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Abstract 
A database snapshot mechanism rcprcsents a cost ef- 
fectivc substitute for replicated data in a distributed 
database. The contents of a database snapshot can be 
periodically refreshed to reflect the current state of the 
database. In a distributed database system it is sign& 
icant to reduce the cost of snapshot refresh. This can 
be obtained by a differential refresh strategy in which 
modifications to the base tables involved are detected. 

The paper proposes two methods based on using a 
separate table for logging the modifications made to a 
base table; a sequential and a condensed logging ap- 
proach. The methods have been compared for various 
update frequency and composition. The sequential log 
performs well for single snapshots if the modification 
set is small relative to the base table size, or if the 
snapshot is restrictive. In the case of large modification 
sets and replicated snapshots, the condensed logging 
method is to be preferred. 

Introduction 
Data replication is often introduced in distributed da- 
tabases to improve performance and availability. By 
storing copies of data at sites where the data is fre- 
quently used, the need for costly, rcmotc access is de- 
creased and the probability of having a copy available 
is increased. In practice, the expected improvement in 
performance is hard to achieve due to the added cost 
of maintaining the replicated data. 
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Database snapshots, introduced in [ADIB 801, repre- 
sent a cost effective substitute for replicated data in 
distributed databases. A database snapshot can be de- 
fined as a read-only replica of a selected portion of the 
database. Snapshots thus relax the requirement of be- 
ing up-to-date. Instead, snapshots are refreshed i.e. 
made up-to-date only at specific points in time by some 
user-invoked or determined action. In a relational da- 
tabase system, a snapshot may in general be defined as 
a restricted join over a set of tables, similar to a general 
very. 

Since a snapshot can be viewed as a system maintained 
table, refresh can easily be achieved by rebuilding the 
snapshot table from scratch at each refresh request. 
We call this a full refresh strategy. IIowever, if few or 
no modifications are made to the base tables involved 
in the snapshot definition since the last refresh, much 
of the refresh processing wiIl be redundant compared 
with the previous refreshes. In a distributed database, 
we may end up sending virtually the same snapshot as 
already stored remotely. 

A differential refresh strategy is therefore based on de- 
tecting modifications made to each of the base tables 
involved in the snapshot. Then, by combining these 
modifications, refresh messages are computed and sent 
to the snapshot. In this paper, we propose two meth- 
ods based on using a separate table to log modifications 
to the base tables; a sequential and a condensed logging 
approach. The differential snapshot refresh mechanism 
as proposed is designed to fulfill the following require- 
mcnts: 

1) The mechanism supports restrictive as welI as full- 
copy snapshots. 2) The mechanism supports replicated 
as well as one-copy snapshots. 3) The mechanism 
supports independent snapshots on one table. 

We will concentrate our discussion on snapshots based 
on a single table (i.e. no joins in the definition). We 
first describe the two logging methods designed to fulfill 
the first requirement. We then discuss how the logging 
approaches can be extended to support replicated as 
well as independent snapshots. We conclude with a 
cost analysis for each method under various update 
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frequency and composition. III the analysis, the proc- 
essing cost is considered as well as the message dclivcry 
cost. 

The work presented here was done along with the de- 
velopment of the distributed relational database system 
MIMER* [MIME 851. Among the characteristics of 
MIMER* is the enforcement of a primary key, opti- 
mistic concurrency control for transaction handling, 
and portability between dissimilar computer systems. 
We therefore discuss the various methods in light of 
this system. 

Related Work 
Most work on snapshots has been done within the 
framework of the R* distributed database management 
systems project at IBM Research in San Jose [LOIIM 
84. 

The distributed DBMS INGRES/STAR [MCCO 861 
supports something similar called deferred updates in 
which the local copy of the replicated data may be up- 
dated directly. The modifications are then added to an 
intention list and propagated to other sites holding 
copies of the same data. The updates are finally taken 
care of by transactions at the replica site. Deferred 
updates thus relax the requirement of mutuaI replica 
consistency. We will return to the deferred updates 
method later on since a table bciig a read-only repiica, 
updated deferred, corresponds to a snapshot. 

