
Log-Based Recovery for Nested Transactions 

J. Eliot B. Moss 

Department of Computer and Information Science 
University of Massachusetts 

Amherst, MA 01003 

Abstract. Techniques similar to shadow pages have 
been suggested for use in rollback and crash recovery 
for nested transactions. However, undo/redo log meth- 
ods have not been presented, though undo/redo logs 
are widely used for transaction recovery, and perhaps 
preferable to shadow methods. We develop a scheme of 
log-based recovery for nested transactions. The result- 
ing design is promising because it requires a relatively 
small number of extensions to a similar scheme of recov- 
ery for single-level transactions. 

1. Overview 

Our goal is to develop algorithms for log-based rollback 
and recovery of nested transactions. We assume general 
familiarity with transaction oriented concurrency con- 
trol and recovery; [Gray 78) and [Haerder and Reuter 
831 are good introductions to the subject. We also as- 
sume some familiarity with nested transactions [Moss 
81, Moss 82, Moss 85, Moss 861. 

In presenting the new design, we first review transac- 
tion commit semantics, for both single-level and nested 
transactions. We next describe a scheme of recovery 
for single-level transactions, which is then extended to 
nested transactions. Finally, we offer our conclusions 
concerning the results. 

2. Transaction Semantics 

Single-level transactions consist of some number of ac- 
tions which are to be performed against a database in 
an atomic fashion. In particular, transactions should 
have the following characteristics: 

l Transactions should be integral (atomic): eventually, 
either all of a transaction’s actions are done, or none of 
them. This should be true regardless of failures, up to 
the overall resiliency required of the system. If a trans- 
action’s actions are performed, it is called committed; if 

Permission to copy without fee all or part Of this 
material is granted provided that the copies are not made 
or distributed for direct commercial advantage, the 
VLDB copyright notice and the title of the publication 
and its date appear, and notice is given that copying is 
by permission of the Very Large Data Base Endowment. 
To copy otherwise, or to republish, requires a fee and/Or 
special permission from the Endowment. 

Proceedings of the 13th VLDB Conference, Brighton 1987 

they are not performed, aborted. Prior to that a trans- 
action is running. 

l Transactions should not interfere with one another’s 
execution so as to produce anomalous results. Prevent- 
ing such interference is the job of concurrency control. 
The usual goal is serializability: the overall effect is to 
be as if transactions executed serially, one at a time. We 
will assume that some locking scheme is used to provide 
atomicity as required, but we will not be especially con- 
cerned with the details. However, it should be noted 
that concurrency control will sometimes abort transac- 
tions to prevent or resolve conflicts. 

l A transaction, once committed, should be durable: 
its effects should not spontaneously disappear, even if 
there are failures. 

3. Nested Transaction Semantics 

A transaction provides a protected environment within 
which it performs its actions, free from interference, 
and with guarantees of integrity and durability. Nested 
transactions extend this notion to allow such environ- 
ments to be nested in one another, similar to the nest- 
ing of lexical scopes in programming languages such as 
Pascal, though dynamic rather than static. A top-level 
transaction may have nested within it any number of 
child (or sub-) transactions, which may also have chil- 
dren, etc. In fact, each top-level transaction is the root 
of a tree of transactions. This tree evolves, by adding 
and pruning leaves, as the transactions execute. 

When it is a leaf, a transaction performs actions, and 
then may commit or abort. An abort always discards 
the work performed by the transaction, and any sub- 
transactions that ever existed in the sub-tree for which 
it is the root. However, a commit of a non-top-level leaf 
transaction is not a total commit in the usual sense. 
Rather, a commit indicates that the committing sub- 
transaction’s results are available in the parent trans- 
action’s scope. Such a commit is relative, rather than 
absolute, in the sense that the parent (or any ancestor, 
in fact) might still abort. The only commit that is ab- 
solute is that of a top-level transaction; such a commit 
has the usual durability semantics. 

A little example may clarify these ideas. Suppose 
top-level transaction a creates two child transactions b 
and c. Transaction b creates two children of its own, bl 
and b2. Transaction bl runs and commits, releasing its 
results (only) in the environment provided by 6. Thus bz 
can now access bl’s results. For some reason b2 aborts. 
This does not affect the commit of bl. 

