BASIS OF A PARTIALLY INFORMED
DISTRIBUTED DATABASE

Mark Blakey

Research Laboratories
Telecom Australia

and

Department of Computer Science
Monash University

ABSTRACT

This paper proposes a new class of replicated distributed databases
offering high levels of distribution transparency for very large
networks of processing sites. The class is distinguished by the
restriction that processing sites possess limited rather than complete
knowledge of the data objects and sites in the system. The
traditional data directory is replaced by a more sophisticated
knowledge model. An axiomatic framework identifying the
fundamental properties of the class is presented. A topological
network model is developed from this framework as the basis of the
knowledge model. The practical importance of supporting
autonomous sub-domains is recognised and accommodated in the
topological model. A propositional calculus is presented to simplify
reasoning about the physical location of data. A series of heuristics
that minimize the search effort required to discover an object's
location are presented. The merits of the proposed model and
search heuristics are demonstrated by developing an outline of the
main operational procedure peculiar to the proposed class: the data
location algorithm.

1. INTRODUCTION

Most Distributed Databases (DDBs) to date have employed small
numbers of processing sites. It is, however, likely that, with the
increasing maturity of the supportive communications and
computing technologies, new DDB applications will emerge
requiring larger numbers (e.g. hundreds) of cooperating sites.
Examples might include new telecommunications services such as
on-line electronic directory services or public access databases. New
value-added telephony services such as automatic call redirection
could also be established by incorporating a DDB site within each
telephone exchange. Other industries also likely to develop large

This work is a synopsis of a d it being ‘kenbytheamhorn
Monash University, Australia. A more detailed account of this material is given in
L2}

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

DDB applications include financial institutions (e.g. account records
for electronic funds transfer), travel (e.g. airline reservations) and
real estate (e.g. property listings).

Thedamduecm‘nscnucaltothesnccessofmeselargersystans
There are however a number of problems inherent in determining
which sites should possess versions of the directory, and how
complete these versions should be. Suppose, for example, that the
entire directory resided at a special site known by all other sites.
This arrangement suffers from 2 major disadvantages: (1) all
interactions with the database incur the cost and delay of a remote
access to find the required data, and (2) the reliability of the system
may be compromised as no interactions could be processed if the
storage site or its communication links failed. Another possible
arrangement would be to replicate the directory at each site. This
may however impose an unreasonable storage burden on smaller
capacity sites, and result in significant network congestion as all
directory copies would require updating whenever data was relocated
or a site joined or left the system. There is a risk of network
congestion in this arrangement and it is likely that the response
delays would often prove unacceptable. Access to the complete
directory could also result in the contradictory situation that a user
knows the location of an object whose existence is supposed to be
unknown to that user (i.e. knowledge of an objects existence may be
subject to an access control).

One solution to these operational problems is proposed and explored
in this paper: the directory knowledge available to any site is
restricted to include only its own objects, and those possessed by a
well-chosen subset of other sites. No other information about the
rest of the network, or even of its existence, is directly available to
any site. Such a system, introduced here, is called a Partially
Informed Distributed Database (PIDDB). Partitioning the directory
in this way enables it to be distributed while avoiding the problems
discussed above. Sites may possess differing subsets of the global
directory and some components of the directory may be replicated at
several sites. The PIDDB class provides the conceptual framework
for a wide range of information retrieval and transaction processing
applications. The principal purpose of this paper is to establish this
framework and to demonstrate its potential for developing efficient
implementations.

Distributed query processing typically involves transferring data
objects between sites for partial execution at different sites. Once the

1. DDBs typically maintain di i iating data obj
sites.

with their storage

381

location of all of the required objects is known, an acceptably
efficient processing schedule can be generated. A preliminary phase
of PIDDB query processing therefore involves discovering the
locations of any required data objects that are not described by the
locally available directory knowledge. Numerous techniques have
been developed for efficient query processing both within a single
site and between sites when data locations are kmown [3-9].
Distributed schedule generation algorithms typically employ
heuristic hill climbing techniques based on semi-join programs [9].
Examples include the query processor used in SDD-1 [10] and the
AHY algorithms [11, 12].

The emphasis of this paper is placed on data location techniques
since it is this problem that characterizes the PIDDB class. The
main objectives are:

VDX

1. to formalize a number of assertions and observations as a
conceptual framework of general applicability, and

2. to develop the basis of some specific data location techniques
within this framework.