Also, some work on refresh processing applicable to 
snapshots has been performed in connection with the 
related issue materiaJized views or view instantiation 
(BLAK 861 . Here, a regular database view is 
instantiated in the form of a table, rather than as a de- 
ftition which is evaluated each time it is referenced in 
a query. Maintenance of such instantiated views is 
suggested to be performed in a differential manner. 
The paper presents a method by which one can deduce 
the modifications necessary to the view table from the 
modifications to the tables referenced in the view. In 
contrast to our paper, it does not discuss how the base 
table modifications are determined. 

In fact, most papers have treated the subject at the 
conceptual level. The only paper describing a specific 
implementation is [LIND 86) . This paper presents an 
algorithm which as its main objective has the minimi- 
zation of the number of messages sent when refreshing 
a snapshot. The algorithm is based on annotating the 
base table with two columns, a previous tuple address 
and a timestamp. Unlike the methods proposed in our 
paper, the algorithm does not include the processing 
cost of refresh. 

Finally, our work is applicable to differential mainte- 
nance of complex objects [HASK 82) stored in rela- 

tional CAD/CAM databases [FRQS 861 . In such 
environments, complex objects are retrieved for proc- 
essing from a central database (check out). Instead of 
writing the entire changed object back in to the central 
store, a condensed differential log is maintained and 
later merged with the original tables, which have re- 
mained locked in the meantime. 

Performance Objectives of 
Differential Refresh Strategies 
Differential refresh strategies are based on detecting 
base table modifications. When considering snapshot 
definitions not involving joins, qualiIication of the 
snapshot is restricted to single tuple expressions. Mod- 
ifications to a snapshot thus become a subset of the 
modifications to its base table. 

The identification of this subset can be more or less 
accurate. Some methods are unable to determine if a 
tuple did satisfy a particular snapshot restriction prior 
to deletion. However, extraneous identiIication of de- 
letions or updates (not present in the snapshot prior to 
refresh) can easily be discarded by the snapshot refresh 
processing at the snapshot site. 

When calculating the overall performance impact of a 
snapshot there are several factors to consider. First, 
there is the possible overhead connected to the 
“normal” modification activity on the base table (i.e. 
the identification of inserts, updates and deletes). Then 
there is the cost of refresh processing at the site of the 
base table. FinaIIy there is the cost of communicating 
the refresh messages to the snapshot site and the refresh 
processing done there. The latter two are largely pro- 
portional to the number of messages sent from the base 
table site. 

Previous work on snapshots has focused on the min- 
imization of refresh messages sent when refreshing a 
snapshot. However, as suggested in [SELI 791 and 
confiied in [MACK 861, one can not neglect the cost 
of local processing in distributed queries. Earlier work 
has also suggested that the cost of maintaining a snap- 
shot should falI on the snapshot refresher. while this 
is an appropriate strategy in many cases, there are situ- 
ations in which this would lead to unacceptably high 
costs overall. As we shall see, this is especially impor- 
tant when we consider multiple snapshots defined on a 
table. 

Sequential Logging 
Already the early papers on snapshots [ADIB 801 sug- 
gested that the database log was used to detect base 
table modifications. The database log keeps a* record 
of alI modifications to the database since the last 
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back-up. Extracting the modifications belonging to one 
table will thus be. time consuming. 

A slightly different variant is used in INGRBS/STAR 
to support deferred updates of replicas [MCCO 861. 
Deferred updates make use of a separate log for all of 
the base tables (in addition to the normal log). Any 
modification to a base table is written sequentially to 
this log together with the name of the table. The rep- 
licas are updated (or refreshed) on demand or period- 
ically by a demon process. Naturally, normal 
processing becomes more expensive since each tuple 
modification is written twice. 

The sequential change log approach we describe is 
similar to the solution of INGRES/STAR. However, 
we assume that each base table has its own change log 
organized as a sequential table. In this way, the log 
needs only to be kept to the next snapshot refresh time. 
The refresh is basically done by sending all qualifying 
modifications to the snapshot site and redoing them on 
the snapshot. After refresh, the log is erased. 

Value 
Resort 1 Country 1 Price Level Comment 

I Florence 
I 

Italy 
Tenerife Spain I 

Figure 1. Holiday Resorts Base Table: The com- 
ment column is added to the base table for 
clarity only. 