Consider now two cases. First, suppose that b can 

427 



get by without the effects of b2. In this case, b may be 
committed, which will release bk’s results more widely: 
into a’s environment, now allowing c to access b’s (and 
bz’s) results. If a commits, then the effects become per- 
manent. The other case is that b aborts. If that hap- 
pens, then bl must be undone, even though it wae pre- 
viously committed (in the relative sense). Likewise, if b 
had committed but a aborted, bl would still have to be 
undone. 

4. Single-Level Transaction Recovery 

Recovery schemes for single-level transaction systems 
abound. We expect that virtually any single-level log- 
ging scheme can be extended to nested transactions; it 
is the extension that we are concerned with more than 
the specific scheme. However, we need to start with 
some particular scheme to be concrete. A survey and 
taxonomy of recovery schemes is presented in [Haerder 
and Reuter 831. We have chosen to consider the case de- 
scribed as TAtomic, Steal, -Force, Fussy in their tax- 
onomy (these terms will be explained below. In their 
rating of different techniques, this would be one of the 
most favored. 

There is still the issue of what to log. Pages (disk 
blocks) are the units read and written to the database. 
However, rather than doing page level logging (which 
may tend to imply page level locking), we will assume 
that low level operations (add, delete, or modify a tu- 
ple, index entry, etc.) are logged. In most cases, these 
entries will pertain to a single page. If an operation 
pertains to more than one page (e.g., adding an index 
entry may cause several pages to be affected when an 
update occurs), we will assume that the affected pages 
are written to the database in an order which preserves 
the correctness of the data structure, and makes the 
change atomic (as the result of one write). This has 
been called careful replacement [Verhofstadt 781. In the 
case of tree structures, writing from the bottom up is 
sufficient. Note that careful replacement can be used for 
some kinds of in-place updates, in addition to support- 
ing shadow page recovery (as in System R [Gray et al. 
811). 

The database system is subject to the following sorts 
of failures, which have corresponding recovery methods 
(as in (Haerder and Reuter 831 and [Gray 781): 

l Failure of an individual transaction (abort), recov- 
ered via transaction undo. 

l System crash, recovered via global undo (to remove 
those transactions which were interrupted and cannot 
complete) and partial redo (to insure that the effects 
of recently committed transactions are reflected in the 
database). 

l Media failure, recovered via global redo (to restore the 
effects of all committed transactions on the destroyed 
part of the database). 

Any given scheme might obviate some of the above 
mentioned recovery techniques, by prekenting the bad 
situations in the first place. 

The database system can be broken down into the 
following storage components (as in [Haerder and Reuter 
831): 

l The physical database, a collection of pages on mass 
storage devices (e.g., disks). A page being written might 
be corrupted by a crash, and occasional media failures 
might cause the CoJlteJJts of OJle or Jllore pages of the 
physical database to be lost. 

l The main memory database buffers, a collection of 
pages that are lost in system crashes.’ 

l The temporary log, which is used to support transac- 
tion undo, global undo, and partial redo (i.e., recovery 
from transaction failure and system crashes). This may 
need to have more than one copy written, to guarantee 
necessary resiliency. 

l The main memory log buffer, which is lost in a crash. 

l The archival log, which supports global redo (recov- 
ery from media failure). This may need to have more 
than one copy written, to guarantee necessary resiliency. 

l The archival database, which helps support global 
redo. This may need to have more than one copy, de- 
pending on how much of the archival log is retained. 

Now we describe what the taxonomic description 
TAtomic, Steal, -Force, Fuzzy means. First, -Atomic 
means that collections of pages are not written to the 
database in a fashion that is atomic with respect to 
crashes. That is, if we need to update two or more 
pages, and a crash happens in the middle, we may be 
in a situation where some pages have been updated and 
some have not. TAtomic is interesting because it in- 
cludes update-in-place techniques; some Atomic tech- 
niques include shadow pages [Lorie 77, Gray et al.;81], 
timestamped pages [Reuter 801, and “differential files” 
[Severance and Lohman 761 or intentions lists (Sturgis, 
et al. 801. 

In general, an implication of TAtomic is that af- 
ter a crash the database is not necessarily in a mean- 
ingful state. This is because its internal data struc- 
tures may not be consistent. However, we have assumed 
that logged changes affect only a single page, or that 
an appropriate careful replacement strategy is used.a 
Hence, the fundamental structures (access paths) of the 
database will be consistent in our case, in the sense 
that they can be used. There is no guarantee that the 
database is more broadly consistent, e.g., to the level of 
transactions, or tables consistent with their indices. 

