
QUERY OPTIMIZATION BY STORED QUERIES

K. Subieta and W. Rzeczkowski

Institute of Computer Science, Polish Academy of Sciences
P.O.Box 22, 00-901 Warsaw PKiN, Poland

ABSTRACT
A stored query is a pair <query,response>,
where "respons&' is the- query meaning for the
current database state. When a collection of
stored queries is available responses to sane
queries may be obtained easily. Stored queries
give a possibility of improvement of database
sys tern response time regardless of the
complexity of user request and the data model
assumed. The method is a generalization of
methods based on indices. Its main properties
and problems are outlined, particularly the
problem of updating stored queries. The
presented solutions are based on detecting
whether the response associated with a query is
influenced by a database update, and on
correcting the response after an update. The
methods concern NETUL, a user-friendly query
language, with the power of programming
languages, for network/semantic data models.

1. INTRODUCTION

Practical implementation of attractive
9 uev 1 anguage features (such as non-
procedurality, lack of concepts related to
physical data, high universal ity, and
integration with updating capabilit ies) meets
considerable performance difficult ies. This
problem, commonly known as query optimization,
arose mainly in connection with the relational
data model (RDM) which was criticised for poor
efficiency of proposed user interfaces. The,
research on query optimization has improved the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

position of RDM in this respect. (The current
state of art of query optimization may be found

C19,261 together with comprehensive
ilbliography). Nevertheless the results are not
satisfactory t16,391. Many queries remain
beyond the scope of developed methods or cannot
be noticeably optimized, eg. queries with
aggregates, with inequality conditions, quer,ies
involving arithmetics in conditional clauses,
queries implying many joins, and so on.

The research on query optimization is
typically based on the relational algebra, thus
implicitly assumes that semantics of query-
manipulation 1 anguages can be consistently
expressed via the relational algebra and that
it covers typical user's needs. Both
assumptions are not true in practice. Many
vital aspects of query languages cannot be
consistently explained via the relational
algebra or relational calculi t363, despite
many attempts. Similarly, queries expressible
in the relational algebra are thought to be
typical since current relational q uw
1 anguages essentially cannot offer more.
Usually their power is restricted to relational
ccmpleteness augmented (with limitations) by
arithmetics and aggregate functions. Relational
completeness, however, is an ill-motivated
concept of query language universality. If a
query laoguage had higher power, such queries
might become far less typical. This is our
observation concerning NETUL 134-371, a user-
friendly query language with the power of
algorithmic programming languages.

Our further objections to RDM concern its
intellectual limitations. Majority of database
applications are still non-relational, not only
for the reason of performance problems. A major
drawback of RDM data structures is that
norma lized relations cannot reflect the
conceptual structure of the model led
environment. Also, NETUL has shown that RDM has
no advantages with respect to user interfaces,
which are an argument in favour of semantic
data models such as E-R Model 16,351. In RDM
relationships among entities are not explicitly

369

represented but have to be determined by users I
during formulation of queries, causing
superflous canplexity. (The 5th normal form
relieves this problem for sane types of
queries, but it is unreasonable for many
reasons.) Current RDM theory is inconsequent in
its attitude to duplicates, ordering, updating,
arithmetics, aggregates, transitive closures,
and so on, refusing to yield general and
consistent semantics of these vital concepts. j
(Existing attempts, eg. t2,9,20,21,32l, do not
explain all aspects and are ignored by the main
stream of the ROM school.) In consequence we
prefer to deal with network/semantic approaches 1
which offer more potentiality for future
database systems.

There are few papers concerning query
optimization addressing network data structures
f10,11,151. The motivation for it is
essentially different fran that for RDM. The
source of performance difficulties in
relational queries is the join operator (or
equivalently, the Cartesian product) mich is
used mainly for navigation through relations
according to primary and foreign keys. In
network databases this function is fulfilled by
explicit pointer links, thus the presence of
joins in query languages for network data
'structures may be questioned. NETUL, being more
powerfu 1 than current relational query
1 anguages, has no operator resembling the join
at all. Since in network databases joins may be
rep1 aced by navigation via 1 inks, the
performance is much improved; nevertheless

'there are queries causing difficulties. Current
optimization methods, as a rule, are
unapplicable to such queries.

In this paper we deal with non-relational
(network) data structures and consider query
languages having the power of algorithmic
programming 1 anguages. We propose an
optimization method based on stored queries. A
stored query is a pair <query, response>, where
"response" is the query meaning evaluated for
the current database state. When a collection
of stored queries is available in the database
system, responses to sane queries can be
obtained easily.

TWO basic problems should be solved
before such an idea can be put to practical
use. These are:

- The size of a stored queries file. Usually
query languages contain too many (typically,
an infinite number) of different queries;
thus not all can be stored.

- The updating problem. After a database update
the responses to some stored queries may no
1 onger be valid. Additional effort is
required to put them in working order.

At first sight these problems may cause
the idea to seem unrealistic. We show that this
impression is wrong. Methods which are
particular cases of this idea are well known;
for example, methods based on indices. Indeed,
each index item may be considered a stored
query, i.e. a pair <query, response>, where
“query ” is an indexing term, and “response”
contains references (pointers) associated with
the term. (Unlike ROM, typical NETUL queries
may return references.) Indices imply exactly
the same problems as above 17,291;
nevertheless, they are widely used. Indices do
not work for many queries (eg. queries
involving arithmetics, aggregates, inequality,
and so on). A method based on stored queries
has (theoretically) no such limitations.

Although the idea of stored queries seems
to be new (at least in the mathematical
formulation based on the denotational
semantics, used in this paper), there are many
related papers. A similar idea is presented in
Cl21 where "stored subqueries” are considered
to be a tool for global optimization of a
co1 lection of relational queries. Severa 1
papers are devoted to the problem of updating
materialized (concrete) views or snapshots, eg.
13,4,22,24,311, which corresponds to the
problem of updating stored queries. These
papers are limited to particular relational
operators, thus the results presented can
hardly be generalized for richer languages and
network data structures. Some papers concerning
optimization methods for RDM are also partly
relevant, for example, papers dealing with
equivalence among query language expressions,
eg. [II, and papers on decomposition of queries
into more elementary canponents, eg. t381.
These problems are significant in the context
of the stored queries file size. Another
relevant topic, considered in C231, concerns
derivability of the meaning of a query from
other (stored) queries.

