
EXPERT DATABASE SUPPORT FOR CONSISTENT DYNAMIC OBJECTS

NGUYEN G.T , RIEU D.

INRIA & Universite de Grenoble
Laboratoire de Genie Informatique

BP 68
38402 St-MARTIN-D’HERES

FlWUX
nguyen@imag.UUCP

ABSTRACT

The advent of new database applications such as
engineering design stresses the need for new functie
nalities in database systems. It includes the manage-
ment of multiple representations for database objects,
long transactions as well as dynamic data structures.
This paper presents the approach used in CADB, a
prototype expert database system dedicated to CAD,
for the management and control of the consistency of
design objects. It concerns both the operations on the
object property values and the interactive manipula-
tion of their structure.
They involve concepts of the object models as well as
the application semantics. They rely therefore on
concepts used for representing the design objects and
on semantic notions related to expert knowledge in
the application domain. Among these are the notions
of consistency and of completeness of the objects.
These two complementary aspects are detailed and
their relationships described. The emphasis is on the
heuristic rules that provide a unified knowledge-
based approach for their management independent of
the particular application being considered. Dynamic
inheritance mechanisms are also presented that sup
port the manipulations performed on the object struc-
tures. It is shown how they help providing expert
database facilities.
Key-words : databases, expert databases, knowledge
bases, objects, inheritance, consistency, logic, heuris-
tic rules, CAD.

This work is supported in part by the French Depart-
ment of Telecommunications CNET and the French
Department of Research, Program PRC-BD3.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

1. INTRODUCTION

Integrated systems for Computer-Aided Design applications
(CAD) usually support :

- the definition of a design process,
- expert knowledge encoded in ad-hoc repositories,
- various design tools such as graphic interfaces and
specific application programs,

a common, reliable and &arable database that is even-
kally connected to private or semi-public databases [8].

Current research in the field has given rise to specific pn$~~&
and few software implement$ions [2, 6, 9, 111. &pezt system
technology has also enlightened new possibilities for a&sting the
designers in deriving information and controlling the consistency
of their design [16]. Recent studies have proposed sophisticated
techniques for integrity constraint enforcement in knowledge
and data bases [7]. However, integrating available design tools
with full-scale expert systems and generalized databases is still an
open issue 117).
This paper presents some features intended to enhance CADB , a
database system dedicated to CAD, into an Expert Database
System. It extends previous work on knowledge-based integrity
constraint validation [14] by providing semantic constraint enfor-
cement on derived and dependent information. A prototype of
CADB is currently implemented using a relational database
system and a deductive component [4].
It builds on database and expert system research for the design of
an integrated architecture implementing new functionalities for
CAD, including :

- powerful modelling capabilities,
- sophisticated mode&g assistance,
- the use and maintenance of expert knowledge, e.g
design rules,
- the management of high-level artifacts, e.g logical VLSI
designs.

The emphasis is here on the automated interactions between the
domain specific knowledge and the application data. They are
directly implemented as part of the system) capabilities. They
rely on :

- a common database sharable by a community of de-
signers working in parallel on the same design objects,
- expert knowledge encoded in a deductive knowledge
base that is connected on-line to the database. It is used
for controlling automatically the semantic integrity and
for the calculation of the side-effects during the infonna-
tion updates.

493

These two compuents are used to detect automatically the
side-effects of the modifications requested by the designers.
They stand as a watchdog, i.e an early warning feature, to make
the designers aware of the potential consequences of their
actions. As such, they implement a pessimistic approach to
semantic integrity control. ‘I%is is studied here in a engineering
design environment.