Further justification of the PIDDB notion is given in section 2. The
conceptual framework of the PIDDB class is presented in Section 3.
The notion of refining a query to determine the set of relevant
object locations is introduced. A model of the required meta
database is developed in Section 4. This includes a logical network
topology and a descriptive knowledge framework. An outline of a
distributed data location algorithm is given in Section 5. This
algorithm employs an heuristic search hierarchy and demonstrates
the features of the proposed knowledge model. A knowledge
calculus is proposed in an Appendix to simplify the expression of
and reasoning about the location of objects within the database.

2. JUSTIFICATION OF THE PIDDB NOTION

The notion of a partially informed system is justified by
demonstrating that a completely uninformed system is infeasible (the
problems associated with a large, fully informed system are
discussed above). Such a system may locate data by broadcasting
requests for directory knowledge; the complexity of this search
procedure is O(N), for a network of N sites. While theoretically
acceptable, it is likely to result in a great deal of unproductive
processing and network congestion may result when N is large. The
problem is compounded as the number of concurrent transactions T
and objects O referenced by each transaction increase. As T is likely
to increase with N it is likely that the response time will become
unacceptably long for certain combinations of N, T and O. The
introduction of a knowledge model, in which sites knmow certain
remote objects and sites, has the potential to significantly reduce the
cost and delay of the data location process; the resultant system is
partially informed as asserted. Use of a knowledge model implies
that n < N sites will be visited (hopefully n << N). The cost and
delay of the data location problem will be minimized when an
optimal search path for visiting the n sites is found. Unfortunately,
the number of possible search paths grows exponentially? with N.
Thus to achieve a linear reduction (scaling) in the delay and cost of
the data location process, an intractable optimization problem must
be solved. This paper proposes the basis of a suitable knowledge
model to realize the benefits of constraining the data location
procedure. Firmer notions of which sites and objects should be
known, how this information should be expressed and the special
properties of the PIDDB class are developed below.

2. This optimization problem is shown to be NP-complete in [1).

382

3. CONCEPTUAL FRAMEWORK

The PIDDB conceptual framework is developed below by adopting
a reference architecture, identifying an axiomatic framework, and by
proposing the notion of refining a query.

The relational data model [13], [3] is assumed throughout this paper:
relation x (or any lower case letter) is represented R,. The
assumption that all user level data objects are relations does not
imply any loss of generality.

3.1 Reference Architecture
A distributed database reference architecture® is developed by

_ augmenting the ANSI/SPARC model [14,15] of a centralized

(single site) database system with additional schemas that describe
the disiribution of information. Four new schemas are introduced
above the centralized conceptual schema as shown in Figure 1. The
global, fragmentation and allocation schemas are site independent in
the sense that they are not concerned with the details of the local
data models, storage structures or access strategies. The local
mapping schema is however site dependent. This schema defines the
translation between the global and local data models or Data Base
Management Systems (DBMS). Data objects may, for example, be
organized locally into CODASYL [16] sets and globally into
relations. Such a system is heterogeneous, unlike homogeneous
systems in which identical DBMSs (and hence data models) are
used at all sites.

The global schema (GS) provides a time-invariant* abstract
description of the global relations R,. Its role is similar to that of the
ANSI/SPARC conceptual schema in that it is concemed purely with
the content and semantics of the conceptual records. The logical or
physical distribution of these records is transparent in the global
schema.

The fragmentation schema (FS) is concemed with partitioning the
global relations into logical fragments. This partitioning is typically
useful where subsets of a relation possess common properties so that
it is convenient to allocate them as atomic entities. The FS of a
specific relation is denoted F(R,). Fragment o (an integer) of
relation R, is represented RZ. (e.g. R?).

The relation allocation schema (RAS) is concerned with the physical
allocation of the logical fragments to the processing sites. It is often
convenient to consider the allocation schemas of particular
fragments rather than of complete relations. It is generally true that
assertions and restrictions effecting the fragment allocation schema
(FAS) also hold for the relation allocation schema. The unqualified
term "allocation schema (AS)" shall therefore be taken to refer to
the FAS below. The RAS and FAS, denoted AR, and ARD
respectively, are related by the constraint:

AR = Uy ARS)

This implies that all components of R, are mapped onto some
fragment RZ. It is desirable that this mapping minimize the overlap
between fragments. Otherwise it would be difficult to model the
allocation of data objects if they were partially replicated between
logical fragments.

3. The architecture used in this paper is substantially that described by Ceri and
Pelagatti [9] with minor extensions to the allocation schema.

