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ABSTRACT 
A stored query is a pair <query,response>, 
where "respons&' is the- query meaning for the 
current database state. When a collection of 
stored queries is available responses to sane 
queries may be obtained easily. Stored queries 
give a possibility of improvement of database 
sys tern response time regardless of the 
complexity of user request and the data model 
assumed. The method is a generalization of 
methods based on indices. Its main properties 
and problems are outlined, particularly the 
problem of updating stored queries. The 
presented solutions are based on detecting 
whether the response associated with a query is 
influenced by a database update, and on 
correcting the response after an update. The 
methods concern NETUL, a user-friendly query 
language, with the power of programming 
languages, for network/semantic data models. 

1. INTRODUCTION 

Practical implementation of attractive 
9 uev 1 anguage features (such as non- 
procedurality, lack of concepts related to 
physical data, high universal ity, and 
integration with updating capabilit ies) meets 
considerable performance difficult ies. This 
problem, commonly known as query optimization, 
arose mainly in connection with the relational 
data model (RDM) which was criticised for poor 
efficiency of proposed user interfaces. The, 
research on query optimization has improved the 
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position of RDM in this respect. (The current 
state of art of query optimization may be found 

C19,261 together with comprehensive 
ilbliography). Nevertheless the results are not 
satisfactory t16,391. Many queries remain 
beyond the scope of developed methods or cannot 
be noticeably optimized, eg. queries with 
aggregates, with inequality conditions, quer,ies 
involving arithmetics in conditional clauses, 
queries implying many joins, and so on. 

The research on query optimization is 
typically based on the relational algebra, thus 
implicitly assumes that semantics of query- 
manipulation 1 anguages can be consistently 
expressed via the relational algebra and that 
it covers typical user's needs. Both 
assumptions are not true in practice. Many 
vital aspects of query languages cannot be 
consistently explained via the relational 
algebra or relational calculi t363, despite 
many attempts. Similarly, queries expressible 
in the relational algebra are thought to be 
typical since current relational q uw 
1 anguages essentially cannot offer more. 
Usually their power is restricted to relational 
ccmpleteness augmented (with limitations) by 
arithmetics and aggregate functions. Relational 
completeness, however, is an ill-motivated 
concept of query language universality. If a 
query laoguage had higher power, such queries 
might become far less typical. This is our 
observation concerning NETUL 134-371, a user- 
friendly query language with the power of 
algorithmic programming languages. 

Our further objections to RDM concern its 
intellectual limitations. Majority of database 
applications are still non-relational, not only 
for the reason of performance problems. A major 
drawback of RDM data structures is that 
norma lized relations cannot reflect the 
conceptual structure of the model led 
environment. Also, NETUL has shown that RDM has 
no advantages with respect to user interfaces, 
which are an argument in favour of semantic 
data models such as E-R Model 16,351. In RDM 
relationships among entities are not explicitly 
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represented but have to be determined by users I 
during formulation of queries, causing 
superflous canplexity. (The 5th normal form 
relieves this problem for sane types of 
queries, but it is unreasonable for many 
reasons.) Current RDM theory is inconsequent in 
its attitude to duplicates, ordering, updating, 
arithmetics, aggregates, transitive closures, 
and so on, refusing to yield general and 
consistent semantics of these vital concepts. j 
(Existing attempts, eg. t2,9,20,21,32l, do not 
explain all aspects and are ignored by the main 
stream of the ROM school.) In consequence we 
prefer to deal with network/semantic approaches 1 
which offer more potentiality for future 
database systems. 

There are few papers concerning query 
optimization addressing network data structures 
f10,11,151. The motivation for it is 
essentially different fran that for RDM. The 
source of performance difficulties in 
relational queries is the join operator (or 
equivalently, the Cartesian product) mich is 
used mainly for navigation through relations 
according to primary and foreign keys. In 
network databases this function is fulfilled by 
explicit pointer links, thus the presence of 
joins in query languages for network data 
'structures may be questioned. NETUL, being more 
powerfu 1 than current relational query 
1 anguages, has no operator resembling the join 
at all. Since in network databases joins may be 
rep1 aced by navigation via 1 inks, the 
performance is much improved; nevertheless 

'there are queries causing difficulties. Current 
optimization methods, as a rule, are 
unapplicable to such queries. 

In this paper we deal with non-relational 
(network) data structures and consider query 
languages having the power of algorithmic 
programming 1 anguages. We propose an 
optimization method based on stored queries. A 
stored query is a pair <query, response>, where 
"response" is the query meaning evaluated for 
the current database state. When a collection 
of stored queries is available in the database 
system, responses to sane queries can be 
obtained easily. 

TWO basic problems should be solved 
before such an idea can be put to practical 
use. These are: 

- The size of a stored queries file. Usually 
query languages contain too many (typically, 
an infinite number) of different queries; 
thus not all can be stored. 

- The updating problem. After a database update 
the responses to some stored queries may no 
1 onger be valid. Additional effort is 
required to put them in working order. 

At first sight these problems may cause 
the idea to seem unrealistic. We show that this 
impression is wrong. Methods which are 
particular cases of this idea are well known; 
for example, methods based on indices. Indeed, 
each index item may be considered a stored 
query, i.e. a pair <query, response>, where 
“query ” is an indexing term, and “response” 
contains references (pointers) associated with 
the term. (Unlike ROM, typical NETUL queries 
may return references.) Indices imply exactly 
the same problems as above 17,291; 
nevertheless, they are widely used. Indices do 
not work for many queries (eg. queries 
involving arithmetics, aggregates, inequality, 
and so on). A method based on stored queries 
has (theoretically) no such limitations. 

Although the idea of stored queries seems 
to be new (at least in the mathematical 
formulation based on the denotational 
semantics, used in this paper), there are many 
related papers. A similar idea is presented in 
Cl21 where "stored subqueries” are considered 
to be a tool for global optimization of a 
co1 lection of relational queries. Severa 1 
papers are devoted to the problem of updating 
materialized (concrete) views or snapshots, eg. 
13,4,22,24,311, which corresponds to the 
problem of updating stored queries. These 
papers are limited to particular relational 
operators, thus the results presented can 
hardly be generalized for richer languages and 
network data structures. Some papers concerning 
optimization methods for RDM are also partly 
relevant, for example, papers dealing with 
equivalence among query language expressions, 
eg. [II, and papers on decomposition of queries 
into more elementary canponents, eg. t381. 
These problems are significant in the context 
of the stored queries file size. Another 
relevant topic, considered in C231, concerns 
derivability of the meaning of a query from 
other (stored) queries. 