The sequential logging approach does impose some 
overhead on the normal processing of a base table. 
When a tuple is inserted, updated or dclctcd, a log entry 
is written to the log reflecting the modification to the 
base table. The modification as such may either be 
logged as an entry containing the before and after im- 
ages of the tuple changed, or the after image only. 
Figure 2 gives an example of a sequential change log 
with after images only. The example shows the changes 
made to a base table describing holiday resorts. 
Figure 1 displays the base table itself. In the case of 
insert and update, the value of the new tuple is added 
to the log. In the case of delete, the primary key of the 
tuple is added to the log. Each log entry is provided 
with a label identifying the type of modification. 

Modif. Value 
Type Resort Country Price Level 

UPD Cannes France 
INS Crete Greece f 
DEL Beirut Lebanon 
UPD Crete Greece 4 

Figure 2. Sequential Logging: AIter images only. 

As the sequential log records all modifications made to 
the base table since the last refresh, snapshot refresh 
can be carried out quite cheaply in terms of processing 
costs. The sequential log is scanned, and for each log 
entry, a modification message is sent to the snapshot 
site iIf the log entry qualifies. 

As it is, only log entries of type insert can be checked 
with the snapshot definition to see if the new tuple 
qualities for the snapshot. This verification can not be 
carried out for the update and delete log entries as their 
before tuple images (and thus their presence in the 
snapshot table) are unknown. As a consequence, all 
updates and deletions must be signalled to the snap- 
shot. The refresh process at the snapshot site must 
therefore be prepared to handle modifications to tuples 
not present in the snapshot table. Extraneous updates 
and deletes do however not result in an incorrect refresh 
of the snapshot, they merely cause an unnecessary 
overhead. 

Given a snapshot St with snapshot restriction 
PriceLevel < 7, then the refresh messages sent to the 
snapshot wilI be ail the log entries of the sequential log 
in Figure 2. As can be seen from the figure, the change 
of price level from 7 to 8 for Cannes is encounted in the 
refresh messages even though the tuple is not qualified 
for the snapshot before or after the update. 

As pointed out in [LIND 861, the inaccuracy in select- 
ing the relevant modifications potentially increases as 
the snapshot qualification becomes more restrictive. 
The situation may be remedied by saving the old value 
of each tuple prior to its modification. In the case of 
delete, the full tuple (as opposed to the primary key 
only) is written to the log. In the case of update, the 
before image is added to the log immediately followed 
by the new tuple value. Figure 3 displays the revised 
sequential log. 
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Value 

Figure 3. Sequential Logging: Both before and abler 
images recorded. 

The snapshot refresh process at the base table site may 
now discard all log entries not qualifying the snapshot 
restriction as follows: 

Inserts not satisfying the restriction are not sent. 

Updates in which the before and the after image of the 
updated tuple do not satisfy the restriction are not sent. 
All other updates will be sent as insert, update or delete 
message depending on which out of the before and after 
image that qualify. If both qualify, then the update is 
sent as an update message holding the new value. If the 
before image on& qualifies, a delete message holding 
the primary key is sent. If the after image on/y qualities, 
then an insert message holding the new tuple value is 
sent. 

Deletes not satisfying the restriction are not sent. 
Those that qualify are sent as delete messages holding 
the primary key. 

Condensed Logging 
The number of messages in the sequential logging 
strategy can be reduced if the log is sorted tuple-wise 
while preserving the order of modiftcations per tuple. 
By doing this, the change history of each tuple (re- 
presented by a sequence of modifications) can be con- 
dcnscd into one resulting modification (an update 
followed by an update followed by a delete results in a 
delete etc.). Since only the resulting modification is 
needed in order to refresh the snapshot, only this is 
sent. 

Instead of sorting the log at the refresh time, the tuple 
order may be preserved during normal processing of the 
base table. We then arrive at the condensed log ap- 
proach. The condensed log is organized as an index 
(e.g. B-tree), ordered on some unique tuple identifier 
(e.g. primary key). Each entry of the index points to 
(or contains) the at any time resulting modification to 
a tuple since last refresh. The size of the modification 
log is then kept down to a minimum and the interme- 
diate write and read of the full log is eliminated. The 
rules for adding a modification to a tuple are as given 
in Figure 5. 

