fig. 2.1: p1+p2+p3

Ae pointed out in [NeweSO] , applicatione for
non-simple polyhedra are becoming increaeingly impor-
tant in areas like computer-aided design or geographic
data processing. Also, there are numerous applications
for higher-dimeneional geometric objecte, such as linear
programming [Dant63] or logic databases where

502

Fig. 2.2: p1 tp2tp3

Fig. 2.3: p1 tp2 tp3

geometric object6 are ueed to repreeent predicates
fSton661.

Unlike eimple polyhedra, polyhedral chains are
cloned under all regularized eet operators. Furthermore,
the boundary of a convex polyhedron of dimension d is
a polyhedral chain of dimension (d -1). Hence, the
complete set of polyhedral chaine of dimensions 0
through d in Ed ie closed under the boundary operator
a. For these reasons, polyhedral chain8 form an
appropriate eet for embedding polyhedra.

Now coneider a database consisting of a collection
of (possibly self-intersecting) d-dimensional polyhedra
in Euclidean epace Ed. The restriction to polyhedra,
rather than general eubeete of Ed, is justified by the
fact that thoee are commonly used to approximate gen-
eral ehapee in practice [Faux79].

To support eearch and set operators, we represent
the polyhedra in the database aa conuex polyhedral
chaine, i.e. ae euma of conuex polyhedra pi (cek).
Each cell in turn will be represented ae the intersection
of halfspaces and encoded in a vector. Our scheme ie
conceptually simple, provides eupport for eet and search
operatore, and seeme well euited for parallel proceeeing.

Proceedings of the 13th VLDB Conference, Brighton 1987 - ------ ---~- -

Formally, each data object P ie represented as a
convex polyhedral chain in Ed,

,..

XP = x,pi
i=l

with all pi being convex. Obviously, for any polyhedral
chain in Ed there ie an equivalent convex polyhedral
chain in Ed. For eimplicity (see section 3) we require
that for each face f of any convex cell p, there be a face
g of P, euch that f and g are both subeets al the same
(d-ll-dimensional hyperplane. Note that -ye do not
require the pi to be mutually diejoint. Diajointneee is
hard to maintain and provides no particular advan-
tages for the operators we intend to support.

3. The h-Vector

The next question ie how to represent the convex
cells pi. It ie well known that any convex polyhedron
in Ed can be represented aa the intereection of
halfapacee in Ed. Each halfepace in turn can be
represented ae a product h.H where H ie an oriented
(d- ll-dimensional hyperplane and h ie an integer
number. In particular, we define 1.H aa the closed
halfapace to the right of H, -1.H aa the cloeed
halfapace to the left of H, and for completeneee 0.H ae
Ed.

Let H = HIHP . . HlAl denote a list of (d-l)-
dimensional oriented hyperplanee such that for each
face f of any data object in the databaee there ie a
hyperplane in H that embeds f. Now each cell

P
can be

represente$,aa a ternary vector h,, = {OJ, - 1) ‘1, euch

that p = n(hp)i*Hi.
i=l

We note that for a given cell p, h,, is by no means
unique. For example, suppoee that hyperplane H, and
cell p are disjoint and p is a subset of the halfspace
l*Hi. Then whether (h,), is 0 or I makes no difference.
For a given p, the eet of all poeeible h,-vectors ie an
equivalence class which contains a unique vector with
the minimum number of nonzero componente. For this
unique minimum h, every nonzero component
corresponds to a supporting hyperplane of p. Note that
there is no unique minimum vector to represent the
empty set. On the other hand, there ie a unique
minimum vector to represent the whole space Ed, viz.,
the vector 01’1.

The insertion of new data objects is performed by
adding new hyperplanee to H, if neceeeary. For eimpli-
city we assume that the components of the ternary vec-
tors h, default to zero if they are not explicitly
specified. Under thie aesumption an insertion does not
change the representation of existing celle.

The deletion of data objecta may cause some
hyperplanee in H to become redundant. The deletion of
such a hyperplane from H correeponde to a compression
of each vector h, by one component. Although it may
not be efficient to perform this update after each single
deletion, it might be worthwhile to do such a clean-up

after a certain number of deletiona. Otherwiee a large
number of redundant hyperplanee will inflate the
repreeentatione unneceeearily.

It IHI ie large, aa it may well be, the explicit
storage repreeentation of h, ie not feaeible. However,
the simple structure of hp allowe many alternative data
etructuree to be ueed. Ae one example, hp can be
repreeented by a eet of (signed) pointers, pointing to
those hyperplanes that correspond to the nonzero ele-
ments. In this paper we do not explore the relative com-
putational efficiencies of euch alternatives.