In Section 2 we give a short introduction 
to NETUL and to related concepts. (A 
comprehensive description of NETUL and its 
theory based on denotational semantics may be 
found in t!3e4-371.) Basic observations 
concerning stored queries idea are 
presented in Section 3. Further sections are 
devoted to the most vital updating problem. At 
least four methods are possible: 
a) Evaluating a new response for a query; in 
view of poor efficiency the method may be used 
for very frequent queries only. 
b) Removing a stored query from the file: 
applicable to difficult to update queries, or 
not promising to be profitable in the future. 
c) Detecting whether the response associated’ 
with a given query can be influenced by the 
database update, Section 4. 
d) Correcting the meaning of a query instead of 
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its full evaluation. The method determines the primitives of the entity-relationship model. We 
part of the response which becomes invalid have also no difficulties mapping database 
after a database update, and then determines instances induced by functional models 
the part of a database (as small as possible) C5,30,401, binary relational data mdels t131, 
for which the query must be re-evaluated in and many others. The points which distinguish 
order to replace the invalid part of the our approach are the following. 
response, Section 5. 

- The database instance is viewed as a graph 
with addresses as nodes. Important database 
aspects, such as ordering and updating, cannot 

2. INTRODUCTION TO NETUL be consistently explained without this (or 
equivalent) concept [36,371. These aspects can 

Currently several formal approaches to hardly be considered "non-conceptual"; hence 
network (semantic, functional) databases is the address concept in our approach. 
known, cf. [8,17,25,401. These ideas cover 
basic features, such as entities, attributes - The most popular data models define fixed 
and relationships; 
such as 

however many other aspects 1 frames for the main logical data structures, 
duplicates, ordering, repeating eg. tuples in RDM, cr records (entities) in 

attributes, updating, aggregations, network models. Such record-orientation was 
generalization, roles, overlaping entity sets, criticised in 1181. Our formalism allows to 
and so on, have no formal counterparts. They construct a variety of heterogeneous data 
require additional or modified formal concepts, structures. For example, it allows to model 
which will make the formalization complex and PASCAL-like records with variants, arbitrarily 
non-homogeneous. The approach presented below nested repeating groups, aggregates, optional 
(see also 133-371) is more general and provides data, etc. 
a consistent mapping of all these concepts. 

- In many formal approaches there is unclear 
The basic concept is called "address". attitude to data names. Some of them denote 

Addresses are abstract objects; we are not sets, relations, or functions; thus frti the 
interested in their physical nature. They are mathematical viewpoint they are elements of the 
denotations of sane locations in the data metalanguage. Instantaneous data bases do not 
storing medium. Let A be the set of addresses, contain them. Thus, in the denotational 
N the set of data names, and V the set of definition of a query language additional 
atomic values; An V = 8. A database content is formal objects should be introduced, which 
a relation conGAxNxA U AxNxV. associate data names occuring in queries with 
Triples <al,n,a2> and ca,n,v> we interpret as proper components of database instances 
"at address al there is a datum with name n and names of relations with instantan:% 
with a pointer to data at address a2" or "at relations). This "environment" (in the 
address a there is a datum with name n and with programming languages terminology) causes no 
a value v”. Thus, a database content is a problems in typical cases; however, non-trivial 
directed graph with addresses as nodes and problems arise from advanced conceptual 
values as leaves; edges of this graph are model 1 ing notions, such as aggregations, “is-a” 
label led by data names. Some addresses of the relationships, roles, overlapping entity sets, 
graph are understood as its starting points, and so on, which usually require a specific use 
thus we introduce the set fovGA called the of data names. In our approach we treat all 
field of vision. A database instance is viewed names in a similar way and shift them to the 
as a pair <fov, con>. (In f35,361 a database level of instantaneous databases. 
instance includes a mathematical object 
reflecting data ordering. For simplicity, here Example 1 
ordering is not considered.) An address can 
"store" more than one pointer (Fig.2), and more Fig. 1 presents a diagram for a sample CODASYL 
than one name may be associated with it. We database. It consists of DEPT and Et@ record 
assume that an address can store at most a types and EWS set type from DEPT to Et+'. The 
single atomic value, that is, <al,nl,vl> E con DEPT record type has a multivalued attribute 
and tal,n2,v2>Econ implies vl = v2. Other LOC. Suppose that a database consists of two 
obvious constraints concerning allowed database DEPT records (Sales,(Rome,Paris)), 
instances are presented in 1363. (Service,(Rome,Tokyo,London)), five ER records 

(Brown,lOOO), (Casey,1200), (Jones,lOOO), 
This general definition of a database (Lewis,1500), (Smith,1400), and two occurences 

instance allows us, through further constraints of EMPS: one owned by the record for Sales with 
and rules, to map database instances of most of the member records for Brown, Casey and Smith, 
the current data models. In 1361 we show how to and the other owned by the record for Service 
map relational and CODASYL databases, and in with member records for Jones and Lewis. 
[351 we show how to map advanced modelling 
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Fig.1. A database structure 

This database instance is expressed as a 
pair <fov,con>, according to the principles of 
mapping CODASYL databases presented in 1361. A 
DBTG-set is represented as a collection of 
links, where a link is a pointer-valued 
attribute. For a set of type S the owner 
contains n such links (where n is the number of 
members), each named S, linking the owner with 
the members, and each member contain a single 
link, named !S, linking the member with the 
owner. The field of vision contains addresses 
of all records. For example, the record for 
Sales department may be represented as follows: 

tal,DEPT,all>, <all,DNAME,"Sales">, 
<al,DEPT,al2>, <al2,LOC,"Rome"~, 
<al,DEPT,al3>, <al3,LOC,"Paris"7, 
tal,DEPT,alb, <al4,EMPS,a37, 
<al,DEPT,al%, cal5,EWS,a47, 
<al,DEPT,al67, cal6,EMPS,a5> 

The corresponding graph representation of the 
whole database instance <fov,con>, including 
the above record for Sales, is shown in Fig.2; 
al, a2, a3, a4, a5, a6, a7 belong to fov. 

NETUL queries are subdivided into joins 
and predicates. A join returns an n-column 
table of arbitrary length, while a predicate 
returns a boolean value. NETUL tables differ 
from RDM relations in a few essential points: 

-Tables are sequences, thus the order of 
tuples may be significant. 

- Duplicate tuples are allowed. 
- Columns of a table are unnamed. 
- Elements of tables are addresses or values. 
- An element may be a pair (m,x), where m is an 

auxiliary name and x is a value or address. 