‘I’& architecture of CADB is briefly described in the remainder
of this section (Figure 1).
CADB is curr@y implemented in Prolog on APOLLOTM
;syi7.$ prprnzA@” &s&so designed on a

The underlying database is a general purpose relational database
system developed at IMAG called MICROBE [lo]. It is
implemented in Pascal and C and includes over 15,000 lines of
code. An extended version has been implemented by the CAD
Research Department at CNET (French National Research
Center for Telecommunications) for VLSI circuit design [5]. It
includes multiple databases organized as a hierarchy of a com-
mon database and private working databases.
The knowledge base is implemented in Prolog. It includes over
16,ooO clauses and is expected to go well over 25,000 when
completed. The particular Prolog implementation used is a
commercially available release allowing both-ways communica-
tion with external programs written in C or Pascal.
The two components are tightly connected together. The
database acts as a back-end data repository for the knowledge
base. It stores the multi-level object data : e.g logic, symbolic and
layout representations for VLSI circuits as well as the various
object instances [l].
The knowledge base stores the admissible operating rules concer-
Ilhg:

- the modifications of the object structures,
- the specific design rules at hand,
- and specific heuristics for the automatic consistency
controls implemented.

The interface with existing CAD tools such as simulators and
graphic layout editors is guaranteed through a specific compo-
nent called the logic interface (LI) which is common to the
database (for data extraction and manipulation) and to the
expert knowledge component (for side-effect calculation and
optimization). It includes :

- a validation processor (VP) which triggers the appro-
priate components upon interaction with the designers. It
uses a meta-knowledge base and specific knowledge ba-
ses. The meta-knowledge base includes the rules speci-
fying the admissible operations for the manipulation of the
concepts in the object model, e.g the object stuctures. The
application knowledge. bases include the specific rules
relevant to the design process under consideration, e.g
CMOS technology for VLSI circuits.
- a designer interface (DI) which implements the inter-
face between CADB and the user. It is a high-level
object-oriented interface for the definition and update of
the design objects [15].

Section 2 introduces the notion of objects in CADB. Section 3
describes the automatic computation of the object classes in
CADB based on the systematic invocation of optimization rules.
Section 4 defines the operating rule\ implcmcnting the certifica-
tion of the update operations. i.e the control of their correctness
depending on the consistency and the rompletpn+*sq of thr
objects. Section 5 is a conclusion.

2. OBJECTS IN CADB

A specific requirement of advanced applications like CAD
concerns the object structures : they evolve over time in contrast
with more traditional data management only requires static
database schemas. Engineering design must therefore support
dynamic objects in both their evolving property values and
changing models [16].
CADB puts an emphasis on upward model designs. An object
structure may therefore be augmented only with existing object
models and constraints.
During their manipulation, object consistency and completeness
are dynamically examined to provide their actual state, which
can be one of the following :
- incomplete and consistent, meaning that the design improves,
- incomplete and inconsistent, meaning that it does not improve,
- complete and inconsistent meaning that the design is wrong,
- complete and consistent meaning that the design is correct.
Unfortunately, in most available database systems and enginee-
ring environments, object consistency can only bc examined a
posteriori, i.e when the updates have been performed.
A novel feature in CADB is that the designers can invoke a
preventive control on the updates. The immediate impact of
their actions on the design objects as well as the side-effects of
the modifications can be computed automatically. This requires
sophisticated mechanisms for propagating updates and deriving
information. First-order logic and heuristic rules are used for
this purpose. The rules are independent of any specific object
model and are only concerned with the application semantics.
Examples are given in Sections 3 and 4.
Another feature in CADB concerns the optimization of the
update controls. The system stores the fact that a particular
operation failed. It is therefore unnecessary to control it later for
“equivalent” objects (in the sense defined in Section 2.2,!. The
modelling concepts and the notions of object classes and certifi-
cation are defined in the following sections (2.1 to 2.4). First-
order logic is used for their formalization. In the following. the
symbol ‘I: -‘I is used for the logical implication and the symbol ‘8”
for the logical conjunction.

Designer
I

-7 lleta
(Design;;yerface 1 kn;;rge

1
I I I

Validation
Processor (VP)

I

Appl icat ion
Logic Interface Knou I edge

Appl icat ion - (LI) bases
tools

Design
databases

Figure 1. Architecture of CADB.

494 Proceedings of the 13th VLDB Conference, Brighton 1987

2. I Modeling concepts

In the following, the term object schema is used for the term
object structure in the usual database terminology. Object
schemas are defined by :

- specification rules defining the object properties and
structure,
- derivation rules called links specifying calculated pr@
perties,
- integrity constraints [12].