Note that this approach to repreeent polyhedral
data objects abandon8 the notion of vertex completely.
Repreeentation of celle by h-vectors has both conceptual
and computational advantages. To repreeent cells in
terms of supporting hyperplanee rather than in terme
of vertices ie usually the moat apace-efficient way
because no adjacency relations need to be etored. This
becomes especially important in higher dimensions ae
the number of adjacencies may grow exponentially in
the dimension [Prep85]. Furthermore, it eeems that
vertices are not necessary for the search and set opera-
tore we intend to support. Search operators euch a8
point location or range search can be supported
efficiently by search structures that are baaed on eup-
porting hyperplanee rather than vertices; an example
for euch a etructure ie the binary apace partitioning
tree lFuch801. All set operations on cells can be corn- .
puted efficiently without using verticee by decomposing
them into two parta: (al an operation on the h-vectore
without references to the geometric coordinate6 of the
hyperplanes, and (bl a generic operation that teete
whether a vector h, ie null, i.e. whether the intersec-
tion of the halfepaces epecified by hp is empty. This
decomposition will be deecribed in detail in the follow-
ing section.

4. Set Operations

Let P and Q be two general polyhedral objects.
We now show that any eet operation on P and Q can be
decompoeed into: (a) operatione on the h-vectore, and
(b) deleting the null vectors from the eet of resulting
h-vectore. The following propositions are eaeily verified
with the definition0 of set operations and of polyhedral
chaine.

Proposition 4.1: Let P and Q be represe,nted by convex

polyhedral chaine xp = $pi and 4 = ,zq,. Then

=PUQ = xp + XQ

G = Xp;n np;
XP-Q = xpn4

Proposition 4.2: Let hp denote a h-vector of a cell p
Then x~= - h,sH.

Proceedings of the 13th VLDB Conference, Brighton 1987

For an example Bee figure 4.1.

HI F

Fig. 4.1: h,=(0,~,-l,O,-1),x,-=-1~H~+l~H~+1~H~

Note that the length of thie chain equale the number of
nonxero components of the vector hp. It ie therefore
de&able to keep this number low, poeeibly at its
minimum.

Proposition 4.3: Let hp and h, denote the h-vectors for
two celle p and q respectively. Then hpnq can be com-

puted ueing the following table for each component
(hpn,)i.

Table 4.1: In those cases denoted by *, the hyperplane
Hi separates p and q, i.e. p n q = q~.

Note that both the intersection and the comple-
mentation operator are defined on the components of
the h-vector. The component6 are independent of each
other and can therefore be proceeeed in parallel. In par-
ticular, a systolic array [Kung’79] or a connection
machine [Hill851 with one proceseor per hyperplane
seem to be promising for an efficient implementation.

It follows from propositions 4.1-4.3 that for any
set operation de, the h-vector representation of P&Q
can be computed from the h-vector representations of P
and Q. However, the h-vectors in the resulting
representation may not be minimal. Also, some vectors
may define empty eete, due to the fact that condition *
is a sufficient, but not a necessary condition for non-
intersection. Two cells p and q may not intersect, but
there is no component (hpn& where condition *

occurs. In that case, the reeulting vector hpnq defines

an empty eet. Although that ca8e ie coneietent with

504

our data model, it is not desirable. A large number of

empty cells p, in the anvex polyhedral chains xp = spi
i=l

representing the data objecte may elow down the eye-
tern performance considerably. We therefore need an
efficient meane for detecting empty celle.

One approach would be to abandon the concept of
minimality and to increase the number of nonzero com-
ponents in the h-vector, poseibly to its maximum, i.e.

I

1 ifp_C l..Hi

(hp)i = -1 ifpc -1-H‘

0 otherwise

Each nonzero component increases the chance that a
separating hyperplane is found, i.e. that condition * ie
met if two polyhedra do not intersect. If each h-vector
had a maximum number of nonzero components then a
separating hyperplane would be detected immediately;
i.e. condition * would be a neceeeary and sufficient con-
dition for non-intersection. On the other hand, this
approach makes the identification of supporting hyper-
planes and therefore the cell complementation and
boundary retrieval operations much more difficult.
Also, computing the above function for each cell p in
the database requires an immense amount of computa-
tion and produces a lot of data that ie probably never
needed.

