
Integrity Constraint Reformulation for Efficient Validation

Xiaolci Qian

Dcbpartmc+nt of Computer Scioncr, Stanford University, CA 94305
And Kestrel Institute

Douglas R. Smith

Kcstrrl Institute, 1801 Page Mill Road, Palo Alto, CA 94304

Abstract

Constraint validation has bcc?n difficult to imple-
ment efficiently. The major reason for this difficulty lies
in the state-dependent nature of integrity constraints
and the rt~quiremcnt of both high-level spc&fication and
cfficirnt runtimc cnforccmcnt. In this paper, we pro-
pose a constraint reformulation approach to rfficicnt
constraint validation. We also demonstrate how this
knowledge-basrd constraint rcfornmlation can be natu-
rally accomplished in the gcncral framework of problem
reformulation with the technique of antecedent deriva-
tion. We formalize thr reformulation of an integrity
constraint as a tree-starch process where the search
space is thtr set of all semantic-equivalent alternatives of
the original constraint. We also develop control strate-
gies and mcta-level rules for carrying out the search
c?fficicntly. The major contribution of this work is a
new promising approach to cfficirnt constraint valida-
tiun and a general framework to accomplish it.

1. Introduction

Constraint validation, an essentid feature of any
database systems, is the process of guaranteeing and
maintaining a set of semantic invariants across database
state transitions. This process has been very difficult
to implcmcnt c6cicntly [1,4]. The major reason for this
difficulty lies in the state-ilrIJc~riilerit nature of integrity
constraints and the rcquirrmc~nt of both high-level spec-
ification and cflicit~nt~ runtime onforcemrnt. Research on
constraint validation has concc>ntratcd on deriving effi-
cient algorithms from the syntactic structure of cons-
traint sI~~~cific;rt~ion[G,1),11),12,13,21]. No knowledge of
tlics changing world ant1 the actual iiiipl~~mi?ntatioii of
the database has been used to obtain such algorithms
because they arc derived once for all possible situations.
These approaches neglect the fact that integrity const-

Permission to copy without fee all or pan Of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, Ihe
VLDB copyright notice and the tide of the publication
and its date appear, and notice is given thaw copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or 10 republish, requires a fee and/or
special permission from $e Endowment.

proceedings of the 13th VLDB Conference, Brighton 1987

raints closely relate to specific database states in the
sense that they have to be validated against specific
states. Hence only sub-optimal performance can be ex-
pected.

Bernstein, Blaustcin, and Clarke gave an improved
scheme in [2] in which sonic very limit& primitive infor-
mation (in forms of auxiliary aggregate data) is main-
tained in order to improve the performance of constraint
enforcement. However, they only considered a small
class of database integrity constraints involving arith-
metic comparison operators. Paige applied the finite
differencing trchnique to constraint validation in [14].
Although maintaining auxiliary information is very ef-
fective in reducing expensive recomputations to incre-
mental updates, blindly applying it without considering
the usage pattern of database sometimes leads to more
costly operations. Neither of thesr approaches provides
control over the usage of auxiliary information.

All approaches mentioned above take the integrity
constraint specification as it is given by the user. In
[lG] WC proposed a different approach to the efficient
validation of integrity constraints, which seeks to ex-
ploit knowlrdgr about the application domain and data-
base implcmcntation to reformulate user-specified con-
straints into outs which are syntactically different but
semantically rquivalrnt in the scrnst‘ that they enforce
the same condition given the application semantics, and
which arc cheaper to implctnrcnt given the existing data-
base configuration. Such a knowledge-based approach
provides great potential for efficient implementation be-
cause: logically equivalent constraint specifications can
have very diffcrcnt computational characteristics; by
exploring knowhldge about application semantics and
database configurations, constraints are specialized to
the current. run time environment with more optimiza-
tion opportunities; and since the process of constraint
reformulation is automated, it is easy to adapt to change
in application semantics and database organization.

The basic idea behind our approach is similar in
spirit to the one proposed by Hammcr[5] and King[S]
for knowledge-based query optimization, in the sense
that we are also looking for optimization by semantic
transformation. However there are important differ-

417

ences in both the nature of the problem to be solved
and the effectiveness of the solution. First, query op-
timization is performed far more frequently than cons-
traint reformulation. King put, severe restrictions on the
data model and the type of constraints allowed in or-
der to avoid the overhead of gmer,al deduction. In the
approach of Hammer, the search space is not charac-
terized, the cost mo&l of both query improvement and
search efficiency is intuitively described, and the control
mechanism is incomplete. It is unclear how c+fective the
control mechanism is against search space explosion and
how semantic reasoning interacts with heuristic search.
Finally, Hammer only supports restricted forms of logi-
cally equivalent transformations because his knowledge
reprsentation is not suitable for deductive use.

We demonstrate how knowledge-based constraint
reformulation cm be accomplished in the general frame-
work of problem reformulation with the technique of
antecedent derivation, which serves as a search space
generator of all alternative reformulations. We develop
a cost model as the criterion for selecting the most efli-
cient reformulation. Finally WC propose a set of strate-
gies for carrying out the search for the best reformula-
tion efficiently. The whole reformulation process of a
constraint is formalized as a tree-search process where
the set of all valid reformulations of the original cons-
traint forms a tree.

