
An Analytical Method for Estimating and Interpreting Query Time

Hai-Yann Hwang
Bell Laboratories

Murray Hill, New Jersey 07974

Yao-Tin Yu
Bell Laboratories

Middletown, New Jersey 07748

Abstract

This paper presents a general methodology to decompose
the processing of relational queries into functional units.
Each unit consumes a constant CPU usage, which
depends on the DBMS and system configuration, but not
on the database or the query. We describe how to
measure the unit CPU consumption, as well as how to
use it to predict and interpret query time. Two DBMSs
were tested to validate and calibrate the model. Its
applications on DBMS design, database &sign, query
performance and DBMS comparison are discussed.

1. Introduction

This paper presents a general methodology to analyze
the CPU consumption of relational queries on the
functional operation level (e.g., input, output,
comparison). It attempts to address the following
fundamental problem:

Given a query for certain database on certain
database system, how much CPU time will each
processing step consume?

This problem is a basic issue in many database research
and practice arenas, including DBMS design, database
and query design, DBMS comparison, system tuning and
work scheduling.

Some effort has been made to attack this problem to
various extents. For two-variable queries, lYA0 791
describes a general mode1 consisting of processing steps
such as indexing, record access, sorting, joining,
projection, etc. Unfortunately, this model has not been
validated. [HAWT 791 studied the percentage of CPU
time that Ingres (university version, [STON 761) spent in

Permission to copy without fee all or part of this material is granted
provided hat Ihe copier an not made or distributed for direct
cunme~ial advantage, the VLDB copyright notice and Ihe title of
the. publication and its date appur, and notice is given that copying
is by pemrissitm of the Very Large Data Base Endowment TO copy
otherwise. or to republish, requires a fee and/or special pemrission
from the Endowment.

R&mgs of the 13th VLDB Conference, Brighton 1987

each of its five processes. But the technique only applies
to the level of process. In [STON 831, the UNIXQ9
“profile” package was utilized to get a procedure-level
breakdown. However, profiling requires access to the
source code, and the CPU distribution is by subroutine,
instead of by functionality*. lMACK 861 presents a
validated CPU cost mode1 for the local query processing
of R* &OHM 851 (it also applies to System R [CHAM
811). But the mode1 is tightly geared to the internal
structure of R and R*.

Our objective is to develop a CPU time mode1 for
query processing, that isolates functionally independent
operations from one another. It can help us understand
the underlying timing distribution, the relative weights,
the influencing factors, and other dynamics of query
processing. To be useful, the model should be as generic
as possible with respect to various DBMSs, and can be
calibrated readily with common user privilege, e.g.,
access to the source code should not be prerequisite.

This paper describes a model that decomposes query
processing into elementary operations. It is assumed that
each elementary operation consumes a fixed amount of
CPU time (called coefficient), which is a parameter of the
DBMS and system configuration, but independent of the
database and the query. We show how to measure the
CPU consumption coefficients. We tested the mode1 on
two DBMSs: Ingres and Informix. The tests contirm our
assumption on the stability of coefficients. The
calibrated mode1 can be used to predicts queries’ CPU
time. Some applications based on this methodology are
discussed.

Q UNIX is a Trademark of BeLl Laboratoriu
1. For example, if a program ccnsists of three s&routines A, B and C,

when both A and B call C. Profiling can provide the CPU usage
and the num.ber of calls of each submutine. But k is hard to break
down C’s CPU consumption into the shams d A and B.
Partitioning subroutines by funaiuulity is very onnplii. if not
impossible, especially for big sotiware packager ProMing b almost
useless in DBMS comparison. rina ucb DBMS has its own
subroutine structure-.

347

This paper considers only simple selection queries, as
defined in Section 2.1. This subset of queries covers a
set of elementary operations which constitute the basis of
more complicated query processing. It is these basic
operations we’d like to focus first. General queries will
be addressed in a subsequent paper currently being
drafted. Their processing involves query optimization
issues, which we’d like to defer to the second stage.