The meaning of a NETUL query is understood 
as a function from the set of states into the 
set of tables (for joins) or into the set 
{true,false> (for predicates). Each state has 
two components: the database instance, as 
defined previously, and the stack ("field of 
vision stack") which is used for determining 
the meaning of data names nested in queries. 
The stack plays a vital part in the definition 
of basic NETUL constructs, such as selection 
(operator "w~II;;;~), projection (operator "."), 
operator II operator "order by", 
quantifiers (operators "for any . . . holds" and 
"for sane . . . holds") and transitive closure 
(operator "closed by"). Besides, there are 
typical operators, such as ccmparisons, 
arithmetic operators and functions, aggregate 
functions, and so on. NETUL allows arbitrarily 
nested queries with the only limitation 
concerning semantic types of nested subqueries. 

Examples 

Ql. Give employees earning less than 1200. 
EMP where SAL < 1200 

The result is a single-column table of record 
addresses for employees earning less than 1200. 
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al -DEPT-+all-DNAME+Sales 

DEPT-+a14-EMPS 
DEPT-+al5-EMPS 

-EMP++a52ISAL-1400 
L- EW+a53-!EWS > / 

CEMP-a72-SAL-1500 
EMP+a73-!EWS : 

Fig.2. A database instance 
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Q2. Give names and departments for employees 
earning less than 1200. 

(EMP where SAL < 1200) . (NAME, (!EMPS.DEPT)) 
The query returns a two-column table, where the 
first column contains addresses of names of 
proper employees, and the second contains 
addresses of records for their departments. 

43. For departments having more than 2 
employees and located in more than one city 
give the maximum salary and the average salary. 
(DEPT where count(EMPS) > 2 and count(LOC) > 1) 

with (max(EMPS.EW.SAL), avg(EWS.EMP.SAL)) 
The result is a three-column table where the 
first column contains addresses of proper DEPT 
records, and the next contain proper numbers. 

3. BASIC OBSERVATIONS CONCERNING STORED QUERIES 

Example 2 

(See Example 1 for the database instance.) A 
stored queries file based on NETUL is shown in 
Fig. 3. The additional queries involved mean: 
44: Names of employees from Sales department. 
45: An average salary in Sales department. 
46: Departments located in Paris and employing 

less than 50 persons. 
47: Departments together with their employees 

earning more than 90% of the maximum. 

3.1. Stored queries and indices 

Consider Example 1. An index for employee 
names contains pairs tBrown,a3>, <Casey,a4>, 
<Smith,a5>, &nes,a6>, <Lewis,a7>. Similarly, 
the set of stored queries of the form "EMP 
where NAME = . ..'I. consists of pairs <EMP where 
NAME = Brown, a3>, tEfQ where NAME = Casey, 
a4>, <EMP where NAME = Smith, a5>, <El+ where 
NAME = Jones, a6>, <EW where NAME = Levis, 
a7>. The only difference is that additional 
text "EMP where NAME ='I precedes an indexing 
term. Assuming compression (eg. by macro 
facilities) this text may be reduced, thus we 
obtain the typical index. 

3.2. Flexibility and adaptability 

Stored queries do not exclude other 
(classical) methods of performance improving. 
BY maintaining only most frequent stored 
queries we can reduce the necessary storage 
without affecting the average performance 
efficiency. It is also possible to consider 
self-adaptable systems, where the system 
automatically augments (reduces) the set of 
stored queries. For example, all new queries 
entering the system may be stored, and queries 
not used for a long time may be deleted. Many 
different strategies of adaptation can be used. 
The problem of adaptability Cl41 concerns 
optimal index selection in adaptable or self- 
ddaptable DBMS. Stored queries have at least 
two advantages in this respect: 
- they may be partly created as a side effect 
of the normal query processing, 
- the elementary decision of inserting or 
deleting concerns single stored query, while in 
the mentioned case it concerns hi-tale indices 
which may be very large. Much smaller 
granularity of decision objects stimulates 
better adaptability and self-adaptability. 

3.3. Equivalent transformation of queries 

Syntactic transformation of queries should 
be performed before storing, eg. reduction of 
spaces, representing in a canonical form, etc. 
There are also many semantic rules, eg. "j 
where Nl = N2 and N2 = c" is equivalent to "j 
where Nl = c and N2 = cl', cf. the tableau 
method C11. 

3.4. Decomposition of queries 

Some queries may be decomposed into more 
elementary parts, eg. "j mere pl or p2" is an 
equivalent of "(j tiere pl) union (j hhere p2)" 
(pl,p2 are predicates); thus the query may be 
substituted by the union of two elementary 
queries and such a complex query need not be 
stored. Similarly for boolean "and". Another 
kind of decomposition is connected with nested 
queries, such as "Give best-paid employees", 

.___________________---------------------------------- 
Query 

.___________________---------------------------------- 
EMP where SAL < 1200 
EMP where SAL < 1200 . (NAME, (!EMPS.DEPT 
DEPT where count(EWS) > 2 and count(LOC) 

with (max(EWS.ER.SAL), avg(EMPS 
DEPT where DNAME = Sales.ERS.EW.NAME 
avg(DEPT where DNAME = Sales.ERS.ER.SAL 
DEPT where Paris in LOC and count(EWS) < 
DEPT with (EWS.EW where SAL > 0.9 * max 

1 
> 1 
EW.SAL)) 

?&SAL)) 

,--------------------- 
Response 

,--------------------- 
ca3, a6> 
<<a31,al>,<a61,a2>> 

<<al, 1400, 1200>> 
< a31, a41, a51 > 
< 1200 > 
< al > 
<<al,a5>, (a2,a7>> 

Fig.3. A stored queries set. 
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"EMP where SAL = max(EMP.SAL)". It may be 
Z&posed into queries: "max(EMP.SAL)" and 
"EMP where SAL = cl', where c is the result of 
the first query. 

3.5. Derivation of query meaning from other 
stored queries 

An elementary example is "EMP where NAME = 
Smith. SAL", which may be easily derived from 
"EMP where NAME = Smith". Network databases, 
having explicit pointer links, possess more 
such possibilities, and quite complex queries 
can be efficiently derived. In RDM they would 
require joining many relations, eg. "Give 
DNAMEs and NAMES of employees from each Paris 
department employing some Smith": 
"EMP where NAME = Smith. !EMPS.DEPT 
where (Paris in LOC).(DNAME, (EkPS.Et+.NAME))" 

which in RDM would require a Cartesian product 
(a join) of four relations. 

update cannot influence the query meaning. We 
start from a few basic definitions then prove a 
theorem concerning the method. Then, as 
examples of general properties, we construct 
simple "subschema languages" and show an 
efficient test for determining whether 
subschemas are "disjoint". The examples have 
mainly an ilustrative purpose, but we do not 
exclude their practical meaning. 

Let DB denote the set of all database 
instances: DB = FOVST x CON, where 

FOVST = powerset of( A ), and 
CON = powerset of( A x N x ( A U V ) ). 