Steal means that main memory buffer pages may be 
“stolen” from a running transaction and written back 
to the database in the middle of a transaction. Thus, 
the database can be affected before a transaction com- 
mits. This implies that global undo will have to be im- 
~ __.~. -- -- -.. 

‘We are not considering the possibility of main memory whose 
contents survives crasher, though that is an area of current inver- 
tigation and interest. 

‘One could argue that our scheme really is Atomic, because of 
careful replacement. However, our interpretation of [Haerder and 
Reuter 831 is that our method is more in the spirit of -Atomic. 

428 Proceedings of the 13th VLDB Conference, Brighton 1987 



plemented, to remove effects of failed transactions from 
the database after a crash. 

TForce means that modified pages are not written to 
the database as a transaction commits (i.e., the pages 
are not =forced out”). This means that partial redo will 
be required, to reconstruct a transaction’s effects after 
a crash. Global redo (to recover from media failures) 
must be supported by any recovery technique. 

Fuzzy, in TAtomic, Steal, TForce, Fuzzy, refers to 
the checkpointing technique employed. If some form of 
checkpointing is not used, then global undo does not 
know where to stop (it cannot be determined which 
transactions were running at the time of a crash). This 
is unacceptable; checkpointing is used to bound global 
undo. Checkpointing can also help bound the amount 
of partial redo required. If information is written to the 
database at checkpoint time, then we need only redo 
from that point on. A fuzzy checkpoint is one in which 
not all the pages in memory are written at every check- 
point. In particular! we will assume that pages are writ- 
ten at checkpoint time only if they are dirty (modified 
but not yet written to the database) and have been res- 
ident a long time since being dirtied. The time could be 
real time or the number of checkpoints. We will assume 
that it is possible to determine readily if a given check- 
point in the log is the earliest relevant one for partial 
redo. 

Every operation logged consists of an undo record 
and a redo record. The following rule must be followed 
when writing undo records: 

An undo record relating to (i.e., affecting) a 
given page must be written to the temporary 
log before writing the page to the database. 

This guarantees that the change to the database can 
be undone if there is a crash. This rule is called the 
write ahead log principle [Gray 781. In our scheme, com- 
mitting a transaction is particularly simple: just write 
a commit record to the temporary log, and then force 
the temporary log to permanent storage. Note that the 
temporary log is a single, ordered stream of log records, 
merging the logging requests of all transactions, in the 
order they are made. This is important because it re- 
fiects any serialization performed by concurrency con- 
trol, and thus avoids certain bad situations. In par- 
ticular, the actual completion order of transactions is 
reflected in the temporary log. 

Every undo action must possess the following proper- 
ties. After performing the undo action, it should be as if 
the normal Udo” action was not applied, whether or not 
the ‘do” occurred. Furthermore, undo actions should 
be idempotent: if applied more than once it should be 
as if they were applied exactly once. Every redo action 
has similar properties it must obey. After a redo is ap- 
plied, it should be as if the “do” occurred, exactly once, 
whether or not it actually occurred before. Redos must 
also be idempotent: if applied more than once, the effect 
is the same as applying them exactly once. 

Here is a list of the various normal actions that im- 
pact on recovery, and how they are handled in the single- 

level transaction system: 

l Transaction begin: The transaction is assign a unique 
transaction identifier (tid). A begin record is written to 
the temporary log; it includes the tid. 

l An action for transaction t: Appropriate redo and/or 
undo records are written to the temporary log. Each is 
marked with the identifier t. The undo record also in- 
cludes a pointer to t’s previous undo (if any) record in 
the log. (This chaining is supported by keeping track of 
the most recent undo log record for each running trans- 
action.) 

l Transaction commit: A commit record for the trans- 
action is written to the temporary log, and the tempo- 
rary log is forced (all records up to the commit record 
are written to a safe place). Then the transaction may 
release resources, and notify the user that it completed 
successfully. Note that buffer pages need not be forced 
to disk. 

l Buffer page write: First it should be understood that 
a buffer page cannot be written during an action; this 
implies that some sort of short term locks are used on 
buffer pages during critical sections. Second, because 
we are using careful replacement, a page cannot be writ- 
ten unless there are no dirty pages that must precede it 
to disk. Finally, the temporary log must be forced up 
through the most recent action affecting the page. To 
support this last requirement, each page will have asso- 
ciated with it a high water mark: the position in the log 
of the most recent log record for an action that modified 
the page. When all the conditions stated are satisfied, 
a page can be written back to its home on disk. 

