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ABSTRACT 

The advent of new database applications such as 
engineering design stresses the need for new functie 
nalities in database systems. It includes the manage- 
ment of multiple representations for database objects, 
long transactions as well as dynamic data structures. 
This paper presents the approach used in CADB, a 
prototype expert database system dedicated to CAD, 
for the management and control of the consistency of 
design objects. It concerns both the operations on the 
object property values and the interactive manipula- 
tion of their structure. 
They involve concepts of the object models as well as 
the application semantics. They rely therefore on 
concepts used for representing the design objects and 
on semantic notions related to expert knowledge in 
the application domain. Among these are the notions 
of consistency and of completeness of the objects. 
These two complementary aspects are detailed and 
their relationships described. The emphasis is on the 
heuristic rules that provide a unified knowledge- 
based approach for their management independent of 
the particular application being considered. Dynamic 
inheritance mechanisms are also presented that sup 
port the manipulations performed on the object struc- 
tures. It is shown how they help providing expert 
database facilities. 
Key-words : databases, expert databases, knowledge 
bases, objects, inheritance, consistency, logic, heuris- 
tic rules, CAD. 
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1. INTRODUCTION 

Integrated systems for Computer-Aided Design applications 
(CAD) usually support : 

- the definition of a design process, 
- expert knowledge encoded in ad-hoc repositories, 
- various design tools such as graphic interfaces and 
specific application programs, 

a common, reliable and &arable database that is even- 
kally connected to private or semi-public databases [8]. 

Current research in the field has given rise to specific pn$~~& 
and few software implement$ions [2, 6, 9, 111. &pezt system 
technology has also enlightened new possibilities for a&sting the 
designers in deriving information and controlling the consistency 
of their design [16]. Recent studies have proposed sophisticated 
techniques for integrity constraint enforcement in knowledge 
and data bases [7]. However, integrating available design tools 
with full-scale expert systems and generalized databases is still an 
open issue 117). 
This paper presents some features intended to enhance CADB , a 
database system dedicated to CAD, into an Expert Database 
System. It extends previous work on knowledge-based integrity 
constraint validation [14] by providing semantic constraint enfor- 
cement on derived and dependent information. A prototype of 
CADB is currently implemented using a relational database 
system and a deductive component [4]. 
It builds on database and expert system research for the design of 
an integrated architecture implementing new functionalities for 
CAD, including : 

- powerful modelling capabilities, 
- sophisticated mode&g assistance, 
- the use and maintenance of expert knowledge, e.g 
design rules, 
- the management of high-level artifacts, e.g logical VLSI 
designs. 

The emphasis is here on the automated interactions between the 
domain specific knowledge and the application data. They are 
directly implemented as part of the system) capabilities. They 
rely on : 

- a common database sharable by a community of de- 
signers working in parallel on the same design objects, 
- expert knowledge encoded in a deductive knowledge 
base that is connected on-line to the database. It is used 
for controlling automatically the semantic integrity and 
for the calculation of the side-effects during the infonna- 
tion updates. 
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These two compuents are used to detect automatically the 
side-effects of the modifications requested by the designers. 
They stand as a watchdog, i.e an early warning feature, to make 
the designers aware of the potential consequences of their 
actions. As such, they implement a pessimistic approach to 
semantic integrity control. ‘I%is is studied here in a engineering 
design environment. 

‘I’& architecture of CADB is briefly described in the remainder 
of this section (Figure 1). 
CADB is curr@y implemented in Prolog on APOLLOTM 
;syi7.$ prprnzA@” &s&so designed on a 

The underlying database is a general purpose relational database 
system developed at IMAG called MICROBE [lo]. It is 
implemented in Pascal and C and includes over 15,000 lines of 
code. An extended version has been implemented by the CAD 
Research Department at CNET (French National Research 
Center for Telecommunications) for VLSI circuit design [5]. It 
includes multiple databases organized as a hierarchy of a com- 
mon database and private working databases. 
The knowledge base is implemented in Prolog. It includes over 
16,ooO clauses and is expected to go well over 25,000 when 
completed. The particular Prolog implementation used is a 
commercially available release allowing both-ways communica- 
tion with external programs written in C or Pascal. 
The two components are tightly connected together. The 
database acts as a back-end data repository for the knowledge 
base. It stores the multi-level object data : e.g logic, symbolic and 
layout representations for VLSI circuits as well as the various 
object instances [l]. 
The knowledge base stores the admissible operating rules concer- 
Ilhg: 

- the modifications of the object structures, 
- the specific design rules at hand, 
- and specific heuristics for the automatic consistency 
controls implemented. 