Stored Entrv 

Modif. NONE Insert UDdate Delete 
Insert 

Update 
Delete 

Insert - - Update 
Update Insert Update - 
Delete Remove Delete - 

Figure 4 shows the refresh messages sent in the revised 
approach. A sequential log recording both before and 
after images requires more storage. However, the 
number of refresh messages may be greatly reduced in 
the case of restrictive snapshots. 

Figure 5. Merge Rules for New Modifications 

If no modification entry is found for the tuple, the 
modification is saved as it is, i.e. this is the first mod- 
ification done to the tuple after a snapshot refresh. 

I S, : Restriction = PriceLevel < 7 1 
Mudif. 
Type Resort 

t-t 

INS Crete 
DEL Beirut 
UPD Crete 

Value 
Countrv I Price Level 

Greece 3 
Lebanon 
Greece 4 

Figure 4. Refresh Messages to Snapshot Table S 1 

Still, in the revised approach, unqualified updates are 
sent as each modification is considered separately. Se- 
veral modifications to a single tuple result in just as 
many entries in the log. A tuple being updated several 
times and finally deleted may therefore cause just as 
many update messages and one delete message. Ideally, 
only a delete message is needed. liowever, this can not 
be determined without scanning the entire log. 

If an entry already exists for the tuple, an insert will be 
stored as an update, since the existing entry must be a 
delete entry for semantic reasons. An update is merged 
with an update into an update entry, whereas it is 
merged with an insert entry into an insert entry. A 
delete modification is merged with an update entry into 
a delete entry. Deleting an inserted tuple results in a 
removal of the entire entry for that tuple. 

To overcome the problem of incorporating all deleted 
and updated tuples in the refresh messages sent, re- 
gardless of their qualification, one can save the old 
value of the tuple prior to its first modification after .a 
refresh. The condensed log will thus be quite similar 
to the sequential log containing before and after images. 
There are however some dissimilarities. The condensed 
log is sorted tuple-wise, and a modified tuple is repres- 
ented by one log entry only. In the sequential log, the 
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update entry contains the tuple value before and after 
the modification. In the condensed log, the before im- 
age of the update entry is the value prior to the first 
modification. 

1 Modif. 1 Value 

Figure 6. Condensed Logging: The table is ordered 
on primary key. The two entries for Cannes 
represents an update. 

Figure 6 shows a condensed version of the previous 
sequential log (cf. Figure 3). Only one entry is found 
for Crete since the last update was merged into an in- 
sert. The one update entry for Cannes shows the be- 
fore and after image of the tuple. Notice that the log 
entries are stored in the order of the primary key of the 
base table tuples, and the modification type. The 
modification type is significant for storing update 
modifications. In the example given, symbolic names 
have been used for the type. In an implementation, 
codes will be used so that the before images of updates 
wilI always precede the after images. 

By adding the overhead of merging tuple modifications 
to normal processing, the local refresh evaluation is 
able to determine if a modified tuple was included in 
the snapshot since only before images of tuples satisfy- 
ing the definition criteria can be stored in the snapshot. 
Unqualified deletes and updates can be discarded ap- 
plying the rules as described for the revised sequential 
approach. Unlike the sequential approach, extraneous 
refresh messages will be avoided. For very restrictive 
snapshots this may result in large savings percentage 
wise. Returning to the example as shown in Figure 4, 
the last refresh message will not be sent in the con- 
densed log approach. Instead, the first refresh message 
will reflect the later change of price level from 3 to 4. 

Operational Aspects 
The logging of the modiftcations as shown above can 
be done in much the same way as the DBMS maintains 
index tables. In this way one avoids altering the base 
table definition which leads to recompilation (provided 
precompilation is used in the DBMS) of all queries re- 
ferring to that table, i.e. the mechanism does not affect 
the query compiler or interpreter of the DBMS. 

In MIMER*, a special wrife set log is kept for opti- 
mistic concurrency control in addition to the normal 
log. In the case where the user wants to read motied 

tuples inside the modifying transactions, the write set 
is consulted prior to the table for reading. In a proto- 
type, we intend to implement the write set as a con- 
densed log, since the problem of locating previously 
written or modified tuples is similar to the problem of 
locating modifications on a log. Write sets for tables 
acting as base tables can thus be used for snapshot 
change logging at little extra cost. 