l System checkpoint: Write a checkpoint record to the 
temporary log. This record indicates which transac- 
tions are running at the time of the checkpoint. It also 
includes information for bounding redo: the log Scan 
limit, which is determined in the following manner. For 
each dirty page, we keep track of when it was dirtied, 
by noting the pointer in the log to the redo record for 
the action that dirtied the page. This information is 
called the dirty mark for the page. The log zcan limit 
is simply the minimum of the dirty marks of the dirty 
pages, at the time of the checkpoint. All actions pre- 
ceding the log scan limit are guaranteed to be reflected 
in the database, so redoing from the log scan limit will 
bring the database up to date. Note that our checkpoint 
scheme does not require that activity against the buffers 
be quiesced, since we are not writing the buffers out. 

There are several ways in which “hot spot” pages 
(ones which are almost continuously in use, and hence 
are never replaced in the buffer) can be handled. Pages 
that have been resident a long time can be forced at sys- 
tern checkpoint time (this may require quiescing activity 
temporarily). Perhaps a more tlexible scheme is to asso- 
ciate a timer or counter with each page so that after it 
has been dirty for some period of time (measured either 
in absolute time, log activity, checkpoints, or some other 
convenient units) to cause it to be written at the next 
possible opportunity. We will assume that some such 
technique is used, since it serves to bound the amount 

Proceedings of the 13th VLDB Conference, Brighton 1987 429 



of the log that must be processed for partial redo. 
Another background activity that we will not de- 

scribe in detail is the maintenance of the archival log 
and archival database. Basically, the redo records of 
successful transactions (only) are copied from the tem- 
porary log to the archival log, as a background activity. 
Also, the archival log is processed against the archival 
database as background activity (possibly as an occa- 
sional batch job), to bring the archival database up to 
date and prevent the archival log from growing without 
bound. Once’temporary log information has made it to 
the archival log, and also is no longer needed for global 
undo or partial redo, the temporary log information can 
be discarded. Thus, copying to the archival log helps to 
bound the growth of the temporary log. However, to 
achieve a strict bound on the temporary log it is neces- 
sary to bound page residency (which we have assumed 
above), and also to bound the length of a transaction 
(which should also be done). 

Now that we have described normal operation, here 
is how recovery from the various sorts of failures pro- 
ceeds: 

l nansaction abort: The temporary log records for 
the transaction are scanned backwards, using the chain. 
As the records are encountered, the undo actions are 
performed. This procedure stops at the earliest undo 
record, which has a null chain. After all undos have 
been performed, an abort record is written to the log, 
as the transaction’s last log record. The log need not be 
forced, since a crash will abort any apparently running 
transactions anyway. The transaction’s resources may 
be released after the undos have been performed. The 
user can be notified of abort at any point, though it 
may not be useful to do so until the undos have been 
performed. 

l System crash: First, process the temporary log in 
reverse chronological order. While doing so, maintain 
four sets: C, the committed transactions; R, the run- 
ning transactions; T, the terminated transactions; and 
U, the transactions needing to be undone. Initially these 
sets are empty, and the log scan limit has not been set. 
The log may contain begin, undo, redo, commit, abort, 
and checkpoint records. Here is how each kind is han- 
dled. Begin - if the transaction is in U, remove it; other- 
wise do nothing. Undo - perform the undo action, and 
if the transaction is not in T, add it to U and R. Redo 
- ignore it. Abort - add the transaction to T. Commit 
- add the transaction to C and T. Checkpoint (first 
one only) - for each transaction active at the checkpoint 
and not in T, put the transaction in U and R; set the 
log scan limit to the value in the checkpoint record. Do 
nothing for checkpoints other than the most recent one. 

Stop the backward scan when U is empty and the 
log scan limit is reached (we must go back at least one 
checkpoint, to determine the log scan limit). Note that 
we undo committed transaction as well as aborted ones; 
this insures that there are no semantic anomalies. De- 
pending on the exact nature of the actions used in a 
given database system, it may be possible to avoid un- 
doing actions of committed transactions. 