A garbage collector seems to be a better solution.
Each time a new cell ie computed ae the intereection of
two cells, the new cell is tagged. A background procese
(the garbage collector) keeps checking the tagged cells
in the database for emptiness. If a cell ie found non-
empty, it is untagged. Otherwiee, it is deleted from
storage and from the chains that contain that cell.
Unfortunately, the representation of celle by means of
their h-vectors does not lead to an efficient algorithm to
check cells for emptiness. A better approach to this
problem, based on geometric duality, ie preeented in a
separate paper [Gunt661. In that paper, we show that
the time complexity to check two celle for intersection
is polylogarithmic and therefore eublinear in the
number of vertices of any of the cells.

In order to avoid duplicating computational effort
and looeing information, we propose to cache the reeultn
obtained by the garbage collector. Whenever a cell
intereection p nq is computed a second time, it should
be immediately clear from the vectors hp and h, if the
intereection p nq is empty or not. Whenever the gar-
bage collector checks a new cell r=pnq, it either die-
covers a separating hyperplane (if p and q are disjoint)
or it discovers that there are no separating hyperplanee
(if p and q intereect). This result can be cached by
extending the notion of the h-vector to capture more
information in the following way.

Proceedings of the 13th VLDB Conference, Brighton 1987

Each cell p is represented ae a vector I$ with
the following semantics.

(I$+),
(l,Y)

(- l,Y)

(l?N)

(-W)

I

Meaning
p _C l.H,, Zf, may be a
supporting hyperplane of p

p _C -l.H,,H,maybea
supporting hyperplane of p

p _C l.H,, Hi is not a
supporting hyperplane of p

PC - l’Hi, Hi is IlOt a
supporting hyperplane of p
Hi intersect8 the interior of p
(hence, it is not a supporting hyperplane)
Hi is not a supporting hyperplane of p

Table 4.2

Components that are not explicitly specified default to
0. Now (h’ pns)i is given by the following tables.

I
0 11 (l,y)+ 1 (-I,Y)+ 1 UN I]

Table 4.3a

Table 4.3b

If p and q do not intersect there will be at least
one eeparating hyperplane H, that supports p or q. In

this case (b pn4)i corresponds to one of the cases

denoted by * or by +. Therefore, a new cell r=pnq is
certainly empty if any component (bp-,& corresponds

to one of the cases denoted by *. Otherwise, it needs to
be tagged if and only if there is at least one component
(b ,,ns), that correeponde to one of the cases with the f.

If a tagged cell r =p (Iq is found empty, this
result can be cached by the following updatee. Let H,
be a separating hyperplane and, w.1.o.g. let p_C l.Hi

and g_C -l*Hi.

Proceedings of the 13th VLDB Conference, Brighton 1987

IF (h,,+), = 0
THEN (hl)i := (1,N)

IF (h,‘), = 0
THEN (h:)i := (-l&N)

If, on the other hand, a tagged cell r =pn q is
found non-empty, we know that there are no separating
hyperplanee between p and q. For any hyperplane Hi
that eupports p, either (a) q lies on the same aide of Hi
as p, or (b) Hi intersects the interior of q. A similar
condition holds for any hyperplane Hi that eupports q.

This result can be cached by performing the following
updates.

IF (hi), = (fl,Y) AND (hl), = 0 AND Hinq=q
THEN (h:)i := (&lJv)

IF (hi)i = (fl,Y) AND (h,+)i = 0 AND Hinq*v
THEN (hl)i := I

IF (h:)i = (fl,Y) AND (hl)i = 0 AND Hinp=v

THEN (hi)i : = (f 1JV)

IF (hJ)i = (fl,Y) AND (hP+)i = 0 AND Hinptv

THEN (h,+)i := I

Whenever p n q is computed again, it follows from the
vectors hi and h: if p and q intersect or not. If they
do intersect, the resulting cell will not have to be
tagged again.

When a new cell is inserted into the database,
most of the component8 of its h-vector are zero. Ae set
operations are performed on the data objects, the data-
baee evolves. More and more zero components of the h-
vectors are replaced, and the vectors carry more and
more information. Therefore, it will happen less and
less frequently that a new cell has to be tagged and
checked for emptiness. Also, at some point it may be
more efficient to teat a new cell r =p n q for emptiness
by checking the hyperplanee that may be separating
ones (i.e. the ones that correspond to components with a
+) one by one if they are actually separating. If they are
few enough components with a +‘, this may be eimpler
and faster than ueing the dual approach proposed in
[Gunt661.

Problems such aa complementation, point location
or boundary retrieval may be solved by looking at only
those hyperplanes that may be supporting, i.e. the
hyperplanee H, where (hi)i is (l,Y) or (-l,Y).