Let dbl = <fovl, cTinl> and db2 = tfov2, con2> 
be database instances. We define operations on 
database instances as: 

intersection: 
dbl o db2 = tfovl nfov2, con1 n cone> 

sum: dbl + db2 = tfovl U fov2, con1 U con2> 
complement: 

3.6. Dispersing stored queries among the dbl = <A - fovl, (A x N x (A U V)) - conl> 
database structure difference: dbl - db2 = dbl o ?&? 

Consider two pairs of queries: 
al) For each department, give the average 
salary: "DEPT with avg(EMPS.EMP.SAL)" 
a2) For each department, give DNAME: 

"DEPT with DNAME" 
b1) Give the average salary in Smith's 
department: "EMP where NAME = Smith.!EMPS.DEPT. 

avg(EMPS.El+P.SAL)" 
b2) Give DNAME of Smith's department: 

"EMP where NAME = Smith.!EM3SDEPT. DNAME 

Queries al and bl contain the 
"avg(EMPS.EMP.SAL)", 

subquery 
and we can observe from a2 

and b2 that it is used in queries similarly to 
the use of attribute DNAME. Hence 
"avg(EMPS.EMP.SAL)" may be treated as a virtual 
attribute of DEPT, and its value may be stored 
within DEPT records. That is, each such record 
(stored at addrl) may be augmented by an 
address addr2, and then new triples taddrl, 
DEPT, addr2>, caddr2, avg(Et@S.El+.SAL),v> are 
added to the database content, (where v is the 
actual average salary in the department). Note 
that the subquery "avg(EFiPS.Ef@.SAL)" is 
treated as a data name. Due to the 
orthogonality of NETUL, it may be used in other 
arbitrary contexts, eg. "Give departments with 
the maximal average salary": "DEPT where 
avg(EMPS.EMP.SAL)=max(DEPT.avg(Ef9S.El'+.SAL))". 

4. THE ELIMINATION METHOD 

The elimination method is based on the 
concept of subschema. 
w-w and 

The idea i.sethat with a 
with an update associate 

"sufficient" subschemas. If these subschemas 
are "disjoint", in a proper sense, then the 

Assuming that database instance <g,& is 
the minimal boolean element and <A,(A x N x (A 
U V))> is maximal! we can show that the system 
tDB, o, +, Z > is a boolean algebra; hence we 
will use its well known properties. Relation 
< ZDB x DB is a partial ordering induced by 
this algebra; it may be defined as dbl <db2 
iff fovl cfov2 and conlc con2. 

A schema is a subset of DB. We are not 
interested in particular 
integrity constraints) 

facilities (;eg;. 
that are used 

determining schemas and reflect just their main 
semantic property. 

Let SE DB be a schema. A subschema ss of 
the schema S is a total function ss: S + DB 
such that for every db E S holds 

ss(db) 4db (1) 

We assume the following notation. Let Dl, 
be sane domains (sets) and 

f"f'Dl 5 (D2 + D3). By 
let 

fSxll.x2, where 
xlE Dl and x2E D2, we denote g(x2) where g is 
returned by f for argument xl, g = f(x1). 

In the sequel Q denotes a syntactic domain 
for a query language, R denotes a semantic 
domain of responses returned by queries, and 
semq: Q -+ (DB 4 R) a meaning function. By a 
database update we mean a transformation of a 
database instance dbl into db2. Let U be a 
syntactic domain of an update language and let 
semu: U 4 (DB + DB) be its meaning 
function. To simplify notation, instead of 
semqIql.db we use Iql(db) and instead of 
semulul.db we use lul(db). 
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A query q EQ is insensitive to update 
u EU in schema S iff for every dbE S holds 

- For strongly disjoint subschemas: 
for every dbE S 

Iql(db) = Iql(lul(db)) (2) 

Such a property should be proven if after 
update u we would like to eliminate stored 
query <q, Iql(db)> from the updating process. 

ssq(db) o db o lul(db)< 
ssq(lul(db)) t ssu(db) t ssu(lul(db)) 

ssq(lul(db)) o db 0 lul(db)< (10) 
ssq(db) t ssu(db) t ssu(lul(db)) 

The sketch of proof of (9); similarly for (10): 
Let us denote: x = db, y = lul(db), a = 
ssddb), b = ssq(lul(db)), c = ssu(db), d = 
ssu(lul(db)), 0 = <$,Gf>. We replace operator o 
by juxtaposition. According to properties-of 
boolean algebras z<t is equivalent to zt = 
0, z = t is equivalent to z<t and tez, and 
z = 0 and t = 0 is equivalent to z t t = 0. 

A subschema ssq is sufficient for query 
q E Q in schema S iff for every db E S holds 

Iql (db) = Iql(ssq(db)) (3) 

If ssq is sufficient for query q, then instead 
of (2) it is enough to prove that for every 
dbG S holds 

ssq(db) = ssq(lui'(db)) (4) 

A subschema ssu is sufficient for update u 
U in schema S iff for every dbE S holds 

and iil(db) 
- lul(db) <ssu(db) (5) 

- db < ssu(lul(db)) (6) 

The definition for the subschema sufficiency 
for updates requires that the old (removed) 
part of a database and the new (inserted) part 
should "belong" to the subschema. We do not 
consider other conditions which may be 
necessary for accomplishing the updating 
request, eg. a query occuring in the request 
may require a wider 

The subschemas 
weakly disjoint iff 

ssl(db) o 

The subschemas 
strongly disjoint 
holds 

ssl and ss2 of schema S are 
for every db E S holds 

ss2(db) = d,@ (7) 

ssl and ss2 of schema S are 
iff for each dbl, db2 E S 

ssl(db1) o ss2(db2) = <a,$> (8) 

Now assume that ssq is a sufficient 
subschema for query q, ssu is a sufficient 
subschema for update u, and ssq, ssu are weakly 
(or strongly) disjoint. Further assumptions 
which allow us to prove that q is insensitive 
to u are determined by the following theorem. 