The interface with existing CAD tools such as simulators and 
graphic layout editors is guaranteed through a specific compo- 
nent called the logic interface (LI) which is common to the 
database (for data extraction and manipulation) and to the 
expert knowledge component (for side-effect calculation and 
optimization). It includes : 

- a validation processor (VP) which triggers the appro- 
priate components upon interaction with the designers. It 
uses a meta-knowledge base and specific knowledge ba- 
ses. The meta-knowledge base includes the rules speci- 
fying the admissible operations for the manipulation of the 
concepts in the object model, e.g the object stuctures. The 
application knowledge. bases include the specific rules 
relevant to the design process under consideration, e.g 
CMOS technology for VLSI circuits. 
- a designer interface (DI) which implements the inter- 
face between CADB and the user. It is a high-level 
object-oriented interface for the definition and update of 
the design objects [15]. 

Section 2 introduces the notion of objects in CADB. Section 3 
describes the automatic computation of the object classes in 
CADB based on the systematic invocation of optimization rules. 
Section 4 defines the operating rule\ implcmcnting the certifica- 
tion of the update operations. i.e the control of their correctness 
depending on the consistency and the rompletpn+*sq of thr 
objects. Section 5 is a conclusion. 

2. OBJECTS IN CADB 

A specific requirement of advanced applications like CAD 
concerns the object structures : they evolve over time in contrast 
with more traditional data management only requires static 
database schemas. Engineering design must therefore support 
dynamic objects in both their evolving property values and 
changing models [16]. 
CADB puts an emphasis on upward model designs. An object 
structure may therefore be augmented only with existing object 
models and constraints. 
During their manipulation, object consistency and completeness 
are dynamically examined to provide their actual state, which 
can be one of the following : 
- incomplete and consistent, meaning that the design improves, 
- incomplete and inconsistent, meaning that it does not improve, 
- complete and inconsistent meaning that the design is wrong, 
- complete and consistent meaning that the design is correct. 
Unfortunately, in most available database systems and enginee- 
ring environments, object consistency can only bc examined a 
posteriori, i.e when the updates have been performed. 
A novel feature in CADB is that the designers can invoke a 
preventive control on the updates. The immediate impact of 
their actions on the design objects as well as the side-effects of 
the modifications can be computed automatically. This requires 
sophisticated mechanisms for propagating updates and deriving 
information. First-order logic and heuristic rules are used for 
this purpose. The rules are independent of any specific object 
model and are only concerned with the application semantics. 
Examples are given in Sections 3 and 4. 
Another feature in CADB concerns the optimization of the 
update controls. The system stores the fact that a particular 
operation failed. It is therefore unnecessary to control it later for 
“equivalent” objects (in the sense defined in Section 2.2,!. The 
modelling concepts and the notions of object classes and certifi- 
cation are defined in the following sections (2.1 to 2.4). First- 
order logic is used for their formalization. In the following. the 
symbol ‘I: -‘I is used for the logical implication and the symbol ‘8” 
for the logical conjunction. 

Designer 
I 
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( Design;;yerface 1 kn;;rge 

1 
I I I 

Validation 
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I 
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Logic Interface Knou I edge 
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Design 
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Figure 1. Architecture of CADB. 
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2. I Modeling concepts 

In the following, the term object schema is used for the term 
object structure in the usual database terminology. Object 
schemas are defined by : 

- specification rules defining the object properties and 
structure, 
- derivation rules called links specifying calculated pr@ 
perties, 
- integrity constraints [12]. 

For example, the objects Point and Segment are defined as 
described in Figure 2. 

0EF-E Point DEFJz Segment 
/8 define point +/ /+ define segment set */ 
abs : Rea I or9 : Point 
ord : Rea I ext : Point 

FDEFS 19 : Real 
not konf (org,ext) 1 ICl 

:= dist(org,ext) Ll 

Figure 2. Definition of Point and Segment. 

