
PERFORMANCEEVALUATIONOFANOPERATINGSYZXEM 
TRANSACTIONhtANAGER 

Akhil KUWKZT’ and Michael 9onebraker2 

Lhiversity of Chtifornia 
Brkeleyy, Lh., 94720 

Abstract 
A conventional transaction manager implemented 
by a database management system (DBMS) is corn 
pared against one implemented within an operat- 
ing system (OS) in a variety of simulated situa- 
tions. Models of concurrency control and crash 
recovery were constructed for both environments, 
and the results of a collection of experiments are 
presented in this paper. The results indicate that 
an OS transaction manager incurs a severe perfor- 
mance disadvantage and appears to be feasible 
only in special circumstances. 

1. INTFtODUCTION 
In recent years there has been considerable 

debate concerning moving transaction manage- 
ment services to the operating system This would 
allow concurrency control and crash recovery ser- 
vices to be available to any client of a computing 
service and not just to clients of a data manager. 
Moreover, this would allow such services to be 
written once, rather than individually imple- 
mented within several subsystems. Early propo- 
sals for operating system-based transaction 
managers are discussed in [MITC82, SPEC83, 
BROW8 11. More recently, additional proposals 
have surfaced, e.g: [CHAN86, MUEL83, PU86]. 

On the other hand, there is some skepticism 
concerning the viability of an OS transaction 
manager for use in a database management sys- 
tem Problems associated with such an approach 
have been described in [TRAI82, STON81, STON84, 
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STON85] and revolve around the expected perfor- 
mance of an OS transaction manager. In particu- 
lar, most commercial data managers implement 
concurrency control using two-phase locking 
[GRAY78]. A data manager has substantial seman- 
tic knowledge concerning its processing environ- 
ment; hence, it can distinguish index records from 
data records and implement a two-phase locking 
protocol only on the latter objects. Special proto- 
cols for locking index records are used which do 
not require holding index locks until the end of a 
transaction. On the other hand, an OS transaction 
manager cannot implement such special tactics 
unless it can be given considerable semantic infor- 
mation. 

Crash recovery is usually implemented by 
writing before and after images of all modified . 
data objects to a log Ale. To ensure correct opera- 
tion, such log records must be written to disk 
before the corresponding data records, and the 
name write ahead log (WAL) has been used to 
describe this protocol [GRAY81, REUT64]. Crash 
recovery also benefits from a specialized semantic 
environment. For instance, data managers again 
distinguish between data and index objects and 
apply the WAL protocol only to data objects. 
Changes to indexes are usually not logged at all 
since they can be reconstructed at recovery time 
by the data manager using only the information in 
the log record for the corresponding data object 
and information on the existence of indexes found 
in the system catalogs. An OS transaction 
manager will not have this sort of knowledge and 
will typically rely on implementing a WAL protocol 
for all physical objects. 

As a result, a data manager can optimize both 
concurrency control and crash recovery using spe- 
cialized knowledge of the DBMS environment. The 
purpose of this paper is to quantify the expected 
performance difference between a DBMS and an OS 
transaction manager. Consequently, we discuss in 
Section 2.1 the assumptions made about the simu- 
lation of a conventional DBMS transaction 
manager. In Section 2.2 we turn to discussing the 
environment assumed in an OS transaction 
manager and then discuss intuitively the 
differences that we would expect between the two 
environments. Section 3 presents the design cf 
our simulator for both environments, while Sec- 
tion 4 turns to a collection of experiments using 
our simulator. Section 5 discusses one approach 
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for making the OS semantically “smarter”, and 
Section 6 concludes the paper. 

2. Transaction Management Approaches 
In this section, we briefly review schemes for 

implementing concurrency control and crash 
recovery within a conventional data manager and 
an operating system transaction manager and 
highlight the main differences between the two 
alternatives. 

2.1. DBMS Transaction Management 
Conventional data managers implement con- 

currency control using one of the following algo- 
rithms: dynamic (or two-phase) locking [GRAY’?B], 
time stamp techniques [REEDye, THOM791, and 
optimistic methods [KUNGBl]. 