Independent and Replicated 
Snapshots 
The nature of snapshots, and the reason for using them, 
imply that more than one snapshot is likely to be de- 
fined on a base table when the mechanism itself is ap- 
plicable. For instance, a company that has several 
departments may wish to replicate identical copies of a 
snapshot on the telephone directory to each depart- 
mental computer. This is called a replicated snapshot. 
Assume that each department is responsible for selling 
a subset of the products for sale by the company. 
Therefore, each department defines a snapshot, ex- 
tracting the products sold by the department from the 
product catalog table. We call such snapshots inde- 
pendent. 

The main difference between the two forms is that the 
department probably wants all replicas of a replicated 
snapshot refreshed concurrently. In contrast, independ- 
ent snapshots will have their own. independent refresh 
frequency (e.g. whenever a new product is sold by a 
particular department). 

For replicated snapshots the obvious question is: How 
tolerant should the refresh of replicas be to site failures 
- either prior to, or during the refresh processing? 

If a site becomes unavailable for refresh, there are two 
possibilities. The first is to abandon the refresh, waiting 
until all involved sites are available. Unfortunately, this 
will decrease the overall availability of “up-to-date” in- 
formation in snapshots, as one site may prevent the 
remaining sites from being updated. 

Another possibility is to continue refreshing the re- 
maining sites, if a looser notion of replica consistency 
can be tolerated. In this case, what base table state 
should the refresh reflect for the sites coming up again 
later on? Again, there are two alternatives: Either, all 
replicas should reflect the base table state at the time 
of invoking the refresh operation, or each replica may 
reflect the most up-to-date state of the base table. 

As an example, consider some product change causing 
updates to a product catalog. Given that all snapshot 
replicas on the catalog - say S, ,S2 ,..., S, - are in the same 
state. A new product - say P, - is added to the catalog. 
At the following refresh of the replicated snapshot, the 
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site holding Si is unavailable. Despite that, the re- 
maining replicas are refreshed. 

stead of keeping it in the dictionary (so as to avoid the 
search). 

Following this, a new product 1’2 is added. When the 
site holding snapshot Si becomes available, should it 
immediately be refreshed, and if so, should both PI and 
P, be added to the snapshot, or should only Pi be 
added awaiting the next refresh for P2 to be added to 
all replicas? 

If the latter approach is chosen, information necessary 
to regenerate the state at the time of refresh invocation 
must be kept around for some time, marked appropri- 
ately so new changes can be distinguished from old 
ones. 

Similar considerations must be taken for independent 
snapshots. Whereas the problem of replicas is common 
refresh invocation time/differing refresh times, inde- 
pendent snapshots have dissimilar refresh invocation 
times/differing refresh times. 

In the following sections we will discuss how the log- 
ging approaches can be extended to support both rep- 
licated and independent snapshots. 

Extended Sequential Logging 
To support the independent snapshots, the sequential 
log (cf. Figure 3) can no longer be discarded after a 
refresh. The log entries will have to be kept untill UN 
snapshots defined on the base table have been refreshed 
correctly. In order to avoid full scan of the base table 
for one particular snapshot refresh, a mechanism is 
used to identify the last refresh time of each snapshot. 

Each snapshot will be associated with a refresh mark 
on the log, identifying the most current log entry re- 
freshed for the actual snapshot. In the event of a new 
refresh, only log entries since the refresh mark need to 
be considered. Entries seen by all snapshots defined 
on the table (below the lowest refresh mark of all 
snapshots) can be discarded. 

By associating a refresh mark with each snapshot, re- 
flecting the time of its previous refresh, the algorithm 
lends itself to support the independent snapshots. The 
extension will also support replicated snapshots in the 
case where it is sufficient to allow each replica to reflect 
the state of the base table at the time of the refresh 
rather than refresh invocation time. Each replica is 
simply treated as an independent snapshot. Obviously, 
a mark must be kept associated with each replica. 

To support replicas reflecting the table state at refresh 
invocation time, refresh of a previously unavailable rep- 
lica must consider all entries from its refresh mark up 
to the highest refresh mark of any of its sibling replicas. 
This mark can be maintained in the log table itself, in- 

As a conscqucnce of the extensions proposed above, 
the log may become quite large if a snapshot site is 
unavailable for long periods of time. The log reflects 
the modifications pcrforrned since the oldest refresh of 
a snapshot and up to the present. On the other hand, 
very little overhead is added per replica or snapshot. 
In addition, the method easily incorporates both types 
of replica support. 