4. Practical and commercial considerations may dictate that changes 10 these schemas
occur from time to time. It is implicit that such changes should occur infrequently
and offline.

Proceedings of the 13th VLDB Conference, Brighton 1987

Distributed Schemas
(site independent)

Local Schemas

(site dependent) Schema

Internal
Schema

Figure 1: DDB Reference Architecture

Definitions of the information contained in the global, fragmentation
and relation allocation schemas of data objects are proposed in [1].
These definitions provide a precise environment for the development
of data location and other operational procedures.

3.2 Distribution Transparency

It is desirable that all of the schemas under the global level be
transparent to users and application programs. Such systems then
- appear centralized to their users and offer a high degree of
distribution transparency. The two aspects of distribution
transparency of particular relevance to this paper are: (1)
fragmentation design, and (2) location and replication of fragments.

It is a fundamental property of the PIDDB class that the system be
capable of automatically selecting and "navigating” to the storage
sites without user intervention.’ It would otherwise be difficult and
unreasonable to expect users to associate data objects with their
storage locations; it may be impossible in larger systems where
allocations are more dynamic. It would also be difficult to preserve
global consistency between replicated objects during update
operations in PIDDB systems that could not automatically determine
the current locations of all replications of an object. Large systems
capable of automatically maintaining global consistency must also
be thca;pable of offering full data location and replication transparency
to user.

33 PIDDB Axiomatic Framework

An axiomatic framework of the PIDDB class of DDBs is presented
in Table 1. This framework is partitioned into three classes. The

5. The user may, however, explicitly limit the scope and domain of the search as a
safe guard against "expensive” queries.

Proceedings of the 13th VLDB Conference, Brighton 1987

schema class develops the application of the reference architecture
of Figure 1 to PIDDB systems. The knowledge assertions extend
this and defines terminology to assist reasoning about object
locations. (These notions are developed further in the Appendix as a
knowiedge caicuius.) The atomiciiy asseriions ideniify some
inherent restrictions of the PIDDB class.

While most of these axioms are self explanatory, some elaboration
concerning axiom A10 is required. The restriction this introduces is
justified by considering that: (1) the additional data volume
required to store the FS of those fragments not held locally is
typically insignificant compared with the size of the local fragments,
and (2) the data location process would be significantly more
complex if A10 did not apply. (see [2].)

3.4 Query Refinement
Various levels of knowledge may be held about objects. A query is

. said to be completely unrefined (unrefined), partially refined, or

completely refined (refined) according to how well the fragmeats
referenced by the query are known:

o unrefined: All the relations in the query are completely
unknown (by axiom AS).

» partially refined: At least one sought relation is in the LGS and
its FS is known (by axiom A7). ‘

o refined: All the relations in the query are completely known (by
axiom AS).

Three refinement classes are defined by identifying these definitions
with knowledge of the comresponding schemas. Queries are
therefore classified by their refinement class as global, fragment, or
allocation queries.

The objective of the data location process is to refine the user’s
global query into a comesponding allocation query. The initiating
site would typically refine the query using its locally available
information. Any unrefined residues would be relayed to other sites
to continue the process. The query is therefore incrementally refined
as progressively simplified versions are relayed between sites. The
data location process terminates when the query is fully refined with
respect to each of the objects required to process the query.
Detailed definitions of the information associated with each
refinement class are necessary for the development of the data
location procedure; these are given in [1].

4. TOPOLOGICAL MODEL

The logical network topology defines the information framework
within which any data location procedure must operate. This
framework specifies what kind of information sites possess about the
rest of the network and how this information is organized (i.e. the
operational meta database). Without such a framework the only
possible search algorithm would be one that randomly explored the
network until the query was completely refined. The framework
proposed below is suitable for modeling the network topologies
commonly encountered in practice (e.g. star, ring, hierarchical). It is
implicit in the definition of the PIDDB class that no site would
know the entire meta-database. The portion known to a site
constitutes its local knowledge view (LKV).

The topology partitions the network into sets of neighbours called
N-Sets. All N-Sets contain at least one site and all sites are assigned

" to at least one N-Set. Sites assigned to multiple N-Sets define the

overlapping articulation points between those sets. Groups of N-
sets overlapping in this way define a neighbourhood. Sites are not

required to store anv data obiects in order to be able to initiate or

383

TABLE 1: PIDDB Axiomatic Framework

Class

Name

Assertion

Schema

Al

The global (GS) and fragmentation schemas (FS) of a relation are stable
(in the sense that the conceptual schema in a centralized database is
stable).