Theorem 1 

If subschemas ssq and ssu are weakly/strongly 
disjoint, and they are sufficient respectively 
for query q and update u, then the weakest 
additional assumptions which allow to prove (4) 
are the following: 

- For weakly disjoint subschemas: 
for every dbE S 

ssq(db) o db o lul(db)<ssq(lul(db)) t ssu(db) 
ssq(lul(db)) o db o lul(db)< (9) 

ssq(db) t ssu(lul(db)) 
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Assumptions: 
Fran (I): a-x, c<x, hey, d<y; 

equivalently: aXt cKt byt dji = 0 
Fran (5): xy-cc 

equivalently: 
Fran (6): yj?<d 

x7& = 0 

equivalently: 
Fran (7): ac = 0, bd = 0 

r;ya = 0 

equivalently: ac t bd = 0 
Summarizing assumptions: 

aKt cYt byt dy t x~C t?y'i t ac t bd = 0 
Thesis from (4): a = b 

equivalently: aTi t Zb = 0 

The weakest assumption which allows to 
prove the thesis is p = 0, where p is a 
difference between the left part of the last 
formula and the left part of the summarizing 
assumptions, i.e. 
p = a6 t bb - 

(ax t CK t byt dji t xj3 tZ ii t ac t bd) = 0 
After reduction we obtain: a -xy t aEXxy = 0, ic 
or equivalently: axv<b t c and bxy<a t d, 
what-completes-the proof. 

Fran the weakest assumptions we can easily 
construct stronger ones. 
(IO) are 

For example, (9) and 
implied if ssq satisfies the 

"subschema continuity property", 127,281: 
(vdbl,db2 E S) (11) 

ssq(db1) o dbl o db2 = ssq(db2) o dbl o db2 
However, this property is sometimes too strong. 

Implementation of the elimination method 
consists in defining a subschema language which 
allows easy generation of sufficient subschemas 
for each query and update. A simple method for 
recognizing that (4) holds should be provided. 
The efficiency of elimination may depend on the 
applied subschema language. Subschema languages 
with better precision (which better approximate 
necessary parts of the database) allow to 
eliminate more queries. More precise languages, 
however, may cause performance difficulties 
when generating sufficient subschemas and 
testing whether (4) holds. Note, that a 
subschema may not be connected with a subschema 
language. For example, a sufficient subschema 
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for an update may be considered a function 
returning an empty database instance for all 
elements of the schema, with except of two: the 
database instance before the update (for which 
the subschema returns deleted elements of fov 
and con), and the database instance after the 
update (for which the subschema returns 
inserted elements of fov and con). 

example consider a 
lang&e S"s? = powerset of( N ) 

subschema 
consisting of 

sets of data names, wiTh the &aning function 
MFSSl: SSI -+ (DB -+ DB) defined as follows: 
let NoGN; then 

MFSSIE No l.(fov,con> = < fov', con' > 

where con' = <<a,n,x>Econ 1 nENo) contains 
triples having names from No, 

fov' = fov CI <aE-A 1 (gn,x) <a,n,x> Econ') 
contains addresses from fov, where some triples 
from con' are located. In our intention, if Nl 
determines a sufficient subschema for query q, 
N2 determines a sufficient subschema for update 

and Nl n N2 = s', then q is insensitive to 
yhe update. We shall prove this assertion. If 
N1, N2 C N are disjoint sets, then database 
contents returned by MFSSlLNll and MFSSlLN21 
have no common triples. All changed triples 
(deleted and inserted) are 
MFSSlIN23. 

returned by 
Hence MFSSICNII returns exactly the 

same triples for database instances before and 
after updating. Fran the definition of MFSSl, 
returned fov-s functionally depend on returned 
sets of triples, thus fields of vision returned 
by MFSSl[Nll are the same for instances before 
and after updating. Hence condition (4) holds. 

A sufficient subschema for a NETUL query 
consists of all names occuring in this query. A 
sufficient subschema for the database update u 
consists of names from all affected triples 
(removed and inserted), i.e. 

Cn I (3a,x) <a,n,x> _ con u con (12) 
(lul(con) - lul(con))) 

where lul'(con) is the updated database content. 
Thus, for SSl generating sufficient subschemas 
and testing if (4) holds is quite simple. 

Example 3 

Consider a schema implied by the diagram of 
Fig.1 and the mapping rules shown in Example 1. 
Fig.2 presents a current database instance and 
Fig.3 presents a current stored queries set. 
The following sets of names generate subschemas 
sufficient for queries from Example 2; Fig.4 
presents a database sub-instance produced by 
the subschema for 46. 

Ql: { EMP, SAL ) 

42: c EMP, SAL, NAME, !EMPS, DEPT 3 
43: < DEPT, E@S, LOC, Ef+, SAL ') 
Q4: { DEPT, DNAME, Ef+S, El%', NAME 1 
Q5: c DEPT, DNAME, Ef+S. EM'. SAL > 
Q6: < DEPT, LOC, iF1)S 3. ' 
47: < DEPT, EM)S, EM', SAL ). 

al -DEPT+all 

DEPT+al4-EMPSda3 
DEPT*al5-EMPS-+a4 
DEPT+al6-EMFS+a5 

a2 -DEPT+a21 
LDEPT+a22-LOC-Rome 

DEPT-+a23-LOC+Tokyo 
DEPT-+a24-LOC-London 
DEPT+a25-EMPSha6 
DEPT+a26-EMPS+a7 

Fig.4. Database instance produced by 
M~ssir (DEPT, Lot, E~~Ps)] 

Suppose that all Tokyo locations are 
changed to Kyoto by a NETUL updating request 
c371 "update DEPT.((X being LOC where X = 
Tokyo), Kyoto)". For the instance from Fig.2 it 
means deleting a triple <a23,LOC,Tokyo> and 
inserting <a23,LOC,Kyoto>. A set {LOC> 
determines a sufficient subschema for this 
update. The empty intersection of this set with 
the sets of names for Ql, 42, 44, 45 and 47 
shows the insensitivity of these queries to the 
above update. Thus, Q1, 42, 44, 45, 47 may be 
eliminated, while 43, Q6 may not. Consider 
another update changing Smith's salary. (SAL) 
determines a sufficient subschema, thus 44, 46 
may be eliminated while the rest may not. 

A disadvantage of SSl is low precision. As 
a better variant, consider a subschema language 
SS2 with expressions being sets 

(ml, m2,..., ak, <nl,Vl>, <n2,V2>,..., <nl,Vl>) 

where k >= 0, 1 >= 0, ml,...,mkE N, nl,.,nlE 
N, Vl ,...Vl are subsets of V. The idea of such 
a subschema is similar to the previous one, but 
we are allowed to restrict values associated 
with a given name ni to some set Vi E V. The 
meaning function MFSS2: SS2 + (DB + DB) for 
SS2 is defined as follows: 

MFSS21{ml ,..,mk,<nl,Vl> ,..,tnl,Vl>~.tfov, con> 
= <fov", con"> 

where con" = {<a,n,x>econ 1 nE<ml,...,mk) > U 
C<a,n,v>Econ ( (yi=l ,..,l) n = ni and vEVi), 

fov" = fov n( a I (yn,x) <a,n,x> E con" ) 

With each subschema ss ESS2 we associate a set 
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&(ss) = (<m,v> 1 m E ss and v E V) U 
(<n,v> 1 (YVoCV) <n,Vo>Ess and vEVo) 

representing all possible values which can be 
associated with data names. We can prove that 
(4) holds if ss2q ES.9 determines a sufficient 
subschema for query q, ss2u ES.9 determines a 
sufficient subschema for update u, and 

uss2q) n &(ss~u) = g (13) 

Generation of sufficient SS2 subschemas 
for updates is similar to the previous one, 
with the modification concerning values: if 
<a,n,v> is a triple affected by the update 
(inserted or deleted) then tn, <...,v,...}> 
belongs to the SS2 expression. 