The paper is organized as follows. Section 2 presents
the model. Section 3 describes how to calibrate it.
Section 4 addresses how to use the calibrated model to
predict the CPU time of a query. Section 5 discusses the
model’s potential applications. Section 6 concludes thii
Paper.

2. A Model of Elementsry Operation

2.1 Simple Selection Querles

A simple selection query is a query satisfying the
following conditions:

1. The query involves only one relation;
2. Its quali6cation consists of one or zero non-

indexed selection condition;
3. The query does not build new relation(s) or

eliminate duplicate output tuples.

Some examples in QUEL are:
retrieve (emp.name, empdept) where emp.sal>50,000
retrieve (projectname, project.budget)

This paper will focus on simple selection queries,
since they cover a set of “basic” elementary operations
that are of critical importance to general query
processing. The processing of simple selection queries is
straightforward. For general queries that contain
indexing, multiple selections, joins and relation build-up,
the issue of query optimization and some complicated
processing ate involved. They will be addressed in
another paper.

2.2 A Model of Elementsry Operation

The most efficient processing strategy for a simple
selection query should be:

1. Sequentially retrieve each page of the queried
relation;

2. If a selection condition is involved, for each tuple,
get the appropriate attribute and compare its value
to the given constant;

3. For each qualifying tuple, get the attributes in the
target list and output them.

To capture the above processing, we propose the
following elementary operations:

1. Get a page (get-page)
2. Get a tuple (get-tuple)

3. Compare an attribute of a certain data type; for
example,

a Compare a 2-byte integer (cmp-a)
b. Compare a 4-byte integer (crnpd)
c. Compare a 4-byte floating point (cmp-f4)
d. Compare a l-byte character string (cmp-cl)
e. Compare a character in a string (cmp-char)

4. Output a tuple (out-tuple)
5. Output an attribute of a certain data type; for

example,
a. Output a 2-byte integer (outd)
b. Output a 4-byte integer (o&4)
c. Output a 4-byte floating point (o&&4)
d. Output a l-byte character string (our-cl)
e. Output a character in a string (out-char)

We assume that for a given database system
configuration, each elementary operation consumes a
fixed amount of CPU time, which is independent of the
database and query. This fixed CPU consumption is
called the coefficient of that operation. A query can be
coded into a vector of operation counts, called query
vector. The total CPU consumption of a query is the
sum of the operation counts in the query vector, each
weighted by the corresponding coefficient.

2.3 Discussions on the Model

The above model was built up empirically. Some of
its features ate discussed below.

2.3.1 Data Access

For data access, two factors, i.e., page count and
tuple count, are explicitly spelled out in the model.
Another factor, get un attribute, is captured implicitly in
attribute comparison and attribute output2.

2.3.2 Get-Page

Get-page is a complex operation. It is rather simple
if the operating system buffering is bypassed (i.e., raw
dish). However, when operating system buffering is
involved (as in most UNIX DBMSs that employ UNIX
file system), disk access involves two steps:

1. reading data from dish to system buffer;
2. copying data from system buffer to user space.

If the page to be accessed exists already in system buffer,
Step 1 will be skipped. Moreover, a DBMS may
manage its own buffer pool (e.g., Ingres [SIGN 811).
This makes the scenario more complicated.

2 Wha M 8ttributc is i3caxscd more thtm axe, get M olfribule may
bc involved 1) for each ~ccers or 2) cdy onoz. llte latter case will
fd this implicit qm8c.h. cspccirlly when the coefficient for get an
affribtic is signikant. We did not observe this effect in our tat.

348 Proceedings of the 13th VLDB Conference, Brighton 1987

We choose to define get-page uniformly as the “full
fetch” from disk to user space3. The buffering effect, if
exists, could be estimated and discounted from the count
of gef-page, as illustrated in Section 4.