We restrict our attention in this paper to the re-
formulation of single constraints with respect to a set
of knowledge in relational databases, although the tech-
niques prcscnted provide basis for and can be extended
to the reformulation of a set of constraints. The in-
tegrity constraints are specified in first-order logic aug-
mented with set-theoretic operators and reduction (ag-
gregation) operators. Knowledge about the application
domain and database configuration is also represented
as logical assertions. The paper is organized as follows.
Section 2 gives a formal specification of the knowledge-
based constraint rcrforrnuliltior1 together with a classifi-
cation of the knowledge used. In Section 3 we briefly dc-
scribe a deductive system called RAINBOW which serves
as the inference engine. We then present, in Section 4,
a cost function to measure the preference of reformula-
tions. Finally our*search control strategy is presented
in Section 5, which consists of a set of task ordering and
pruning heurist,ics. We illustrate concepts by using the
example database and constraint below.

DATABASE SCHEMA
EMP(EName, EDept, Sal)
DEPT(DName, Bgt, Chairman, Ma&al)
PRO.I(PName, PDept, PMgr)
ASSIGN(AEmp, AProj, Percent)
SKILL(SEmp, SName)

418

CONSTRAINT
(‘de E EMP)(Vu E ASSIGN)
(Vp E PROJ)(Vd E DEPT)

(EName(e) = AEmp(a)A
AProj(u) = PNlmc(p)A
PDc:pt(p) = DNnwxe(d)

=? Sal(c) 5 B@(d)]

2. Knowledge-based Constraint Reformulation

A database is a collection of relations? each rela-
tion is a set of tuplcs. Tl re s . t ructurr of the database
is characterized by its schema, which specifics all the
relations, attributes, and domains on which the values
of attributes are defined. Relational databases do not
explicitly support the specification of inter-relation rela-
tionships. They are made possible by matching domains
of attributes in the rchations involved in the relation-
ships. We call such attributes comwctior~ attributes.
An integrity constraint is an abstraction of a validity
condition that data in the database must ol~ry. The set
of integrity constraints together serve as the correctness
criteria for valid database states.

The knowledge-based reformulation of constraints
can be formally specified as: given a knowledge base K
of a set of assertions and a constraint P, we want to
find an assertion P’ such that (1) K together with P’
implies P, i.e., K A P’ =+ P; and (2) P’ is both com-
putationally cheaper than P and semantically as weak
as possible. We call P’ an antecedent of P (relative
to h’). With the assumption that all the assertions in
the knowledge base K are valid in the current data-
base state, checking a constraint P’ will be more cost-
effective than enforcing the original constraint P and at
the same time guarantee that the database invariant P
is properly maintained.

A wide range of knowledge can be explored in cons-
traint rrforinlllatioll[22]. The knowledge falls into sev-
eral categories, from domain-specific application seman-
tics to specific iniplc~inc!ntation techniques used in the
database configuration.

l Application semantics, such as the cardinality of
rrlatiouships[3], other integrity constraints that
are already validated, and the current state of
the application.

l Database structures, such as the available logi-
cal structures supported by the database, virtual
and derived infurmation, and existing bindings.

l Physical organization and access paths, such as
the materialized links and indexes, physical clus~

tcring and locality.
l Database utilization through monitoring, such as

the update frequency of relations and usage fre-
quency of access paths.

Proceedings of the 13th VLDB Conference, Brighton 1987

Pttrformanct~ and cost information, such as the
relation and image sizes, blocking factors, and
the time to access a particular intlcx.
Algt+rdc propttrtics of opt,rations, such as the
rxistt~ncc of illvcbrst* of a frmctic~n or mapping, and
estimattrd set sixcr after stxt-furnicr operation.

The proclass of constraint reformulation occurs at
“compile time”, in the sense that c#icient checking code
is generated from the rrformulatrd constraint to actu-
ally cnforcr it at run time. Howt:vllr, under two situa-
tions thr rl~flJrlllllhtil~ll process has to bc rc:tractcd, that
is, the reformulation of P into P’ becomes invalid: (I)
when some knowledge in the knowlege base, which has
been used in thr reformulation, has become invalid due
to a database stat11 transition; (2) when an implication
is used in thr rc>formulation such that P’ * P, but af-
trr an intcndrtl state transition, P’ becomes false and
P rcnrains true. In both casts the rctformulation should
bc redone instead of invalidating the state transition.
By cart>fully choosing the knowledge to be used we can
minimize the cost of multiple reformulation. In Section
5 we develop control strategies on the use of temporal
or implication knowledge.

3. Antecedent Derivation

In this st-ction we briefly describe a formal deduc-
tivc system called RAINBOW tlrvt~loped at Kestrel In-
stitutc(l8,19]. RAINBOW is a system for deriving an-
tecedents. Givtm a goal G and assertion H it tries to
find a formula P, called a de&cd antccedcnt, such that
H A P 3 G. Thr deduction process has two stages.
In the first st,age reduction rules are repeatedly applied
to goals reducing them to subgoals. A primitive rule
is applitbd whrnt~vrr possible. The result of this reduc-
tion process is a goal tree in which (1) nodes represent
goals/subgoals, (2) arcs reprcscnt reduction rule appli-
cations, and (3) leaf nodes represent goals to which
primitive rulrs have been applied. The second stage
involves the bottom-up composition of antecedents for
subgoals into an antecedent for the parent goal.

