
Managlng Change in a Computer-Aided Design Databane’ 

R. H. Katz and E. Chang 

Computer Science Division 
Electrical Engineering and Computer Science Department 

University of California, Berkeley 
Berkeley, CA 94720 

Abstract: Object-oriented concepts can make a design database more 
reactive to changes in its contents. By embedding change semantics 
in the database model, the design engineer can be relieved of manag- 
ing the detailed effects of changes. However, mechanisms are needed 
to limit the scope of change propagation and to unambiguously iden- 
tify the objects to which propagated changes should apply. We pro- 
pose new mechanisms, based on group check-in/check-out, browser 
contexts and paths, configuration constraints, and rules, to support a 
powerful automatic change capability within a design database. 

Key Words and Phrases: Object-oriented data models; Computer- 
aided design databases; Inheritance; Change propagation; Constraint 
propagation 

1. Introduction 

Object-oriented [GOLD831 concepts, as embodied in such sys- 
tems as Smalltalk-80, LOOPS, and Flavors, are becoming pervasive 
throughout computer science. They provide an appealing way to 
structure applications and their data. An emerging consensus is that 
an object-oriented approach can simplify the applications that create 
and manipulate computer-aided design data. Several groups are 
using these concepts to structure a CAD database (e.g., [ATW085, 
BAT085, HARR86, LAND86]), as well as databases for office appli- 
cations (ZDON84]. 

The elements of the object-oriented approach appear to include: 
(i) types (classes), in which operations (methods) on data are pack- 
aged with the data itself, (ii) inheritance, in which default procedure 
dellnitions and values are propagated from types to instances, and 
(iii) generic operation invocation, via message passing. For US, the 
first two concepts are the most important: “object-oriented” means 
abstract data types with inheritance. 

Inheritance provides scoping for data and operation definitions 
through a taxonomic hierarchy of instances belonging to types, which 
in turn belong to supertypes (i.e., types of types). If a variable is 
accessed from an instance, and is not defined there, then its associ- 
ated type is searched for the definition. If it is not defined in the 
type, the process recurses to the supertype and so on until the root of 
the lattice. More advanced models allow types to be instances of 
multiple supertypes (i.e., “mix-ins”), where one supertype’s definition 
of a common variable must be specified to dominate the others. 

In this Paper, we are particularly interested in how object 
oriented concepts can be used to manage change and constraint pro- 
pagation in a design database. For example, inheritance provides an 
ability to define default values (for example, in a type) that can be 
locally overridden (in an instance). It can also be used to determine 
the constraints that apply to new versions. The goal is to embed 
change semantics within the database structure, so the system can 
react to changes automatically. 

‘lkse~ch supported under N.S.F. grants lXS3403004 and [fcss352227. with 
makhhg support from the Mcr~&?ctr~nics and Computer Technology Corporation. 

Proceedings of the 13th VLDB Conference, Brighton 1957 

Most previous work has dealt with change notification rather 
than propagation. INEUM82) defined a transaction model for a data- 
base of independent and derived design objects. The database is not 
consistent until changes to independent objects are propagated to 
their associated derived objects, although the system does not pro- 
pagate these itself. (WIED82] proposed a mechanism for Bagging 
records that might be atlected by a change in a CODASYL- 
structured design database. it works by traversing backwards from a 
changed record, recursively marking its ancestors up to the roots of 
any hierarchies that contain it. [BAT085b, CHOU86] developed a 
more sophisticated change notification mechanism within an objece 
oriented data model. It uses time stamps to limit the range of 
objects to be flagged in response to a change. A related object is 
flagged only if it has an older timestamp. In these works, only very 
limited change propagation is supported. For example, a change pro- 
pagates from a component to its immediate composite, but no 
further. There has been little discussion of how to handle ambiguity 
in the set of propagated changes. We concentrate on these new . 
issues in this paper. 

The rest of the paper is organized as follows. Section 2 con- 
tains an overview of a version data model, implemented in our proto- 
type Version Server. In Section 3, we describe changes in a 
computer-aided design databases in terms of default values, change 
propagation, and constraint propagation. An example demonstrating 
the interplay among these concepts is given in Section 4. Ways of 
disambiguating the required set of changes are given in Section 5. 
Section 6 discusses some implementation issues. Section 7 contains 
our summary and conclusions. 