A Point is defined by its properties abs and ord (x and y real 
coordinates respectively). A Segment is defined by its proper- 
ties : origin and end points (org and ext resp.) and its length lg. 
They are the specification rules of the objects. The length lg is 
defined by the link Ll, i.e the distance between org and ext 
points : I g : = dist(org,ext) whichactsasaderivationrule. 
An integrity constraint ICI forces both org end ext points to be 
different. 
These definitions are transformed internally in CADB into 
first-order clauses : 
point(p) :- name(p,n) 8 string(n) 8 abs(p,x) 

8 real(x) 8 ord(p,y) 8 real(y) 
segment 1s) :- name(s,n) a string(n) a org(s,o) 

a point(o) a ext(s,e) a point(e) 
a lg(s,l) a real (1) 
a not (conf (o,e)) 
8 equal(l,dist(o,e)). 

2.2 Object classes 

Object classes are defined in CADB by conjunctions of first- 
order atomic formulae belonging to object schemas, i.e specifica- 
tion rules, derivation rules and integrity constraints. The class Cl 
of all Points for which only the name and x-coordinate are 
known is defined by : name(p,n) 8 string(p,n) 8 
abs (p, x1 8 rea I (x) . The definition of all such classes is 
obtained by computing the closure set of all the conjunctions of 
atomic formulae. A set of heuristic optimization rules that 
reduces this set of classes to the relevant classes only is described 
in Section 3. 

Definition : A class Cl is smaller than a class C2 if the 
conjunction of formulae defining Cl is a proper subset of 
the conjunction defining C2 : Cl < C2. For example the 
classCldefinedby :name(p,n) 8 string(n) issmaller 
than the class C2 defined by : name (p, n) 8 s tr i ng (n) 
8 abs (p, x) 8 rea I (x1. Class CT2 is larger than class 
Cl. 

It should be clear that there may be several classes of (maybe 
incomplete) objects corresponding to the same object structure. 
In the example above, Cl and C2 are two classes of incomplete 
points corresponding to the definition given in Section 2.1. 

Definition : Two objects belonging to the same class are 
equivalent. The same conjunction of formulae hold for all 
the objects in a particular class (i.e they comply with the 
same set of constraints). 

Incomplete objects are taken into account here since all potential 
and relevant classes are produced. An object can therefore be 
attached to exactly one maximal class at any time. Such a class is 
defined by the largest conjunction of satisfiable atomic formulae 
for the object. The class Cl above contains all points with 
unknown y-coordinate. 

Inconsistent objects are also taken into account here because the 
negation of a constraint defines also an object class. In the 
following, a decidable constraint is a constraint that can be 
proved true or false using the actual state of the system, 
including the data it&ns stored in the design databases. This is 
consistent with the notion of satisfiability of formulae in first- 
order logic. The equivalence classes of objects are extended here 
to take this into account. A decidably false constraint defties an 
object class in a similar way than decidably true constraints do. 

A specific element called prototype is maintained for each class. 
It is produced automatically with the first object instance in the 
class and maintained dy-namically to reflect the updates perfor- 
med on the objects belonging to the class. 

Prototypes model in CADB dynamic data structures and values. 
They form a database abstract where errors on the object 
struares are prohibited but property value errors are permitted. 

2.3 Automatic consistency control 

The idea used here is that considering the initial schema of an 
objet, it is possible to produce automatically all the potential 
structures of the sub-objects it may contain. The only legal 
structures are those produced thii way. The incremental design 
of an object can therefore be controlled automatically by veri- 
fying that all the operations on a sub-object transfer it from a 
legal object class (i.e structure) to another legal class (i.e 
structure). 

The paradigm used to control the update operations on the 
design objects consists in detecting the potential inconsistencies 
resulting from the user actions as soon as possible. The con&d is 
devided in two phases. Tbe first one is the certification of the 
operations. The second is their validation. 
The certification controls the operations by first applying them 
on the prototypes of the objects involved. 
The validation makes the operations effective on the actual 
database items. 

Definition : An operation on the prototype of an object X 
belonging to class Cl is certified iff its application on its 
prototype produces an object X’ belonging to a class C2 
suchthat:Cl = C?or Cl<C2. 
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Lf one of the two following cases occurs, an update operation is 
not certified : 

- an undefined object or constraint has been referenced, 
- a constraint is no longer satisfied by the object. 