In Section 2 we give a short introduction
to NETUL and to related concepts. (A
comprehensive description of NETUL and its
theory based on denotational semantics may be
found in t!3e4-371.) Basic observations
concerning stored queries idea are
presented in Section 3. Further sections are
devoted to the most vital updating problem. At
least four methods are possible:
a) Evaluating a new response for a query; in
view of poor efficiency the method may be used
for very frequent queries only.
b) Removing a stored query from the file:
applicable to difficult to update queries, or
not promising to be profitable in the future.
c) Detecting whether the response associated’
with a given query can be influenced by the
database update, Section 4.
d) Correcting the meaning of a query instead of

370 Fkceedings of the 13th VLDB Conference, Brighton 1987

its full evaluation. The method determines the primitives of the entity-relationship model. We
part of the response which becomes invalid have also no difficulties mapping database
after a database update, and then determines instances induced by functional models
the part of a database (as small as possible) C5,30,401, binary relational data mdels t131,
for which the query must be re-evaluated in and many others. The points which distinguish
order to replace the invalid part of the our approach are the following.
response, Section 5.

- The database instance is viewed as a graph
with addresses as nodes. Important database
aspects, such as ordering and updating, cannot

2. INTRODUCTION TO NETUL be consistently explained without this (or
equivalent) concept [36,371. These aspects can

Currently several formal approaches to hardly be considered "non-conceptual"; hence
network (semantic, functional) databases is the address concept in our approach.
known, cf. [8,17,25,401. These ideas cover
basic features, such as entities, attributes - The most popular data models define fixed
and relationships;
such as

however many other aspects 1 frames for the main logical data structures,
duplicates, ordering, repeating eg. tuples in RDM, cr records (entities) in

attributes, updating, aggregations, network models. Such record-orientation was
generalization, roles, overlaping entity sets, criticised in 1181. Our formalism allows to
and so on, have no formal counterparts. They construct a variety of heterogeneous data
require additional or modified formal concepts, structures. For example, it allows to model
which will make the formalization complex and PASCAL-like records with variants, arbitrarily
non-homogeneous. The approach presented below nested repeating groups, aggregates, optional
(see also 133-371) is more general and provides data, etc.
a consistent mapping of all these concepts.

- In many formal approaches there is unclear
The basic concept is called "address". attitude to data names. Some of them denote

Addresses are abstract objects; we are not sets, relations, or functions; thus frti the
interested in their physical nature. They are mathematical viewpoint they are elements of the
denotations of sane locations in the data metalanguage. Instantaneous data bases do not
storing medium. Let A be the set of addresses, contain them. Thus, in the denotational
N the set of data names, and V the set of definition of a query language additional
atomic values; An V = 8. A database content is formal objects should be introduced, which
a relation conGAxNxA U AxNxV. associate data names occuring in queries with
Triples <al,n,a2> and ca,n,v> we interpret as proper components of database instances
"at address al there is a datum with name n and names of relations with instantan:%
with a pointer to data at address a2" or "at relations). This "environment" (in the
address a there is a datum with name n and with programming languages terminology) causes no
a value v”. Thus, a database content is a problems in typical cases; however, non-trivial
directed graph with addresses as nodes and problems arise from advanced conceptual
values as leaves; edges of this graph are model 1 ing notions, such as aggregations, “is-a”
label led by data names. Some addresses of the relationships, roles, overlapping entity sets,
graph are understood as its starting points, and so on, which usually require a specific use
thus we introduce the set fovGA called the of data names. In our approach we treat all
field of vision. A database instance is viewed names in a similar way and shift them to the
as a pair <fov, con>. (In f35,361 a database level of instantaneous databases.
instance includes a mathematical object
reflecting data ordering. For simplicity, here Example 1
ordering is not considered.) An address can
"store" more than one pointer (Fig.2), and more Fig. 1 presents a diagram for a sample CODASYL
than one name may be associated with it. We database. It consists of DEPT and Et@ record
assume that an address can store at most a types and EWS set type from DEPT to Et+'. The
single atomic value, that is, <al,nl,vl> E con DEPT record type has a multivalued attribute
and tal,n2,v2>Econ implies vl = v2. Other LOC. Suppose that a database consists of two
obvious constraints concerning allowed database DEPT records (Sales,(Rome,Paris)),
instances are presented in 1363. (Service,(Rome,Tokyo,London)), five ER records

(Brown,lOOO), (Casey,1200), (Jones,lOOO),
This general definition of a database (Lewis,1500), (Smith,1400), and two occurences

instance allows us, through further constraints of EMPS: one owned by the record for Sales with
and rules, to map database instances of most of the member records for Brown, Casey and Smith,
the current data models. In 1361 we show how to and the other owned by the record for Service
map relational and CODASYL databases, and in with member records for Jones and Lewis.
[351 we show how to map advanced modelling

proceedings ofthe 13thVLDB Conference,Brighton 1987 371

Fig.1. A database structure

This database instance is expressed as a
pair <fov,con>, according to the principles of
mapping CODASYL databases presented in 1361. A
DBTG-set is represented as a collection of
links, where a link is a pointer-valued
attribute. For a set of type S the owner
contains n such links (where n is the number of
members), each named S, linking the owner with
the members, and each member contain a single
link, named !S, linking the member with the
owner. The field of vision contains addresses
of all records. For example, the record for
Sales department may be represented as follows:

tal,DEPT,all>, <all,DNAME,"Sales">,
<al,DEPT,al2>, <al2,LOC,"Rome"~,
<al,DEPT,al3>, <al3,LOC,"Paris"7,
tal,DEPT,alb, <al4,EMPS,a37,
<al,DEPT,al%, cal5,EWS,a47,
<al,DEPT,al67, cal6,EMPS,a5>

The corresponding graph representation of the
whole database instance <fov,con>, including
the above record for Sales, is shown in Fig.2;
al, a2, a3, a4, a5, a6, a7 belong to fov.

NETUL queries are subdivided into joins
and predicates. A join returns an n-column
table of arbitrary length, while a predicate
returns a boolean value. NETUL tables differ
from RDM relations in a few essential points:

-Tables are sequences, thus the order of
tuples may be significant.

- Duplicate tuples are allowed.
- Columns of a table are unnamed.
- Elements of tables are addresses or values.
- An element may be a pair (m,x), where m is an

auxiliary name and x is a value or address.