Extended Condensed Logging 
The extensions to the condensed logging method are 
much along the lines of those proposed for the se- 
quential method. Modifications for each tuple are re- 
corded as previously described for this method, but 
instead of discarding them at refresh time, they are as- 
sociated with a timestamp reflecting the time of refresh. 
Log entries holding the same timestamp thus corre- 
sponds to modifications recorded between two refresh 
marks on the sequential log. After refresh of one 
snapshot, new modifications will be timestamped 
NULL (and real timestamps are filled in at the next 
refresh). New modifications will in other words be re- 
corded independently of the older timestamped ver- 
sions . 

In this manner, the log wilI at any time consist of a se- 
quence of regular modifications for each tuple. Each 
modification reflects the changes made to the tuple be- 
tween two refreshes. 

Figure 7 shows a log table for this scheme. A 
timestamp column has been added to the table, as can 
be seen by the figure. The table has been refreshed 
three times (at the time 2:00, 3:00 and 4:OO). Modifica- 
tions are recorded for Crete twice (at time 3:00 and 
4:OO). Notice that the tuples are stored in the order of 
the primary key, the timestamp and the modification 
type like for the condensed log described previously. 

Associated with each snapshot is a timestamp of its last 
refresh. The refresh of a particular snapshot may then 
proceed as follows. For each tuple that has been 
modified, its true modification is found by merging alI 
of its log entries having a timestamp newer than the one 
associated with the snapshot. In other words, log en- 
tries having timestamp larger than the one associated 
with the snapshot (given that the tuple is qualified by 
the snapshot restriction), are selected for refresh proc- 
essing. Naturally, modifications having a timestamp 
older than the oldest timestamp of any snapshot de- 
fmed on the table, can be discarded. 

Clearly, the extended mechanism supports independent 
snapshots, and like with sequential logging, the log has 
sufficient information to support both requirements for 
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Time 
Stamp 

3:oo 
NULL 

2:oo 
2:oo 
4:oo 
4:oo 
TOO 
400 
4:oo 

NULL 

l- Modif. 

Type 

DEL 
DEL 
UPD 

$I, 

INS 
UPD 

INS 

Resort 

Beirut 
Brighton 
Cannes 
Cannes 
Cannes 
Cannes 
Crete 
Crete 
Crete 

Mallorca 

Value 
Country 

Lebanon 
England 
France 
France 
France 
France 
Greece 
Greece 
Greece 
Spain 

Price Level 

Figure 7. Condensed Log Supporting Multiple Snapshots: The refresh process may have to merge several versions 
of tuple modifications to obtain the resulting modification. 

replicated snapshot. The timestamp associated with 
each snapshot replica plays the same role as the refresh 
mark in the sequential log. 

The performance of the refresh of a particular snapshot 
depends on how many refresh cycles that have to be 
considered for each tuple (cf. Figure 7). This again 
depends on the number of snapshots defined on the 
table, and on how widely the refreshes are scattered. 
The refresh performance can be improved somewhat 
as can be seen from the example shown in Figure 8. 

since not all tuples may have been modified in one re- 
fresh cycle. This will add to the cost of refresh proc- 
essing. However, if refreshes are performed as in the 
example above, possibly S2 being refreshed more than 
three times, and S1 being replicated, sign&ant savings 
can be obtained for refreshing S 1. 

Analysis of The Logging 
Methods 

Assume that the snapshots S, and Sz are defmed on the 
base table. S1 was refreshed last time at l:OO, whereas 
S2 was refreshed at 2:00, 3:00 and 400. Since these are 
the only snapshots defmed on the table, none of the 
snapshots on the table has a last refresh time of 2:00 
or ZOO. This means that the three sets of entries 
marked 200, 3:00 and 4:00 can be merged tuple-wise 
into one set marked 4:O0. In our example, the Cannes 
entries are merged to reflect the price level change from 
7 to 9. The Crete entries are merged into a single insert 
entry showing a price level of 5. This figure also serves 
as an example of the general merging process used for 
logging new modifications. 