If {Xl,..., z,,} are the free variables in G, then an

{ 21, zi)-antectdcnt of G is a formula P W~IOSC free
variables {zl,zi} C (21 , 2,) such that

H * Vz~...V~i[P 3 Vsi+l...Vz,G]

P is a weakest (21, ~;}-antectdt?~t if

H 3 VZ~...VZ~[P z Vzi.+.1...Vz,G]

is valid. Given a goal G with a set of free variables X,
RAINBOW looks flJr all possible formulas which are an
X’-antecedent of G where X’ c X.

Proceedings of the 13th VLDB Conference, Brighton 1987

Thcrc art: 10 reduction rules, 3 primitive rules, and
two composition methods in the system. Only the por-
tion usc~l in our cxamplcs is prcscntcd here. All for-
mulas in the rest of the paper arc assumed to be im-
plicitly tluantifit’tl alIt all free variables arc treated as
ClJ1lStiLxltS. In prc~srntiiig thcs reduction rules we use
tlrtb notation G; H as an abbreviation of the formula
hl A h2 A . . . A hk 3 G where H = {hl, hz, hk}. A
complete description may be found in [18].

R3. Rcdur:tioll of Con.junctive Hypothcases. If the goal
is G; H U { 13 A C}, then generate subgoals G; H U {B}
and G; H U{ C}. If thcrse subgoals return antecedents Al
and Az, then r&urn the disjunctive composition Al VA2
as the antt~ccdent of the goal.
R5. Application of an Equivalence Formula. If the goal
is G; H and A 5 G is a known theorem or an assertion
in H then gcntbratr subgoal A; H.
R7. Forward Infcrcncr from an Assertion. If the goal is
G; H, A * B or A EE B is a known theorem or assertion
in H, and A is an assertion in H, then generate subgoal
G; H U {B}.
R8. Goal/Assertion Duality Rules. (a) If the goal has
the form TA V B; H then generate subgoal B; H L! {A}.
(b) If the goal is B; H and A E H then genetate subgoal
~Av13;H-{A}. .
R9. Substitution of Equal Terms. (a) If the goal has
the form G(r); H and r = s is an assertion in H or a
known throrem then generate subgoal G(s); H. (b) If
one assrrtion has the form h(r) and r = s is another
assertion or a known theorem, then generate subgoal
G; H U h(s).
Pl. Primitive Rule. If the goal is G; H, we seek an
(217 z,}-anteccd ent, G and H’ depend only on the
variables 21, 2, where H’ has the form ~jm=~hi~, and
{hi, }jYzl,,,.,,,, E H, then generate antecedent H’ =S G.

Figure 1 gives a set of knowledge and theorems
about our example database. Now suppose that we
want to derive an (c)-antecedent of our example cons-
traint. A goal tree representing a formal derivation of
the antt+zrtltlnt Sal(e) < Bgt(EMPIN(e)) is shown in
Figure 2. The arcs of the goal tree arc annotated with
the names of the rules and known theorems or assertions
used. The leaves of thr goal tree are annotated with the
primitive rules used. Figure 3 shows the derivation of a
{d}-mtccedent: MuaSaI(d) 5 Bgt(d).

There are several interesting features of this ex-
ample that are worth mentioning. First the deductive
problem of antecedent derivation matches perfectly to
our constraint reformulation specification in Section 2.
The set of assertions plays the role of a knowledge base
and the goal is the constraint we want to reformulate.
RAINBOW provides us with a framework of systemati-
cally generating the space of antecedents. The correct-

419

ncss of the alternative constraints generated by RAIN-
BOW is straightforward from the correct11ess of rrduc-
tion rules.

Assertions:
hl. MuzSaZ(d) =

muz{ Sal(e): e E HASEMP(d)}
h2. (DName(dl) = DNa.rrd.e(ds)) 3 (d, = d2)
h3. EDept(e) = DName(EMPIN(
h4. (e E HASEMP(d)) - (EMPIN = d)
h5. (EName(e) = AEmp(u)A

AProj(a) = PNarne(p)A
PDept(p) = DName(d)) j

(EDept(e) = DNarne(d))
h6. (EName(e) = .s) E (e = IEName(s))
h7. (PName(p) = s) E (p = IPName(s))
h8. (EName(d) = s) E (d = IDName(

Theorems:
tl. (P 3 Q) z (+ v Q)
t2. ((e E S) A P * (F(e) 5 C)) q

((maz{F(e):e E S A P}) 5 C)

Figure 1: Assertions and theorems
Derived Assertions:

dl. ENume(e) = AEmp(a)A
AProj(a) = PNume(p)A
PDept(p) = DName(d)

d2. EDept!(e) = DNume(d)
d3. DNume(EMPIN(e)) = DNume(d)
d4. EMPIN = d

Goal:
Gl. (ENume(e) = AEmp(u)A

AProj(u) = PNom&)A
PDept(p) = DNume(d)) *

(SaZ(e) 5 W(d)); H
1 R5+tl, RS(a)

G2. Sal(e) < Bgt(d); H U {dl}
1 R7+h5+dl

G3. Sal(e) 5 Bgt(d); H U {dl,d2}
1 R9(b)+h3+d2

G4. Sal(e) 5 I)gt(d); H U {dl, d3)
1 R7+h2+d3

G5. Sal(e) 5 Bgt(d); H U {dl,d4}
1 R9(a)+d4

G6. Sal(e) 5 Bgt(EMPIN(e)); H U {dl,d4}
1 Pl

Figure 2: An {e)-antecedent of the goal

Secondly, the assertions in the example represent
typical knowledge about our database application. As-
sertion 112 expresses the key constraint of the DEPT
relation. Assertions h3 and 114 say that there is a many-
to-one mapping called EMPIN from EMP to DEPT
connecting each employee to his department, and its in-
verse is a one-to-many mapping HASEMP. Assertions

420

hG, 117, and h8 specify the thrrc i11dcxrs 011 attributes
ENulrr.e, PNn~rct:, and DN~IIw. By associati11g cost in-
formation with thc~sc functio11al 111appings wc arc able
to incorporate> physical orgal1izatio11 knowledge into our
ded11ctive fra111cwork.