2. A Version Data Model 

The model described in this section has been implemented in a 
system called the Veraion Server [KATZ86a, KATZ86b]. It manages 
units of design called design objects, which roughly correspond to the 
named design files found in conventional design environments. In the 
following discussion, we call these “representation objects”. They are 
uniquely denoted by object-name/uersion#J@pe. In addition, the 
Version Server introduces special “structural objects” with which to 
organize these representational objects, much as directories are used 
to organize files in file systems. 

The Version Server recognizes three possible relationships 
among design objects: version histories, configurations, and 
equiua[encea. Version histories maintain la-a-descendent-of and .- 
is-an-ancestor-of relationships among version instances of the same 
real world object (e.g., ALU(4jJayout b~dercendent-of 
ALU[J].layout, both of which are versions of ALU.layout). A struc- 
tural ueraion object is associated with each collection of version 
instances. Structural configuration object8 relate composite represen- 
tational objects to their components via in-a-component-of and 
in-composed-of relationships. Finally, equivalences identify objects 

across types that are constrained to be different representations of 
the same real world object, e.g., ALUjS].layout is-equivalent-to 

455 



ALU\J].scbematic if these are different representations of the same 
ALU design. More generally, equivalences can denote arbitrary 
dependencies among representational objects. They are explicitly 
represented by structural equivalence objects. The Version Server 
relationships are summarized in Figure 2.1 and the associated data 
structure is given in Figure 2.2. 

Operationally, the Version Server supports a worbpace model. 
Designers check-out objects from shared archives into their private 
workspaces. Changes made in private workspaces are not visible to 
other designers until such objects are checked-in to a shared group 
workspace, where the changes can be integrated with other designers’ 
work. Finally, the modified object is returned as a new version to the 
shared archive. The Validation Subsystem, invoked on object check- 
in, analyzes a log of verification events to ensure that the object has 
been successfully validated before it can be added to the archive. A 
Browser supports the interactive examination of Version Server data- 
bases. 

3. Reacting To Changer 

3.1. Scope and Ambiguity 

Database system implementors have always been reluctant to 
provide automntic change propagation, because users rarely under- 
stand the full (and potentially dangerous) effects of spawned changes. 
However, aspects of design databases can simplify these problems. 
Since the design database is append-only, the correct response to 
change is to spawn new versions of related objects and to incorporate 
these into new configurations. Note that any new objects are created 
in private or group workspaces, never in an archive space. Since vali- 
dation must be performed before these new versions are added to an 
archive, change propagation can never corrupt the “released” copies 
that reside there. 

However, it is still possible to create a large number of useless 
intermediate versions. Mechanisms are needed to limit the scope of 
the propagation and diaambiguate its effects. Ideally, the scope 
should be limited to the smallest set of objects “directly” affected by 
the change. Ambiguity is introduced if there is more than one way 
to incorporate the new versions into configurations. In the worst 
case, the cross-product of possible configurations could be added to 
the database, wasting both time and space. 

con 

vERsION3 

I 

/ IS-A-DESCENDENDENT-OF 
/ IS-Ah-ANCESlVR-OF / / / 

I 
IS-EipIWLEIW.lt3 

/ 
1’ ISCD~ED-OF 

0 IScDMR3NEN-OF 
ALU,.5].LAYoLrr 

CARRY-mmFj5].LAYoLJT 

Figure 2.1 -- Version Server Logical Data Model 
Design data is organized as a collection of typed and ver- 
sioned design objects, interrelated by configuration, ver- 
sion, and equivalence relationships. Only representational 
objects are shown. For example, ALU[4].layout is de+ 
tended from ALU[t].layout and is the ancestor of 
ALU[5].layout. It is also a component of 
DATAPATHp].layout and is composed of CARRY- 
PROPAGATE(5jJayout. Additionally, ALU[4].layout is 
equivalent to other objects, such as ALU[S].transistor. 