Several studies have evaluated the relative 
performance of these algorithms. This work is 
reported in [GALL82, AGRA85b, LIN83, CARE84, 
FRAN83, TAY84]. In [AGRA85a] it has been pointed 
out that the conclusions of these studies were 
contradictory and the differences have been 
explained as resulting from differing assumptions 
that were made about the availability of resources. 
It has been shown that dynamic locking works best 
in a situation of limited resources, while optimistic 
methods perform better if an infInite-resource 
environment is assumed. Dynamic locking has 
been chosen as the concurrency control mechan- 
ism in our study because a limited-resource situa- 
tion seems more realistic. The simulator we used 
assumes that page level locks are set on 2048 byte 
pages on behalf of transactions and are held until 
the transaction commits. Moreover, locks on 
indexes are held at the page level and are released 
when the transaction is finished with the 
corresponding page. 

Crash recovery mechanisms that have been 
implemented in data managers include write- 
ahead logging (WAL) and shadow page techniques. 
These techniques have been discussed in [HAER83, 
REUT84]. From their experience with implement- 
ing crash recovery in System R, the designers con- 
cluded that a WAL approach would have worked 
better than the shadow page scheme they used 
[GRAYal]. In another recent comparison study of 
various integrated concurrent control and crash 
recovery techniques [AGRA85b 7 , it has been shown 
that two-phase locking and write-ahead logging 
methods work better than several other schemes 
which were considered. In view of this a WAL tech- 
nique was simulated in our study. We assume that 
the before and after images of each changed 
record are written to a log. Changes to index 
records are not logged, but are assumed to be 
reconstructed by recovery code. 

2.2. OS Transaction Management 
We assume an OS transaction manager which 

provides transparent support for transactions. 
Hence, a user specifies the beginning and end of a 
transaction, and all objects which he reads or 

writes in between must be locked in the appropri- 
ate mode and the locks held until the end of the 
transaction. Clearly, if page level locking is 
selected, then performance disasters will result on 
index and system catalog pages. Hence, we 
assume that locking is done at the subpage level, 
and assume that each page is divided into 100 byte 
subpages which are individually locked. Conse- 
quently, when a DBMS record is accessed, the 
appropriate subpages must be identified and 
locked in the correct mode. 

This particular granule size was chosen 
because it is close to the one pro 
transaction manager for the 801 P 

osed in an OS 
CHAN86]. The 

suitability of this granule size was further 
conArmed by an experiment comparing the perfor- 
mance of the OS transaction simulator at several 
different granularities. This experiment is dis- 
cussed in Section 3. 

Furthermore, the OS must maintain a log of 
every object written by a transaction so that in 
the event of a crash or a transaction abort, its 
effect on the database may be undone or redone. 
We assume that the before and after images of 
each 100 byte subpage are placed in a log by the 
OS transaction manager. These entries will have 
to be moved to disk before the corresponding dirty 
pages to obey the WAL protocol. 

2.3. Main Differences 
The main differences between the two 

approaches are: 
the DBMS transaction manager will acquire 

fewer locks 
the DBMS transaction manager will hold 

some locks for shorter times 
the DBMS will write a much smaller log 

The data manager locks 2048 byte pages while 
the OS manager locks 100 byte subpages; hence, 
the DBMS solution will acquire far fewer locks and 
spend less CPU resources in lock acquisition. 
Moreover, the DBMS sets only short-term locks on 
index pages while the OS manager holds index 
level locks until the end of a transaction. The 
larger granule size in the DBMS solution will inhi- 
bit parallelism however the shorter lock duration 
in the indexes will have the opposite effect. 

Moreover, the log is smaller for the DBMS 
transaction manager because it only logs changes 
made to the data records. Corresponding updates 
made to indexes are not logged because each 
index can be reconstructed at recovery time from 
a knowledge of the data updates. For example, 
when a new record is inserted, the data manager 
does not enter the changes made to any index into 
the log. It merely writes an image of the new 
record into the log along with a header, assumed 
to be 20 bytes long, indicating the name of the 
operation performed. On the other hand, the OS 
transaction manager will log the index insertions. 
In this case half of one index page must be rear- 
ranged for each index that exists, and the before 
and after images of about 10 subpages must be 
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logged. 
These difTerences are captured in the simula- 

tion models for the data manager and the OS tran- 
saction manager described in the next section. 