There are variations to this approach. First, one
may prefer to have only minimal h-vectors, i.e. to iden-
tify the supporting hyperplanes of each cell explicitly.
This can be achieved, for example, by extending the
garbage collector as follows. Each time an intersection
cell is found non-empty, its supporting hyperplanes are
computed and the h-vector ie updated accordingly.
Second, one may decide to eimplify the update pro-
cedure above by introducing eymbole (1,NZ) and
(-1,NZ) which represent (1,N) ORZ and (-1,N) OR I,
respectively. Then the set of updates for the case that p

and q intersect can be simplified to

505

References IF ((hp+)i = (flay) AND (hq+)i = 0
THEN (hq+)i := (& 1,iVZ)

IF ((h;), = (flay) AND (hp+)i = 0
THEN (h,+)i := (fl,ZVZ)

In particular, it ie not neceseary anymore to check any
hyperplane Hi that aupporta p (q) if it intereects the
interior of q @I, i.e. if Hi nq (Hi np)= v. As proven in
lGunt861 , the time complexity to check thie condition
for a particular hyperplane Hi is logarithmjc in the
number of vertices of q @).

5. Conclusions

We presented a representation echeme for
polyhedral data objects, baaed on convex polyhedral
chaine. Each cell is represented ae an intereection of
halfepacee, encoded in a vector. The notion of verticee ie
abandoned completely as it is not needed for the eet
and eearch operators we intend to eupport.

Baaed on this representation, we deecribed a
echeme to decompoee the execution of eet operatore into
two steps. The first step consiets of a set of vector
operations; the eecond etep ie a garbage collection
where those vectors are eliminated that represent
empty cells. All results of the garbage collection are
cached in the vectore in euch a way that no computa-
tions have to be duplicated. Ae the databaee ia learning
more and more information through the garbage collec-
tor, it will be able to detect empty cells immediately
euch that no additional teat for emptiness ie required.
Future work will focue on an experimental implemen-
tation of our echeme.

Aleo, we believe that this approach ie more amen-
able to parallel processing than a vertex-baeed
approach. In particular, the components of the h-
vectors are processed independently from each other.
Therefore, it seems poseible to aesign one processor to
each hyperplane in H and to carry out a significant
fraction of the necessary computations locally without
interproceesor communication. We are currently work-
ing on the details of thie approach and are planning an
experimental implementation on a connection machine.

lBes1851 Besl, P. J. and R. C. Jain, Three-dimensional
object recognition, Computing Surveys 17, 1
(March 1985).

[Dant63] Dantxig, G. B., Linear Programming and Its
Extensions, Princeton Univereity Press,
Princeton, NJ, 1963.

[Faux791 Faux, I. D. and M. J. Pratt, Computufional
geometry for design and manufacture, Ellie
Horwood, Chichester, Great Britain, 1979.

[FuchSO] Fuche, II., Z. Kedem, and B. Naylor, On viei-
ble surface generation by a priori tree etruc-
turee, Computer Graphics 14,3 (June 1980).

[Gunt861 Gunther, 0. and E. Wong, A dual approach
to detect polyhedral intersections in arbitrary
dimensions, UC. Berkeley Memorandum No.
UCBIERL/M86/88 , December 1986.

[Hi11851 Hillis, W. D., The connection machine, MIT
Press, Cambridge, Ma., 1985.

lKung791 Kung, H. T., Systolic arrays, Computer 11, 4
(Dec. 1979), pagee 397-409.

[NeweBO] Newell, M. E. and C. H. Sequin, The inside
story on self-intersecting polygons, LAMB-
DA, Second Quarter, 1980.

[Prep851 Preparata, F. P. and M. I. Shamoe, Computa-
tional geometry, Springer-Verlag, New York,
NY, 1985.

lRequ801 Requicha, A., Repreeentatione for rigid
eolide: theory, methods, and eysteme, Com-
puting Surveys 12, 4 (Dec. 1980).

lSton861 Stonebraker, M., T. Sellie, and E. Hanson,
An analysie of rule indexing implementa-
tione in data base eyatema, in Proc. of the 1st
International Conference on Expert Data Base
Systems, April 1986.

[Tilo80] Tilove, R. B., Set membership classification:
A unified approach to geometric intersection
problems, IEEE Trans. on Computers C-29,
10 (Oct. 1980), pages 874-883.

[Whit571 Whitney, H., Geometric integration theory,
Princeton, NJ, 1957.

506 Proceedings of the 13th VLDB Conference, Brighton 1987