Both derivations use tl1c assertion h5, wl1ich says
tlliit, (currently) employees only involvr in projects in
their own departments. Wit11 this piece of i11forn1ation
our constrai11t gets greatly silnplificd because we can
compare tl1e employee’s salary directly with the bud-
get of 11is department, witho11t going through all of his
projects. Tire two reasons WC mentioned before for re-
tracting reformulation arc botl1 possible with the in-
troduction of h5 in our derivation. The database may
evolve into a state wl1ere it is no longer true that each
employee only works for l1is own departinent. It inay
very well br the case that an cmployce is joi11ing a multi-
department project. This makes h5 not valid and check-
ing P’ is not enough for ensuring the validity of P. Also
by using the rcform11lated co11straint instead of the orig-
inal one, we are enforcing a stronger condition than nec-
essary, a condition that says each employee must earn
no more than the budget of his department -- even if
he is not i11volved in any project (in his department).
Given that it is usually the case that, every employee
works for at least one project, it n1ay still be beneficial
to enforce this stronger constraint.

Drnvctd Assertions:
d5. e E HASEMP(d)

Goal:
G5. Sal(e) < Bgt(d); H U {dl, d4)

1 R7+h4+d4
G7. Sal(e) 5 Bgt(d); H U {dl,...,d5}

1 R8(b)+d5, tl
G8. (e E HASEMP(d)) 3 Sal(e) 5 Bgt(d);

H U {dl, d5)
1 R5+t2

G9. muz{SuZ(e): e E HASEMP(d)} 5 Bgt(d);
H u {dl, 55)

1 RD(a)+hl
GlO. MuzSuZ(d) < Bgt(d); H U {dl, d5)

1 Pl

Figure 3: A {d}-untccedmt of the goal

In the second derivation shown in Figure 3, the 6th
rrduction step from G7 to G8 introduces the inverse
111appi11g HASEMP a11d a mcrnbership test, which is
more expensive to conlpute than the assertion before
this step. It turns out that this seemingly expensive
result can be trinisformed further into one with aggre-
gation function maz and derived attribute Mu&al.
Hence it provides opportunities for great efficiency im-
provement, wit11 advanced optimization techniques such
as finite differencing[l4].

Proceedings of the 13th VLDB Conference, Brighton 1987

Finally, althougl1 RAINDOW is able to generate all
possible valid rcf~JrIlllllihJIis of it given constraint, it
does not tell us which one is the best in terms of com-
putational efficiency. Nor does it tell us how to find such
a rc~fornullation efficiently. In tlie ncxt3 two sections, we
present il. cost. fimctiou, which scrvcs iiS a criterion for
selecting antecedents, arId our strategies for search con-
trol. Both control knowledge and c#icicncy knowledge
are represented as rules which are stored in the knowl-
edge base, together wit11 the domain-specific knowledge
used to derive antecedents. Such a representation of
nrrta-kuowlcdge makes the system self-extensible
offers great ease in adapting to 11cw environments
incorporating new knowlrdgc[7,20]. Sample rules
be found in [15).

and
and
can

4. Cost Analysis and Measurement

111 searching through the space of possible cons-
traint reformulations, a criterion is needed for choos-
ing tl1r best solution (antecedent), predicting the best
search direction, and pruning unpromising branches. In
this section we investigate the factors on which such a
criterion depends and propose a method of measure-
ment that takes into account all the relevant informa-
tion. Basically we prefer one reformulation over another
according to its computational cost and semantic weak-
ness. We discuss them separately using the techniques
of symbolic and incremental analysis. The design goals
for such a cost function are to make the process fully
automatic, minimizing the need for the user to provide
performance information. The accuracy of the measure-
ment relies heavily on the accuracy of information pro-
vided by the user or through monitoring the database
in operation, and the correctness of assumptions made,
such as the independence of user-defined predicates.

Computational Cost

We define the computational cost of a constraint
to be the time to check its validity against a database
state. Four pieces of information arc used as parameters
to our cost formula. WC need the estimated selectivities
of user-defined predicates, monitored sizes of relations
am1 attribute images, and monitored frequency infor-
n1ation about relation update operations - insertion
and deletion frequencies of single tuples. These parame-
ters are initially specified via one of two means: (1) The
user may provide such information, or (2) the system
n1ay assume default values for those that are missing.
Subsequently the systtn1 conlputcs these parameters for
other predicates or relations that are defined in terms
of the initial set of predicates and relations, and contin-
uously modifies them to reflect the state change. Such
activity is specified by sets of transformation rules[l5].