3.2. Default Valuer 

One of the simplest ways to change a design database is by 
adding to it a new version of an existing object. The designer can fill 
in its attributes and relationships at its creation time, but it is better 
if the system can Ell these in automatically. Inheritance provides the 
necessary mechanism. For example, consider the “type” of ALU lay- 
outs. All instances of ALU layouts share much in common, perhaps 
their interface descriptions, or the operations (i.e., add, subtract, etc.) 
they support. This common data can be factored out of the 
instances and stored with the type. In creating new instance of the 
ALU layout, these common attributes can be inherited without being 
explicitly specified. 

However, Smalltalk-style type-instance inheritance provides 
only one of many possible ways to propagate defaults to a new ver- 

n eq 

\ con 

con 

rep 
Figure 2.2 - Version Server Physical Data Structure 

Circular objects are structural; square and triangular objects are representational. Relationships are 
actually implemented by interconnected structural objects, which indirectly reference representation 
objects. The structural objects are con, WY, and eg, for configuration, version, and equivalence rela- 
tionships respectively. The configuration and equivalence links are self-explanatory. Version links 
tie together the versions of the same logical object. Descendent links implement the explicit 

ancestor-descendent connections of a version history. 

456 Proceedings of the 13th VLDB Conference, Brighton 1987 



L-J A 

Figure 3.1 - Configuration Example 
Object D is composed of objects B and C. Both B and C 
use. instances of A. Only configuration objects are shown 
to keep the figures simple. Note that each would contain 
a reference to a particular representation object. 

sions. There are four different kinds of inheritance within the Version 
Server data model, which can conceivably vary on an instance by 
instance basis: (i) from version objects to version instances (i.e., the 
type-instance inheritance mentioned above), (ii) from ancestor to des- 
cendent (this is how the Version Server currently operates, since a 
new version begins as a copy of its ancestor), (iii) from composite 
object to component (where a version is used within the design 
hierarchy can determine the value of some of its attributes), and (iv) 
from equivalent to other equivalents. The propagation of informa- 
tion need not be limited to data; new object instances can inherit 
constraints, such as equivalence constraints, from their related 
objects. 

3.3. Change Propagatlon 

Once a new version instance is created, it must be incorporated 
into new configurations to be made part of the design. In most sys- 
terns (including our prototype Version Server), these new 
configurations must be laboriously constructed by hand. Change pro- 
pagation is the process that incorporates new versions into 
configurations automatically. Consider an object A that has been 
checked out from the archive to create a new version A’. At check-in 

time, new configuration objects could be created, that form a new 
configuration of the objects that formerly contained A as a com- 
ponent or subcomponent, but should now contain A’. If the propaga- 
tions only go up a single level in the configuration hierarchy, then 
this is essentially the proposal of [CHOU86]. 

However, it is desirable to propagate changes even further, but 
this requires additional mechanisms to limit the extent of changes 
and to keep them unambiguous. For example, consider the 
configuration of ‘igure 3.1. Object D is configured from objects B 
and C, which in turn share an object A (only configuration objects 
are shown). If a new version of object A is created, and changes are 
naively propagated along both paths, then there are two possible 
resulting configurations shown in Figure 3.2. This has been called the 
“multiple path problem” in ]MITT86]. Either both paths of changes 
are merged into a single new configuration of D or two separate new 
configurations are spawned, one incorporating A’ in each of the two 
original uses of A (i.e., the use of A in B and in C respectively). In 
general, the former is to be preferred, but there are cases when the 
latter is what the designer intended. For example, some integrated 
circuit layout editors support editing in context, which allows a cell 
to be changed everywhere it is used, or alternatively, just within its 
current editing context. We will discuss mechanisms to disambiguate 
changes in Section 5. 

3.4. Conrtraint Propagation 

Equivalence relationships model dependency constraints among 
objects, especially across representations. A new version inherits the 
equivalences of its ancestor at check-out time. Equivalence is inter- 
preted in terms of the execution of a sequence of CAD verification 
programs whose success demonstrates that the objects are indeed 
equivalent. This condition is checked by the Version Server’s valida- 
tion subsystem [BHAT86]. 