2.33 Numerical Comparison Condition

For numerical attribute comparison, the CPU usage is
assumed to depend only on data type; but not affected by
the identity of relational operator (e.g., be it “6, “=” or
“d), nor by the constant value to be compared with4.
This conjecture is confbmed with test queries,

2.3.4 Character String Comparison and Output

For comparing character strings, the complexity is
assumed to be linear in the number of bytes actually
compared (which may be less than the string length),
captured by elementary operations cmp-c/tur. For
outputting strings, the complexity is assumed to be linear
in the number of output bytes, captured by elementary
operations our-char. Test queries that confirm this
conjecture are described in Sections 3.2.4 and 3.2.5.

2.35 Other Aspects

This model focuses on data processing. Other DBMS
activities, e.g., query input, query parsing and query
optimization, appear to consume negligible CPU in our
measurements. To avoid the issue of concurrency
control at this stage, DBMSs were set to lock at the
database level, and all tests were run without other
database users. There is a stable overhead in initializing
DBMS.

In a multi-user environment, CPU usage may be
impacted by total system load (due to job switching,
timing granularity, etc). At this stage,, this impact is not
explicitly expressed in the model, but will be reflected in
the coefficient measurement result.

Granularhy other than page may be allowed in diifmi stages of
disk access. For instana, data can be copied from system buffer to
user space by byte instead of a whole page. This approach may be
bendcial if only limii bytes (e.g., a tuple) in a page have to be
accessed. ‘bit byte-driven complexity will appear in operations
such aa get an attribute , insted of get-pzgr. We did non observe
significant byte-driven complexity for data access. It indicates the
DBMSs we tested choose to move data by page, presumably due to
the high oveabead of each buffa access (see Section 51.1 and
[S’lDN 811).

The ccmstant is assumed to be a legitimate value for the attribute.
Otherwise, a smart query optimii may be able to detect and skip
he cunparism completely, as we found in Ingres.

3. Measurement of Coeftlclents

This section describes how to measure the
coefficients of the above elementary operations. Section
3.1 addresses the general principles. Section 3.2 presents
a design of test database and queries, illustrated with
Ingres and the query language QUEL. There am many
designs. These designs apply generally to relational
DBMSs, but may need slight adjustment from one
DBMS to anothe?.

Section 3.3 reports our measurement for Ingres and
Informix on a VAX 11/785 running BSD 4.3 UNIX
operating system.

3.1 General Prtnclples

The principle of coefficient measurement for
elementary operation is to design a series of queries that
isolate the impact of an operation, and amplify thii
impact to a measurable extent. All other influencing
factors must be carefully controlle$.

For measuring CPU time, timing tools provided by
the operating system are more appropriate than those in
DBMSs, since

1. the outcomes of different timing tools fran
different DBMSs may not be comparable.

2. many DBMSs, e.g., Informix, do not provide
timing tools.

Since total system load affects CPU usage, it should
be specified as a pammeter of measurement, and then
well controlled throughout the test. When CPU time
shows fluctuation, queries should be run repeatedly to
average out background noise. To minimize the impact
of system load and noise, test queries should be designed
to minimize constant overhead7, but maximize the target
processing that varies from query to query. The
difference of query time in a series should be
significantly larger than the background noise.

3.2 A Test Database and Query Set

This section describes a design of test database and
queries, illustrated with Ingres and QUEL.

For example, since Ingres and h&mix use diiemnt methods to
allocate tuples into pages, the definition of Ations #J to d in
Sectian 32.2 should be changed slightly as rpplying to fnfonnix,
such that the five relations still occupy the same nllmber of pages.
For example, buffering may cause the disaeprncy af the number of
get-page, as discussed in section 2.32 To avoid this adverse
effect, queries that address small relations (compared to the size of
system buffer) should be interluved pmpeIiy to ensure uch pIoe is
freshly fetched from disk.
For example, query series for input (g+%-ppgc, get-fuplc) avoid
generating output.