3. SIMULATION MODEL 
A 100 Mb database consisting of 1 million 

loo-byte records was simulated. Since sequential 
access to such a database wilI clearly be very slow, 
it was assumed that all access to the database 
takes place via secondary indexes maintained on 
up to 5 fields. Each secondary index was a 3-level 
B-tree. To simplify the model it was assumed that 
only the leaf level pages in the index will be 
updated. Consequently, the higher level pages are 
not write-locked. The effect of this assumption is 
that the cost associated with splitting of nodes at 
higher levels of the B-tree index is neglected. 
Since node-splitting occurs only occasionally, we 
beheve this will not change the results 
significantly. 

The simulation is based on a closed queuing 
model of a single-site database system The 
number of transactions in such a system at any 
time is kept fixed and is equal to the multipro- 
gramming level, MPL, which is a parameter of the 
study. Each transaction consists of several read, 
rewrite, insert and delete actions; the exact 
number is generated according to a stochastic 
model described below. Modules within the simula- 
tor handle lock acquisition and release, buffer 
management, disk I/O management, CPU process- 
ing, writing of log information, and commit pro- 
cessing. CPU and disk costs involved in traversing 
the index and locating and manipulating the 
desired record are also simulated. 

In order to simulate an interactive transac- 
tion mix, two types of transactions were generated 
with equal probability. The number of actions in a 

short transaction was uniformly distributed 
between 10 and 20. Long transactions were defhred 
as a series of two short transactions separated by 
a think time which varied uniformly between 10 
and 20 seconds. A certain fraction, fra~~l, of the 
actions were updates and the rest were reads. 
Another fraction, J?YZ~$ of the updates were 
inserts or deletes. These two fractions were drawn 
from uniform distributions with mean values equal 
to rn.oo!ifyI and moo!+&42, respectively, which were 
parameters of the experiments. 

Every action identifies a single record through 
one secondary index and then reads, rewrites, 
deletes, or inserts it. Rewrite actions are dis- 
tinguished from inserts and deletes because the 
cost of processing them is different. It is assumed 
that a rewrite action affects only one key. How- 
ever, an insert or a delete action would cause all 
indexes to be updated. The index and data pages 
to be accessed by each action are generated at 
random Assuming 100 entries per page in a per- 
fectly balanced 3-level B-tree index, it follows that 
the second-level index page is chosen at random 
from 100 pages, while the third-level index page is 
chosen randomly from 10,000 pages. The data 

P 
age is chosen at random from 71,000 pages. 
Since the data record size is 100 bytes and the 

fitl-factor of each data page is 70%, there are 
7 1,000 data pages.) 

For each action, a collection of pages must be 
accessed. For each page the first step is to 
acquire appropriate locks on the page or sub- 
pages. If a lock request is not granted because 
another transaction holds a conflicting lock, the 
requesting transaction must wait until the 
conflicting transaction releases its lock. Deadlock 
detection is implemented through a timeout 

CPU cost of insert or delete action 
cost of acquiring lock 
CPU cost of disk I/O 
processing power of CPU in MIPS 
CPU overhead of presentation services 
CPU cost of read action 
CPU cost of rewrite action 
time for one disk I/O in mili set 

18000 instructions 
2000 instructions 
3000 instructions 

12000 instructions 

numdisks 
num+nokx 

number of disks 
number of indexes 

Table 1: Major parameters of the simulation 
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mechanism+ Next a check is made to determine 
whether the requested page is in the buffer pool. If 
not, a disk I/O is initiated and the job is made 
“not ready”. When the requested page becomes 
available, the CPU cost for processing the page is 
simulated. This cycle of lock acquisition, disk I/O 
(if necessary), and processing is repeated until all 
pages in a given action have been processed. The 
amount of log information that will be written to 
disk is computed for the action and the time 
taken for this task is accounted for. When all 
actions for a transaction have been performed, a 
commit record is written into the log in memory 
and I/O for this log page is initiated. As soon as 
this commit record is moved to disk the current 
transaction is complete and a new one is started. 
Checkpoints [HAER83] are simulated every 5 
minutes. 