The system currently supports passive enforcement: object 
check-in fails if any equivalence constraints are left unsatisfied. The 
obvious extension is to support active enforcement by actually exe- 
cuting the validation script to create a new version of the constrained 
object. For example, if a schematic object and a netlist object are 
actively constrained to be equivalent, then equivalence is enforced by 
executing a netlist generator to create a new netlist version when the 
revised schematic is checked-in. The spawned netlist version becomes 
a descendent of the original netlist object. Changes to actively 
enforced constraints are the only kinds allowed to propagate to 

(4 (ii) 

Figure 3.2 - Ambiguous Change Propagation 
A new version of A, A’, causes new configurations of B and C to be created through change propa- 
gation. Configuration (i) has merged these new objects into a single new configuration of D. 
Configuration (ii) has evolved separate configurations of D to incorporate the changed components 
B and C. D’ contains the new B and the old C, while D” contains the new C and the old B. The 
broken arrows represent descendent linkages. 

Proceedings of the 13th VLDB Conference, Brighton 1987 457 



Figure 4.1 - Initial Conditions 
The initial condition has two simple configuration hierar- 
chies, of square and triangle objects respectively, and a 
single active equivalence constraint between them. 

be performed for the configurations that contain D. This is shown in 
Figure 4.5. 

In addition to the multiple path problem already described, the 
interaction between change and constraint propagation can result in 
ambiguous configurations. Consider what would happen if object A 
and E are both checked out for update. If A’ and E’ are checked 
back independently, two new triangle configurations will be created: 
one containing the old D and the new E’ and another containing the 
new D’ and the, old E. Note that the resulting configurations are 
independent of I ,e order of the check-ins. However, if A’ and E’ are 
checked in as a roup, then a single new configuration containing 
both D’ and E’ should be made. Group check-in as a method for 
disamhiguating changes will be discussed in Section 5.2. 

5. Handling Ambiguity 

5.1. Introductfon 

The system has several options when faced with ambiguity: (1) 
do not propagate changes if there is any ambiguity, (2) create the 

Figure 4.2 - New Version of Object A 
A new version of A is created, A’. Note how A’ inherits 
the equivalence constraint from its version ancestor. 

configurations of other representations. 

4. A Detailed Example 

The ideas presented above are developed more formally in the 
process of working through a specific example. Figure 4.1 shows ini- 
tial configurations of square and triangle objects. These are used as 
icons for representational types, while circles stand for structural 
objects. Descendent linkages are not shown, to keep the figures 
uncluttered. The first step is for a designer to check-out A to create 
a new version A’. A’ will inherit certain attributes and relationships 
from its ancestor or objects related to it. Figure 4.2 shows that A’ 
has inherited the equivalence relationship between A and D. We will 
assume that this relationship represents an active constraint between 
square objects and triangle objects, i.e., there is a procedure (or set of 
rules) that describes how to create a new triangle object from a 
changed square object. 

The check-in of the new version A’ causes change propagation. 
New configuration objects are spawned to incorporate A’ and affect 
composites up through the root of the configuration hierarchy. The 
effects are shown in Figure 4.3. Since the constraint between A’ and 
D is actively enforced, a new version of D, D’, must be generated. 
The equivalence relationship is modified to reference this new version. 
The result is given in Figure 4.4. Finally change propagation must 

eq- 0’ - ‘Q’eq 
Figure 4.3 -- New Configuration Incorporating A’ 

Change propagation is realized by spawning new 
configuration objects upwards towards the root of the 
square configuration hierarchy. Note that only new 
configuration objects are created, and that only new des 
cendent links are shown. Existing representational objects 
are not modified. 

Figure 4.4 - Constraint Propagation to D 
Since the equivalence constraint is actively enforced, a 
new version of D must be spawned. Note how the 
equivalence object now points to D’. Only the new D -> 
D’ descendent link is shown. 

458 
Proceedings of the 13th VLDB Conference, Brighton 1987 



Figure 4.5 - New Configuration Incorporating D’ 
Finally, change propagation is once again invoked to 
spawn new configurations incorporating D’. Only the new 
descendent links are shown. 

cross product of all possible unambiguous configurations, (3) only per- 
form change propagation’for the subset that is unambiguous, or (4) 
provide the designer with the appropriate operational mechanisms to 
unambiguously describe the effect s/he desires; if that fails, use the 
browser interface to disambiguate the changes. Choice (1) is the way 
most systems are built today: they do not support any change propa- 
gation. Choice (2) is not really a solution, although some systems 
have essentially proposed this method [ATW085]. The systems that 
do support change propagation usually make the third choice (e.g., 
[cHoUSS]). 