A slight difficulty concerning ss2 
subschema language is caused by associating 
sufficient subschemas with queries. Since 
SSI CSS2, we could use the previous rules, the 
precision, however, might be unsatisfactory. 
More sophisticated rules are necessary, and 
they may depend on query types. 

Example 4 

The sufficient SS2 subschemas for queries fran 
Example 2 are: 

* 
$I 

f 

MP, <SAL,(x1x<l200)>) 
MP, NAME, !EMPS, DEPT, <SAL,(x~xt1200}>) 

43: DEPT, EM'S, LOC, Et+, SAL') 
44: OEPT, EFPS, Et+, NAME, <DNAME, {Sales)>‘) 
$: 

. 
@EPT, Et$'S, EM', SAL, (DNAME, (Sales>>) 

Q7; 8 
EPT, Et@S, <LOC, <Paris)>) 
EPT, EFPS, ER, SAL> 

A sufficient subschema for the update from 
Example 3 is CtLOC, <Tokyo, Kyoto)>). According 
to (13) Ql,Q2,44,45,46,47 may be eliminated 
from the updating process, while 43 may not. A 
sufficient subschema for the update which 
changes Smith's salary from 1400 to 1500 is 
(<SAL, (1400,15003>), thus Ql,Q2,Q4,Q6 may be 
eliminated, while Q3,Q5,Q7 may not. 

SS2 subschemas correspond to the well 
known concept of “semi-join”. A semi-join of 
relation Rl w.r.t relation R2 is obtained by 
joining RI and R2 and projecting the result on 
the attributes of Rl. If RI is stored in a site 
sl, and R2 stored in a different site s2, we 
can calculate the join of RI and R2 by sending 
RI from sl to s2. To optimize the volume of 
data to be sent, 
RI only. 

we can send the semi-join of 
To do this, we must previously send 

information about R2 from s2 to sl, namely, 
names of joined attributes and their values in 
R2. This information may be specified as a SS2 
subschema. We think that the concept of 
sufficient subschema may have some meaning for 
distributed query processing. 
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5. CORRECTION 

The majority of stored queries may be 
eliminated from the updating by the methods 
explained in the previous section. Some 
remaining queries may be corrected. After 
updates, changes in the database are usually 
local, hence frequently a part of a query 
meaning remains valid for the updated database 
instance. The correction consists in deleting 
from the old meaning all the "uncertain" 
elements and augmenting the meaning by elements 
obtained through evaluation of the query for a 
part (as small as possible) of the new database 
instance which was affected by the update. 

Previously we did not provide special 
restrictions concerning NETUL queries. However, 
correction is a more difficult problem; 
probably no general method exists. Thus we must 
assume some semantic constraints. To formalize 
them we introduce the concept of access 
function and its transitive closure. 

Let con= A x N x (A U V) be a database 
content, and let Ao c A. We define a function 
"sub" , with arguments Ao and con, returning 
addresses "subordinated" to Ao: 
sub(Ao, con) = 

(bEA 1 (ga,n) aEAo and ca,n,b%con> 

Then, we define a family of functions (sub0, 
subl, sub2,..,sub(i) 
returns the 

,..), where sub(ili;o,, con) 
set of addresses are 

accessible fran Ao in exactly i steps, that is: 
subO(Ao,con) = Ao 

for i > 0: 
sub(i)(Ao,con) = sub(sub(i-l)(Ao,con),con) 

The transitive closure sub* of sub, defined as 
00 

sub*(Ao, con) =IJ sub(i) (Ao, con) 
i=O 

(or by a fixpoint: sub*(Ao,con) = X, 
X = Ao U sub(X,con)) returns all addresses that 
are accessible from Ao in an arbitrary number 
of steps. 

Let <fov,con> be a database instance. All 
triples that are inaccessible from fov in any 
number of steps may be removed, thus we define 
a function red: DB -+ DB perfoming such 
operation: 
red(<fov,con>) = 

<fov,{<a,n,x>Econ ( aEsub*(fov,con))> 

Now we can formalize constraints on 
allowed queries q as follows: 

(Cl) Iql(db) = Iql (red(db)) 

(C2) Iql(tfov,con>) C (sub*(fov,con))n 
n = 1,2,3,.1. 
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(C3) lql(tfovl U fov2, con>) q 

Iql(<fovl,con>) U Iql(tfov2,con>) 

Constraint (Cl) is obviously satisfied by 
all NETUL queries. Constraint (C2) states that 
the meaning of a query is an n-ary relation 
over addresses accessible frcm the field of 
vision. Many queries possess this property, eg. 
Ql, 42, 44, 46, 47 from Fig.3. Substantial 
parts of others also have it, eg. in Q5 the 
argument of avg. Constraint (C3) requires 
additivity of a query meaning w.r.t. the field 
of vision. Many typical queries have this 
property, eg. Ql, Q2, 43, 44, 46. Q5 does not 
possess it, but the query being the argument of 
avg does. The constraint is typically satisfied 
by queries of the "navigational type"; in 
general, however, it is not tolerant to nested 
queries (eg. Q5 and 47). 

Constraint (C3) implies 

Iql(tfov,con>) =U Iql(<<a), con>) 
aEfov 

(14) 

that is, the meaning of a 9 uev may 
subsequently be evaluated for single elements 
of fov. By addr(con) we denote addresses 
occupied by con, i.e. 

addr( con ) = {a 1 (an,x) <a,n,x> icon> 

Now assume that an update changes a 
database instance <fovl, conl> into <fov2, 
cone>. We determine elements of the field of 
vision which are "uncertain" after this update, 
since according to (14) they may produce 
elements of the query meaning which may not be 
valid any longer. These are: 
- addresses removed from fov, i.e. fovl-fov2, 
- addresses inserted into fov, i.e. fov2-fovl 
- addresses from fov from which deleted triples 

are accessible, i.e. Fl = 
{aEfovl 1 sub*({a),conl)I\addr(conl-con2)#8) 

- addresses from fov from which inserted 
triples are accessible, i.e. F2 = 

(aEfov2 1 sub*(<a},con2)naddr(con2-conl)#fi). 