Table 1 lists the major paran&.ers of the 
simulation and their default values. The parame- 
ters that were varied are listed in Table 2. Here 
the default value of each parameter is indicated as 
well as the range of variation simulated. For 
example, the number of disks available, numdisks, 
was varied between 2 and 10 with a default value 
of 2. The CPU cost of each action was deflned in 
terms of the number of CPU instructions it would 
consume. For example, cpu-lock, the cost of exe- 
cuting a lock-unlock pair, was initially set at 2000 
instructions and reduced in intervals down to 200 
instructions. 

Table 2: Range of variation of the parameters 

The main criterion for performance evalua- 
tion was the overall average transaction 
throughput rate, thwrughput defined as: 

?bta+! number of tramw&ons campleted 
zbtal time taken 

Another criterion, perfmmame gap, was used to 
express the relative difference between the perfor- 
mance of the two alternatives. performa nce gap is 
deflned as: 

(thTozLghPbas - throughput& X 100 
throughpzltm 

+The maximum time allocated to a transaction is a 
function of its number of actions and the maximum 
time for an action denoted by the variable 
rnaz,action,lm. The best value for max-action-Len 
is determined adaptively by varying it over a range of 
values and choosing the one which maximizes transac- 
tion throughput. 

where 
through@& throughput for the OS transaction 
simulator 
thToughpZltDBm: throughput for the DBMS tran- 
saction simulator 

In order to determine the best locking granu- 
larity for the OS transaction manager, its 
throughput was determined for 4 different granule 
sizes with the other parameters Axed at their 
default values given in Table 1. The granule size 
was set at 1 record (100 bytes), 2 records (200 
bytes), half-page (1024 bytes) and full-page (2048 
bytes). The corresponding throughput rates are 
shown in Table 3, and it is evident that the OS 
transaction manager performs best with a granule 
size of 100 bytes. Notice that a granule is the 
basic unit for both locking and logging. When the 
granule size is increased, the cost of locking 
declines because fewer locks are acquired while 
the cost of writing the log increases since the 
before and after images become larger. This exper- 
iment shows that the net effect of having a coarser 
granularity is an increase in transaction process- 
ing cost. Hence, the best granule size (100 bytes) 
was used in the subsequent experiments. 

In the DBMS transaction manager perfor- 
mance is not very sensitive to granule size. Mov- 
ing to record level locking would allow the DBMS to 
lock smaller data objects; however, index locking 
would be unaffected. Hence, some improvement 
would be expected. We chose page level locking 
because it is po 

P 
ular in current commercial sys- 

tems (e.g. DB2 DATE841). Repeating the experi- 
ments for record level granularity is left as a 
future exercise. 

Table 3: Throughput of the OS transaction manager 
for various locking granularities 

4. EXPERIMENTAL RESULTS 
In this section we discuss the results of vari- 

ous experiments which were conducted to com- 
pare the performance of the two alternatives. 

4.1. Varying Multiprogramming Level 
In the first set of experiments, the multipro- 

gramming level was varied between 5 and 20. The 
number of disks, numdisks was set at 2 and the 
cost of executing a lock-unlock pair, cpu-lock was 
2000 instructions. Modify1 was kept at 25 which 
means that on the average, 25% of the actions 
were updates and 75% were reads. Modify2 was set 
to 50 indicating that on the average half the 
updates were rewrites and the remainder inserts 
or deletes. The throughput rate for various mul- 
tiprogramming levels is shown in Figure 1. 
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The figure shows that the throughput rises 
sharply when the multiprogramming level 
increases from 5 to 6 due to the increase in disk 
and CPU resource utilization. The improvement in 
throughput, however, tapers off as MPL increases 
beyond 15 because the utilization of the I/O sys- 
tem saturates. The figure also shows that the data 
manager consistently outperforms the OS alterna- 
tive by more than 20%. When MPL is between 15 
and 20, the performance gap is 27%. This gap 
results from increased contention for the indexes 
and the extra cost of writing more information 
into the log. The OS transaction manager writes a 
log which is approximately 30 times larger than 
that of the data manager. 