The meaning of a NETUL query is understood
as a function from the set of states into the
set of tables (for joins) or into the set
{true,false> (for predicates). Each state has
two components: the database instance, as
defined previously, and the stack ("field of
vision stack") which is used for determining
the meaning of data names nested in queries.
The stack plays a vital part in the definition
of basic NETUL constructs, such as selection
(operator "w~II;;;~), projection (operator "."),
operator II operator "order by",
quantifiers (operators "for any . . . holds" and
"for sane . . . holds") and transitive closure
(operator "closed by"). Besides, there are
typical operators, such as ccmparisons,
arithmetic operators and functions, aggregate
functions, and so on. NETUL allows arbitrarily
nested queries with the only limitation
concerning semantic types of nested subqueries.

Examples

Ql. Give employees earning less than 1200.
EMP where SAL < 1200

The result is a single-column table of record
addresses for employees earning less than 1200.

372

al -DEPT-+all-DNAME+Sales

DEPT-+a14-EMPS
DEPT-+al5-EMPS

-EMP++a52ISAL-1400
L- EW+a53-!EWS > /

CEMP-a72-SAL-1500
EMP+a73-!EWS :

Fig.2. A database instance

proceedings of the 13th VLDB Conference, Brighton 1987

Q2. Give names and departments for employees
earning less than 1200.

(EMP where SAL < 1200) . (NAME, (!EMPS.DEPT))
The query returns a two-column table, where the
first column contains addresses of names of
proper employees, and the second contains
addresses of records for their departments.

43. For departments having more than 2
employees and located in more than one city
give the maximum salary and the average salary.
(DEPT where count(EMPS) > 2 and count(LOC) > 1)

with (max(EMPS.EW.SAL), avg(EWS.EMP.SAL))
The result is a three-column table where the
first column contains addresses of proper DEPT
records, and the next contain proper numbers.

3. BASIC OBSERVATIONS CONCERNING STORED QUERIES

Example 2

(See Example 1 for the database instance.) A
stored queries file based on NETUL is shown in
Fig. 3. The additional queries involved mean:
44: Names of employees from Sales department.
45: An average salary in Sales department.
46: Departments located in Paris and employing

less than 50 persons.
47: Departments together with their employees

earning more than 90% of the maximum.

3.1. Stored queries and indices

Consider Example 1. An index for employee
names contains pairs tBrown,a3>, <Casey,a4>,
<Smith,a5>, &nes,a6>, <Lewis,a7>. Similarly,
the set of stored queries of the form "EMP
where NAME = . ..'I. consists of pairs <EMP where
NAME = Brown, a3>, tEfQ where NAME = Casey,
a4>, <EMP where NAME = Smith, a5>, <El+ where
NAME = Jones, a6>, <EW where NAME = Levis,
a7>. The only difference is that additional
text "EMP where NAME ='I precedes an indexing
term. Assuming compression (eg. by macro
facilities) this text may be reduced, thus we
obtain the typical index.

3.2. Flexibility and adaptability

Stored queries do not exclude other
(classical) methods of performance improving.
BY maintaining only most frequent stored
queries we can reduce the necessary storage
without affecting the average performance
efficiency. It is also possible to consider
self-adaptable systems, where the system
automatically augments (reduces) the set of
stored queries. For example, all new queries
entering the system may be stored, and queries
not used for a long time may be deleted. Many
different strategies of adaptation can be used.
The problem of adaptability Cl41 concerns
optimal index selection in adaptable or self-
ddaptable DBMS. Stored queries have at least
two advantages in this respect:
- they may be partly created as a side effect
of the normal query processing,
- the elementary decision of inserting or
deleting concerns single stored query, while in
the mentioned case it concerns hi-tale indices
which may be very large. Much smaller
granularity of decision objects stimulates
better adaptability and self-adaptability.

3.3. Equivalent transformation of queries

Syntactic transformation of queries should
be performed before storing, eg. reduction of
spaces, representing in a canonical form, etc.
There are also many semantic rules, eg. "j
where Nl = N2 and N2 = c" is equivalent to "j
where Nl = c and N2 = cl', cf. the tableau
method C11.

3.4. Decomposition of queries

Some queries may be decomposed into more
elementary parts, eg. "j mere pl or p2" is an
equivalent of "(j tiere pl) union (j hhere p2)"
(pl,p2 are predicates); thus the query may be
substituted by the union of two elementary
queries and such a complex query need not be
stored. Similarly for boolean "and". Another
kind of decomposition is connected with nested
queries, such as "Give best-paid employees",

.___________________----------------------------------
Query

.___________________----------------------------------
EMP where SAL < 1200
EMP where SAL < 1200 . (NAME, (!EMPS.DEPT
DEPT where count(EWS) > 2 and count(LOC)

with (max(EWS.ER.SAL), avg(EMPS
DEPT where DNAME = Sales.ERS.EW.NAME
avg(DEPT where DNAME = Sales.ERS.ER.SAL
DEPT where Paris in LOC and count(EWS) <
DEPT with (EWS.EW where SAL > 0.9 * max

1
> 1
EW.SAL))

?&SAL))

,---------------------
Response

,---------------------
ca3, a6>
<<a31,al>,<a61,a2>>

<<al, 1400, 1200>>
< a31, a41, a51 >
< 1200 >
< al >
<<al,a5>, (a2,a7>>

Fig.3. A stored queries set.

proceedings of the 13th VLDB Conference, Brighton 1987 373

"EMP where SAL = max(EMP.SAL)". It may be
Z&posed into queries: "max(EMP.SAL)" and
"EMP where SAL = cl', where c is the result of
the first query.

3.5. Derivation of query meaning from other
stored queries

An elementary example is "EMP where NAME =
Smith. SAL", which may be easily derived from
"EMP where NAME = Smith". Network databases,
having explicit pointer links, possess more
such possibilities, and quite complex queries
can be efficiently derived. In RDM they would
require joining many relations, eg. "Give
DNAMEs and NAMES of employees from each Paris
department employing some Smith":
"EMP where NAME = Smith. !EMPS.DEPT
where (Paris in LOC).(DNAME, (EkPS.Et+.NAME))"

which in RDM would require a Cartesian product
(a join) of four relations.

update cannot influence the query meaning. We
start from a few basic definitions then prove a
theorem concerning the method. Then, as
examples of general properties, we construct
simple "subschema languages" and show an
efficient test for determining whether
subschemas are "disjoint". The examples have
mainly an ilustrative purpose, but we do not
exclude their practical meaning.