Hence the set X of "uncertain" fov elements is: 
X = fovl-fov2 U fov2-fovl U Fl U F2 (15) 

Then, "uncertain" elements of the old meaning 
of query q are lql(tfov1 n X, conl> ) and they 
should be removed from the meaning. On the 
other hand, q should be reevaluated for 
addresses X n fov2, and the result should be 
appended to the meaning. 

However, after removing some elements fran 
the old meaning it may happen that we have 
removed too much. Indeed, assume al, a2 Efov, 
al E X, a2 4 X and Iql(c(al), conl>) = 
Iql(<{a2), con2>). Thus, we should remove all 
elements determined by the left part of the 
last formula, but at the same time we remove 
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elements determined by the right part, which 
should not be removed. To avoid this problem, 
we must reevaluate q for a slightly wider part 
of fov, namely, for the set (X U Y) n fov2, 
where Y contains additional elements of fovl 
from which tuples of addresses removed from the 
old meaning are accessible, i.e. 

Y = (aEfov1 1 (sub*({a),conl))n n (16) 
iqi(tf0vmx, conl>) + 0 ) - x 

where n is the size of tuples returned by q. 
Now we are ready to formulate the following 
theorem: 

Theorem 2 

If query q satisfies conditions (Cl), (C2) and 
(C3), then for any database instances <fovl, 
conl>, cfov2, cod> holds 

Iql(<fov2,con2>) = Iql(tfovl,conl>) (17) 
- Iql (<fovlnx,conl>) u Iql (tfov2n(xuv),con2>) 

where X and Y are given by formulas (15), (16). 

A variant of this theorem is proven in 1271. 
An easy (but paper consuming) proof may be done 
according to the informal considerations 
preceding the theorem. Its kernel consists of 
application of (Cl): we have to show that 
red(<fovl-(XUY),conl>)=red(<fovl-(XUY),con2>); 
thus Iql(tfovl-(X U Y), conl>) = Iql(tfovl-(X U 
Y), con2>). The rest follows from the 
additivity of the query meaning. 

There may be many variants of this 
theorem, depending on the assumptions on query 
meaning or allowed database instances; a few 
are considered in t273. Below we discuss two 
such variants. 

The set Y occuring in formula (17) may be 
removed if we assume that for query q there 
exists a sufficient hierarchical subschema. A 
subschema ssq of schema S is said to be 
hierarchical if for every db E S holds: 

ssq(db) = tfovssq, conssq> and 

(val, a2 E fovssq) al # a2 e 
sub*(<al),conssq) n sub*(<a2$,conssq) = g 

That is, clusters of addresses accessible from 
different addresses of fovssq do not overlap. A 
hierarchical subschema exists for each query 
from Fig.3. If in (Cl), (C2), (C3), (15), (16) 
and (17) for each db we replace db by ssq(db), 
which is quite reasonable if ssq is a 
sufficient subschema, then Y = 0. Indeed, in 
this case the described situation leading us 
to the definition of Y never arises. 

The second case concerns removing (C2) and 
Y totally. The reason which has led us to (C2) 
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is the same as the reason for which we consider 
set Y: for different addresses of fov, query q 
may return the same tuple. Thus, instead of a 
stored query <q, Iql(tfov,con>)> we can store 
<q, T>, where T is a table defined as 

T =,yovo) x Iql(c(a),con>) 

We augment the table returned by q by an 
additional column storing elements of fov for 
which q returns the given tuple. Due to 
additivity, the meaning of q may be obtained 
through removing this column. Now for different 
fov elements q never returns the same tuple of 
T, thus constraint (C2) is unnecessary. 
However, this possibility is achieved at 
expense of additional storage space and 
processing time. 

The straightforward implementation of the 
correction method according to formula (17) may 
be described by the following algorithm: 
1. Determine addresses of removed triples, i.e. 

addr(conl-con2) 
2. Navigate in con1 in the opposite direction, 

from these addresses to the field of 
vision, to establish set Fl of uncertain 
elements. 

3. Determine addresses of inserted triples, 
i.e. addr(con2-conl) 

4. Navigate in con2 in the opposite direction, 
from these addresses to the field of 
vision, to establish set F2 of uncertain 
elements. 

5. Calculate uncertain elements of the query 
meaning, i.e. 
Iql(fovl-fov2 U Fl U fovl n F2, conl) 

6. Remove uncertain elements fran the meaning. 
7. Navigate in con1 in the opposite direction, 

from these uncertain elements to the field 
of vision, to establish set Y. 

8. Calculate Iql(fov2-fovl U fov2n(FlUY) U R, 
con2) and append the result to the query 
meaning. 

Navigation in opposite direction requires 
special organization of physical data. Usually, 
data organizations assumed in classical network 
databases permit such a possibility. For 
example, in CODASYL databases set occurences 
are organized as linked rings of pointers 
causing no problems in navigation fran an owner 
to a member and otherwise. 

6. CONCLUSION 

The relational data rode1 has unacceptable 
intellectual drawbacks in vital database 
aspects thus we believe that much nK)re effort 
is necessary to develop network/semantic data 
models. Query optimization methods developed 

for th 
network semantic 7 

relationald$;a model do not work for 
models since these 

methods are strongly directed towards 
optimization of joins (or Cartesian products) 
which are not specific for query languages 
addressing network data structures. Besides, 
the methods are unapplicable to query languages 
having the power of algorithmic programming 
languages, such as NETUL. Hence the need for 
new approaches to query optimization. In this 
paper we have proposed a group of methods based 
on the idea of stored queries. Stored queries 
give a possibility of performance improvement 
regardless of the data model assumed and of the 
expressive power of query language. We have 
outlined basic properties of the idea, and have 
sketched two complementary methods, 
elimination and correction, for solving the 
problem of updating stored queries. 

The efficiency of the elimination method, 
based on the concept of subschema, depends to a 
great extent on the features of the subschemas 
used. The proposed method, based on subschemas 
generated by sets of data names associated with 
allowed values, seems to be convenient for 
implementation and efficient. 

Correction works particularly well when 
the updated part of the database is small, 
which is quite a typical situation. Two 
possibly more efficient variants of the main 
method are also proposed. 

The formalism outlined in this paper has 
many advantages over well known database 
formalisms. In particular, it provides a 
consistent explanation of all persistent 
features of database systems and query 
1 anguages, such as duplicates, ordering, 
updating, and so on. We hope that it will 
appear a convenient tool also for studying 
other aspects of the database theory. 

The stored queries data organization was 
experimentally implemented and some essential 
intuitions of this idea were examined in [271. 