Now scan the temporary log forwards, processing 

records as follows. Begin, undo, abort, commit, check- 
point - no action. Redo - if the transaction is in C, 
perform the redo action. When the end of the log is 
reached, write abort records for transactions in R. As a 
help in bounding later work, we can force all buffers and 
then take a checkpoint (which will show no active trans- 
actions and no dirty buffers), but this is not necessary 
for correctness. 

l Media failure: For a total failure, restore the archival 
database and process the archival log, in chronological 
order, and then proceed as in a system crash, except 
process all of the temporary log that has not yet been 
moved to the archival log. For partial failure, restore 
only the appropriate portion of the archival database, 
and process the archival log in chronological order, ap 
plying only those redo records pertaining to the portion 
being recovered. Then process the temporary log as for 
a total media failure.3 Media recovery will work faster if 
the archival log is kept reasonably up to date. It is pos- 
sible to use the temporary log as an archival log, though 
there may be advantages to reorganizing the data when 
building an archival log, since it is strictly for recovery 
of physical media.’ 

It should be clear that there are interesting storage 
management and data structure issues in implementing 
the logs - issues that we will not explore here. 

5. Nested Transact ion Recovery 

Extending the recovery schemes presented above to han- 
dle nested transactions is not extremely difficult. In 
handling transaction abort, the most difficult aspect is 
unwinding a transaction and its subtransactions at once. 
In the case of a system crash, the trickiest part is de- 
termining exactly which transactions should be undone 
and redone. To add nested transactions, we proceed as 
follows. To the existing log record types we add these: 
sub-begin: subtransaction begin; sub-abort: subtrans- 
action abort; and sub-commit: subtransaction commit. 
The sub-abort and sub-commit records are on the parent 
transaction’s undo chain, but also contain a pointer to 
the child’s most recent undo record. They also contain 
the child’s transaction identifier (as well as the parent’s). 
Note that committing a subtransaction does not require 
forcing the log, since it is not an absolute commit. 

Here is how recovery from the various kinds of failure 
works: 

l Transaction abort: This procedure maintains a set A 
of log pointers for transactions and subtransactions be- 
ing aborted. Initially A contains the pointer to the most 
recent undo record for the transaction to be undone, and 
the pointers for that transaction’s running descendants. 
We iterate, processing undo records aa follows. Among 
the records referred to by A, choose the most recent 

31t may be possible to restrict attention to just those portions 
being recovered, hut that is not always easy, since some actions 
may affect more than one page. 

41n particular, there are benefits to organizing the archive log 
and archive database as physical page images and deltas, rather 
than higher level semantic operations. 

430 Proceedings of the 13th VLDB Conference, Brighton 1987 



one, and delete its pointer from A. If the record has a 
non-null undo chain value, insert that chain value (i.e., 
the pointer to the previous record) back into A. Note 
that we will process records in reverse order of their 
insertion into the log. If the record is a sub-abort, do 
nothing; if it is a sub-commit, add the child’s undo chain 
pointer to A; if it is an undo record, perform the undo 
action. Stop this process when A becomes empty. Then 
write an abort record for the original transaction and 
each of its running descendants, from youngest (most 
deeply nested 
was requested I 

to oldest (the transaction whose abort 
. The overall effect is to undo the trans- 

action and all it running or committed children, their 
running or committed children, etc. Any aborted de- 
scendants (and committed descendants under them) can 
be ignored, since they have already been undone. 

l System crash: This proceeds much as for the single- 
level case. As before, we maintain the sets C (commit- 
ted), R (running), T (terminated), and U (being un- 
done). Here is how each kind of log record is handled. 
Begin - if the transaction is in U, remove it; otherwise 
do nothing. Undo - perform the undo action, and if the 
transaction is not in T, add it to U and R. Redo - ignore 
it. Abort - add the transaction to T. Commit - add the 
transaction to T and C. Sub-abort, sub-commit - add 
the transaction to T; add to U and R each ancestor of 
the transaction that is not in T; for sub-commit, add the 
transaction to C if its parent is in C. Checkpoint (first 
one only) - for each transaction active at the checkpoint 
and not in T, put the transaction in U and R; set the 
log scan limit to the value in the checkpoint record. Do 
nothing for checkpoints other than the most recent one. 

As before, stop the backward scan when U is empty 
and the log scan limit is reached. In the forward scan, 
process log records as for the single-level case: redo 
records for transactions in C. When done, write abort 
records for the transactions in R, from youngest to old- 
est. 

l Media failure: This proceeds as in the single-level 
case, substituting nested transaction system crash re- 
covery for the single-level version. 