Let DB denote the set of all database
instances: DB = FOVST x CON, where

FOVST = powerset of(A), and
CON = powerset of(A x N x (A U V)).

Let dbl = <fovl, cTinl> and db2 = tfov2, con2>
be database instances. We define operations on
database instances as:

intersection:
dbl o db2 = tfovl nfov2, con1 n cone>

sum: dbl + db2 = tfovl U fov2, con1 U con2>
complement:

3.6. Dispersing stored queries among the dbl = <A - fovl, (A x N x (A U V)) - conl>
database structure difference: dbl - db2 = dbl o ?&?

Consider two pairs of queries:
al) For each department, give the average
salary: "DEPT with avg(EMPS.EMP.SAL)"
a2) For each department, give DNAME:

"DEPT with DNAME"
b1) Give the average salary in Smith's
department: "EMP where NAME = Smith.!EMPS.DEPT.

avg(EMPS.El+P.SAL)"
b2) Give DNAME of Smith's department:

"EMP where NAME = Smith.!EM3SDEPT. DNAME

Queries al and bl contain the
"avg(EMPS.EMP.SAL)",

subquery
and we can observe from a2

and b2 that it is used in queries similarly to
the use of attribute DNAME. Hence
"avg(EMPS.EMP.SAL)" may be treated as a virtual
attribute of DEPT, and its value may be stored
within DEPT records. That is, each such record
(stored at addrl) may be augmented by an
address addr2, and then new triples taddrl,
DEPT, addr2>, caddr2, avg(Et@S.El+.SAL),v> are
added to the database content, (where v is the
actual average salary in the department). Note
that the subquery "avg(EFiPS.Ef@.SAL)" is
treated as a data name. Due to the
orthogonality of NETUL, it may be used in other
arbitrary contexts, eg. "Give departments with
the maximal average salary": "DEPT where
avg(EMPS.EMP.SAL)=max(DEPT.avg(Ef9S.El'+.SAL))".

4. THE ELIMINATION METHOD

The elimination method is based on the
concept of subschema.
w-w and

The idea i.sethat with a
with an update associate

"sufficient" subschemas. If these subschemas
are "disjoint", in a proper sense, then the

Assuming that database instance <g,& is
the minimal boolean element and <A,(A x N x (A
U V))> is maximal! we can show that the system
tDB, o, +, Z > is a boolean algebra; hence we
will use its well known properties. Relation
< ZDB x DB is a partial ordering induced by
this algebra; it may be defined as dbl <db2
iff fovl cfov2 and conlc con2.

A schema is a subset of DB. We are not
interested in particular
integrity constraints)

facilities (;eg;.
that are used

determining schemas and reflect just their main
semantic property.

Let SE DB be a schema. A subschema ss of
the schema S is a total function ss: S + DB
such that for every db E S holds

ss(db) 4db (1)

We assume the following notation. Let Dl,
be sane domains (sets) and

f"f'Dl 5 (D2 + D3). By
let

fSxll.x2, where
xlE Dl and x2E D2, we denote g(x2) where g is
returned by f for argument xl, g = f(x1).

In the sequel Q denotes a syntactic domain
for a query language, R denotes a semantic
domain of responses returned by queries, and
semq: Q -+ (DB 4 R) a meaning function. By a
database update we mean a transformation of a
database instance dbl into db2. Let U be a
syntactic domain of an update language and let
semu: U 4 (DB + DB) be its meaning
function. To simplify notation, instead of
semqIql.db we use Iql(db) and instead of
semulul.db we use lul(db).

374 Meedings of the 13th VLDB Conference, Brighton 1987

A query q EQ is insensitive to update
u EU in schema S iff for every dbE S holds

- For strongly disjoint subschemas:
for every dbE S

Iql(db) = Iql(lul(db)) (2)

Such a property should be proven if after
update u we would like to eliminate stored
query <q, Iql(db)> from the updating process.

ssq(db) o db o lul(db)<
ssq(lul(db)) t ssu(db) t ssu(lul(db))

ssq(lul(db)) o db 0 lul(db)< (10)
ssq(db) t ssu(db) t ssu(lul(db))

The sketch of proof of (9); similarly for (10):
Let us denote: x = db, y = lul(db), a =
ssddb), b = ssq(lul(db)), c = ssu(db), d =
ssu(lul(db)), 0 = <$,Gf>. We replace operator o
by juxtaposition. According to properties-of
boolean algebras z<t is equivalent to zt =
0, z = t is equivalent to z<t and tez, and
z = 0 and t = 0 is equivalent to z t t = 0.

A subschema ssq is sufficient for query
q E Q in schema S iff for every db E S holds

Iql (db) = Iql(ssq(db)) (3)

If ssq is sufficient for query q, then instead
of (2) it is enough to prove that for every
dbG S holds

ssq(db) = ssq(lui'(db)) (4)

A subschema ssu is sufficient for update u
U in schema S iff for every dbE S holds

and iil(db)
- lul(db) <ssu(db) (5)

- db < ssu(lul(db)) (6)

The definition for the subschema sufficiency
for updates requires that the old (removed)
part of a database and the new (inserted) part
should "belong" to the subschema. We do not
consider other conditions which may be
necessary for accomplishing the updating
request, eg. a query occuring in the request
may require a wider

The subschemas
weakly disjoint iff

ssl(db) o

The subschemas
strongly disjoint
holds

ssl and ss2 of schema S are
for every db E S holds

ss2(db) = d,@ (7)

ssl and ss2 of schema S are
iff for each dbl, db2 E S

ssl(db1) o ss2(db2) = <a,$> (8)

Now assume that ssq is a sufficient
subschema for query q, ssu is a sufficient
subschema for update u, and ssq, ssu are weakly
(or strongly) disjoint. Further assumptions
which allow us to prove that q is insensitive
to u are determined by the following theorem.