For example, the objects Point and Segment are defined as
described in Figure 2.

0EF-E Point DEFJz Segment
/8 define point +/ /+ define segment set */
abs : Rea I or9 : Point
ord : Rea I ext : Point

FDEFS 19 : Real
not konf (org,ext) 1 ICl

:= dist(org,ext) Ll

Figure 2. Definition of Point and Segment.

A Point is defined by its properties abs and ord (x and y real
coordinates respectively). A Segment is defined by its proper-
ties : origin and end points (org and ext resp.) and its length lg.
They are the specification rules of the objects. The length lg is
defined by the link Ll, i.e the distance between org and ext
points : I g : = dist(org,ext) whichactsasaderivationrule.
An integrity constraint ICI forces both org end ext points to be
different.
These definitions are transformed internally in CADB into
first-order clauses :
point(p) :- name(p,n) 8 string(n) 8 abs(p,x)

8 real(x) 8 ord(p,y) 8 real(y)
segment 1s) :- name(s,n) a string(n) a org(s,o)

a point(o) a ext(s,e) a point(e)
a lg(s,l) a real (1)
a not (conf (o,e))
8 equal(l,dist(o,e)).

2.2 Object classes

Object classes are defined in CADB by conjunctions of first-
order atomic formulae belonging to object schemas, i.e specifica-
tion rules, derivation rules and integrity constraints. The class Cl
of all Points for which only the name and x-coordinate are
known is defined by : name(p,n) 8 string(p,n) 8
abs (p, x1 8 rea I (x) . The definition of all such classes is
obtained by computing the closure set of all the conjunctions of
atomic formulae. A set of heuristic optimization rules that
reduces this set of classes to the relevant classes only is described
in Section 3.

Definition : A class Cl is smaller than a class C2 if the
conjunction of formulae defining Cl is a proper subset of
the conjunction defining C2 : Cl < C2. For example the
classCldefinedby :name(p,n) 8 string(n) issmaller
than the class C2 defined by : name (p, n) 8 s tr i ng (n)
8 abs (p, x) 8 rea I (x1. Class CT2 is larger than class
Cl.

It should be clear that there may be several classes of (maybe
incomplete) objects corresponding to the same object structure.
In the example above, Cl and C2 are two classes of incomplete
points corresponding to the definition given in Section 2.1.

Definition : Two objects belonging to the same class are
equivalent. The same conjunction of formulae hold for all
the objects in a particular class (i.e they comply with the
same set of constraints).

Incomplete objects are taken into account here since all potential
and relevant classes are produced. An object can therefore be
attached to exactly one maximal class at any time. Such a class is
defined by the largest conjunction of satisfiable atomic formulae
for the object. The class Cl above contains all points with
unknown y-coordinate.

Inconsistent objects are also taken into account here because the
negation of a constraint defines also an object class. In the
following, a decidable constraint is a constraint that can be
proved true or false using the actual state of the system,
including the data it&ns stored in the design databases. This is
consistent with the notion of satisfiability of formulae in first-
order logic. The equivalence classes of objects are extended here
to take this into account. A decidably false constraint defties an
object class in a similar way than decidably true constraints do.

A specific element called prototype is maintained for each class.
It is produced automatically with the first object instance in the
class and maintained dy-namically to reflect the updates perfor-
med on the objects belonging to the class.

Prototypes model in CADB dynamic data structures and values.
They form a database abstract where errors on the object
struares are prohibited but property value errors are permitted.

2.3 Automatic consistency control

The idea used here is that considering the initial schema of an
objet, it is possible to produce automatically all the potential
structures of the sub-objects it may contain. The only legal
structures are those produced thii way. The incremental design
of an object can therefore be controlled automatically by veri-
fying that all the operations on a sub-object transfer it from a
legal object class (i.e structure) to another legal class (i.e
structure).

The paradigm used to control the update operations on the
design objects consists in detecting the potential inconsistencies
resulting from the user actions as soon as possible. The con&d is
devided in two phases. Tbe first one is the certification of the
operations. The second is their validation.
The certification controls the operations by first applying them
on the prototypes of the objects involved.
The validation makes the operations effective on the actual
database items.