2.4 Characterizing object classes 

We define in this section the paradigm for adapting the concept 
of certification to the design environment. It includes : 

- optimization rules that correspond to the knowledge 
available in the application domain. They are used to 
reduce the number of object classes to only the relevant 
ones and thus optimize the automatic characterization of 
an object class when it is modified. This characterization 
will result in the acceptance or rejection of the operation. 
In the first case, the modified object belongs to a legal 
&SS. In the second case it belongs to an illegal class 
(Section 3). 
- operating rules for the control of the designers opera- 
tions. They allow a refinement of the order relation “<‘I 
defined in Section 2.2 between classes produced from a 
particular object schema. It will determine the validity of 
an update operation. An operation will be certified only if 
the object prototype involved is transfered to a larger class 
(Section 4). 

These rules depend on the application semantics and on the 
object schemas. They are stored in the system’s knowledge bases. 
They allow an automatic interaction between the Validation 
Processor and both the designers operations and the application 
data (Figure 1). 
The certification of the users operations involves processing 
them on the prototypes for the objects involved. Characterizing 
an object class is therefore performed for every update operation. 
Depending on this is the correctness of the entire operation. It 
must therefore be very efficient. It depends on the number of 
classes to examine. The optimization rules mentionned above 
allow a significant reduction in their total number. Further, the 
result of an operation on a prototype is stored so that non 
certified operations are not tested later for equivalent objects. 

2.5 Manipulating object structures 

The need for dynamic data structures is widely recognized as a 
basic requirement for advanced database applications such as 
engineering design. CADB supports dynamic object schemas in 
order to modify existing object structures or define new objects. 
The creation of composite objects is also allowed. Elementary or 
predefined objmts are supposed to be defined by composition of 
basic objects like integers, real, character strings, pixels and bit 
strings that are not subject to structure changes. 
Inheritance of the object instances among classes requires here 
new mechanisms enforcing the correct propagation of the schema 
modifications on the object instances where appropriate. 
The modifications are modeled as finite sequences of reduction, 
augmentation, connection and product operations. fntuitively. 
they model the deletion and addition of properties, links or 
constraints to an object schema and the composition of two or 

more existing schemas to define a composite object. 
Let Cl and G! be two object class definitions and F any 
conjunction of atomic first-order formulae. 

The reduction of Cl by F (noted Cl F) defines the objects 
satisfying the formulae defining Cl except those in F. 
‘he augmentation of Cl with F (noted Cl + F) defines the 
objects satisfying all formulae in Cl and F. 
The connection of Cl and C2 (noted Cl x C2) defines the 
objects satisfying both the formulae defining Cl and C2. 
The product of Cl by C2 (noted Cl * C2) defines the objects 
satisfying the formulae involved in Cl and C2 and a specified 
condition C. It is defined only if the definitions of Cl and C2 are 
not disjoint. 
Further details and examples are given in [13]. 
It seems predictable that the integration of these operations with 
the automatic consistency controls presented above will provide a 
powerful and flexible support for the manipulation of dynamic 
Ot+%tS. 

These aspects are detailed here for CAD applications. Simple 
examples show their usefuleness and practicability. hnplemen- 
ting this approach in other application areas seems possible but 
requires further investigations. 

3. AUTOMATIC CHARACTERIZATION OF OBJECT 
CLASSES 

A coarse computation of the closure set of all conjunctions of the 
atomic formulae belonging to an object schema would lead to a 
large number of irrelevant classes. They may be meaningless 
because inconsistent (e.g defining the length of a point) or 
because the objects are forced in the application to conform to 
specific configurations (e.g segments with at least abs and org 
points). This may be the case when the object models used do 
not prohibit specific inconsistencies (weak constraints allowing 
for example incomplete objects) or when they are in contrast 
used as strong integrity constraints (e.g no undefined properties). 

Recall the example defined above for Point and Segment ob- 
jects : 
point(p) :- name(p,n) 8 string(n) 8 abs(p,x) 

8 rea I (x) 8 ord(p,y) 8 rea I (y) 
segment (s) :- name(s,n) 8 string(n) 8 org(s,o) 

8 point(o) 8 ext(s,e) 8, point(e) 
8 Igk, I) 8 real(l) 
8 not (conf (o,e)) 
8 equal (I ,dist (o,e)). 

The length of a segment can here bc calculated by d i s t Co, e) , 
i.e when the two points o and e are known. The class defined by : 
name(s,n) 8 string(n) 8, Igk, I) 8 real (I) istherefore 
irrelevant here. 