4.2. Varying Transaction Mix 
In order to examine how the transaction mix 

affects the performance of the two alternatives, 
modiJy1, the average fraction of modify actions 
(i.e., the sum of rewrite, delete and insert actions) 
as a percentage of the total number of actions was 
varied and the corresponding throughput deter- 
mined. The value of modify1 affects the logging 
activity in the system and consequently, it was 
also expected to alter the relative performance of 
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Figure 1: Throughput as a function of 
multiprogramming level 
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the two alternatives. 
Mod@& 1 was varied between 5 and 50, while 

the multiprogramming level was kept at 15, and 
the cost of setting a lock was 2000 instructions. 
The average throughput as a function of WKJ&.~ 
is shown in Figure 2. The Agure shows that 
throughput drops almost linearly with increasing 
modify1 in both cases, although the magnitude of 
the slope is much greater for the operating system 
alternative. When the percentage of modify opera- 
tions is 5, the performance gap between the data 
manager and the OS transaction manager is small 
(7%). However, the gap widens as modify1 
increases and reaches 47% when mdi.2 is 50 
percent. 

There are two reasons for this behavior. First, 
lock contention is lower when modify1 is small. 
Such contention occurs when one transaction 
tries to write-lock an object which is already 
read-locked by another transaction or when an 
attempt is made to lock an object which is write- 
locked by another transaction. When the percen- 
tage of modify actions is small, fewer write-locks 
are applied and hence contention is reduced. 
Secondly, since fewer objects are write-locked, the 
amount of data logged for crash recovery purposes 
is also lower. Both these factors beneflt the OS 
alternative more than they do the data manager. 
Therefore, the relative performance of the OS 
transaction manager improves. 

These experiments show that the transaction 
mix has a drastic effect on the relative perfor- 
mance of the two alternatives being considered. It 
appears that the OS transaction manager could be 
viable when the proportion of updates is low (say, 
around 10%). Conversely, when the fraction of 
updates is high, a severe penalty is incurred by 
performing transaction management within the 
OS. 

4.3. High Conflict Situation 
The next set of experiments was conducted to 

see how the two alternatives behave when the level 
of conflict increases. Reducing the size of the 
database increases conflict since the probability 
that two concurrent transactions will access the 
same object rises. Therefore, database size was 
used as a surrogate for conflict level, and the 
corresponding thmughput measured accordingly. 
The transaction size remained as before while the 
size of the database was reduced in intervals from 
100 Mb to 6.4 Mb. As the database shrinks, the 
index continues to occupy three levels but with a 
reduced number of entries per page. 

The multiprogramming level was kept at 10 
and modify1 was 25 percent. Figure 3 shows the 
behavior of the two alternatives for various data- 
base sizes. The database size is plotted on the X- 
axis in a logarithmic scale while the through@ 
appears on the Y-axis. 

In both cases, through@ increases as the 
database becomes larger. Furthermore, the 
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Figure 2: Throughput as a function of Figure 3: Transaction throughput for various 
transaction mix database sizes 

performance gap widens from 26% for a 100 Mb 
database to 50% for a 6.4 Mb database. This means 
that the performance of the OS transaction 
manager drops more rapidly than that of the data 
manager. The widening performance gap is due to 
a faster increase in contention within the OS since 
locks on the index pages are held for a longer 
duration. This factor overshadows any advantages 
that the OS alternative gets from applying finer 
granularity locks. This experiment illustrates that 
in high-conflict situations the performance of the 
OS alternative becomes unacceptable. 

4.4. Adding More Disks 
With 2 disks and a 2 MIPS CPU the system is 

I/O-bound. To make it less I/O-bound, the number 
of disks, numdisks was increased in intervals from 
2 to 10, and the thmmghpzlt determined. MPL was 
kept at 20 and cpu,lock was made equal to 2000 
instructions. The average throughput as a func- 
tion of the number of disks is plotted in Figure 4. 