Definition : An operation on the prototype of an object X
belonging to class Cl is certified iff its application on its
prototype produces an object X’ belonging to a class C2
suchthat:Cl = C?or Cl<C2.

I+oceedings of the 13th VLDB Conference, Brighton 1987 495

Lf one of the two following cases occurs, an update operation is
not certified :

- an undefined object or constraint has been referenced,
- a constraint is no longer satisfied by the object.

2.4 Characterizing object classes

We define in this section the paradigm for adapting the concept
of certification to the design environment. It includes :

- optimization rules that correspond to the knowledge
available in the application domain. They are used to
reduce the number of object classes to only the relevant
ones and thus optimize the automatic characterization of
an object class when it is modified. This characterization
will result in the acceptance or rejection of the operation.
In the first case, the modified object belongs to a legal
&SS. In the second case it belongs to an illegal class
(Section 3).
- operating rules for the control of the designers opera-
tions. They allow a refinement of the order relation “<‘I
defined in Section 2.2 between classes produced from a
particular object schema. It will determine the validity of
an update operation. An operation will be certified only if
the object prototype involved is transfered to a larger class
(Section 4).

These rules depend on the application semantics and on the
object schemas. They are stored in the system’s knowledge bases.
They allow an automatic interaction between the Validation
Processor and both the designers operations and the application
data (Figure 1).
The certification of the users operations involves processing
them on the prototypes for the objects involved. Characterizing
an object class is therefore performed for every update operation.
Depending on this is the correctness of the entire operation. It
must therefore be very efficient. It depends on the number of
classes to examine. The optimization rules mentionned above
allow a significant reduction in their total number. Further, the
result of an operation on a prototype is stored so that non
certified operations are not tested later for equivalent objects.

2.5 Manipulating object structures

The need for dynamic data structures is widely recognized as a
basic requirement for advanced database applications such as
engineering design. CADB supports dynamic object schemas in
order to modify existing object structures or define new objects.
The creation of composite objects is also allowed. Elementary or
predefined objmts are supposed to be defined by composition of
basic objects like integers, real, character strings, pixels and bit
strings that are not subject to structure changes.
Inheritance of the object instances among classes requires here
new mechanisms enforcing the correct propagation of the schema
modifications on the object instances where appropriate.
The modifications are modeled as finite sequences of reduction,
augmentation, connection and product operations. fntuitively.
they model the deletion and addition of properties, links or
constraints to an object schema and the composition of two or

more existing schemas to define a composite object.
Let Cl and G! be two object class definitions and F any
conjunction of atomic first-order formulae.

The reduction of Cl by F (noted Cl F) defines the objects
satisfying the formulae defining Cl except those in F.
‘he augmentation of Cl with F (noted Cl + F) defines the
objects satisfying all formulae in Cl and F.
The connection of Cl and C2 (noted Cl x C2) defines the
objects satisfying both the formulae defining Cl and C2.
The product of Cl by C2 (noted Cl * C2) defines the objects
satisfying the formulae involved in Cl and C2 and a specified
condition C. It is defined only if the definitions of Cl and C2 are
not disjoint.
Further details and examples are given in [13].
It seems predictable that the integration of these operations with
the automatic consistency controls presented above will provide a
powerful and flexible support for the manipulation of dynamic
Ot+%tS.

These aspects are detailed here for CAD applications. Simple
examples show their usefuleness and practicability. hnplemen-
ting this approach in other application areas seems possible but
requires further investigations.

3. AUTOMATIC CHARACTERIZATION OF OBJECT
CLASSES

A coarse computation of the closure set of all conjunctions of the
atomic formulae belonging to an object schema would lead to a
large number of irrelevant classes. They may be meaningless
because inconsistent (e.g defining the length of a point) or
because the objects are forced in the application to conform to
specific configurations (e.g segments with at least abs and org
points). This may be the case when the object models used do
not prohibit specific inconsistencies (weak constraints allowing
for example incomplete objects) or when they are in contrast
used as strong integrity constraints (e.g no undefined properties).