The following rules are used to characterize the relevant claws. 
They are implemented as part of the system standard features for 
consistency controls. Further, they extend the approach descri- 
bed in [14] by providing a systematic knowledge-based constraint 
enforcement paradigm for derived and inter-dependent object 
properties. 
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R1 - class definitions must include the type constraints 
corresponding to their properties : 

CAD systems usually provide upward design methodolo- 
gies. Thus, classes including a property definition and the 
negation of its particular type are discarded : a segment 
cannot belong to the class defined by : 
segment (s) :- name(s,n) 8 string(n) 

8 org(s,o) 8 not(point(0)). 
Further, type checking for objects and their properties is 
systematically performed for each instantiation and modifi- 
cation. Relevant classes therefore include only those that 
have for every object or property the corresponding type : 
segment (s) :- org(s,o) is discarded because 
po i n t (0) is missing. In contrast, 
segment (s) :- org(s,o) 8 point (0) is relevant. 

R2 - class definitions must include the specification rules for the 
name of their instances : 

Object occurences are given a unique identifier. The 
instantiation of name (x, n) is therefore necessary. To- 
gether with rule RI above, this implies that : name (x, n) 8 
s t r i ng (n) is necessary for each object class. All other 
classes are discarded. 

R3 - class definitions having derived properties must include the 
specification rules for all their arguments : 

The length of a segment may be computed iff the org and 
ext points are known. This rules discards ail the classes 
involving constraints or functions with missing arguments : 
segment (s) :- name(s,n) 8 string(n) 8 
not (conf (o,e)) is discarded. 

R4 - class definitions must include all the decidable constraints 
corresponding to their properties : 

CADB implements an immediate consistency control. If a 
constraint is decidable because its arguments are instantia- 
ted, it must be present in the class definition. The class 
defined by : 
segment Ls) :- name(s,n) 8 string(n) 

8 org(s,o) 8 point(o) 
8 ext(s,e) 8 point(e) 

is therefore discarded. The org and ext point being instan- 
tiated, the constraint : not (conf (0, e) 1 should be enfor- 
ced. 
All decidable constraints must be evaluated. In CADB, 
they correspond to weak consistency rules. The following 
definitions are therefore relevant : 
segment (s) :- name(s,n) 8 string(n) 

8 org(s,o) 8 point(o) 
8 ext(s,e) 8 point (e) 
8 not (conf (o,e)) 
8 Ig(s,l) 8 real (1) 
8 equal (I ,dist (.o,e)) 

segment (s) :- name(s,n) 8, string(n) 
8 org(s,o) 8 point(o) 
8 ext(.s,e) 8 point(e) 
8 conf (o,e) 8 Ig(s, I) 
8 real (I) 
8 equal (I ,dist (o,e)) 

RS - class definitions must include all their decidable links : 

CADB implements an automatic derivation of infonna- 
tions. Thus, if all the arguments of a link such as 
dist(o,e) are instantiated, it is automatically derived. 
The class defined by : segment (s) : - name (s,n) 8 
string(n) 8 org(s,o) 8 point(o) 8 ext(s,e) 8 
point(e) 8 not (conf (o,e)) is discarded because 
although decidable the conjunction : I g (s, I 1 8 rea I ( I) 
8 equal (I ,dist(o,e)) is missing. 

R6 - class definitions must include only their defined links : 

A link acts in CADB as a derivation rule. It corresponds 
therefore to a strong consistency rule. This eliminates the 
classes involving the negation of a link. The class defined 
by : 
segment (s) :- name(s,n) 8 string(n) 

8 org(s,o) 8 point(o) 
8 ext(s,e) 8 point(e) 
8 not (conf (o,e)) 
8 Ig(s,l) & real (I) 
8 notcequal (I,dist(o,e))) 

is therefore discarded. 

R7 - class definitions must include the function defining every 
link : 

This rule discards all classes involving a property implemen- 
ted with a missing link. The class defined by : 
segment (s) :- name(s,n) 8 string(n) 

8 org(s,o) 8 point(o) 
8 ext(s,e) 8 point(e) 
8 Ig(s,l) 8 real(l) 

is discarded because the term : equal (I,dist(o,e)) is 
missing. 