Sites may maintain subsets of the GS called the local global schema
(LGS). Queries may only reference relations defined in the LGS. All
relations defined in the LGS must be accessible from the site holding
that variant of the GS.

A site may not know the FS of a relation unless that relation is in the
LGS.

A4

The allocation schema (AS) of a relation may vary over time as
replications are created or destroyed.

All sites must share mutually consistent versions of the global schema.

Knowledge

A6

An item (schema, relation or fragment) is known by a site if it is
available locally (possessed by the site), or its storage location is
known. Sites may similarly know of the existence of other sites.

A7

A relation is partially known (or partially unknown) by sites knowing
only the FS of that relation,

A8

A relation is completely unknown (unknown) by sites that do not know
either the FS or AS of that relation. Conversely sites knowing both the
FS and the AS completely know (know) the relation.

A9

A site may not know the AS of a relation unless it also possesses the
FS

Atomicity

AlO

Knowledge of a FS is atomic. If a site knows the definition of any
fragment RZ of a relation R, then it must know the definition of each
fragment of that relation.

All

Knowledge of an AS is not atomic. Sites are permitted to hold some
fragments without knowing the allocations of any other fragments of
that relation.

Al2

A site may not possess a fragment of a relation unless it also possesses

the corresponding portion of the AS.

execute queries.

A network would typically be partitioned into a number of disjoint
neighbourhoods. These neighbourhoods must however be connected
in some fashion so that the location or existence of remote data can
be determined. Hyper-Sets (H-Sets) of N-Sets are introduced to
provide this connection. H-Sets define the mappings of object
names onto the N-sets possessing replications of those objects.
These mappings identify objects by their global rather than
allocation schema names as H-Sets would typically be used to begin
processing unrefined querics. H-Sets may contain any arbitrary
collection of N-Sets and neighbourhoods®. H-Sets may be nested,
but other forms of overlap are not permitted. Nesting would
typically be useful in large networks where groups of sites were
administered by differing agencies. Each H-Set would correspond to
an autonomous management domain. Such complex networks
require a global H-Set (H,) that encloses the entire network to
ensure that disjoint partitions of knowledge do not occur.

Each N-Set is immediately contained within or possessed by exactly
one H-Set. N-Sets may be either free or bound in H-Sets. N-Set N,
is free in H-Set H; if H; encloses N, and no other H-Set enclosed
within H, encloses N;. N, is otherwise bound in H; if H; encloses

6. Neighbourhoods may not however span H-Set boundaries.

384

N

Sites possess extensive knowledge about their neighbours, limited
knowledge about certain other N-Sets, and no knowledge about any
other site. Each neighbour is described by its communication
parameters, usage costs and status. Communication parameters
would typically include the network address and the expected
connection costs and delays. Usage costs’ would typically include
charges per query or may be on the basis of connect time or the
volume of data accessed. Status information® would typically
include whether the neighbour is up or down and its dynamic
utilization (e.g. load average).

Figure 2 demonstrates a sample topology comprising 19 sites, 11
N-Sets and 6 H-Sets. Sites are represented as solid circles, N-Sets as
enclosing ellipses and H-Sets as shaded regions. H-sets at the same
level of nesting (with respect to H,) are shaded similarly. An
example of an extended neighbourhood connected via articulation
points is given in H-Set Hy.

7. While communication and usage cost parameters are likely to prove useful for
planning execution strategies, this aspect of PIDDB query processing has not yet
been studied closely.

8. Stams information would typically be used by the data location algorithm to
bal the p ing loads b neighb

Proceedings of the 13th VLDB Conference, Brighton 1987

Figure 2: A Sample Network

Guidelines for the establishment of set boundaries are discussed in
{1]. Formal schemas defining the information associated with N-
Sets and H-Sets have been proposed and applied to the development
of the data location and update algorithms [1,2].

4.1 Gateway N-Sets
Each H-Set containing free N-Sets includes a distinguished gateway
N-Set N, through which all communications with other management
domains (i.e. remote H-Sets) are directed. Local gateways are
denoted Nyy; remote gateways are denoted Ng.:

Ngl € Hl

Ng€ H; '
There are several reasons for introducing gateways:

1. the volume of traffic between H-Sets may be significantly
reduced. The gateway may distribute remotely sourced
updates within its local H-Set,

2. secure communications may be established between domains
(i.e. authentication protocols can be employed between
gateway N-Sets),

3. the characteristics (e.g. speed, storage, communication
channels etc) of the gateway sites can be chosen to avoid
communications bottlenecks.