Theorem 1

If subschemas ssq and ssu are weakly/strongly
disjoint, and they are sufficient respectively
for query q and update u, then the weakest
additional assumptions which allow to prove (4)
are the following:

- For weakly disjoint subschemas:
for every dbE S

ssq(db) o db o lul(db)<ssq(lul(db)) t ssu(db)
ssq(lul(db)) o db o lul(db)< (9)

ssq(db) t ssu(lul(db))

proceedings of the 13th VLDB Conference, Brighton 1987

Assumptions:
Fran (I): a-x, c<x, hey, d<y;

equivalently: aXt cKt byt dji = 0
Fran (5): xy-cc

equivalently:
Fran (6): yj?<d

x7& = 0

equivalently:
Fran (7): ac = 0, bd = 0

r;ya = 0

equivalently: ac t bd = 0
Summarizing assumptions:

aKt cYt byt dy t x~C t?y'i t ac t bd = 0
Thesis from (4): a = b

equivalently: aTi t Zb = 0

The weakest assumption which allows to
prove the thesis is p = 0, where p is a
difference between the left part of the last
formula and the left part of the summarizing
assumptions, i.e.
p = a6 t bb -

(ax t CK t byt dji t xj3 tZ ii t ac t bd) = 0
After reduction we obtain: a -xy t aEXxy = 0, ic
or equivalently: axv<b t c and bxy<a t d,
what-completes-the proof.

Fran the weakest assumptions we can easily
construct stronger ones.
(IO) are

For example, (9) and
implied if ssq satisfies the

"subschema continuity property", 127,281:
(vdbl,db2 E S) (11)

ssq(db1) o dbl o db2 = ssq(db2) o dbl o db2
However, this property is sometimes too strong.

Implementation of the elimination method
consists in defining a subschema language which
allows easy generation of sufficient subschemas
for each query and update. A simple method for
recognizing that (4) holds should be provided.
The efficiency of elimination may depend on the
applied subschema language. Subschema languages
with better precision (which better approximate
necessary parts of the database) allow to
eliminate more queries. More precise languages,
however, may cause performance difficulties
when generating sufficient subschemas and
testing whether (4) holds. Note, that a
subschema may not be connected with a subschema
language. For example, a sufficient subschema

375

for an update may be considered a function
returning an empty database instance for all
elements of the schema, with except of two: the
database instance before the update (for which
the subschema returns deleted elements of fov
and con), and the database instance after the
update (for which the subschema returns
inserted elements of fov and con).

example consider a
lang&e S"s? = powerset of(N)

subschema
consisting of

sets of data names, wiTh the &aning function
MFSSl: SSI -+ (DB -+ DB) defined as follows:
let NoGN; then

MFSSIE No l.(fov,con> = < fov', con' >

where con' = <<a,n,x>Econ 1 nENo) contains
triples having names from No,

fov' = fov CI <aE-A 1 (gn,x) <a,n,x> Econ')
contains addresses from fov, where some triples
from con' are located. In our intention, if Nl
determines a sufficient subschema for query q,
N2 determines a sufficient subschema for update

and Nl n N2 = s', then q is insensitive to
yhe update. We shall prove this assertion. If
N1, N2 C N are disjoint sets, then database
contents returned by MFSSlLNll and MFSSlLN21
have no common triples. All changed triples
(deleted and inserted) are
MFSSlIN23.

returned by
Hence MFSSICNII returns exactly the

same triples for database instances before and
after updating. Fran the definition of MFSSl,
returned fov-s functionally depend on returned
sets of triples, thus fields of vision returned
by MFSSl[Nll are the same for instances before
and after updating. Hence condition (4) holds.

A sufficient subschema for a NETUL query
consists of all names occuring in this query. A
sufficient subschema for the database update u
consists of names from all affected triples
(removed and inserted), i.e.

Cn I (3a,x) <a,n,x> _ con u con (12)
(lul(con) - lul(con)))

where lul'(con) is the updated database content.
Thus, for SSl generating sufficient subschemas
and testing if (4) holds is quite simple.

Example 3

Consider a schema implied by the diagram of
Fig.1 and the mapping rules shown in Example 1.
Fig.2 presents a current database instance and
Fig.3 presents a current stored queries set.
The following sets of names generate subschemas
sufficient for queries from Example 2; Fig.4
presents a database sub-instance produced by
the subschema for 46.

Ql: { EMP, SAL)

42: c EMP, SAL, NAME, !EMPS, DEPT 3
43: < DEPT, E@S, LOC, Ef+, SAL ')
Q4: { DEPT, DNAME, Ef+S, El%', NAME 1
Q5: c DEPT, DNAME, Ef+S. EM'. SAL >
Q6: < DEPT, LOC, iF1)S 3. '
47: < DEPT, EM)S, EM', SAL).

al -DEPT+all

DEPT+al4-EMPSda3
DEPT*al5-EMPS-+a4
DEPT+al6-EMFS+a5

a2 -DEPT+a21
LDEPT+a22-LOC-Rome

DEPT-+a23-LOC+Tokyo
DEPT-+a24-LOC-London
DEPT+a25-EMPSha6
DEPT+a26-EMPS+a7

Fig.4. Database instance produced by
M~ssir (DEPT, Lot, E~~Ps)]

Suppose that all Tokyo locations are
changed to Kyoto by a NETUL updating request
c371 "update DEPT.((X being LOC where X =
Tokyo), Kyoto)". For the instance from Fig.2 it
means deleting a triple <a23,LOC,Tokyo> and
inserting <a23,LOC,Kyoto>. A set {LOC>
determines a sufficient subschema for this
update. The empty intersection of this set with
the sets of names for Ql, 42, 44, 45 and 47
shows the insensitivity of these queries to the
above update. Thus, Q1, 42, 44, 45, 47 may be
eliminated, while 43, Q6 may not. Consider
another update changing Smith's salary. (SAL)
determines a sufficient subschema, thus 44, 46
may be eliminated while the rest may not.

A disadvantage of SSl is low precision. As
a better variant, consider a subschema language
SS2 with expressions being sets

(ml, m2,..., ak, <nl,Vl>, <n2,V2>,..., <nl,Vl>)

where k >= 0, 1 >= 0, ml,...,mkE N, nl,.,nlE
N, Vl ,...Vl are subsets of V. The idea of such
a subschema is similar to the previous one, but
we are allowed to restrict values associated
with a given name ni to some set Vi E V. The
meaning function MFSS2: SS2 + (DB + DB) for
SS2 is defined as follows:

MFSS21{ml ,..,mk,<nl,Vl> ,..,tnl,Vl>~.tfov, con>
= <fov", con">

where con" = {<a,n,x>econ 1 nE<ml,...,mk) > U
C<a,n,v>Econ ((yi=l ,..,l) n = ni and vEVi),

fov" = fov n(a I (yn,x) <a,n,x> E con")

With each subschema ss ESS2 we associate a set

376 Proceedings of the 13th VLDB Conference, Brighton 1987

&(ss) = (<m,v> 1 m E ss and v E V) U
(<n,v> 1 (YVoCV) <n,Vo>Ess and vEVo)

representing all possible values which can be
associated with data names. We can prove that
(4) holds if ss2q ES.9 determines a sufficient
subschema for query q, ss2u ES.9 determines a
sufficient subschema for update u, and

uss2q) n &(ss~u) = g (13)

Generation of sufficient SS2 subschemas
for updates is similar to the previous one,
with the modification concerning values: if
<a,n,v> is a triple affected by the update
(inserted or deleted) then tn, <...,v,...}>
belongs to the SS2 expression.