Recall the example defined above for Point and Segment ob-
jects :
point(p) :- name(p,n) 8 string(n) 8 abs(p,x)

8 rea I (x) 8 ord(p,y) 8 rea I (y)
segment (s) :- name(s,n) 8 string(n) 8 org(s,o)

8 point(o) 8 ext(s,e) 8, point(e)
8 Igk, I) 8 real(l)
8 not (conf (o,e))
8 equal (I ,dist (o,e)).

The length of a segment can here bc calculated by d i s t Co, e) ,
i.e when the two points o and e are known. The class defined by :
name(s,n) 8 string(n) 8, Igk, I) 8 real (I) istherefore
irrelevant here.

The following rules are used to characterize the relevant claws.
They are implemented as part of the system standard features for
consistency controls. Further, they extend the approach descri-
bed in [14] by providing a systematic knowledge-based constraint
enforcement paradigm for derived and inter-dependent object
properties.

496 Proceedings of the 13th VLDB Conference, Brighton 1987

R1 - class definitions must include the type constraints
corresponding to their properties :

CAD systems usually provide upward design methodolo-
gies. Thus, classes including a property definition and the
negation of its particular type are discarded : a segment
cannot belong to the class defined by :
segment (s) :- name(s,n) 8 string(n)

8 org(s,o) 8 not(point(0)).
Further, type checking for objects and their properties is
systematically performed for each instantiation and modifi-
cation. Relevant classes therefore include only those that
have for every object or property the corresponding type :
segment (s) :- org(s,o) is discarded because
po i n t (0) is missing. In contrast,
segment (s) :- org(s,o) 8 point (0) is relevant.

R2 - class definitions must include the specification rules for the
name of their instances :

Object occurences are given a unique identifier. The
instantiation of name (x, n) is therefore necessary. To-
gether with rule RI above, this implies that : name (x, n) 8
s t r i ng (n) is necessary for each object class. All other
classes are discarded.

R3 - class definitions having derived properties must include the
specification rules for all their arguments :

The length of a segment may be computed iff the org and
ext points are known. This rules discards ail the classes
involving constraints or functions with missing arguments :
segment (s) :- name(s,n) 8 string(n) 8
not (conf (o,e)) is discarded.

R4 - class definitions must include all the decidable constraints
corresponding to their properties :

CADB implements an immediate consistency control. If a
constraint is decidable because its arguments are instantia-
ted, it must be present in the class definition. The class
defined by :
segment Ls) :- name(s,n) 8 string(n)

8 org(s,o) 8 point(o)
8 ext(s,e) 8 point(e)

is therefore discarded. The org and ext point being instan-
tiated, the constraint : not (conf (0, e) 1 should be enfor-
ced.
All decidable constraints must be evaluated. In CADB,
they correspond to weak consistency rules. The following
definitions are therefore relevant :
segment (s) :- name(s,n) 8 string(n)

8 org(s,o) 8 point(o)
8 ext(s,e) 8 point (e)
8 not (conf (o,e))
8 Ig(s,l) 8 real (1)
8 equal (I ,dist (.o,e))

segment (s) :- name(s,n) 8, string(n)
8 org(s,o) 8 point(o)
8 ext(.s,e) 8 point(e)
8 conf (o,e) 8 Ig(s, I)
8 real (I)
8 equal (I ,dist (o,e))

RS - class definitions must include all their decidable links :

CADB implements an automatic derivation of infonna-
tions. Thus, if all the arguments of a link such as
dist(o,e) are instantiated, it is automatically derived.
The class defined by : segment (s) : - name (s,n) 8
string(n) 8 org(s,o) 8 point(o) 8 ext(s,e) 8
point(e) 8 not (conf (o,e)) is discarded because
although decidable the conjunction : I g (s, I 1 8 rea I (I)
8 equal (I ,dist(o,e)) is missing.

R6 - class definitions must include only their defined links :

A link acts in CADB as a derivation rule. It corresponds
therefore to a strong consistency rule. This eliminates the
classes involving the negation of a link. The class defined
by :
segment (s) :- name(s,n) 8 string(n)

8 org(s,o) 8 point(o)
8 ext(s,e) 8 point(e)
8 not (conf (o,e))
8 Ig(s,l) & real (I)
8 notcequal (I,dist(o,e)))

is therefore discarded.