Proceedings of the 13th VLDB Conference, Brighton 1987 349

32.1 Get-Page

The coefficient for get-page can be measured with the
following relations:

Relation Attributes Tuple No. of No. of
Name (Data Type*) Width Tuples Pages’

Attribute i is populated with integers between 0 and 9.
No index is built.

The test query series is as follows:
q.get-page.1: retrieve (p1.i) where pl.i>lO
q.get-page.2 retrieve (p2.i) where p2.i>10
q.get-page.3: retrieve (p3.i) where p3.i>10
q.get-page.4: retrieve (p4.i) where p4.i>10
q.get-page.5: retrieve (p5.i) where p5.i>10

These five queries requite the same number of tuple
fetching (#get-tupk==64,000), the same number of
attribute comparison (#cmp-i&64,000), and generate no
output Their only difference resides in how many pages
each query needs to retrieve. (since the length of
attribute v varies.) We found the measured CPU
consumption can be linearly correlated to the page count;
the slope is taken as the coefficient for get-page.

322 Get-T&z

One way to measure the coefficient of get-tuple is
through the following five relations:

Relation

t1
r2
t3
t4

Attributes Tuple No. of No. of
Name (Data Type) Width Tuples Pages
s(clMW,vW 6 bytes 80,000 320
sWjWv(c3) 8 bytes 64,000 320
s(c1) j(i4),v(c13) 18 bytes 32,000 321
s(cl)j(i4).v(c33) 38 bytes 16,000 321

t5 1 s(cljj(iij,v(cl5ti) 155 bytes 3,832 321

Notice that the tuple width and tuple counts are
adjusted such that each relation occupies identical
number of pages. Attribute i is populated with integers
between 0 and 9. No index is built

8. Duioted by me chmcler for type (“c” for Wing, ‘5” for integer, “f
for floating). and the number of bytes.

9. In fqyes. each page has 2K bytes.

The test query series is as follows:
q.get-tuple.1: retrieve (t1.i) where tl.i>lO
q.get-tuple.2: retrieve (t2.i) where t2.i>10
q.get-tuple.3: retrieve (t3.i) where t3.i>10
q.get-tupled: retrieve (t4.i) where t4.i>10
q.get-tuple.5: retrieve (t5.i) where t5.i>10

These five queries fetch the same number of pages
(#get-page-320) and generate no output For each query,
the number of tuples to get (#get-tuple) is the number of
tuples in the queried relation, as listed above, and so is
the number of i4 comparison (#h&4). We found the
measured CPU time is linear in the tuple count. By
subtracting the coefficient of cmp-i4 (as measured in
Section 3.2.3) from the slope, we can get the coefficient
of get-tuple.

3.2.3 Attribute Comparison

The following relation can be used to measure the
CPU usage for comparing an attribute:

Relation Attributes No. of
Name (Data Type) Tuples

m i2(i2) j4(i4)$4(f4)
cl(cl).out(cl) 16,000

Each numerical attribute is populated with values evenly
distributed between 0 and 9. Attribute cl is populated
with strings between “0” and “9”.

The test queries for comparing a numerical or l-
character attribute are:

q.dummy: retrieve (m.out)
q.cmp-i2: retrieve (m.out) where m.i2<10
q.cmp-i4: retrieve (m.out) where m.i4<10
q.cmp-f4: retrieve (m.out) where m.f4clO
q.cmp-cl: retrieve (m.out) where m.cl<“a”

Each query scans through the whole relation and
outputs attribute out for each tuple. Attribute comparison
is the only difference that the comparing queries perform
in addition to query q.dummy. Subtracting the CPU
usage of query q.dummy from that of each comparing
query, then dividing the difference by the tuple count of
relation m, the result is the coefficient of comparing an
attribute of the corresponding data type.