A slight difficulty concerning ss2
subschema language is caused by associating
sufficient subschemas with queries. Since
SSI CSS2, we could use the previous rules, the
precision, however, might be unsatisfactory.
More sophisticated rules are necessary, and
they may depend on query types.

Example 4

The sufficient SS2 subschemas for queries fran
Example 2 are:

*
$I

f

MP, <SAL,(x1x<l200)>)
MP, NAME, !EMPS, DEPT, <SAL,(x~xt1200}>)

43: DEPT, EM'S, LOC, Et+, SAL')
44: OEPT, EFPS, Et+, NAME, <DNAME, {Sales)>‘)
$:

.
@EPT, Et$'S, EM', SAL, (DNAME, (Sales>>)

Q7; 8
EPT, Et@S, <LOC, <Paris)>)
EPT, EFPS, ER, SAL>

A sufficient subschema for the update from
Example 3 is CtLOC, <Tokyo, Kyoto)>). According
to (13) Ql,Q2,44,45,46,47 may be eliminated
from the updating process, while 43 may not. A
sufficient subschema for the update which
changes Smith's salary from 1400 to 1500 is
(<SAL, (1400,15003>), thus Ql,Q2,Q4,Q6 may be
eliminated, while Q3,Q5,Q7 may not.

SS2 subschemas correspond to the well
known concept of “semi-join”. A semi-join of
relation Rl w.r.t relation R2 is obtained by
joining RI and R2 and projecting the result on
the attributes of Rl. If RI is stored in a site
sl, and R2 stored in a different site s2, we
can calculate the join of RI and R2 by sending
RI from sl to s2. To optimize the volume of
data to be sent,
RI only.

we can send the semi-join of
To do this, we must previously send

information about R2 from s2 to sl, namely,
names of joined attributes and their values in
R2. This information may be specified as a SS2
subschema. We think that the concept of
sufficient subschema may have some meaning for
distributed query processing.

Proceedings of the 13th VLDB Conference, Brighton 1987

5. CORRECTION

The majority of stored queries may be
eliminated from the updating by the methods
explained in the previous section. Some
remaining queries may be corrected. After
updates, changes in the database are usually
local, hence frequently a part of a query
meaning remains valid for the updated database
instance. The correction consists in deleting
from the old meaning all the "uncertain"
elements and augmenting the meaning by elements
obtained through evaluation of the query for a
part (as small as possible) of the new database
instance which was affected by the update.

Previously we did not provide special
restrictions concerning NETUL queries. However,
correction is a more difficult problem;
probably no general method exists. Thus we must
assume some semantic constraints. To formalize
them we introduce the concept of access
function and its transitive closure.

Let con= A x N x (A U V) be a database
content, and let Ao c A. We define a function
"sub" , with arguments Ao and con, returning
addresses "subordinated" to Ao:
sub(Ao, con) =

(bEA 1 (ga,n) aEAo and ca,n,b%con>

Then, we define a family of functions (sub0,
subl, sub2,..,sub(i)
returns the

,..), where sub(ili;o,, con)
set of addresses are

accessible fran Ao in exactly i steps, that is:
subO(Ao,con) = Ao

for i > 0:
sub(i)(Ao,con) = sub(sub(i-l)(Ao,con),con)

The transitive closure sub* of sub, defined as
00

sub*(Ao, con) =IJ sub(i) (Ao, con)
i=O

(or by a fixpoint: sub*(Ao,con) = X,
X = Ao U sub(X,con)) returns all addresses that
are accessible from Ao in an arbitrary number
of steps.

Let <fov,con> be a database instance. All
triples that are inaccessible from fov in any
number of steps may be removed, thus we define
a function red: DB -+ DB perfoming such
operation:
red(<fov,con>) =

<fov,{<a,n,x>Econ (aEsub*(fov,con))>

Now we can formalize constraints on
allowed queries q as follows:

(Cl) Iql(db) = Iql (red(db))

(C2) Iql(tfov,con>) C (sub*(fov,con))n
n = 1,2,3,.1.

377

(C3) lql(tfovl U fov2, con>) q

Iql(<fovl,con>) U Iql(tfov2,con>)

Constraint (Cl) is obviously satisfied by
all NETUL queries. Constraint (C2) states that
the meaning of a query is an n-ary relation
over addresses accessible frcm the field of
vision. Many queries possess this property, eg.
Ql, 42, 44, 46, 47 from Fig.3. Substantial
parts of others also have it, eg. in Q5 the
argument of avg. Constraint (C3) requires
additivity of a query meaning w.r.t. the field
of vision. Many typical queries have this
property, eg. Ql, Q2, 43, 44, 46. Q5 does not
possess it, but the query being the argument of
avg does. The constraint is typically satisfied
by queries of the "navigational type"; in
general, however, it is not tolerant to nested
queries (eg. Q5 and 47).

Constraint (C3) implies

Iql(tfov,con>) =U Iql(<<a), con>)
aEfov

(14)

that is, the meaning of a 9 uev may
subsequently be evaluated for single elements
of fov. By addr(con) we denote addresses
occupied by con, i.e.

addr(con) = {a 1 (an,x) <a,n,x> icon>

Now assume that an update changes a
database instance <fovl, conl> into <fov2,
cone>. We determine elements of the field of
vision which are "uncertain" after this update,
since according to (14) they may produce
elements of the query meaning which may not be
valid any longer. These are:
- addresses removed from fov, i.e. fovl-fov2,
- addresses inserted into fov, i.e. fov2-fovl
- addresses from fov from which deleted triples

are accessible, i.e. Fl =
{aEfovl 1 sub*({a),conl)I\addr(conl-con2)#8)

- addresses from fov from which inserted
triples are accessible, i.e. F2 =

(aEfov2 1 sub*(<a},con2)naddr(con2-conl)#fi).