R7 - class definitions must include the function defining every
link :

This rule discards all classes involving a property implemen-
ted with a missing link. The class defined by :
segment (s) :- name(s,n) 8 string(n)

8 org(s,o) 8 point(o)
8 ext(s,e) 8 point(e)
8 Ig(s,l) 8 real(l)

is discarded because the term : equal (I,dist(o,e)) is
missing.

Using these seven rules to derive the closure set of the relevant

“W
s leads to the following five classes (instead of the potential

2 classes corresponding to the ten basic segment properties and
their negations) :

Cl - the class of ail the segments the existence of which is
known :
segment(s) :- name(s,n) 8 string(n)

C2 - the class of all the segments the origin point of which is
known :
segment (s) :- name(s,n) 8 string(n)

8 org(s,o) 8 point(o)

C3 - the class of all the segments the end point of which is
known :
segment (s) :- name(s,n) 8 string(n)

8 ext(s,e) 8 point(e)

c4 - the class of all the segments the origin and end points of
which arc known and identical :
segment(s) :- name(s,n) 8 string(n)

8 org(s,o) 8 point(o)
8, ext(s,e) 8 point(e)
& Ig(s,l) 8 real(I)
8 equal (I,dist(o,e))
8, notcconf (o,e))

Proceedings of the 13th VLDB Conference, Brighton 1987 497

(3lasres Cl to Q include all the segments that are consistent and
incomplete. Class C4 includes all the complete and inconsistent
segments. Class c5 includes all the complete and consistent
segments.

4. AUTOMATIC CONSISTENCY CONTROL

As shown in the precedmg Sections, it is possible to characterize
dynamically the class to which an object belongs from a set of
dames defined automatically. This section details the rules for
the control of the designers operations. They are defined using
the notions of completeness and consistency of the objects
involved. Together with the rules defined in Section 3, they
implement an automatic consistency control of the objects being
modified. They are implemented as part of the system’s standard
capabilities.

The partial order relation between classes defined in section 2.3
is refined to take into account the consistency degree and the
completeoess degree of the objects.

Definiron : An equivalence class Cl is smaller than a class
C2, noted Cl < C2 iff the objects belonging to Cl satisfy
less constraints or have less instantiated properties than
objects in C2. C2 is then larger than Cl.

The total number of satisfiable formulae in Cl will therefore be
smaller than in C2. Classes Cl and C2 defined in Section 3 above
are such that : Cl < C2, because the definition of C2 includes
the term : org (.a, 01 8 po i n t (01 which is not in the definition
ofcl.

Cl : segment (5) :- name(s,n) 8 string(n)
CL? : segment (s) :- namek,n) 8 string(n)

8 org(s,o) 8 point(o)

In the following we refine the notions of completeness and
consistency of objects to implement the certification of opera-
tions. We define for this purpose the degree of completeness and
the degree of consistency of objects in CADB.

4.1 Degree of completeness of an object

Let N be the total number of properties of an object, i.e the
number of atomic first-order formulae in its specification rules.
We say that an object is P-complete or has a degree of complete-
ness P iff it bears P instantiated properties (1~ = PC = N). The
number of undefined properties is therefore N - P. Objects
belonging to class C2 in Section 3 are 2-complete : their name
and origin point are known.

Definition : An object is complete iff it is N-complete.

4.2 Degree of consistency of an object

Let M be the total number of constraints defined for an object.
We say that an object is L-consistent or has a degree of
consistency L iff the total number of undecidable or satisfied
constraints is L. The object therefore bears M - L unsatisfied
constraints.

Recall that unsatisfied constraints (i.e decidably false) define
object dasses. The notion of consistency degree defined here is
therefore weaker than the notion of satisfiability of formulae in
first-order logic. It allows taking the incompleteness of the design
objects into account when checking their consistency without
impeding their incremental design.

Objects in class C4 above (Section 3) are O-consistent because the
only existing constraint : not (conf (0, e) 1 is violated. Objects
belonging to classes Cl to C3 and class C5 are l-consistent
because the constraint : not (con f to, e)) is undecidable or
satisfied.