3.2.4 Character Comparison

For character strings of various length, the following
relation and queries can be used to check the relationship
between comparison time and string length.

350 Proceedings of the 13th VLDB Conference, Brighton 1987

1. For each regression, conducting the goodness of fit
test. It indicates the linear regression line fit the
data adequately.

2. Repeating the lO-run measurement. Each
operation was measured at least five times.

3. Varying query design. For example, for get-page,
get-&de and out-tupZe, attributes other than i were
used to generate parallel query series for test.

4. Varying database design, including relation
definition and size.

5. Checking the coefficients that are mutually related.
For example, if the model is valid, the following
reIationships should hold:

cmp-cl + (8-l) * cmpchar = cmp-c8
out-cl + (8-l) * out-char = out-c8

Throughout the above checking, the observed
discrepancy is within 10%. which confirms our
assumption about the consistency of coefficient. 10

Table 1. The Coefficients of Elementary Operations
for Ingres 4.0 and Informix 2.00

(on VAX 11/785 running BSD 4.3 UNIX operating system)

Elmentar)
Operation
get-page

Coefficient Qtsec)
Ingres Informix
5122.2 3056.6

(norm.) 2561.1 3056.6
get-tuple 244.2 805.0
cmp-i2 123.0 149.3
cmp-i4 118.1 478.4
cmpf4 115.0 865.9
cmp-cl 252.8 461.3
cmp-c8 383.0 462.1

cmp-char 17.5 0.3
out-tuple 550.0 2219.9

out-i2 820.7 625.1
out-i4 1277.4 723.7
out-f4 996.4 972.7
out-c 1 230.7 186.8
outc8 903.8 390.4

out-char 95.9 24.5
overhead 6.Osec 1.9sec

NOtIS

Page size: 2KB for Ingres,
1KB for Informix

Normalized to 1KB page

Out Bytes Vert. Coef’*
6 653.3
11 674.2
9 890.2
1 294.1
8 395.3

14.1
for initiahzine DBMS

12 Cacfficientr for Infonnix vertical wput fonnat (Section 3.2.5);
Each output includcr 1 byte for data and 3 bytes for attribute name,
except out-c8. whose data latgth is 8 byte. #OIU-char has to be
adjusted for the real length of data and attribute name.

352

4. Rstlmatlng CPU Usage of Queries

The model of elementary operation assumes the CPU
consumption of a query is the summation of the counts
of elementary operations it performs, each multiplied by
the coefficient of that operation. Once the coefficients
are measured, we can predict a query’s CPU usage from
its operation count vector (i.e., query vector).

Coding a simple selection query into query vector is
straightforward. However, the following operations need
special attention:

Get-page: If no buffering or data sharing is involved, the
operation count for get-page should be the number of
pages in the queried relation. However, as mentioned
in Section 2.3.2, if pages can be fetched from a buffer,
the get-page count has to be adjusted accordingly.

Example 1. For query q.s.5n (described below), Informix
has to retrieve 3910 pages (Table 4). If 10% of them
are retrieved from the buffer, then 0.6 msec (CPU time
for reading a 1K page from disk to main memory, see
Section 5.1) can be saved from the 3.1 msec
(Informix’ coefticient of get-page) procedure for each
of those pages. Hence the actual count for get-puge
should be

3910 * 90% + 3910 * 10% * (l- 8) = 3832

Cmpchar: The number of characters actually compared
for a string has to be estimated by the distribution of
data.

Output attribute: As mentioned in Section 3.2.5. the
format of attribute output varies on many factors. If
the format chosen by the query differs from that used
in coefficient measurement, either the coefficients, or
the count of out-char, should be adjusted accordingly.