Hence the set X of "uncertain" fov elements is:
X = fovl-fov2 U fov2-fovl U Fl U F2 (15)

Then, "uncertain" elements of the old meaning
of query q are lql(tfov1 n X, conl>) and they
should be removed from the meaning. On the
other hand, q should be reevaluated for
addresses X n fov2, and the result should be
appended to the meaning.

However, after removing some elements fran
the old meaning it may happen that we have
removed too much. Indeed, assume al, a2 Efov,
al E X, a2 4 X and Iql(c(al), conl>) =
Iql(<{a2), con2>). Thus, we should remove all
elements determined by the left part of the
last formula, but at the same time we remove

378

elements determined by the right part, which
should not be removed. To avoid this problem,
we must reevaluate q for a slightly wider part
of fov, namely, for the set (X U Y) n fov2,
where Y contains additional elements of fovl
from which tuples of addresses removed from the
old meaning are accessible, i.e.

Y = (aEfov1 1 (sub*({a),conl))n n (16)
iqi(tf0vmx, conl>) + 0) - x

where n is the size of tuples returned by q.
Now we are ready to formulate the following
theorem:

Theorem 2

If query q satisfies conditions (Cl), (C2) and
(C3), then for any database instances <fovl,
conl>, cfov2, cod> holds

Iql(<fov2,con2>) = Iql(tfovl,conl>) (17)
- Iql (<fovlnx,conl>) u Iql (tfov2n(xuv),con2>)

where X and Y are given by formulas (15), (16).

A variant of this theorem is proven in 1271.
An easy (but paper consuming) proof may be done
according to the informal considerations
preceding the theorem. Its kernel consists of
application of (Cl): we have to show that
red(<fovl-(XUY),conl>)=red(<fovl-(XUY),con2>);
thus Iql(tfovl-(X U Y), conl>) = Iql(tfovl-(X U
Y), con2>). The rest follows from the
additivity of the query meaning.

There may be many variants of this
theorem, depending on the assumptions on query
meaning or allowed database instances; a few
are considered in t273. Below we discuss two
such variants.

The set Y occuring in formula (17) may be
removed if we assume that for query q there
exists a sufficient hierarchical subschema. A
subschema ssq of schema S is said to be
hierarchical if for every db E S holds:

ssq(db) = tfovssq, conssq> and

(val, a2 E fovssq) al # a2 e
sub*(<al),conssq) n sub*(<a2$,conssq) = g

That is, clusters of addresses accessible from
different addresses of fovssq do not overlap. A
hierarchical subschema exists for each query
from Fig.3. If in (Cl), (C2), (C3), (15), (16)
and (17) for each db we replace db by ssq(db),
which is quite reasonable if ssq is a
sufficient subschema, then Y = 0. Indeed, in
this case the described situation leading us
to the definition of Y never arises.

The second case concerns removing (C2) and
Y totally. The reason which has led us to (C2)

Proceedings oftbe 13th VLDB Conference, Brighton 1987

is the same as the reason for which we consider
set Y: for different addresses of fov, query q
may return the same tuple. Thus, instead of a
stored query <q, Iql(tfov,con>)> we can store
<q, T>, where T is a table defined as

T =,yovo) x Iql(c(a),con>)

We augment the table returned by q by an
additional column storing elements of fov for
which q returns the given tuple. Due to
additivity, the meaning of q may be obtained
through removing this column. Now for different
fov elements q never returns the same tuple of
T, thus constraint (C2) is unnecessary.
However, this possibility is achieved at
expense of additional storage space and
processing time.

The straightforward implementation of the
correction method according to formula (17) may
be described by the following algorithm:
1. Determine addresses of removed triples, i.e.

addr(conl-con2)
2. Navigate in con1 in the opposite direction,

from these addresses to the field of
vision, to establish set Fl of uncertain
elements.

3. Determine addresses of inserted triples,
i.e. addr(con2-conl)

4. Navigate in con2 in the opposite direction,
from these addresses to the field of
vision, to establish set F2 of uncertain
elements.

5. Calculate uncertain elements of the query
meaning, i.e.
Iql(fovl-fov2 U Fl U fovl n F2, conl)

6. Remove uncertain elements fran the meaning.
7. Navigate in con1 in the opposite direction,

from these uncertain elements to the field
of vision, to establish set Y.

8. Calculate Iql(fov2-fovl U fov2n(FlUY) U R,
con2) and append the result to the query
meaning.

Navigation in opposite direction requires
special organization of physical data. Usually,
data organizations assumed in classical network
databases permit such a possibility. For
example, in CODASYL databases set occurences
are organized as linked rings of pointers
causing no problems in navigation fran an owner
to a member and otherwise.

6. CONCLUSION

The relational data rode1 has unacceptable
intellectual drawbacks in vital database
aspects thus we believe that much nK)re effort
is necessary to develop network/semantic data
models. Query optimization methods developed

for th
network semantic 7

relationald$;a model do not work for
models since these

methods are strongly directed towards
optimization of joins (or Cartesian products)
which are not specific for query languages
addressing network data structures. Besides,
the methods are unapplicable to query languages
having the power of algorithmic programming
languages, such as NETUL. Hence the need for
new approaches to query optimization. In this
paper we have proposed a group of methods based
on the idea of stored queries. Stored queries
give a possibility of performance improvement
regardless of the data model assumed and of the
expressive power of query language. We have
outlined basic properties of the idea, and have
sketched two complementary methods,
elimination and correction, for solving the
problem of updating stored queries.

The efficiency of the elimination method,
based on the concept of subschema, depends to a
great extent on the features of the subschemas
used. The proposed method, based on subschemas
generated by sets of data names associated with
allowed values, seems to be convenient for
implementation and efficient.

Correction works particularly well when
the updated part of the database is small,
which is quite a typical situation. Two
possibly more efficient variants of the main
method are also proposed.

The formalism outlined in this paper has
many advantages over well known database
formalisms. In particular, it provides a
consistent explanation of all persistent
features of database systems and query
1 anguages, such as duplicates, ordering,
updating, and so on. We hope that it will
appear a convenient tool also for studying
other aspects of the database theory.

The stored queries data organization was
experimentally implemented and some essential
intuitions of this idea were examined in [271.