In this section, we examine the possible mechanisms for the last 
choice. Rather than propose a single general purpose approach, we 
concentrate on more specific “user-oriented” mechanisms. The idea 
is to provide change propagation etfects that make sense to the 
designers who will be using the system. These may be implemented 
on top of the same underlying general purpose mechanisms, for 
example, the events and triggers of [DITT84]. 

6.2. Group Check-in/Check-out 

When a single object is checked-out to create a new version, it 
automatically inherits the equivalence relationships of its ancestor, 
unless explicitly overridden by the designer. However, consider the 
situation in which a layout is constrained to be equivalent to a given 
schematic, and a major design change is underway that will aflect 
both. There is no reason to constrain the new layout to be, 

equivalent to the original schematic, and similarly for the old layout 
and the new schematic. The desired semantics are provided by group 
check-out. Constraints that range over objects solely within the 
group lead to new constraints that are limited to the checked-out 
versions of those objects. Constraints with objects outside the group 
are inherited in the usual way. Thus, a group check-out of the layout 
and schematic objects would yield an equivalence constraint between 
the new versions of the layout and schematic, but no constraints 
would exist between them and the origin*1 versions in the archive. 

Gr .up check-in is like a transaction, in that the objects in the 
group should be added to the database as an atomic unit. In effect, 
any spawned configurations should merge changes from all members 
of the group, rather than create new configurations for each. In 
other words, no more than one new version of a configuration object 
is created during group check-in, no matter how many change paths 
touch the configuration it is derived from. The diRerence between 
group and conventional check-ins is shown in Figure 5.1. 

As long as there is at most one new version of each representa- 
tion object being checked-in, group check-in is guaranteed to result in 
an unambiguous final configuration. The sketch of the proof is as fol- 
lows. At most one new instance can be added for each existing 
object, either as the result of change propagation (i.e., a new 
configuration object is spawned) or constraint propagation (i.e., a new 
representation object version is created as the result of an actively 
enforced equivalence constraint). It follows that the arcs out of new 
configuration instances can change at most once. There are two 
cases. At the time a new configuration object is first created, its arcs 
either point at old objects that may be superceded later or they 
already point at the new instances. In the first case, the arcs should 
change once the new instances are created. In the second case, they 
need never change during the duration of the check-in. Since each 
arc changes at most once, the order in which new instances are gen- 
erated is irrelevant. The same final configuration is obtained. 

5.3. Configuration Conrtr8infa 
A mechanism for limiting change propagation is confi!Juration 

constraints. Several kinds are possible: (1) dependency status con- 
straints, (2) timestamp constraints, (3) interface constraints, and (4) 
containment and partitioning constraints. This list is meant to illus- 
trate the kinds of constraints that are reasonable to associate with 
configuration objects. It is not meant to be exhaustive. Of course it 
possible to associate more than one such constraint with a 
configuration object. We will discuss each kind in turn. 

The simplest kind of configuration constraint relies on a simple 
status attribute associated with each conliguration object. The value 
of this attribute can either be dependent or independent, not unlike 
independent and derived representations in [NEUM82]. A dependent 
configuration is one that cannot exist outside another con6guration.~ 

C’ 

(4 (ii) 

Figure 5.1 - Group vs. Non-Group Check-ins 

Configuration (i) illustrates the result of Check-in (B’, C’). Configuration (ii) shows what happens 
when Check-in (B’) is followed by Check-in (Cl). 

Proceedings of the 13th VLDB Conference, Brighton 1987 459 



Change propagation proceeds through dependent configurations, stop- 
ping at the first independent configuration it encounters. The 
designers must incorporate new independent ConEgurations into 
higher level composites by hand. The Erst instance of a coneguration 
defaults to being independent, unless explicitly overridden by the 
designer. Spawned instances can inherit the value of their depen- 
dency status in any of the ways described in Section 3.2. Unless 
changed by the designers, the default inheritance is from their 
immediate ancestor configurations. 