All sites within Ny possess a knowledge kernel. This contains
information about:

o the local (immediately enclosing) H-Set Hy,
o the set of remote H-Sets knowing Hj,
o the global H-Set Hy,

o the set of remote H-Sets possessing shadows (§4.2) of locally
owned objects, and

o enclosing H-Sets that do not contain free N-Sets’.
42 Types of Replications

Data and meta-objects may be replicated at multiple sites within a
PIDDB. Replications are classified as either dctive or passive and
are referred to as replications and shadows'™ respectively. All
active replications are owned and maintained within the owning H-

9. This is due to the LKV constraints discussed below.

10. This notion of shadows is a generalization of that proposed by CCITT for their
Electronic Directory System (CCITT Study Group VII, Question 35, 1984).

Proceedings of the 13th VLDB Conference, Brighton 1987

Set H,. Active replications are updatable and converge towards
consistent values within a settling period after an update. Shadows
are possessed by remote H-Sets and are static "snapshots” of active
replications. H, knows where shadows reside and auntomatically
issues refreshed snapshots whenever the active replications are
updated. Sites in H-Sets remote to H, can therefore minimize
retrieval costs and delays by accessing a local shadow.

Sites may possess shadow descriptions of remote H-Sets H,. The
version of H, (remote to and possessed by H)) is denoted H', and
differs from H; in 2 ways: (1) information irrelevant outside H, is
not shadowed (e.g. the specific mappings of data objects onto their
containing N-Sets in H, is not required since all remote
communications are directed through gateway N-Sets), and (2)
additional information of value within the shadowing H-Set
augments H', (e.g. identifying shadows with their local N-Sets). H;
would be generated in Ny from the version received from Ny,

All sites knowing an object (replication or shadow) are granted
either explicit or implicit update rights. Sites knowing a replication
are necessarily within H, and have explicit update rights. These sites
may invoke update procedures to revise all replications and issue
refreshed shadows. Sites knowing a shadow have implicit update
rights meaning that they may issue an update request to H,. H, is
not however bound to implement the request'!. It is therefore only
necessary to maintain strict consistency between the active
replications in H,.

4.3 Enclosure Hierarchy Trees

The relationships and relative nestings between H-Sets may be
described by an Enclosure Hierarchy Tree (EHT). Each node of an
EHT represents a specific H-Set and indicates that it contains or
owns each of the descendant subtrees. N-Sets are not represented in
EHTs. The EHT including Hy spans the entire network and is called
the Global Enclosure Hierarchy Tree (GEHT). The GEHT for the
sample network of Figure 2 is shown in Figure 3.

It is unlikely that any site would know the GEHT. Instead each site
possesses a Local Enclosure Hierarchy Tree (LEHT) describing only
that portion of the topology known locally (i.e. the LEHT defines
the LKV). The nodes of an LEHT represent knowledge abour H-
Sets. The relative positions of nodes within an LEHT are consistent
with the relative H-Set nestings defined by the GEHT. Individual
sites could not otherwise deduce the relationships between the
known H-Sets. This information is typically used when determining
which remote H-Sets may be able to assist in the refinement of a
query (see §5). It is also required when changes to the network
topology alter the GEHT. Sites informed of the update could not
otherwise infer the scope of the change.

Eight types of LEHT nodes have been identified representing four
different classes of knowledge. Each class comprises a
complementary set consisting of a knowledge and an "inverse”
knowledge LEHT node. Knowledge nodes of type X (H) (where X
is one of P, R, L or S as described below) define different kinds of
information about H, and where this information resides. The
inverse knowledge nodes X! (H,) identify those sites possessing
class X of knowledge. These nodes are possessed by the sites
identified by the X (H,) nodes. X~ (H,) information would typically
be used to distribute refreshed snapshots of both the user-perceived

11. Some remote requesis may have 1o be refused by H, in order to preserve
consistency, explaining why shadows may not be directly updated.

385

Figure 3: Sample GEHT
(Network of Figure 2)

" and the meta data objects 1o the shadowing sites. An analysis of the
information necessary for data location and update distribution [1,2]
suggests the following eight types of LEHT nodes:

PH) A description of H-Set H; is possessed locally.
Knowledge of H; is atomic; all fragments € LGS of §;
that are owned within H; are described. (i =1 orr).

Remote H-Set H; is known to possess a description of
the local H-Set H;. Relevant updates to H; of global
significance can therefore be directed to Ng (e.g.
changes effecting the set of available fragments in H)).