Two observations should be made. First, as 
numdisks is increased, the throughput curve gra- 
dually flattens out as the system becomes CPU- 
bound. Secondly, with 2 disks the performance 
gap is 2’7% while with 10 disks it widens to 60%. 
This means that the performa nce gap in a CPU- 
bound system is twice as large as in an I/O-bound 

system When the system is I/O-bound the gap is 
mainly due to the OS transaction manager having 
to write a larger log, thus consuming greater I/O 
resources. On the other hand, when the system is 
CPU-bound, the gap is explained by the greater 
CPU cycles that the OS transaction manager con- 
sumes in applying finer granularity locks. 

4.5. Lower Cost of Locking 
The experiments described above show that 

the OS transaction manager consumes greater 
CPU resources than the data manager in setting 
locks because it has to acquire more locks. In this 
section we have varied the cost of lock acquisition 
in order to examine its impact on the performance 
gap. Basically, the cost of executing a lock-unlock 
pair, originally 2000 CPU instructions, was 
reduced in intervals to 200 instructions. The pur- 
pose of this experiment was to evaluate what 
beneflts were possible if cpu-Lock could be 
lowered, say by hardware assistance. 

It is obvious that a lower cost of locking would 
improve system throughput only if the system 
were CPU-bound. This was done by increasing the 
number of disks to 8, and the multiprogramming 
level was kept at 20. Figure 5 shows the 
through@ of the two alternatives for various 
values of cpu-Lock. The performance of the OS 
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Figure 4: Effect of increasing disks on throughput 

transaction manager improves as cpu,lock is 
reduced while the data manager performance 
changes very marginally. Consequently, the perfor- 
trance gap declines from 54% to 30% as cpu,lock 
falls from 2000 instructions to 200 instructions. In 
the case of the data manager, the cost of acquir- 
ing locks is a very small fraction of the total CPU 
cost of processing a transaction; hence, a lower 
cptdock does not make it significantly faster. On 
the other hand, since the OS transaction manager 
acquires approximately flve times as many locks as 
the data manager this cost is a significant corn 
ponent of the total CPU cost of processing a tran- 
saction and reducing it has an appreciable impact 
on its performance. 

These experiments show that a lower 
cpu-lock would improve the relative performance 
of the OS transaction manager in a CPU-bound 
situation. However, inspite of this improvement, 
the data manager is still 30% faster. 

4.6. Buffer Size and Number cif Indexes 
Two more sets of experiments were done to 

examine how the buffer size and the number of 
indexes affect the relative performance of the two 
alternatives. In both sets, MPL was 15, and 
modify1 and modify2 were 25 and 50 respectively. 
The buffer size which was 500 pages in the previ- 
ous experiments was changed to 250, 750, and 
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Figure 5: Effect of cost of locking on throughput 

1000 pages. Table 4 shows the average transaction 
throughput as a function of buffer size for the two 
situations. The relative difference between the 
performance of the two alternatives is approxi- 
mately 28% in all cases. Therefore, the buffer size 
does not seem to change the relative performance 
of the two transaction managers. 

Table 4: Throughput for various buffer sizes 

In all of the experiments above, the number of 
indexes was kept at 5. In the next set of experi- 
ments the parameter num&dez was varied to see 
how it affects the pe@muz nce gap. Table 5 shows 
the average transaction throughputs and the per- 
formance gap for the two alternatives when 
num&dex is varied from 1 to 5. When num&dez is 
5 the perfonna nce gap between the two alterna- 
tives is 28% whereas with only one index it reduces 
to 9%. As described earlier this occurs because alI 
the indexes have to be updated for insert and 
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delete actions. With fewer indexes the updating 
activity drops and fewer locks have to be acquired; 
therefore, the performance gap narrows. This 
shows that if the number of indexes on the data- 
base is reduced, the relative performance of the 
OS transaction manager improves. 

another experiment the number of indexes, 
num&dex was set to 1. In this case the perfor- 
mance gap declined from 9% to 4%. Again, only a 
fraction of the performance gap is the result of 
inferior lock management on the part of the OS. 