Example 2. For query q.sSw (described below) which
takes Ingres default output format, Ingres outputs the
30 i2 attributes with 6 bytes, the only i4 attribute with
13 bytes, and each of the 87 character string attributes
with a minimum width 6 bytes. Each string attribute
contributes 1 to the count of out-cl. The remaining
bytes (5 per attribute), plus the 2 extra bytes that the
i4 field outputs, can be put in the count of out-&r as

#out-char = (6 - 1) * 87 + (13 -11) * 1 = 437
If the 6-byte threshold of string output is

overridden, simply by specifying a parameter, most of
the out-char operations (accounting for 40% of CPU
time) in queries q.sfiw, q.s6w and q.s7w can be saved.

We checked the correctness of query time prediction
extensively. The relative error is generally less than

Proceedings of the 13th VLDB Conference, Brighton 1987

Table 2. The Calculated and Observed CPU Usage of Queries on Ingres

Table 3. The Calculated and Observed CPU Usage of Quezies on Irkxmi~‘~

DBMS Informix
Querv II asln I a.s2n I a.s3n I as4n II a.sli I a.s2i I a.s3i I a.& II a.slw I a.s2w I a.s3w I as4w

9 #get-page l3 1831
#get-tuple 1OOOC

i #cmp-i2 (per get-tuple) 1
#out-tuple 100

#out-cl (per out-tuple) II 1
o #out-char (per out-tuple)ll 51
r #out-i2 (per out-tuplc) II 2

1

m out-tuple 1 0.22

P out-cl I 0.02
out-char 0.13

n out-i2 0.13
s subtotal 21.63
e initial. overhead 1.87
c
v calculated time 23.5a

obscrvcd time 21.31
absolute error 2.19

relative error II 10.29%

1831 1831 1831
10000 10000 1OOOC

1 1 C
1000 10000 lOCHIC

11 11 1

I I

1 2.08 (4.461 4.8t

1831
1OOOC

a

4

5.60
8.05
7.49
0.22

Cl
a

0.22
21.61

1.87
23.48
21.39
2.09

-
9.78%

1831
10000

8.05

0
0

2.50
25.86

1.87
27.73
25.66
2.07

-
8.07%

0 0) 250 2501 2501 250
4 41 13 131 131 13

0 0 0.09 0.88 8.82 8.82
0 0 0.35 3.50 35.00 35.00

25.00 25.00 0.85 8.48 84.80 84.80
I II 1 I

68.341 60.85II 22.651 36.221 171.%1 164.47 i
1.87 1.87 1.87 1.87 1.871 1.87

70.21 62.72 24.52 38.09 173.831 166.34
64.77 54.60(25.77 39.121 177.881 168.70

5.44 8.121 -1.25 -1.03) 4.051 -2.36
, I, 1 1

8.40%1 14.87%11 -4.86%1 -2.63%1 -2.28%(-1.40%

proceedings of the 13th VLDB Conference, Brighton 1987

Table 4. ‘Ibe Calculated and Observed CPU Usage of Queries on Ingres and Informi~~~

r DBMS I II Informix I

t
0

r

1 14

#out-cl (per out-tuple) 11 81 8 (811 871 871 8711 _
Y

#out-char (per out-tuple) 40 40 40 437 437 437
#out-i2 (per out-tuple) 3 3 3 30 30 30
#out-i4 (per out-tuple) 0 0 0 1 1 11

I

get-page 9.57 9.57 9.57 9.57 9.57 9.57 I
get-tuple 5.45 5.45 5.45 5.45 5.45 5.45
cmo-i2 2.75 2.75 0 2.75 2.75 0

Itt -

I 1

cmp-i4 II 01 01 2.6411 ot

I’,1 out-tuple 11 0.761 5.211 12281) 0.76

I 111 e 1 . out-char out-cl 11 11 2.55 5.301 (36.29 17.471 I 41.2211 85.63tl 27.76 57.93
I -I