The existence of remote H-Set H; is known locally. H;
is implicitly accessible via Ny and N,

Remote H-Set H, is known to know the existence of
local H-Set H;. Relevant updates to H, of global
significance can therefore be directed to Ny

An N-Set in H, is known to possess a description of H-
Set H; (i = 1 or 1). These local shadows permit the data
location algorithm to readily determine whether H; can
refine any portion of the query. Where H; is a remote
H-Set H,, L nodes permit the benefits of relaying to H,
to be assessed within H;. This helps avoid unprofitable
remote transactions and reduces the overall cost and
delay of data location. H; is only aware that some
remote H-Set possess a shadow description of its local
H-Set. The special role of this shadow is entirely local
to its containing H-Set.

P H)

RH)

R (H)

L(H)

L'(H,) The sites possessing a description of remote H-Set H,
know any local sites in H; possessing L nodes

referencing this description.

SH) Sites possessing a shadow copy of fragment R must
also possess an S node to be able to request and receive
updates concerning that shadow. This node type
identifies the local N-Sets possessing a version H, of the
H-Set H, owning R. H; need not be directly known by
the shadowing sites and is the minimal subset of H'; that
is sufficient to define H, (R).

H-Sets whose fragments are shadowed knmow which
remote H-Sets shadow which fragments. Ny can
therefore ensure that refreshed shadow copies are
distributed where required following a local update.
Relevant updates to Hj can also be directed to N;. The
H-Set subset H, would be generated and distributed by
the gateway sites possessing S~ nodes.

S™ (M)

386

Definitions of the information associated with each type of LEHT
node, where they are possessed and the resultant knowledge gained
is given in Table 2. Underscored quantities in the schema definitions
indicate that the name rather than the value of the object is
referenced. The knowledge operators (¢, ®, x and K) used
throughout this section are defined in the Appendix. This table
indicates that L (H,) nodes, for example, are maintained within H-
Sets that may possess shadow copies of a remote H-Set. The
schema definition sayes that the set of sites possessing some version
of remote H-Set H, is known at some site(s) within a local N-Set
N,. The possession constraint states that the LEHT node must be
possessed by some site S, within the local N-Set N.. The
knowledge constraint defines the information gained by virtue of
possessing the node; in this case the fact that remote H-Set H, is
known by the site in H, possessing the L (H,) LEHT node.

While the schema definitions and knowledge constraints of the P!
and R nodes are identical, their semantics and applications are
quite distinct. The sets K in their schema definitions are not &
because of the constraint that only the gateway sites of another H-
Set may be known.

Some sample LEHTs for the network of Figure 2 and GEHT of
Figure 3 are given in Figure 4.

4.4 Local Knowledge View Constraints

There are a series of local knowledge view constraints defining the
minimal knowledge that each site must possess. These constraints
ensure that objects in other H-Sets can be located, that consistency
is maintained between replications and that shadowed objects may
be refreshed. These requirements are met by imposing two
completeness constraints on the set of LEHTs: all GEHT nodes
(H-Sets) must be described by at least one LEHT P node, and the
relative structure of the GEHT must be deducible at all sites. The
following knowledge constraints are proposed to satisfy these
requirements: :

1. all sites within Ny possess the knowledge kemnel (see §4.1),

2. gateway N-Set sites possess P, L or R LEHT nodes for each
descendant of (i.e. this constraint defines what the
knowledge kemel contains about Hy).

3. all sites not in Ny; know Ny (i.e. know the network addresses
of each of the sites in N,.)

4. at least one site in each neighbourhood possesses a description
of the immediately enclosing H-Set H,,

5. at least one site in each neighbourhood knows:
a. at least the immediate ancestor H-Set, and/or
b. all immediate descendent H-Sets.

These constraints are weak in the sense that, from an information
theoretic point of view, a less stringent set of requirements could be
deduced. The proposed set replicates some knowledge for
operational simplicity and robustness.