The cost of the two logging methods is analyzed in the 
following. The analysis is carried out under various 
update frequency and for various modification com- 
positions. In the analysis, refresh processing cost is 
considered as well as message delivery cost. 

First we define a moditication set as being the mod& 
cations made to a base table since last refresh. The 
modification set consists of inserts, deletes and updates. 
For a modification set of M modifications, p is the ratio 
of inserts, 4 the ratio of deletes, and r the ratio of up- 
dates. Naturally, the sum of p, q and r adds up to one. 

In general, it is never necessary to have more log entries We assume that the M modifications are uniformly 
per tuple than the number of snapshots defined on a distributed over the tuples of the base table. The base 
table. The merging of entries must be done tuple-wise, table consists of N tuples prior to any modification. 

stamp 

4:oo 
NULL 

400 
4:oo 
4:oo 

NULL 

Modif. 
Type 
DEL 
DEL 
UI’D 

INS 
INS 

Figure 8. Extended Condensed Logging: 

Resort 
Beirut 

Brighton 
Cannes 
Cannes 
Crete 

Mallorca 

Value 
Country Price Level 
Lebanon 6 
England 8 
France 7 
France 9 
Greece 
Spain 5’ 

‘I’uples having a timestamp to which no snapshot time is associated are 
_a . merged “upwards”, compressing me log. 
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The following main classes of base table modifications 
have been identified: 

A static base table in which the base table is only up- 
dated, i.e. p= 0, q= 0, r= 1. 

An incremental base table in which the base table is 
updated and new tuples may be inserted, i.e. p> 0, 
q=O, r< 1. 

A dynamic base table in which the base table is up- 
dated, new tuples inserted and tuples deleted, i.e. p > 0, 
q > 0, r < 1. We assume however that the number of 
inserts outweighs the number of deletes, i.e. p > q. 

In the case of a single snapshot, a sequential log will 
contain M entries assuming that updates are stored as 
one log entry. The number of log entries in a con- 
densed log is determined by the number of tuples added 
to the base table, minus the number of deletions of 
newly inserted tuples (cf. the merge rules given in Fig- 
ure 5), plus the number of tuples out of the original N 
that have been updated or dcletcd since the last refresh 
which is expressed as the difference between the N and 
those not changed; 

L = pM-q(pMl(2N + (p-q)M))M + N(I-u) 

where u is the probability of not changing an original 
entry given as: 

Given the length of the sequential and condensed log, 
we may set up expressions for the cost of refreshing 
database snapshots. A snapshot is defined as a rc- 
stricted subset of a base table with selectivity s. The 
cost formulas are given for replicated snapshot re- 
freshed simultaneously. The snapshots will therefore 
have common modification set. The number of repli- 
cas is m. 

The cost for sequential logging is given by C’s, as an 
expression of the cost of logging entries, the cost of re- 
trieving qualified entries at refresh, plus the cost of 
shipping the qualified entries and refreshing them cor- 
rectly at the snapshot site; 

CS~ = Mts,+ (Mlb)t*i-ms(l+r(l-s))M(t,+2t,J 

in which tsL is the cost for adding entries to the se- 
quential log, b is the average number of entries per disk 
page, td is the cost of disk read or write, and t, is the 
cost of shipping one message to the snapshot site. 

The cost for condensed logging is expressed similar to 
the one for sequential logging, given as CCL; 

c,:, = MtCL + (L/b) td + ms(Lt, + min(L,Nlb)2td 

in which tcL is the unit cost for adding entries to the 
condensed log. 

The cost of adding an entry to the sequential log, tsL, 
is one read followed by a write to the log, i.e. tsL = 2t,. 
In situations where the base table is updated frequently, 
the cost can sometimes be reduced (by the effect of 
having the last log page held in memory). As for con- 
densed logging, the cost of adding an entry to the log 
depend on the depth of the index tree. For a small log, 
tCI, = 31, is a good estimate, whereas tCL = 4td is used for 
a larger log. (The depth of index trees can be kept rel- 
atively small in MIMER [MIME85]). 

Although the normal processing cost is higher for the 
condensed logging approach, the actual refresh cost is 
reduced in comparison with the sequential logging ap- 
proach. The amount of messages sent is reduced, and 
thus the amount of remote refresh processing. The re- 
mote refresh processing in itself is simpler in the con- 
dcnsed logging approach due to the fact that the refresh 
messages are sent in primary key order. 