II ----I -----I -----II - ---I
.- a .- ---̂ _.̂ ̂ _.̂ _

01 2.64tt 01 01 lo.6911 01 ot

n

s
e

out-u 3.41 23.30 34.YY 34.03

out-i4 0 0 0 1.77
subtotal 29.80 180.03 211.79 140.04

u

5.21 12.28
189.95 448.28
396.41 935.53
233.01 549.91

12.09 28.53
I

854.45 1 1992.21 tt

17.98 I 17.98 I
1 16.741

0 0 0 0.93 6.38
55.99 110.45 191.13 122.80 567.66

I *.I initial. overhead 11 6.001 6.001 6.0011 6.001 6.001 6.0011 I.871 1.871 1.87il 1.871 1.871 1.87 1
calculated time 35.80 106.03 217.79 146.04 860.45 1998.21 57.86 112.32 193.80 124.67 569.53 1272.03
observed time 34.30 104.00 214.00 141.00 838.00 1894.00 52.70 97.60 166.50 128.00 594.08 1314.00
absolute error 1.50 2.03 3.79 5.04 22.45 104.21 5.16 14.72 26.50 -3.33 -24.47 -41.97

t '

I, I 1 I, I I II I 1 I, I I

relative error 11 4.36% 1 1.96% 1 1.779611 3.58% 1 2.68% 1 5.50%(19.79% 115.08% 1 1592%/l -2.60% 1 4.1251 -3.19%

13. Each Ingms page is 2KB, whereas Informix page is 1KB. These UC the page sizes used for measuring the coefficients of gel-
pge. see Table 1.

14. IlIcK am lhe total CPU time cm scam&) r&en by cdl clanaUfy opaalial (alcaMd by multiplying the coefficient with
lhc count of opemtion) or specified camgory.

15. hformix’ tpc’y series w uses vmtical format for ouqmt (see Sectia~ 3.2.5).

354 Proceedings of the 13th VLDB Conference, Brighton 1987

15%. Tables 2.3 and 4 show some results, based on the
following relations (with no indices) and queries16.

customer] 160 Bvtes] 22.338 1 5.6MB

Queries'7:
Range of t is tenKtup1

q.slw: retrieve (tall) where tuniqu2<101
q&w: retrieve (tall) where tuniqu2<1001
q.s3w: retrieve (t.aIl) where t.uniqu2&XlO1
q&w: retrieve (tall)

q.sln: retrieve (tuniqul,t.uniqu2,t.stringul)
where tuniqu2clOl

q.s2n: retrieve (t.uniqul,tuniqu2,t.stringul)
where t.uniqu2<1001

q.s3n: retrieve (tuniqul,t.uniqu2,t.stringul)
where t.uniqu2&lOO1

q&n: retrieve (t.uniqul,tuniqu2.t.stringul)

q.sli: retrieve (t.uniqu1,t.uniqu2,t.two,t.fou.r)
where tuniqu2<101

q&i: retrieve (t.uniqul,tuniqu2,t.two,t.four)
where t.uniqu2clOOl

q.s3i: retrieve (t.uniqul ,tuniqu2,ttwo,tfour)
where t.uniqu2clOOOl

q.s4i: retrieve (t.uniqul,tuniqu2,t.two,t.four)

Range of c is customer

q.s5w: retrieve (call) where c.count=l
q&w: retrieve (call) where c.sizec4
q.s7w: retrieve (call) where c.usagec=lOO

q.dn: retrieve (c.cid,c.count,c.si,c.indexl,c.index2,
c.index3,c.index4,c.levell,c.level2,c.level3,c.level4)

where c.count=l
q&n: retrieve (c.cid,c.count,c.size,c.indexl,c.index2,

c.index3,c.index4,c.levell,c.level2~.level3,c.level4)
where c.size<rl

q.s7n: retrieve (c.cid,c.count,c.size,c.indexl,c.in&xlL,
c.index3,c.index4,c.levell,c.level2,c.level3,c.leve14)

where c.usags<=lOO

Notice that in Informix, query series w takes the
vertical output format, hence its timing may not be
directIy comparable to that of Ingres. Even for queries
that do use the same output format, the underlying
mechanism may be quite different for the two DBMSs.
For example, for queries q.s.h, q.s6n and q.sh, both
Ingres and Informix output 6 bytes for each of the 8 cl
fields. But for Ingres, it is due to Ingres’ default &byte
threshold in outputting string field; whereas in Informix,
it is because each field has a 6-byte name. Manipulating
output format can generate drastic performance change in
output-intensive queries, as shown in Example 2.