Using these seven rules to derive the closure set of the relevant 

“W 
s leads to the following five classes (instead of the potential 

2 classes corresponding to the ten basic segment properties and 
their negations) : 

Cl - the class of ail the segments the existence of which is 
known : 
segment(s) :- name(s,n) 8 string(n) 

C2 - the class of all the segments the origin point of which is 
known : 
segment (s) :- name(s,n) 8 string(n) 

8 org(s,o) 8 point(o) 

C3 - the class of all the segments the end point of which is 
known : 
segment (s) :- name(s,n) 8 string(n) 

8 ext(s,e) 8 point(e) 

c4 - the class of all the segments the origin and end points of 
which arc known and identical : 
segment(s) :- name(s,n) 8 string(n) 

8 org(s,o) 8 point(o) 
8, ext(s,e) 8 point(e) 
& Ig(s,l) 8 real(I) 
8 equal (I,dist(o,e)) 
8, notcconf (o,e)) 
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(3lasres Cl to Q include all the segments that are consistent and 
incomplete. Class C4 includes all the complete and inconsistent 
segments. Class c5 includes all the complete and consistent 
segments. 

4. AUTOMATIC CONSISTENCY CONTROL 

As shown in the precedmg Sections, it is possible to characterize 
dynamically the class to which an object belongs from a set of 
dames defined automatically. This section details the rules for 
the control of the designers operations. They are defined using 
the notions of completeness and consistency of the objects 
involved. Together with the rules defined in Section 3, they 
implement an automatic consistency control of the objects being 
modified. They are implemented as part of the system’s standard 
capabilities. 

The partial order relation between classes defined in section 2.3 
is refined to take into account the consistency degree and the 
completeoess degree of the objects. 

Definiron : An equivalence class Cl is smaller than a class 
C2, noted Cl < C2 iff the objects belonging to Cl satisfy 
less constraints or have less instantiated properties than 
objects in C2. C2 is then larger than Cl. 

The total number of satisfiable formulae in Cl will therefore be 
smaller than in C2. Classes Cl and C2 defined in Section 3 above 
are such that : Cl < C2, because the definition of C2 includes 
the term : org (.a, 01 8 po i n t (01 which is not in the definition 
ofcl. 

Cl : segment (5) :- name(s,n) 8 string(n) 
CL? : segment (s) :- namek,n) 8 string(n) 

8 org(s,o) 8 point(o) 

In the following we refine the notions of completeness and 
consistency of objects to implement the certification of opera- 
tions. We define for this purpose the degree of completeness and 
the degree of consistency of objects in CADB. 

4.1 Degree of completeness of an object 

Let N be the total number of properties of an object, i.e the 
number of atomic first-order formulae in its specification rules. 
We say that an object is P-complete or has a degree of complete- 
ness P iff it bears P instantiated properties (1~ = PC = N). The 
number of undefined properties is therefore N - P. Objects 
belonging to class C2 in Section 3 are 2-complete : their name 
and origin point are known. 

Definition : An object is complete iff it is N-complete. 

4.2 Degree of consistency of an object 

Let M be the total number of constraints defined for an object. 
We say that an object is L-consistent or has a degree of 
consistency L iff the total number of undecidable or satisfied 
constraints is L. The object therefore bears M - L unsatisfied 
constraints. 

Recall that unsatisfied constraints (i.e decidably false) define 
object dasses. The notion of consistency degree defined here is 
therefore weaker than the notion of satisfiability of formulae in 
first-order logic. It allows taking the incompleteness of the design 
objects into account when checking their consistency without 
impeding their incremental design. 

Objects in class C4 above (Section 3) are O-consistent because the 
only existing constraint : not (conf (0, e) 1 is violated. Objects 
belonging to classes Cl to C3 and class C5 are l-consistent 
because the constraint : not (con f to, e) ) is undecidable or 
satisfied. 

Definition : An object in CADB is consistent iff no 
decidable constraint is violated : it is M-consistent. 

4.3 Defining certification 

The following rules (R8 to RlO) are stored in the system’s 
knowledge base. They define the legal operations with respect to 
the degrees of completeness and consistency of the objects 
involved and the partial order between classes. 

R8 - update operations on the properties of objects are certified 
if the consistency degree of their prototype does not 
decrease : 

Updates may change the objects equivalence class. This 
rule permits a consistent modification of objects while 
guaranteeing that their consistency degree does not de- 
crease. 
Stated otherwise, after an update, objects must remain in 
the same class or belong to a larger class with respect to the 
order relation “cn between classes. 