0. Correctness 

It is extremely difficult to formalize recovery procedures, 
and we will not attempt to do so here. However, some 
arguments as to why the above algorithms work are in 
order. We first turn our attention to the single-level 
transaction recovery procedures, since the correctness 
of the nested transaction recovery can be argued incre- 
mentally from that point. 

0.1 Single-Level Correctness 

Let us consider transaction abort first. There are two 
keys to the correctness of this procedure. The first is 
that concurrency control has insured that undo opera- 
tions are still applicable. The second is that undoing in 
the exact reverse order from the original do operations, 
using undos that are true inverses of the do operations, 

Proceedings of the 13th VLDB Conference, Brighton 1987 

will remove the effects of the transaction being aborted. 
All these points are well understood; still, it is not al- 
ways trivial to implement the undos. 

Crash recovery is more subtle and open to question. 
The first point to have in mind is that careful replace- 
ment causes each individual change to be atomic, and 
thus either to appear or not appear in the database af- 
ter the crash (depending on whether the relevant pages 
made it to disk before the crash). It is also necessary 
that undos work when the do has not occurred (for op 
erations that are logged but not in the database), and 
that undos work if applied more than once (for oper- 
ations that were logged, and undone in the database 
already, or in case of a crash in the middle of recovery). 
Similar comments apply concerning redo in the forward 
scan. The key point in crash recovery is that we undo 
far enough that we bring the database and log into syn- 
chrony: when we stop the backward scan, the database 
reflects exactly the effects of transactions that commit- 
ted (or will commit) as of where we stop in the scan. To 
see this, note that because of the log scan limit, we have 
gone back to a point where all previous effects have been 
propagated to the database pages. Also, at the point 
where we stop, all effects of running transactions have 
been undone, so they have in fact been aborted. This 
latter point requires a little care, because of the way 
in which the checkpoint record helps us detemline what 
transactions were running when the system crashed, but 
it is not too difficult. Once the backward scan has syn- 
chronized the log and the database, the forward scan re- 
does the operations of the successful transactions. This 
works because the unsuccessful transactions cannot af- 
fect the successful ones in any way; that is, it crucially 
depends the notion of transactions. 

Media recovery, since it works from a “cleaned up” 
log against a clean archival database, it not particularly 
difficult to understand. The subtleties come in when 
one substantially reorganizes the form of the data in the 
process of archiving it. Since we were not very detailed 
about the media recovery procedure, we will not argue 
its correctness further. 

6.2 Nested Transaction Correctness 

When we extended the single-level transaction abort al- 
gorithm to the nested transaction case we did not change 
the algorithm very much; we did not affect the correct- 
ness argument strongly either. To see that our algorithm 
works, it must first be realized which operations should 
be considered part of the transaction to be aborted. 
The correct set of operations is those of the transaction 
being aborted, less those of inferior transactions that 
have already been aborted (either directly, or by hav- 
ing some ancestor abort). Our algorithm does indeed 
process this set. The other fact necessary is to have the 
undos performed in the correct order; our algorithm also 
accomplishes that. The extension for crash recovery fol- 
lows the same principles as the extension for transaction 
abort, so there is really nothing more to argue about it. 

431 



7. Summary and Conclusions 

We have briefly described the recovery properties of 
nested transactions in a centralieed database system, 
and reviewed an undo/redo log-based scheme for single- 
level transaction recovery from three classes of failures: 
transaction aborts, systems crashes, and media failures. 
We then extended that scheme to handle nested trans- 
actions. 

The resulting recovery algorithms add little complex- 
ity to those used for single-level transactions. In fact, 
processing required for system crashes and media fail- 
ures is essentially the same for nested transactions as for 
single-level ones. Nested transactions require a few ad- 
ditional log records to delimit the subtransactions, and 
these must be processed during recovery from systems 
crashes, but the additional work is negligible (assum- 
ing that undo records substantially outnumber begin, 
commit, and abort records). Distributed commit proto- 
cols, such as two-phase commit ([Gray 781, for example) 
would require virtually no adjustment (but see [Moss 81, 
Moss 85, Moss 861); they can merely invoke the nested 
transaction commit/abort algorithms rather than the 
ones for single-level transactions. 

Handling transaction aborts also requires process- 
ing the subtransaction log records, but the additional 
work can be assumed to be negligible. Finally, finding 
an individual transaction’s records, along with those of 
its descendant transactions, is a little more complicated 
than following a simple back chain, but is still relatively 
simple and efficient (maintain the set A of the transac- 
tion abort procedure as a priority queue), and almost 
certainly dominated by I/O and actual undo processing 
costs. 