REFERENCES 

111 Aho, A.V., Sagiv, Y., and Ullman, J.D. 
Efficient optimization of a class of relational 
expressions1 ACM Trans. on Database Syst. 4, 4 
( 1979) 435-454 

[El- Aho, A-V., and J.D.Ullman. Universality 
of data retrieval languages. Proc. 6th ACM 
Sw - on Principles of Programming languages, 
San-Antonio, Texas 1979, 110-117 

133 Bernstein, P.A., and Blaustein, B. A 
simplification algorithm for 
assertions and concrete views. 

i ntegr;;; 
Proc. 

Computer Software and Application Conf., 

Proceedings of the 13th VLDB Conference, Brighton 1987 379 



Chicago, Nov. 1981 
[41 Blakeley, J. A., Larson, P. -A., and 

Tompa, F. W. Efficientlv UDdatinQ materialized 
views 1 Proc. ACM SIGMOD Cbnf. Wishington D.C. 
1986, 61-71 

[5J Buneman, O-P., and R.E.Frankel. FQL - A 
functional query language. Proc. ACM SIGMOD 
Conf., Boston 1979, 52-57 

C61 Chen, P.P.S. The entity-relationship 
model: towards a unified view of data. ACM 
Trans. on Database Syst. 1, 1 (1976) 9-36 

f71 Comer, D.: The difficulty of optimum 
index selection. ACM Trans. on Database Syst. 
3, 4 (1978) 

181 Dayal, U. Schema-mapping problems in 
database systems. TR-11-79, Center for Research 
in Computing Technology, Harvard University, 
Cambridge, 1979 

t91 Dayal, U., N-Goodman, and R.H.Katz. An 
extended relational algebra with control over 
duplicate elimination. Proc. ACM Symp. on 
Principles of Database Systems, Los Angeles, 
March 1982, 117-123 

Cl01 Dayal, U., and Goodman, N. Query 
optimization for CODASYL database systems. 
Proc. ACM SIGMQD Conf., Orlando 1982, 138-150 

Cl 11 Dayal, U. Query processing in a multi- 
database system. In 1191, 81-108 

1121 Finkelstein, S. Common expression 
analysis in database applications. Proc. ACM 
SIGMOD Conf., Orlando 1982, 235-245 

cl31 Frost, R.A. SCHEMAL: Yet another 
conceptual schema definition language. The 
Computer Journal 26, 3 (1983) 228-234 

cl41 Hammer, M., and Chan, A. Index selection 
in a self-adaptive data base management system. 
Proc. ACM SIGMOD, Washington D-C. 1986, 1-8 

[I53 Hwang, H., and Dayal, U. Using the 
entity-relationship model for implementing 
multi-model database systems. Proc. 2nd Entity- 
Relationship Conf., Washington D-C., 1981 

Cl61 Inmon, W.H. Why large on-line relational 
systems don't (and may not ever) yield good 
performance. EDP Performance Review (USA), Oct. 
1986, Vo1.14, No 10, 5-8 

Cl71 Jacobs, B. On database logic. Journal of 
the ACM 29, 2 (1982) 310-332 

Cl81 Kent, W. Limitations of record-based 
information models. ACM Trans. on Database 
Syst. 4, 1 (1979) 107-131 

Cl91 Query processing in database systems. 
(Kim, Reiner, Batory, Eds.) Springer-Verlag, 
Berlin 1985 

1201 Kl ausner, and N-Goodman. 
Multirelations - Semanttc; and Languages. Proc. 
11th VLDB Conf., Stockholm 1985, 251-304 

1211 Klug, A. Equivalences of relational 
alaebra and relational calculus auerv 
laiguages having aggregate functions. Journai 
of the ACM 29, 3 (1982) 699-717 

L221 Koenig, S., and Paige, R. A 
transformational framework for the automatic 
control of derived data. Proc. 7th VLDB Conf., 
Cannes 1981, 306-318 

l231 Larson, P., and Yang, H. Computing 
queries from derived relations. Proc. 11th VLDB 
Conf., Stockholm 1985, 259-269 

t241 Lindsay, B. et al. A snapshot 
differential refresh algorithm. Proc. ACM 
SIGMOD Conf., Washington D-C., June 1986, 53-60 

C253 Manola,F., and A.Pirotte. An approach to 
multimode1 database systems. Proc. 2nd Conf. on 
Databases, Cambridge, England, 1983, 53-75 

C263 IEEE Database Engineering, Special issue 
on query processing. Sep. 1982, (Reiner, Ed.) 

C271 Rzeczkowski, W.: Query files as a tool 
for improving database systems. Ph.D. thesis, 
Institute of Computer Science Polish Academy of 
Sciences, 1985, (in Polish) 

f28J Rzeczkowski,W., and Subieta,K. Stored 
queries - a data structure for 9 uw 
optimization. Institute of Coputer Science 
Polish Academy of Sciences Report 583, Warsaw, 
May 1986 

C291 Schkolnick, M. The optimal selection of 
secondary indices for files. Information 
Systems 1 (1975) 141-146 

C301 Shipman, D.W. The functional data model 
and the data language DAPLEX. ACM Trans. on 
Database Syst. 6, 1 (1981) 140-173 

F311 Shmueli, O., and Itai, A. Maintenance of 
views. Proc ACM SIGMOD Conf., 1984, 240-255 

t321 Stonebraker, M., et al. Document 
processing in a relational database system. ACM 
Trans. on Office Inf. Syst. 1, 2 (1983) 143-158 

C331 Subieta, K. High-level navigational 
facilities for network and relational 
cl%&a;bs;es. Proc. 9th VLDB Conf., Florence 1983, 

C341 Subieta, K. Semantics of query languages 
for network databases. ACM Trans. on Database 
Syst. 10, 3 (1985) 347-394 

C351 Subieta,K., and Missala, M. Semantics of 
;;;;T l;;;;ages for the Entity-Relationship 

5th Conf. on Entity-Relationship 
Approach, Diion, Nov. 1986, 291-310 

t36J Subieta, K. Denotational semantics of 
query 1 anguages. Information Systems 12, 1 
(1987) 

E37J Subieta, K., and Missala, M. Data 
manipulation in NETUL. Submitted to 6th Intl. 
Conf. on Entity-Relationship Approach, New 
York, 1987 

M81 Wong, E. and K. Youssefi: Decomposition 
strategy for query processing. ACM Trans. on 

Database Syst. 1, 3 (1976) 223-241 
C393 Young, J. Relational databases - 

benefits and drawbacks. Data Processing 28, 6 
(1986) 312-313 

t401 Zlatuska, J. The HIT data model. Data 
bases from the functional point of view. PrOC. 
11th VLDB Conf., Stockholm 1985, 470-477 

380 Proceedings of the 13th VLDB Conference, Brighton 1987 