Definition : An object in CADB is consistent iff no
decidable constraint is violated : it is M-consistent.

4.3 Defining certification

The following rules (R8 to RlO) are stored in the system’s
knowledge base. They define the legal operations with respect to
the degrees of completeness and consistency of the objects
involved and the partial order between classes.

R8 - update operations on the properties of objects are certified
if the consistency degree of their prototype does not
decrease :

Updates may change the objects equivalence class. This
rule permits a consistent modification of objects while
guaranteeing that their consistency degree does not de-
crease.
Stated otherwise, after an update, objects must remain in
the same class or belong to a larger class with respect to the
order relation “cn between classes.

If Ci(Pi,Li) is the class Ci of objects that are Pi-complete
and Li-consistent, an update of an object belonging to
Cl(Pl ,Ll) is

certified if its prototype belongs after the update to
C2(P2,L2) where :

Pl = P2andLl <= L2.
Changing a segment from the class CS to the class C4 is
prohibited. The origin of a segment in C5 cannot be
modified if the constraint : not (conf (0, e) 1 no longer
holds.

R!J - property instantiations are always certified :

CAD systems provide iterative trial and error cycles. De-
signers are therefore allowed in CADB to augment object
properties without immediate consideration for their consis-
tency.

Intantiating properties of an object in Cl(Pl ,Ll) is certified
if its prototype belongs afterwards to a class C2(P2,L2)
such that :

Cl(Pl,Ll) < C2(E’2,L2) and Pl < P2.
For example segments may change from class C2 to class
C4. The end point of a segment in C2 may be instantiated
even if the constraint : not (conf (0, e) 1 does not hold.
The same case applies for classes C2 and C5.

498 Proceedings of the 13th VLDB Conference, Brighton 1987

R10 - object properties may be deinstantiated if the consistency
degree of the object increases :

This rules complements rule RlO. If property instantia-
tions result in constraint violations, the designers are
allowed to undo the instantiations.

The update is certified if the new class C2(P&L2) is such
that :
Cl(Pl,Ll) C C2(P&L2) where : Pl > P2 and Ll < L
Changing segments from class C4 to class C2 or C3 is
allowed (deinstantiation of origin and end points) if their
consistency degree increases.

These rules are examples of expert knowledge that should be
invoked to adjust the certification to the consistency controls in
specific application domains.

Their usefulness comes from their ability to detect a priori the
potential inconsistencies resulting from the update operations
and to automatically compute their side-effects on the object
prototypes. This is a sharp distinction with currently available
data and knowledge base systems (as well as current design
methodologies) since these can evaluate the object completeness
and consistency degrees only after the update operations have
heen performed on the data items. Such features are implemen-
ted here as part of the system’s expertise and provided to the
designers as standard capabilities.

5. CONCLUSION

A new approach for controlling automatically the consistency of
dynamic database objects is presented. It uses both the object
representation models and application independent knowledge.
Incontrast with usual methods, it does not require the exhaustive
control of the operations on the entire database content, nor the
characterization of the minimal subset of objects affected by an
update operation.
It relies on the dynamic characterization of the objects equiva-
lence classes, defined by the maximal conjunctions of constraints
they actually comply with. Specific representatives for these
classes are used, called the object prototypes, on which the
operations are first applied. This allows the detection a priori of
the potential inconsistencies resulting from the designers opera-
tions on the desired objects. It also allows the automatic compu-
tation of the operations side-effects.
Heuristic rules are defined to optimize the dynamic characteri-
zation of the object relevant classes. Operating rules are also
detailed that define the certification of the update operations.
Altogether, they are implemented as part of the system’s stan-
dard features thus enhancing its ability to manage dynamically
evolving design objects. They also support expert database
capabilities that assist the designers when creating or modifying
the object structures [131.
An update operation is certified if its application on the prototy-
pes of the objects involved does not decrease their consistency
degree. Further, it also takes into account the incompleteness of
the design objects in a unified framework. This is a pessimistic
approach to consistency control in data and knowledge bases.
It is implemented in CADB, a prototype Expert Database System
for CAD. CADB includes two components. A relational data-
base system that maintains the application data and that is used
as a back-end data repository and a knowledge base system that