The conclusion we draw is that nested transactions 
should not be difficult to incorporate in undo/redo log- 
ging schemes for recovery, and should have little impact 
on system performance. Clearly, measurements from 
an actual implementation would strengthen this conclu- 
sion. A second point that can be made is that, except 
in terms of design and coding effort, a nested transac- 
tion mechanism would impose no significant overhead 
in those cases where it is not used. The only overhead 
might be the extra slot for the parent transaction iden- 
tifier in begin, commit, and abort records. However, 
special versions of these records could be used for top 
level transactions, which would gain back the space, and 
the space is trivial anyway. 

Since it is apparent that efficient nested transaction 
recovery is possible, we suggest if efficient nested trans- 
action concurrency control mechanisms can be designed, 
nested transactions can be offered in production qual- 
ity database systems. We hope this encourages design 
of nested transaction concurrency control schemes, and 
eventually, the widespread offering and use of nested 
transactions in database management. 

References 

[Gray 781 Jim Gray, “Notes on Database Operating 
Systems”, in Lecture Notes in Computer Science, 

432 

Volume 60, R. Bayer, R. N. Graham, and G. 
Seegmueller, eds., Springer-Verlag, New York, 1978. 

[Gray et al. Sl] J. Gray, P. McJones, M. Blasgen, B. 
Lindsay, R. Lorie, T. Price, F. Putsolu, and I. L. 
Traiger, “The Recovery Manager of the System R 
Database Manager”, AC Computing Surveys, 
Volume 13, Number 2, June 1981, pp. 223-242. 

[Haerder and Reuter 831 Theo Haerder and Andreas 
Reuter, “Principles of Transaction-Oriented 

1: 

[I 

Database Recovery”, ACM Computing Surveys, 
Volume 15, Number 4, December 1983, pp. 287-317. 

[MS 761 IMS/VS-DB Primer, IBM World Trade 
Center, Palo Alto, CA, July 1976. 

Lorie 771 R. A. Lorie, “Physical Integrity in a Large 
Segmented Database”, ACM Transactions on 
Database Syslems, Volume 2, Number 1, March 
1977, pp. 91-104. 

Moss 811 J. Eliot B. Moss, “Nested Transactions: An 
Approach to Reliable Distributed Computing”, PhD 
thesis, Massachusetts Institute of Technology, 
available as Laboratory for Computer Science 
Technical Report 260, April 1981. 

Moss 821 J. Eliot B. Moss, “Nested Transactions and 
Reliable Distributed Computing”, Second IEEE 
Symposium on Reliability in Distributed Software 
and Database Systems, Pittburgh, PA, August 1982, 
pp. 33-39. 

Moss 851 J. Eliot B. Moss, Nested Transactions: An 
Approach to Reliable Distributed Computing, MIT 
Press, 1985. 

[Moss 861 J. Eliot B. Moss, “An Introduction to 
Nested Transactions”, University of Massachusetts 
(Amherst), Department of Computer and 
Information Science Technical Report 8641, 
September 1986. 

[Reuter 801 A. Reuter, “A Fast nanaaction-Oriented 
Logging Scheme for UNDO-Recovery”, IEEE 
Transactions on Software Engineering, Volume SE6, 
Number 4, July 1980, pp. 348-356. 

[Severance and Lohman 761 D. G. Severance and G. 
M. Lohman, “Differential Files: Their Application to 
the Maintenance of Large Databases”, ACM 
Transactions on Database Systems, Volume 1, 
Number 3, September 1976, pp. 256-267. 

(Sturgis, et al. 801 H. Sturgis, J. Mitchell, and J. 
Israel, “Issues in the Design and Use of a 
Distributed File System”, ACM Operating Systems 
Review, Volume 14, Number 3, July 1980, pp. 55-69. 

(Siemens] UDS, Universal Data Base Management 
System, UDS-V2 Reference Manual Package, 
Siemens AG, Munich, West Germany. 

[Verhofstadt 781 J. M. Verhofstadt, “Recovery 
Techniques for Database Systems”, ACM Computing 
Surveya, .Volume 10, Number 2, June 1978, 
pp. 167-195. 

Proceedings of the 13th VLDB Conference, Brighton 1987 