Proceedings of the 13th VLDB Conference, Brighton 1987

The cost of computing an integrity coustraint has
two coiiiponc~nt~s: (1) the cost (cr) of actually evaluating
the constraint weighted wit.11 tl1e frequency that the do-
rnains (relations) it, c~JIlStrtil1S on change, and (2) the
cost (cr) of computing a11d niaintaining tlir auxiliary
structures used in tl1cb constraint, e.g., access paths and
derived inforInation, wrigl1tc.d wit11 the frequencies that
the domains tl1ose structures depend on change. The
general cost formula for computing the cost of cons-
traint P is:

c(P) = Cl(P) + c2(P), where

Cl(P) = ~tml(P) X Cz~~~~~~~(p)(fi~~~(2) + fdel(z))

Q(P) = &STR(P)(cn3ain(Y) + cl (W(y)))

III the above formula, DOM(P) is tl1c set of re-
1ihJIlS in terms of which the constraint P is specified,
STR(P) is the set of auxiliary structures used in P,
fina ad f c () d 1 2 are the insertion and deletion fre-
qucncies to relation 2, ceoal(P) is the cost of evaluat-
ing tile expression P, C*,,i,(y) is the cost of maintain-
ing structure y, and def(y) is the definition formula of
y. Tl1is formula achieves a good compromise between
performance of enforcing constraint and performance
of maintaining redundant information. Tl1rre are two
groups of transformation rules[l5]: (1) Rules for com-
puting the cost of evaluating arbitrary expressions, and
(2) Rules for estimating tke cost of maintaining arbi-
trary materialized structures (e.g., views).

Semantic Weakness

As mentioned in Section 2, the reformulation pro-
cess has to be retracted when some knowledge used in
reformulating constraint P into P’ (1) has become in-
valid, or (2) is an implication instead of an equivalence,
and P’ is false, altlmugl1 the database after the state
transition is still valid in terms of the original cons-
traint I’. The assertion 115 in Figure 1 is such an ex-
ample. Both situations are because that we are us-
ing some facts which are semantically stronger than
necessary, some facts which only hold for a subset of
valid database states. We need some means to measure
the semantic weakness of each piece of knowledge in
the knowledge base and determine, according to such a
measure, whether it is cost-effective to use a particular
one in our reformulation.

We take the semantic weakness of an assertion to
be the probability that it is true in a valid database
state. The larger this probability is, the weaker the as-
sertion is in semantics. In rrfor111ulating a constraint,
we want to use a piece of kuowlrdgr which is as weak as
possible such that our reformulation 11as less chance of
having to be retracted. 111 establishing the knowledge
base, each assertion is attached with the probabilty that

421

it will remain true as its initi<al semantic wraknrss mra-
sure. For each assc*rticbn which is an implication P 3 Q,
its wc*akncss Iwasurv is multiplied by the probability
that Q s P is true as its actual measure. This is be-
cause if WC use P S= Q in reformulation we arc assuming
that Q z P is also true. These initial probability mea-
sures are specified by the user at knowledge base build
time. Transformation rules arc applied to compute the
semantic weakness of derivrd knowledge and partially
reformulated constraints.
Derived Assertions:

d6. EName(e) = AEmp(a)
d7. AProj(a) = PName(p)
d8. PDept(p) = DName(d)
d9. e = IENarne(AEmp(a))
d10. p = IPNarrre(AProj(a))
dll. d = IDName(PDept(p))

Goal:
G2. Sal(e) 5 Bgl(d); H U (dl}

1 R3+dl
Gil. Sal(e) < Bgt(d); H U {dl,d6 ,..., d8)

1 R7+hG+d6, R7+h7+d7, R7+h8+d8
G12. SaZ(e) 5 Bgt(d); H U {dl,d6, dll}

1 R9+d9, R9+dll
G13. SaZ(lEName(AEmp(a))) 5

Bgt(loName(Poept(p))); H U {dl,d6,dll}
1 R9+dlO

G14. Sal(IEName(AEmp(a))) 5
Bgt(lDName(PDept(lPName(APtoj(a)))));
H U {dl,d6,...,dll}

1 Pl

Figure 4: An {al-antecedent of the goal

Given an assertion P and its semantic weakness
measure W(P), the modified cost formula which takes
into account the semantic weakness of the assertion is
as follows:

c’(P) = a x c(P)/uJ(P)

where a is a predetermined constant which balances the
compromise of semantic weakness against other cost
factors. For example, we may associate with the as-
sertion h5 in Figure 1 a semantic weakness measure
p x q < 1 where (1) the probability of h5 remaining
true is p and (2) the probability of

(EDept(e) = DNane(d)) 3
(3p)(h)[PDepl(p) = DName(d)A
EName(e) = AEmp(a)~
AProj(a) = PiVame(p)]

being true is q. w increases the cost of the reformula-
tions in Figures 2 and 3 and at certain point they are
no longer cheaper than some other reformulations which
do not use h5. Figure 4 shows such a derivation.

5. Search Control

Thr search spacr for reformulating a constraint is
the spac(b of constraints which nr(’ rcformulatiorls of the
original constraint. Tl IV stt,l)wisc~-rc,duction approach
associates a natural scaarch tree with each constraint’s
search space. Most of the decisions made during the
search are based on the mcasurCment of computational
cost and semantic wctakness. This Sllggf5tS the adop-
tion of the basic paradigm of heuristic search. The root
node of the tree is the initial constraint to bc reformu-
lated. The arcs represent thr application of reduction
rules. The branching points in thr trer rrprescnt points
where more than onr reduction rule is applicable. Inter-
mediate nodes arc partial reformulations and leaves are
alternative constraints to be enforcrd. Figure 5 shows a
partial search tree for our example constraint, where the
branches correspond to the three derivations in Figures
2, 3, and 4.