A second kind of constraint depends on timcstamps to limit 
change propagation, as in [BAT085b, CHOU86]. Objects have 
timestamps that indicate the time at which they were last updated. 
A configuration’s timestamp is inherited from its associated 
representation object, and is not related to the time at which it was 
created. A conEguration is timestamp consistent if its timestamp is 
newer than any of its components, i.e., the composite representation 
object was last updated after any of its component representation 
objects. Change propagation proceeds as long as it creates new 
configurations that are timestamp consistent. This mechanism is 
well-suited to constructing a valid configuration from a check-in 
group. However, it explicitly disallows the replacement of a com- 
ponent by a new version within an existing conEguration, since the 
timestamp of the composite representation object will be older than 
the new version. 

Inter/ace constraints depend on the internal details of 
representation objects. We say that the interface of a new version is 
compatible with its ancestor’s interface if it is possible to replace the 
ancestor in any existing contiguration with the new version. The 
easiest way to ensure compatibility is for the designers to guarantee 
that the interface portion of the object has not changed across ver- 
sions. This may be overly conservative since minor changes may not 
result in an incompatible interface. One can imagine representation- 
dependent programs that could determine the compatibility of a new 
version’s interface. Change propagation stops when it would attempt 
to create a configuration from a version whose interface is incompati- 
ble with its ancestor. 

The last constraint is representation-dependent containment. 
In general, a composite object’s configuration is consistent if its com- 
ponents are properly contained within it. This is easy to verify if the 
representation type defines intersection operations: the intersection of 
each component with the composite should be the component itself. 
For example, consider a design type that associates a bounding box 
with each object, and defines an intersection operation on that box. 
If a component’s bounding box is not properly contained within its 
associated composite, then the configuration is inconsistent. A 
related concept is a partitioning constraint, i.e., the pairwise inter- 
section of each component is the empty set. Change can be pro- 
pagated up the configuration hierarchy as long as these constraints 
are satisfied, and stopped as soon as a violation is detected. 

5.4. Browner Pathr and Contextr 

The propagation of changes is unambiguous as long as each 
node along the path to the root of the configuration is not referenced 
from more than one place. When a node is used more than once, as 
for A in Figure 3.1, then information from the context in which the 
original was checked-out can be used to disambiguate the change pro- 
pagation. Check-in (A 7, without further specification, would result 
in conEguration (i) of Figure 3.2. If A were checked-out along the 
path D->B-->A, then a Check-in (A’) along check-out path would 
create the contiguration rooted at D’ in configuration (ii). If the 
check-out had been along the path D->C->A, then the 
configuration rooted at D” would be the result. A designer can 
specify a path explicitly or s/he can select it graphically by using the 
browser to choose the appropriate configuration arcs. Using the 
latter method, it is possible to check-in an object along multiple 
paths. This is particularly useful for objects that are used many 
places in the design, but the change should be propagated to only a 
portion of these. An example is shown in Figure 5.2. 

D’ 

A A’ 

Figure 5.2 -- Check-in Along Selected Paths 
Object A is used in four places in the configuration. A 
new version A’ is created, but is to be checked in along 
the selected paths, which are highlighted (it is possible to 
select these paths by interacting with the browser prior to 
check-in). The resulting configuration, rooted at D’, is 
shown on the right. Only the two middle uses of A have 
been replaced by A’. 

Besides disambiguating the path of changes, browser informa- 
tion can limit the scope of changes through the browser contezt. The 
browser already implements mechanisms for pruning the complex 
design structure before presentation to the designer. Taking into 
account the structure of the configuration hierarchy, the browser heu- 
ristically determines the neighborhood of interest around an object 
being browsed. Change propagation can be limited to this neighbor- 
hood by issuing a check-in within contezt command. 

Figure 4.5 demonstrates that the browsing context by itself is 
not enough to limit change propagation, because of the elfects of con- 
straint propagation across representations. In the figure, the triangle 
objects need not have been involved in any browser operations 
involving the original square object A. Mechanisms like consguration 
constraints must work with contexts to limit the propagation. 

5.5. Rule-baaed Methods 

There remains one case in which group check-in does not 
guarantee an unambiguous result. Consider the example of Section 4, 
and the case where A and D are checked-out for change, even though 
D is normally derived from A through an active constraint. A hand- 
crafted version D” will be created in parallel with the automatically 
propagated D’. Even if A’ and D” are checked-in as a group, the sys- 
tem needs to disamhiguate which of D’ or D” to incorporate into the 
new configuration. For example, the system could be given the rule 
that “a checked-out version always supercedes a spawned version in 
propagated configurations”. Then in the example, D” would be 
incorporated in new configurations rather than D’. A smart enough 
system could avoid generating D’ altogether. 