We have analyzed the logging methods for the classes 
of base table modifications identified above. In the 
analysis, we have assumed the message transfer cost to 
be equal to disk I/O cost, i.e. t, = td. In other words, 
we assume a wide area network and that the shipping 
cost includes the cost of copying data to and from 
communication buffers, etc., as well as transmission 
time. Furthermore, we assume that b= 10. 
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Figure 9. Static Base Table: Cost trade off in l/O 
units as % of base table size. The curves 
are drawn for different number of replicas 
and selectivity - S= 1.0 solid lines, S= 0.25 
dashed lines. Positive values favour con- 
densed logging. 
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Figure IO. Incremental Base Table (p=O.i, Figure 1 I. Dynamic Base Table (~~0.2, q=O.I, 
t-=0.9): Cosl trade off in IjO units as % r = 0.7): Cost trade off in I/O units as % 
of base table size. The curves are drawn of base table size. The curves are drawn 
for different numhcr of replicas and sclec- for different number of replicas and selec- 
tivity - S= 1.0 solid lines, s= 0.25 dashed tivity - S= I.0 solid lines. s= 0.25 dashed 
lines. Positive values favour condcnscd lines. Positive values favour condensed 
logging. logging. 

The result from the analysis is displayed in Figure 9, 
Figure 10, and Figure 11. Each figure displays the 
trade off between disk and message I/O for condensed 
and sequential logging. Each curve represents the cost 
difference between sequential and condensed log, i.e. 
Cs,,-CoL for different sized modification set given as a 
percentage of the base table size. 

As can be seen from the figures, the condcnscd log is 
less costly for fully replicated snapshots when the 
modification set exceeds 10 to 15 percent of the base 
table size. For restrictive snapshots, the condensed log 
is the least costly even for small modification sets as 
long as base table updates outnumbers base table de- 
letes and inserts, cf. Figure 11. 

The sequential log performs well for one-copy snap- 
shots if the modification set is small relative to the base 
table size. The cost savings are significant for very re- 
strictive one-copy snapshots (not shown on the fig- 
ures). This is mainly due to less overhead during 
normal processing. 

The results as given in the figures do also apply for in- 
dependent snapshots when viewed as a batch of m 
snapshots refreshed over a common long refresh cycle. 

In the analysis, a uniform distribution of the base table 
modifications is assumed. In many situations only 
some of the base table tuples are exposed to modilica- 
tion. The condensed log will therefore become smaller 
than in the case of a uniform distribution. The con- 
densed logging approach may thus perform best even 
for relatively small modification sets. 

The analysis indicates that the condensed log performs 
well for replicated snapshots despite the normal proc- 
essing overhead. In the sequential log approach, the 
normal processing overhead is kept. relatively low. It 
would therefore be interesting to study a hybrid sol- 
ution in which the logging is done sequentially and the 
change history is kept sorted in a condensed log which 
is maintained by the refresh process. 

Conclusion 
In this paper, we have discussed two methods to sup- 
port differential or incremental updating of snapshots 
based on using a separate table for logging modifica- 
tions made to the base table. 

If a snapshot is replicated to many sites, or if many in- 
dependent snapshots are defined on a table, then the 
condensed logging approach is to be preferred. 

Since the two methods only support snapshots without 
joins, a non-incremental method, usually called a full 
refresh strategy, is used to complete the snapshot 
mechanism. One can envisage a system supporting all 
of the methods. The database administrator may then 
choose to change the refresh mechanism from sequen- 
tial to condensed logging when most of the modifica- 
tions refers to only a few tuples. Even the system 
optimizer may dynamically decide to change method, 
e.g. if the table is empty, it may decide on using full 
refresh. 
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Finally, both logging approaches can be used to sup- 
port other facilities like instantiated views and deferred 
update mechanisms in addition to snapshots. 

Several different mechanisms supporting loosely con- 
current replicated data are planned for implementation 
in MIMIX+. WC will for that reason primarily sclcct 
the log$ng methods, since they also provide a basis for 
deferred updates and view instantiation. As the next 
step, we will look at specific implementations of the 
various methods in MIMER*. 
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