Figure 5: Partial Search Tree

The basic search technique is a form of heuristic
search with the state of the search recorded in a task
agenda. A task is defined to be an application of a
rule to a goal. A reformulation node is chosen based
on a modified form of best-first search. The search at-
tention is always concentrated on the current node un-
less it is abandoned according to the pruning criteria.
Task-ordering rules are used to choose a task within the
current node to work on. Only those tasks which are
considered plausible are taken as candidates. A reduc-
tion rule is then applied to the current node to fulfill
the chosen task. The resulting new node is compared
to other possibilities in the tree by a form of branch and

422 Proceedings of the 13th VLDB Conference, Brighton 1987

bound.

Plausible Task Generation

A critical part of constraint rrformulation is the de-
cision of what to do whi*n mor(~ than 01~~ rrduction rule
is applicable. Each rule usually rc~prcsc~nts the lbossibil-
ity of ii diffi~rc~nt Wily of rc~f~~rllrlllilt,ill~ tllc~ constririut.
Two types of action art’ possible at this point. All the
applicable rules can 1,~ applied, producing the set of
competing rc~forniulatious for comparison. Or, the rules
can be compared without! actually applying them, and
those rules which are uot mc~aningful for the purpose of
reducing the cost of constraint validation is removed.
Obviously the latter choice is more efficient. We use
plausibility rules as a first-level filter to eliminate those
candidate rules which do not lead to potential reduction
in validation cost. Below we describe SOIU~ of the rules
in more detail.

Structllrcs introdwmf should not bc* irr&vant to the
original constraint. One of the important characteris-
tics of constraint reformulation is the introduction of
auxiliary structures or information into the constraint,
which are maintained by the DBMS. This is accom-
plished through substitution of eqwl terms (R9) or for-
ward inferencing (R7). But blindly introducing new
structures may lead to more cxpcnsivc constraints. One
type of rules tries to avoid the introduction of irrelrvant
structures or domains. For example, if we apply reduc-
tion rulrs R5, R.8(a), and 11.3 to the rxample constraint
to get a derived assertion AProj(a) = PName(p), and
there is another assertion:

APtoj(a) = PName(p) +
(AEmp(a) = PMgr(p) * Percent(a) 2 50)

then we do not want to infer AEmp(a) = PMgr(p) 3
Percent(a) 2 50 because that it is not directly relevant
to our goal Sal(e) ,< Bgt(d).

Structures introduced should help in constraining the
range of the original constraint. A constraint is al-
ways defined on a set of domains. The cost of check-
ing the constraint is proportional to the product of the
sizes of these domains. If a piece of knowledge speci-
fies a restriction on these domains, combining it with
the constraint will reduce the evaluation cost. As an
example discouraged by such type of rules, suppose we
have an assertion EName(e) = SKILLOF(SEmp(s))
which says that there is a mapping SKILLOF from
each SKILL tuple to the EMP tuple that has that
skill. If we replace EName(e) in ‘our example COIIS-

traint by SKILLOF(SEmp(s)), we are introducing a
new domain SKILL which is not one of the domains
of the original constraint.

General optimization. Most general-purpose, context-
independent optimization techniques can also be spec-

ificcl as plausibility rules, such as finite differencing,
pushing unary operations through binary ones, etc.

Task Ordering Mechanisms

Thcrc may vrry wc4 bc more than one plausible
rc*duct.iou task applicabl<~ to a rc!forlnlllnt,il~~~ node. The
or&r ill which clc&ions art’ considc*rc~cl would not be im-
portant if all courbinatious of possibilitirs were consid-
cArei in full detail. Howcvc>r, the computation involved
in choosing a rrformulation must be limited. Therefore
the o&ring of tasks becomes relevant. The goal of task
ordering rules is to reach the best solution as soon as
possible. These rules try to compare the potential im-
pact of tasks on the cost of constraint and order them
accordingly.

Introduce stable structures first. The stability of struc-
tures are evaluated using the database monitoring infor-
mation about, the accessing illlti updating frequencies of
domaius OII which the structurc*s arc dcfiuc~l. It also de-
pends on the specific techniques used in implementing
these structures. One ordering principle is to perform
the task which introduces stable structures. By requir-
ing the new structures to be stable, we are sure that the
reformulation would have a low maintenance cost. The
way of determining the stability of structures is to com-
pare the cost of maintaining them. As an example of
this ortlcaring principle, consider the search tree in Fig-
urr 5. The choice point at node G5 indicates that two
tasks arr applicable. One introduces the auxiliary struc-
turr EM PIN while another introduces HASEMP. If
HASEMP is implemented in a more expensive way
than EMPIN, then according to our ordering crite-
rion, G6 is prrfered over G7.

RrpJacc exprrssions that are expensive. Another order-
ing principle is to choose the task that replaces a more
expensive expression. By replacing a more expensive
expression first, we expect to reduce the cost of cons-
traiut faster. For example, at node G2 in Figure 5, two
tasks are applicable. OIIC task generates d2 from h5
and dl while another generates three assertions d6, d7,
and d8 from (11. Obviously h5 and dl together are more
expensive to evaluate than 111. Using our principle, the
branch to node G3 is prefered.