6. Implementation Isrueu 

6.1. Algorithm for Group Check-in 

The semantics of group check-in is that the objects in the group 
must be merged into a common coneguration as the result of the 
check-in. Note that in Figure 6.1, A’ is configured from the old B 
and C, and the system must build a new configuration if a group 
check-in of A’, C’, and D’ is issued. Further, if a high-level com- 
ponent and a primitive component are checked-in together, then 
objects on the path between them must also be contained in any 
spawned configuration, even if they are not mentioned in the group. 

460 Proceedings of the 13th VLDB Conference, Brighton 1987 



The group check-in algorithm from a source workspace to an archive 
proceeds as follows: 

(1) To keep the discussion simple, we assume each check-in group 
has a single object that dominates the rest, such as object A’ 
does in the check-in group A’, C’, and D’ in Figure 6.1. This 
dominating object forms the root of a minimum spanning 
graph that covers the ancestors of the remaining objects 
within the group (see Figure 6.2). 

(2) Any objects found in this subgraph that do not also have des- 
cendents in the check-in list should be marked (e.g., B). 

(3) Starting from the configuration of the root object (A’), recur- 
sively examine its components and subcomponents: (i) if a 
node is not marked and does not have a descendent in the 
check-in list, then the system can ignore the node and any of 
its components; (ii) if a node is marked, then the system 
creates a new configuration for it in the source workspace 
(even though it references a rep object in the archive); (iii) if a 
node’s descendent is in the check-in list, the system will link 
its descendent’s configuration to the conliguration being 
formed in the source workspace. 

If there are “holes” in the configurations that need to be filled 
in this way, then it is likely that the validation subsystem will veto 
the movement of the resulting configuration into the archive space. 
However, the full configuration is left in the source workspace, where 
it can be reverified, and successfully checked-in as a group at a later 
time. 

If the browsing path is specified, the change algorithm is similar 
to the one above. However, the subgraph would cover only the paths 
among checked-in objects and the objects specified in the browsing 
path. 

6.2. Algorithm for Group Check-out 

The problem of rebuilding the configuration at check-in time 
can be avoided if the appropriate group of objects was checked-out 
together. Once again, the appropriate configuration relationships 
need to be constructed in the target workspace, even if there are 
“holes” in the group. The basic algorithm is described below: 

(1) Determine the root object within the check-out group. 

(2) Determine the minimum spanning subgraph that covers the 
configuration nodes of the checked-out objects and all the 
paths among them, starting with the configuration of the root 
object. 

(3) Mark all the configuration nodes covered by the subgraph. 

(4) Examine the configuration hierarchy, creating configuration 
objects in the the workspace as follows: (i) if a node is 
marked, create a configuration object for it; (ii) if a node is 
also in the check-out list, a new version node is created for it; 
(iii) if a node is not marked, then it is skipped by the system. 

7. Summary and Conclurlonr 

In this paper, we have described some of the issues in making a 
design database more adaptive to changes in its structure. Previous 
work has focused on change notification, i.e., marking objects that 
might be affected by a change, rather than actually propagating 
changes automatically. To do so requires new mechanisms for disam- 
biguating what changes are to take place, and for limiting the scope 
of change propagation. We described specific operational mechan- 
isms that address these issues: group check-in/check-out and browser 
paths to disambiguate the effects of changes; configuration Con- 
straints and browser contexts to limit the scope of these effects. We 
are implementing these mechanisms in a second edition of the Ver- 
sion Server. 

An object-oriented approach helps to limit much of the com- 
plexity of change propagation and design evolution. Inheritance 
makes it possible to identify default values and constraints. By hav- 

Proceedings of the 13th VLDB Conference, Brighton 1987 

Figure 6.1 - Before Group Check-in (A’, c’, D’) 

The original configuration is shown on the left. Objects A, C, and D hare been indiridu& c&ted 
out into t workspse on the right, yielding the new tersioiont A’, C’, snd D’. The &we lhorr the 
mnfigur&ms before the uecution ol group check-in (A’, C: Dy. Tlw minimum ~panniq 
mntguradon subgraph that coru~ thii check-in group ia circkd in ch tlgurs. 

i!i E D’ 

pizure 6.2 - Afkr Groui, Check-ia (A’, C’, D’) 

ing types with intersection operations, it is possible to support 
representation-dependent configuration constraints, such as contain- 
ment and partitioning, without the system needing to know represen- 
tation details. 