5. DATA LOCATION ALGORITHM

The basis of a data location algorithm is presented to illustrate the
typical application of the LKV. The algorithm relies on an heuristic
search hierarchy in which the scope of the search is progressively
increased until the sought fragments are either located or found not
to exist. This hierarchy has the following levels:

Proceedings of the 13th VLDB Conference, Brighton 1987

TABLE 2: LEHT Node Definitions
Constraints
Type Schema
Possession Knowledge
PH) <H, H> 38, € Ni: ¢" P(H) 38, € Ni: ¢°H,
3S,€ Ni: ¢"P(H) .
P(H) <H, H\,> VS, € Ny @ @) A & Ny, 3S, € Ni: ¢" H,
P(H) | <H. KH)>Ke N, VS, € Ny: ¢" P (H) VS, € Ny: ¥ K(H)
38, € Ni: ¢"R(H)
RH) <H,> VS, € Ny: x" ®R(Hy) 3S,e€ Ni: " H,
A X Ny

RUH) | <H. KH)> K e N, VS, € Ng: ¢" R (H) VS, € Ny: x* K(Hy)
LH) <H, ®H)>: ®e Nye H | 3S,€ N;: ¢"LH) IS, e N x"H,
LH) <H, ®H)> ®e N e H, | 35S, N: ¢"LH) 3S,e N x"H,

_ IS, e Nye He ¢"L' (H)

1 . .
L“#H) | <H, OCLH)> Pe H A ¢ P 38, e Ny € H: k" K(H)

<H, ®H,)>: 3S,e N: ¢"S(H)
SH,) ®e N e Ha VS, € Ny: ¢" S(H,) A ¥° N, 38, e Np: " H,
R2e H, AH,cH, VS, € ®(H,): ¢" P(H,)
<H, K(H, {R{: 35, € H: .
S(H) "REAH =H,RY}> | VS, e Ny ¢* S”'(H,) VS, € Ny ¥* K(H)
K e N, .

o If the query cannot be completely refined within any local N-Set,
then the residue is relayed through an articulation point to other
N-Sets in the local neighbourhood NH,. This process continues
until either the query is fully refined or NH; may not be explored
further.

o If the query cannot be fully refined within NH; then an
exhaustive search from the root (H;) of the GEHT is begun.
(Interrogating the LKV and exploring NH, is analogous to
exploring the GEHT from the leaves upwards towards the root.
If this search fails, due to the incompleteness of the available

LEHTs, then it is necessary to begin a top down search from the
(a) LEHT for S, € H, root of the GEHT.)
An outline of the data location procedure is given below. A more
complete algorithm that integrates refinement of the global query
with LEHT-based navigation is described in [2). This version
assumes the user’s query is already refined to the fragmentation

level, and that only a single fragment RZ is sought:
1. if ¥ R then end.

2. V¢ 'P(H): if R® € H, (or H, if i=r) then end.

3. VO'L(H): relay to S, H: ¢*P(H) to interrogate H'.
Await response and end if R¥ now located.

(b) LEHT for S, € Hs 4. V¢RME): relay to Nye H 1o interrogate H, Await
Figure 4: Sample LEHTs (Network of Figure 2) response and end if Ry’ now located.
5. explore local neighbourhood until x™ R® or NH; exhausted.
e The LKV is used to attempt local query refinement at the End if RZ now located.
initiating site S;,;. . .
6. relay to Ny to begin an exhaustive search from the root of the
e Any residues remaining after local refinement are distributed to GEHT (i.e. from Hp). The user would typically interact or
sites in a local N-Set to solicit sufficient knowledge. otherwise limit the extent (and hence cost and delay) of the

Proceedings of the 13th VLDB Conference, Brighton 1987 387

search.

This algorithm would be invoked as a preliminary phase of
processing any query. It is therefore important to minimize the
associated processing delay to avoid creating a data location
"bottleneck”. Some aspects of this problem are reported in [2].

6. CONCLUSION

The PIDDB class of replicated distributed data bases has been
identified and developed. It is characterized by limiting the
knowledge available to each site to subsets of the sites and objects
in the network. The PIDDB class is fully transparent with respect to
data fragmentation, location and replication. It is inherently suitable
for very large systems and preserves the autonomy of sub-domains.
No assumptions are made regarding the initial or current allocation
of data fragments to sites so that replications may readily be created
or deleted within their owning domains. An heuristic network
topology that groups processing sites into Neighbouring and Hyper-
Sets (N-Sets and H-Sets) has been proposed to ensure that the data
location procedure is tractable. A tree description of this topology
has been presented. It has been shown how this representation can
be transformed into the local knowledge trees possessed by the sites.
The application of these trees to an algorithm for determining
fragment locations during query processing has been demonstrated.

A mechanism has also been proposed [1] that permits information
providers to cooperate to define distributed virtual objects using
components of their individually owned objects. These objects are
instantiated and distributed as snapshots like any other shadowed
object. The proposed mechanism defines distributed objects as views
[3] on the global schema.