If Ci(Pi,Li) is the class Ci of objects that are Pi-complete 
and Li-consistent, an update of an object belonging to 
Cl(Pl ,Ll) is 

certified if its prototype belongs after the update to 
C2(P2,L2) where : 

Pl = P2andLl <= L2. 
Changing a segment from the class CS to the class C4 is 
prohibited. The origin of a segment in C5 cannot be 
modified if the constraint : not (conf (0, e) 1 no longer 
holds. 

R!J - property instantiations are always certified : 

CAD systems provide iterative trial and error cycles. De- 
signers are therefore allowed in CADB to augment object 
properties without immediate consideration for their consis- 
tency. 

Intantiating properties of an object in Cl(Pl ,Ll) is certified 
if its prototype belongs afterwards to a class C2(P2,L2) 
such that : 

Cl(Pl,Ll) < C2(E’2,L2) and Pl < P2. 
For example segments may change from class C2 to class 
C4. The end point of a segment in C2 may be instantiated 
even if the constraint : not (conf (0, e) 1 does not hold. 
The same case applies for classes C2 and C5. 
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R10 - object properties may be deinstantiated if the consistency 
degree of the object increases : 

This rules complements rule RlO. If property instantia- 
tions result in constraint violations, the designers are 
allowed to undo the instantiations. 

The update is certified if the new class C2(P&L2) is such 
that : 
Cl(Pl,Ll) C C2(P&L2) where : Pl > P2 and Ll < L 
Changing segments from class C4 to class C2 or C3 is 
allowed (deinstantiation of origin and end points) if their 
consistency degree increases. 

These rules are examples of expert knowledge that should be 
invoked to adjust the certification to the consistency controls in 
specific application domains. 

Their usefulness comes from their ability to detect a priori the 
potential inconsistencies resulting from the update operations 
and to automatically compute their side-effects on the object 
prototypes. This is a sharp distinction with currently available 
data and knowledge base systems (as well as current design 
methodologies) since these can evaluate the object completeness 
and consistency degrees only after the update operations have 
heen performed on the data items. Such features are implemen- 
ted here as part of the system’s expertise and provided to the 
designers as standard capabilities. 

5. CONCLUSION 

A new approach for controlling automatically the consistency of 
dynamic database objects is presented. It uses both the object 
representation models and application independent knowledge. 
Incontrast with usual methods, it does not require the exhaustive 
control of the operations on the entire database content, nor the 
characterization of the minimal subset of objects affected by an 
update operation. 
It relies on the dynamic characterization of the objects equiva- 
lence classes, defined by the maximal conjunctions of constraints 
they actually comply with. Specific representatives for these 
classes are used, called the object prototypes, on which the 
operations are first applied. This allows the detection a priori of 
the potential inconsistencies resulting from the designers opera- 
tions on the desired objects. It also allows the automatic compu- 
tation of the operations side-effects. 
Heuristic rules are defined to optimize the dynamic characteri- 
zation of the object relevant classes. Operating rules are also 
detailed that define the certification of the update operations. 
Altogether, they are implemented as part of the system’s stan- 
dard features thus enhancing its ability to manage dynamically 
evolving design objects. They also support expert database 
capabilities that assist the designers when creating or modifying 
the object structures [ 131. 
An update operation is certified if its application on the prototy- 
pes of the objects involved does not decrease their consistency 
degree. Further, it also takes into account the incompleteness of 
the design objects in a unified framework. This is a pessimistic 
approach to consistency control in data and knowledge bases. 
It is implemented in CADB, a prototype Expert Database System 
for CAD. CADB includes two components. A relational data- 
base system that maintains the application data and that is used 
as a back-end data repository and a knowledge base system that 
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maintains the applicati 
in Prolog on 

wpecific knowledge. It is implemented 
APOLLO workstations. A prototype in OPSS is 

also currently designed. 
Further research include extensions towards multiple representa- 
tions of objects and managing non certified operations. 
‘Ihe first objective is to take into account the side-effects of the 
update operations on the diverse representations of the objects 
through the prototypes of their respective classes. 
The second is to cope with non certified operations that the 
designer wishes to process although consistency controls have 
failed. This involves handlii exceptions in data and knowledge 
bases [3]. 
Further investigations are stiU needed and are currently being 
worked out in this area. 
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