Simplification ‘should be done before looking at other
choices. A reduction is said to bc a simplification step
if it symplifics the syntax of the constraint. One of the
characteristics of constraint reformulation is that the
benefit of reformulation may not be obvious by a single
reformulation step. Some simplificatiqn steps are usu-
ally nrcdrd before there is a decrease in cost. By group-
ing one reformulation step with a sequence of simplifica-
tion steps, we art making “macro step” reformulations
which often help us find the right solution faster. Con-
sider again the search tree in Figure 5. If, at node G8.

proceedings of the 13th VLDB Conference, Brighton 1987 423

aftor HASEMP has brcln introduced, WC stop because
the cost of the constraint at G8 is grcatc~r than the cost
of the constraint at liodc G6, wc would not be able to
find a prrhaps CWII cheaper constraint, GIO.

~JldC~WJIdC’JJ t rc*dJJctioJJ.s shnh~ not be dono rqmtcdly.

R.cformulation is a chain of rtductious from one cons-
traiut to another. During this reduction process, there
may be many independent decisions. These indepen-
dent decisions should be made only once according to
the order of their potential impact on the cost of eval-
uating constraint. For example, in the derivation in
Figure 4, we did not show the ordering of derivations
of d6, d7, and d8 from G2 to Gil. The ordering is
not important for reformulation purposes because they
arc indcpendcnt of each other. RAINBOW automatically
avoids the repeat dcrivatious of these independent de-
cisions iu different orders.

Branch and Bound

The ordering of tasks still does not make sense if
we have no means of determining when we have reached
a “best” solution. Without a criterion for stopping the
search, we again end up generating the whole search
space exhaustively. The traditional technique of branch
and bound does not work very well with reformulation
in general because it requires the estimation of the up-
per and lower bounds of the cost of a subtree without
actually generating the tree. Such cost bounds arc very
hard to obtain due to the nature of reformulation. At
a particular node in the search tree, it is extremely dif-
ficult, if not impossible, to “guess” what is an alter-
native form into which the current constraint can be
reformulated, just by looking at the constraint itself.
Furthermore, the cost of the constraint is not uniformly
decreasing during reformulation. Therefore it is of no
USC comparing the cost of nodes in the partially gener-
ated search tree.

Based on the above considerations, we have devel-
oped two strategies for branch pruning in the search
process. One pruning principle makes use of the fact
that a constraint specifies a relationship between ob-
jects in different domains, and according to our plau-
sibility rules no IK-w domain is ever introduced. Hence
in the worst case the constraint is enforced exactly on
these domains with no auxiliary structures to take ad-
vantage of, which means that the constraint has to be
cnforccd by enumerating over all the domains involved.
OIL the other hand, the best we may get is to enforce
the constraint on a single smallest domain. At each
node in the starch tree these upper and lower bounds
are computed by looking at the domains on which the
current constraint is specified. If WC denote the up-
per and lower cost bounds of a node N by cmo2 and
cm;, respectively, a node N is pruned if there exists

auothcxr node N’ such that c,,,,,(N’) < c,,ia(N). For
c~xalllpll~, iJI Fig:llrc: 5 c,,,i,,(G13) = ~izc(PR0J) while
c,,,(GG) = ~izc:(EAfP). If GG is gc,Ilc‘ratcd before
G13 imd si.ze(EMP) < siz~~(PRO.7) then Gl3 will be
pruucd aud G14 would not be gc,neratcd.

Another method is to have the user provide some
criteria to stop the search. 011~ such information would
be a cost bound, where a solution is satisfactory if it
costs less than the user’s bound. A node gets pruned
if its lower bound is larger than user’s bouud. Another
criterion may be the set of domains that the user wants
the constraint to be specified. For example, the user
may tell the systrm that an {z, y}-antecedent is satis-
factory. As soon as such a constraint is reached, the
search stops.

6. Discussion

A prototype system is being implemented on top
of RAINBOW using a wide-spectrum programming lan-

‘I* guagc REFINfl . There are currently about 90 rules
in the cost evaluator grouped according to functional-
ities and about 10 meta-rules in search controler. The
heuristic rules for controliug forward inftsrcncing turn
out to be hard to implement due to RAINBOW’S diffi-
culty in switching inference directions. We’ve tested
the system using our cxamplc database and constraint,
with a knowledge base of 20 assertions. RAINBOW is
ablca to generate all alternative constraints, and based
on given performance parameters the system correctly
chooses the reformulated constraint in Figure 2 as the
best, solution. With the limited control facility we have,
the search is roughly 10 times faster. The search space
is non-trivial and deserves good search strategies. Al-
though the reformulation of constraints as we stated
here has a nice match to the general heuristic mecha-
nism, the heuristics are of a quite different nature and
rely heavily on the semantics of the application that the
database models.

The problem of choosing between alternative re-
formulations is quite important, since it affiacts the effi-
ciency of both the search process and thr rcasulting cons-
traint. In our framework, this problem has been broken
into two components: (1) the logic component which
constructs the search space whose nodes are reformula-
tions of the original constraint, and (2) the control com-
ponent which clxplores this space, making choices based
on the cost of the alterhatives. The first function is pro-
vided by RAINBOW’s deductive reasoning paradigm, the
second is provided by a combination of analytical and
heuristic paradigms. These paradigms are combined in
a uniform way to achieve the ultimate goal.

* A trademark of Reasoning Systems Inc.