6. CONCLUSION 

Table 5: Throughput for varying number of indexes 

5. ADDING SEXANTICS TO TI-E OS 
In section 2 a qualitative comparison of the 

main differences between the two approaches was 
given. The experiments of Section 4 have illus- 
trated that these factors translate into a perfor- 
mance go.. between the two alternatives and the 
magnitude of this gap changes in various situa- 
tions. Clearly, if enough semantics could be built 
into the OS transaction manager the performance 
gap would disappear . Additional semantics may be 
provided to varying degrees and we would obvi- 
ously expect to see the performance gap shrink as 
the semantics becomes more complex. 

Although a detailed treatment of the effect of 
semantics on the performance of the OS solution 
is beyond the scope of this paper, we have simu- 
lated a logical first step in this direction. In par- 
ticular, the OS could provide a facility to distin- 
guish data objects from indexes; thereby allowing 
it to hold only short-term locks in the index. Con- 
sequently, the OS transaction simulator was 
modified so that it would release index locks 
immediately upon Anishing the processing of an 
index page. Experiments were then performed to 
see how this would affect the performance gap and 
the results of these experiments are discussed 
below. 

First, the performance of the modified OS 
transaction simulator was compared against the 
DBMS system at a multiprogramming level of 20 
with nzlmdisks being set alternately to 2 and 8. 
This was done to examine the behavior in both an 
I/O-bound and a CPU-bound situation respec- 
tively. In the former case, the performance gap 
between the OS and the data manager decreased 
from 27% to 25%. In the latter case it fell from 
55% to 48%. This shows that the improvement was 
more significant in the CPU-bound environment; 
however, a wide performance gap still remains. 

Second, two situations of still higher conten- 
tion in the indexes were considered to see how this 
would affect the performance gap. In both cases 
MFL and nwndisks were set to 15 and 2 respec- 
tively. In one experiment modify1 was changed to 
37.5% from its default value of 25%. The perfor 
munce gap reduced from 38% to 35%. Finally, in 

6.1_ Implications for Feasibility 
The performance of an OS transaction 

manager was compared with that of a conventional 
data manager in a variety of situations. With few 
exceptions, the data manager uniformly outper- 
formed the OS transaction manager by more than 
20%. The effect of several important parameters on 
the relative performance of the two alternatives 
was studied and analyzed. It was found that the OS 
transaction manager is viable when: 

the fraction of modify actions is low 
number of indexes on the database is low 
conflict level is low 

If none of the above conditions hold, then the 
performance of the OS transaction manager is 
substantially worse than its DBMS counterpart, 
typically by 30%. Hence, this is the performance 
penalty a user of an OS transaction manager must 
be prepared to pay for the convenience of not hav- 
ing to write the tedious transaction management 
code. 

6.2. Future Directions 
It is evident from our experiments that in 

order to make the operating system solution really 
viable it is necessary to provide the OS transaction 
manager with increased semantic knowledge per- 
taining to the processing environment. Such 
semantics must enable the OS transaction 
manager to distinguish between data and index 
records so that more efficient locking can be per- 
formed. Additionally, a facility has to be provided 
for the user to define the structure of the index 
pages so that OS logging can be optimized. Even 
so, index records would still be logged and a per- 
formance gap would be anticipated. Future work is 
anticipated to quantify its magnitude. Another 
possibility is to assume hardware support for lock- 
ing that is available to the OS but not the DBMS. 

Lastly, yet another optimization is to modify 
the B-tree index and implement it using forward 

P 
ointers 
BLAS87]. 

to chain all the entries on a page 
An insert operation into such a struc- 

ture would be performed by adding a new entry 
into an empty slot on the correct page and includ- 
ing it in the pointer chain. Similarly, a delete 
operation would require either modifying the 
chain to exclude the entry to be deleted or merely 
invalidating the entry. This would reduce the 
amount of data to be shifted every time such an 
operation takes place and, consequently, reduce 
the amount of data that has to be write-locked 
and logged by the system albeit at a higher cost 
of maintaining the structure. We expect to 
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consider these alternatives in detail in future 
work. 
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