Proceedings of the 13th VLDB Conference, Brighton 1987

maintains the applicati
in Prolog on

wpecific knowledge. It is implemented
APOLLO workstations. A prototype in OPSS is

also currently designed.
Further research include extensions towards multiple representa-
tions of objects and managing non certified operations.
‘Ihe first objective is to take into account the side-effects of the
update operations on the diverse representations of the objects
through the prototypes of their respective classes.
The second is to cope with non certified operations that the
designer wishes to process although consistency controls have
failed. This involves handlii exceptions in data and knowledge
bases [3].
Further investigations are stiU needed and are currently being
worked out in this area.

111

PI

[31

[41

PI

PI

[71

PI

191

WI

REFERENCES

ADJBA M., NGUYEN G.T.
Information processing for CALV VLSI on a generalized data
management system.
Proc. 10th International Conference on Very Large Data
Bases.
Singapore. August 1984.

BATORY D.S., KIM W.
Modelling Concepts for VLSI CALI Objects.
ACM Transactions on Database Systems.
Vol. 10, Num. 3. September 1985.

BORGIDA A., MITCHELL T.M, WILLIAMSON K.
Learning improved int.&grity constraints and schernas from
exceptions in databases and knowledge bares.
On Knowledge base management systems.
Brodie, Mylopoulos Eds. Springer Verlag. i986.

FAUVET M.C, RIEU D.
CADB : un systeme de gestion de bases & donnees et de
connaissances pour la CAO.
Proc. MICAD ‘87 Conf. Paris (France). February 1987.

JULLIEN C., LEBLOND J., LECOURVOISIER J.
A database interjiace for an integrated CAD system.
Proc. ACM/IEEE 23rd Design Automation Conference.
Las Vegas (Ne). July 1986.

KATZ R.H., ANWARRUDIN M., CHANG E.
Organizing a design database across time.
On knowledge base management systems.
Brodie, Mylopoulos Eds. Springer-Verlag. 1986.

KER!XmERG L.
Proceedings of the 1st International Conference on Expert
Database Systems.
L. Kerschberg Ed.
Charleston (South Carolina). April 1986.

KIM W. et al.
A transaction mechanism for engineering design databases.
Proc. 10th International Conference on Very Large Data
Bases.

Singapore. August 1984.
LORIE R.A, PLOUFFE W.

Complex objects and their use in &sign transactions.
Proc. ACM/IEEE Database Week.
San Jose (Ca.). May 1983.
NGUYEN G.T et al.
A high level interface for an local network database system.
Proc. INFOCOM Conference.
Las Vegas (Ne.). March 1982.

499

[ll] NGUYEN G.T.
Semantic data engineering for generalized databases.
Proc. 2nd International Conference on Data Engineering.
Los Angeles (Ca.). February 1986.

[12] NGUYEN G.T
Quelques fonctionnalires &s bases de donnees avancees.
PhD Dissertation. Universite de Grenoble. June 1986.

[13] NGUYEN G.T, RIEU D.
Supporting dynamic database objects.
Paper submitted for publication.

[14] QIAN X:, WIEDERHOLD G.
Knowledge-based integrity constr&t validation.
Proc. 12th International Conference on Very Large Data
Bases.

Kyoto (Japan). August 1986.
[U] RIEU D.

Modele et foncdonnaliies d’un SGBD pour les applications
CAO.
PhD Dissertation. Institut National Polyechnique de Gre-
noble. July 1985.

[16] RIEU D., NGUYEN G.T.
Semantics of CAD objects for Generalized Databases.
Proc. ACM/IEEE 23rd Design Automation Conference.
Las Vegas (Ne). July 1986.

[17] VASSILIOU Y.
Knowledge-based and database systems : enhancements,
coupling or integration ?
On Knowledge base management systems. Brodie, Mylo-
poulos Eds.
Springer Verlag 1986.

500 Proceedings of the 13th VLDB Conference, Brighton 1987