REFERENCES

111 Aho, A.V., Sagiv, Y., and Ullman, J.D.
Efficient optimization of a class of relational
expressions1 ACM Trans. on Database Syst. 4, 4
(1979) 435-454

[El- Aho, A-V., and J.D.Ullman. Universality
of data retrieval languages. Proc. 6th ACM
Sw - on Principles of Programming languages,
San-Antonio, Texas 1979, 110-117

133 Bernstein, P.A., and Blaustein, B. A
simplification algorithm for
assertions and concrete views.

i ntegr;;;
Proc.

Computer Software and Application Conf.,

Proceedings of the 13th VLDB Conference, Brighton 1987 379

Chicago, Nov. 1981
[41 Blakeley, J. A., Larson, P. -A., and

Tompa, F. W. Efficientlv UDdatinQ materialized
views 1 Proc. ACM SIGMOD Cbnf. Wishington D.C.
1986, 61-71

[5J Buneman, O-P., and R.E.Frankel. FQL - A
functional query language. Proc. ACM SIGMOD
Conf., Boston 1979, 52-57

C61 Chen, P.P.S. The entity-relationship
model: towards a unified view of data. ACM
Trans. on Database Syst. 1, 1 (1976) 9-36

f71 Comer, D.: The difficulty of optimum
index selection. ACM Trans. on Database Syst.
3, 4 (1978)

181 Dayal, U. Schema-mapping problems in
database systems. TR-11-79, Center for Research
in Computing Technology, Harvard University,
Cambridge, 1979

t91 Dayal, U., N-Goodman, and R.H.Katz. An
extended relational algebra with control over
duplicate elimination. Proc. ACM Symp. on
Principles of Database Systems, Los Angeles,
March 1982, 117-123

Cl01 Dayal, U., and Goodman, N. Query
optimization for CODASYL database systems.
Proc. ACM SIGMQD Conf., Orlando 1982, 138-150

Cl 11 Dayal, U. Query processing in a multi-
database system. In 1191, 81-108

1121 Finkelstein, S. Common expression
analysis in database applications. Proc. ACM
SIGMOD Conf., Orlando 1982, 235-245

cl31 Frost, R.A. SCHEMAL: Yet another
conceptual schema definition language. The
Computer Journal 26, 3 (1983) 228-234

cl41 Hammer, M., and Chan, A. Index selection
in a self-adaptive data base management system.
Proc. ACM SIGMOD, Washington D-C. 1986, 1-8

[I53 Hwang, H., and Dayal, U. Using the
entity-relationship model for implementing
multi-model database systems. Proc. 2nd Entity-
Relationship Conf., Washington D-C., 1981

Cl61 Inmon, W.H. Why large on-line relational
systems don't (and may not ever) yield good
performance. EDP Performance Review (USA), Oct.
1986, Vo1.14, No 10, 5-8

Cl71 Jacobs, B. On database logic. Journal of
the ACM 29, 2 (1982) 310-332

Cl81 Kent, W. Limitations of record-based
information models. ACM Trans. on Database
Syst. 4, 1 (1979) 107-131

Cl91 Query processing in database systems.
(Kim, Reiner, Batory, Eds.) Springer-Verlag,
Berlin 1985

1201 Kl ausner, and N-Goodman.
Multirelations - Semanttc; and Languages. Proc.
11th VLDB Conf., Stockholm 1985, 251-304

1211 Klug, A. Equivalences of relational
alaebra and relational calculus auerv
laiguages having aggregate functions. Journai
of the ACM 29, 3 (1982) 699-717

L221 Koenig, S., and Paige, R. A
transformational framework for the automatic
control of derived data. Proc. 7th VLDB Conf.,
Cannes 1981, 306-318

l231 Larson, P., and Yang, H. Computing
queries from derived relations. Proc. 11th VLDB
Conf., Stockholm 1985, 259-269

t241 Lindsay, B. et al. A snapshot
differential refresh algorithm. Proc. ACM
SIGMOD Conf., Washington D-C., June 1986, 53-60

C253 Manola,F., and A.Pirotte. An approach to
multimode1 database systems. Proc. 2nd Conf. on
Databases, Cambridge, England, 1983, 53-75

C263 IEEE Database Engineering, Special issue
on query processing. Sep. 1982, (Reiner, Ed.)

C271 Rzeczkowski, W.: Query files as a tool
for improving database systems. Ph.D. thesis,
Institute of Computer Science Polish Academy of
Sciences, 1985, (in Polish)

f28J Rzeczkowski,W., and Subieta,K. Stored
queries - a data structure for 9 uw
optimization. Institute of Coputer Science
Polish Academy of Sciences Report 583, Warsaw,
May 1986

C291 Schkolnick, M. The optimal selection of
secondary indices for files. Information
Systems 1 (1975) 141-146

C301 Shipman, D.W. The functional data model
and the data language DAPLEX. ACM Trans. on
Database Syst. 6, 1 (1981) 140-173

F311 Shmueli, O., and Itai, A. Maintenance of
views. Proc ACM SIGMOD Conf., 1984, 240-255

t321 Stonebraker, M., et al. Document
processing in a relational database system. ACM
Trans. on Office Inf. Syst. 1, 2 (1983) 143-158

C331 Subieta, K. High-level navigational
facilities for network and relational
cl%&a;bs;es. Proc. 9th VLDB Conf., Florence 1983,

C341 Subieta, K. Semantics of query languages
for network databases. ACM Trans. on Database
Syst. 10, 3 (1985) 347-394

C351 Subieta,K., and Missala, M. Semantics of
;;;;T l;;;;ages for the Entity-Relationship

5th Conf. on Entity-Relationship
Approach, Diion, Nov. 1986, 291-310

t36J Subieta, K. Denotational semantics of
query 1 anguages. Information Systems 12, 1
(1987)

E37J Subieta, K., and Missala, M. Data
manipulation in NETUL. Submitted to 6th Intl.
Conf. on Entity-Relationship Approach, New
York, 1987

M81 Wong, E. and K. Youssefi: Decomposition
strategy for query processing. ACM Trans. on

Database Syst. 1, 3 (1976) 223-241
C393 Young, J. Relational databases -

benefits and drawbacks. Data Processing 28, 6
(1986) 312-313

t401 Zlatuska, J. The HIT data model. Data
bases from the functional point of view. PrOC.
11th VLDB Conf., Stockholm 1985, 470-477

380 Proceedings of the 13th VLDB Conference, Brighton 1987