7. ACKNOWLEDGEMENT

The support of Telecom Australia to undertake this work is
appreciated. The permission of the Chief General Manager, Telecom
Australia to publish this paper is also acknowledged.

8. REFERENCES

1. M. Blakey, Partially Informed Distributed Databases:
Conceptual Framework And Knowledge Model, Tech. Rep. 80,
Dept. of Comp. Science, Monash Univ., Melbourne, Australia,
Dec., 1986.

2. M. Blakey, Partially Informed Distributed Databases: Data
Location Algorithm, Tech. Rep. 87/85, Dept. of Comp. Science,
Monash Univ., Melboume, Australia, May, 1987.

3. C.J. Date, An Introduction to Database Systems, Volume 1, 4th
Edition, Addison-Wesley, Reading, Massachusetts, 1986.

4. J. D. Ullman, Principles of Database Systems, Comp. Science
Press, Rockville, Maryland, 1982,

5. M., Jarke and J. Koch, Query Optimization in Database Systems,
ACM Comp. Surveys 16 , 2, (Jun. 1984), 111-152,

6. W. Chu and P. Hurley, Optimal Query Processing for
Distributed Database Systems, JEEE Trans. on Computers C-31 ,
9, (Sep. 1982), 835-850.

7. C. T. Yu and C. C. Chang, Distributed Query Processing, ACM
Comp. Surveys 16 , 4, (Dec. 1984), 399433,

8. C. T. Yu, C. C. Chang, M. Templeton, D. Brill and E. Lund,
Query Processing in a Fragmented Relational Distributed
System: Mermaid, IEEE Trans. on Software Eng. SE-11 , 8,

388

(Aug. 1985), 795-809, IEEE.

9. S. Ceri and G. Pelagatti, Distributed Databases: Principles and
Systems, McGraw-Hill, New York, 1985.

10. P. A. Bemstein, N. Goodman, E. Wong, C. L. Reeve and J. B. J.
Rothnie, Query Processing in a System for Distributed Databases
(SDD-1), ACM Trans. on Database Sys. 6 , 4, (1981), 602-625.

11. A. Hevner and S. B. Yao, Query Processing in Distributed
Database Systems, IEEE Trans. on Software Eng. SE-S , 3, (May
1979), 177-187.

12.P. M. G. Apers, A. R. Hevner and S. B. Yao, Optimization
Algorithm for Distributed Queries, /EEE Trans. on Software
Eng. SE-9 , 6, (Jan. 1983), 57-68, IEEE.

13.E. F. Codd, A Relational Model of Data for Large Shared Data
Banks, Comm. ACM 13 , 6, (1970), 377-387.

14.C. Mohan and R. Popescu-Zeletin, Impact of Distributed Data
Base Management on the ISO-OSI And ANSI/SPARC
Frameworks, Proc. 15th Hawaii International Conf. on Systems
Sciences, Honolulu, Jan., 1982, 532-542.

15. ANSI, Reference Model for DBMS Standardization, ACM
SIGMOD Record 15 , 1, (Mar. 1986), 19-58.

16. CODASYL, Data Base Task Group Report, ACM, New York,
Apr., 1971,

APPENDIX: KNOWLEDGE CALCULUS

The development and analysis of query execution strategies in a
PIDDB often requires reasoning about the knowledge possessed by
the processing sites. A propositional calculus is presented below that
simplifies the expression and manipulation of that knowledge. Four
new knowledge operators in two classes are defined.

In addition to the usual structural and value instance information, an
object in a PIDDB is not fully described without knowledge of its
location. The boolean operators, k and ¢, are useful for expressing
or testing this knowledge:

x x"OBJ is TRUE if object OBJ is known at site S, (meaning
that OBYJ is either possessed by S, or that the identity of
another site possessing OBJ is known by S,).

¢ ¢"OBJ is TRUE if object OBJ is possessed by site S,,.
These operators are related by the inference rule;
¢"OBJ — x"OBJ

The truth of the assertions expressed with these operators is
independent of where the assertion is stated. For example, ¢*R3
may be true but unknown at S, OBJ may be either a data or meta
object, or a site. If OBJ is a site then the ¢ operator is not applicable
as the PIDDB framework does not support the notion of sites
"possessing” each other,

The second class of operators, K and ®, are macros that define the
set of sites knowing or possessing OBJ. This notation simplifies the
expression of knowledge schemas and constraints:

K(OBJ) = {S,: x"OBJ}
@ (OBJ) = (S,: ¢°OBJ}

Proceedings of the 13th VLDB Conference, Brighton 1987