We gratefully acknowledge the assistance of Rhajiv Bhateja, 
David Gedye, and Vony Trijanta, who as members of our research 
group contributed to the discussions that led to the work reported 
here. We also thank Thomas Atwood and the other referees for their 
constructive comments and suggestions. 

8. Reference6 

[ATW085] Atwood, T., “An Object Oriented DBMS for Design Sup- 
port Applications,” Proc. IEEE COMPINT 85, Montreal, Canada, 
(Sept. lQ85). 

[BAT085a] Batory, D., W. Kim, “Modeling Concepts for VLSI CAD 
Objects,” ACM Trans. on Database Systems, V 10, N 3, (Sept. 1985). 

[BATO85b) Batory, D., W. Kim, “Supporting Versions of VLSI CAD 
Objects,” M.C.C. Technical Report, Austin, TX,(1985). 

[BHAT86] Bhateja, R., R. H. Katz, “A Validation Subsystem of a 
Version Server for Computer-Aided Design Data”, submitted to 
ACM/IEEE 25th Design Automation Conf., Miami, FI, (June 1987). 
Also available as UCB CSD Technical Report 87/317, (October 
1986). 

[CHOUSG] Chou, H-T, W. Kim., “A Unifying Framework for Ver- 

461 



sions Control in a CAD Environment,” 12th VLDB, Kyoto, Japan, 
(August 1986). 

[DlTT84] Dittricb, K. R., A. M. Katz, J. M. Mulle, “An 
Event/Trigger Mechanism to Enforce Complex Consistency Con- 
straints in Design Databases,” University of Karlsruhe Technical 
Report, Karlsruhe West Germany, (November 1984). 

[GOLD831 Goldberg, A., D. Robson, Smalltelk-80: The Language and 
its Implementation, Addison-Wesley, Reading, MA, (1983). 

[HARR86] Harrison, D., et. al., “Data Management and Graphics 
Editing in the Berkeley Design Environment,” Proc. ICCAD, Santa 
Clara, CA, (November 1986). 

[KATZ86a] Katz, Ft. H., E. Cbang, R. Bhateja, “Version Modeling 

Concepts for Computer-Aided Design Database,” ACM SIGMOD 
Conf., Washington, DC, (May 1986). 

[KATZ86b] Katz, R. H., E. Chang, M. Anwarrudin, “A Version 
Server for Computer-Aided Design Databases,” ACM/IEEE 24th 
Design Automation Conf., Las Vegas, NV, (June 1986). 

[LAND861 Landis, G., “Design Evolution and History in an Object- 
Oriented CAD/CAM Database,” Proc. IEEE COMPCON, San Fran- 
cisco, CA, (March 1986). 

[MITT86] Mittal, S. J., D. G. Bobrow, K. M. Kahn, “Virtual Copies: 
At the Boundary Between Classes ,and Instances,” Proc. OOPSLA’86 
Conference, Portland, OR, (Sept. 1986). 

[NEUMIB] Neumann, T., C. Hornung, “Consistency and Transactions 
in CAD Databases,” Proc. 8th VLDB, Mexico City, Mexico, (Sept. 
1982). 

]WIED82] Wiederhold, G., et. al., “A Database Approach to Com- 
munication in VLSI Design”, I.E.E.E. Tranaactiona on Computm- 
Aided Design, V CAD-l, N 2, (April 1982). 

]ZDON84] Zdonik, S. B., “Object Management System Concepts,” 
Proc. 2nd ACM SIGOA Conference on Office Information Systems, 
Toronto, Canada, (June 1984). 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and the 
title of the publication and its date. appear, and notice is given that 
copying is by permission of the Very Large Data Base Endow- 
ment. To copy otherwise, or to republish, requires a fee and/or spe 
cial permission from the Endowment. 

462 fioceedings of the 13th VLDB Conference, Brighton 1987 