Proceedings of the 13th VLDB Conference, Brighton 1987
424

We argue that the enforcement of integrity con-
straints b~tsrd on tllc krlowlidgc~ ahout. irpplication do-
main and datalras~~ configuration is the right approach
to the problem due to the nature of integrity constraint.
We also llt~llK~l1stdCYl the feasibility of such an ap-
proach by formalizing irnd developing a framework for
carrying out the reformulation effectively.

Acknowledgement

We are grateful to Gio Wicderhold, Cordcll Green,
Torn Pressburger. and Janet Coursey for helpful dis-
cussions. This work was supported in part by DARPA
contract N39-84-C-0211 for Knowledge Based Manage-
ment Systems, and in part by the Rome Air Develop-
ment Center (RADC) contract F30602-86-C-0026. The
views and conclusions contained in this paper are those
of the authors and should not be interpreted as rcpre-
senting the official policies, either expressed or implied
of DARPA, RADC, or U.S. Government.

References

[l] Badal, D. and Popek, G., “Cost performance analy-
sis of semantic integrity validation methods”; Proc.
ACM SZGMOD, 1979,109-115.

[2] Bernstein, I’., Blaustcin, B., and Clarke, E., “Fast
maintenance of semantic integrity assertions using
redundant aggregate data”; Proc. 6th Znt. Conf.
VLDB, 1980, 126-136.

[3] El-Masri, It. and Wiederhold, G., “Properties of Re-
lationships and their Representation”; Proc. of the
1979 NCC, AFIPS vol.49, Aug. 1979, 319-326.

[4] Furtado, A., dos Santos, D., and de Castilho, J.,
“Dynamic modelling of a simple existence cons-
trilhlt”; Znf. Syst. 6, 1981, 73-80.

[5] Hammer, M. and Zdonik, S., “Knowledge-based Qu-
ery Processing”; Proc. 6th Znt. Conf. VLDB, 1980,
137-147.

[S] Hsu, A., Imielinski, T., “Integrity Checking for Mul-
tiple Updates;” Proc. ACM SZGMOD Conf., 1985,
152-168.

[7] Kant, E., Efi crcnc in Program Synthesis; UMI Re- ‘: y
search Press, 1981.

[8] Keller, A.M. and Wicrderhold, G., “Validation of
Updates Against the Structural Database Model”;
Proc. of Symposium on Releability in Distributed
Software and Database Systems, Pittsburgh, July
1981.

[9] King, J., “Quist: a System for Semantic Query Op-
timization in Relational Databases”; Proc. 7th Znt.
Conf. VLDB, 1981, 510-517.

[lo] Lafue, G., “Semantic Integrity Dependencies and
Delayed Integrity Checking”; Proc. 8th Znt. Conf.
VLDB, Mexico City, 1982.

Proceedings of the 13th VLDB Conference, Brighton 1987

[ll] Morgenstcrn, M.. “The R.ole of Constraints in Data-
bases, Expert Systems, e.nd Knowledge Represen-
tation;” Proc.Zst workshop on Expert Database
S.ystcms, Oct. 1984.

121 Nicolas, J., “Logic for Improving Integrity Checking
in Relational Data Bases”; ACTA Znformatics 18,
227-253,1982.

[13] Nicolas, J. and Yazdanian. K., “Integrity Check-
ing in Deductive Databases”; Logic and Databases,
eds.Gallaire, H. and Minker, J., Plenum Press, NY,
1978.

[14] Paige, R.., “Applications of finite differencing to
database integrity control and query / transaction
optimixation”; Advances in database theory, Vo1.2,
ed. H. Gallaire, J. Minker and J. Nicolas, Plenum
Press, New York.

[15] Qian, X. and Smith, D., “Constraint Reformula-
tion: An Approach to Efficient Validation”; Tech.
Report, Stanford University and Kestrel Institute,
1987.

[16] Qian, X. and Wiedrrhold, G., “Knowledge-based
Integrity Constraint Validation”; Proc. 12th Intl
Conf. VLDB, Kyoto, Japan, Aug.1986.

[17] Shepherd,A. and Kerschberg,L., “Constraint Man-
agement in Expert Database Systems”; in Expert
Database Systems, ed. L. Kerschberg, Springer- .
Verlag, New York, 1984.

[18] Smith, D.R., “Derived Preconditions and Their Use
in Program Synthesis”; ed. D. Loveland, 6th Cod.
Au tomated Deduction, Lecture Notes in Computer
Scicncc no.138 (Springer-Verlag, New York, 1982),
172-193.

[I91 Smith, D.R., “Top-Down Synthesis of Divide-and-
Conquer Algorithms”; Artificial Intelligence, 27(l)
Scpt.1985,43-96.

[20] Smith, D.R., Kotik, G.B., and Westfold, S.J., “Re-
search on Knowledge-based Software Environments
at Kestrel Institute”; IEEE ‘Ibans. on Software En-
gineering, SE-11(11):1278-1295, Nov.1985.

[2I] Stonebraker, M., “Implementation of Integrity Con-
straints and Views by Query Modification”; Proc.
Of tlJe ms SzGitfOD COnferf?nCf?, ACM SIGhfOD,

San Jose, June 1975.
(221 Wiederhold, G., “Knowledge versus Data”; in On

Knowledge Base Marragernent Systenis: Zntegrat-
ing -41 and Database Technologies, ed. M. Brodie,
1986.

425