5. Appllcatlons

Elementary operation analysis uucovers the
microscopic dynamics of query processing. The
coefficients of elementary operations measure how fast
each processing step is. The breakdown of query time
indicates the relative signiticance of different functions.
The capability of predicting query time based on query
specification allows users to forecast how long a query
would take without running it. In this section we briefly
discuss some applications of this technique.

5.1 DBMS Design

The model of elementary operation is useful in
analyzing the strengths and weaknesses of DBMS design.
The following are some observations about Ingres and
Informix, based on Table 1 and some C program tests”.

5.1 .l Page Retrieval

Both Ingres and Informix need 2.5 to 3 msec to
retrieve a 1K page. As a comparison, it takes 0.6 msec
for a C program to call read (a UNIX system call
iUPRM 861). read takes another 0.6 msec to fetch a page
of 1KB from disk to system buffer, and another 0.4 msec
to move 1KB from system buffer to user space; it is 1.6
msec in total

lf5. Relation renKtup1 and relevant queries am based on Wisconsin
Bcnchmulr [BITT 831, with some minor modifications. Relation
cns1oms1 is fnnn a real-life database.

17. lhe w suflix in query names means wi& ou~puf, n for nurrow, and
i for integer. The sysem buffer was flushed before each query ran.

18. Run on VAX ll/785 (1.4 MIPS) with BSD 4.3 UNIX apcnting
system.

Proceedings of the 13th VLDB Conference, Brighton 1987 355

5.1.2 Character String Comparison

Ingres and Informix appear to reflect quite different
designs. Informix’ CPU consumption is relatively high,
whereas almost insensitive to string length (up to 64
bytes). Ingres’ overhead is lower, but grows at a rate of
17.5 p,rec per characteri9. The breakeven point for the
two DBMSs resides at roughly 13 characters. The
tradeoff of the two designs should be judged by usage
frequency analysis.

As a comparison to the above rates, two C programs
were tested: program CMP-BYTE explicitly compares
strings byte by byte lKERN 781, it takes 6 p.rec of CPU
time per character program CMP-STR calls the C library
subroutine strcmp (KJPRM 861) that uses the long
comparison instruction, it needs 2.5 psec per character.

5.13 Character Output

Ingres’ character output rate (96 wet per byte) is
very slow. This drags down all the attribute output
coefficients. Informix takes 25 p.rec to output a
character.

Both rates include:
- buffering for piping;
- piping data from backend process to frontend process

(Ingres sends messages in the unit of 1024 bytes
[STON 831);

- outputting data.

We also tested some C programs that perform similar
functions. It takes 1.4 msec CPU time to send (write and
read) a l-byte message through pipe, whereas 2.5 msec
to send a 1024-byte message (averaged 2.5 p.rec per
byte). Outputting data in the unit of 1024 bytes takes
2.3 psec per byte.

5.1.4 Summary on DBMS Design

In the above we checked some DBMS processing
rates and the rates of C programs that perform similar
functions. It appears those DBMSs still have room for
enhancement.

5.2 Database and Query Design

Elementary operation analysis provides users with
query time prediction, the breakdown of time spent by
individual operations, and how it varies as database
and/or query changes. These capabilities can be used to
measure the performance impact of a design decision.

19. Ingres actually provides different functionality: it skips blanks in
anttparison. e.g., strings “AB”, “A B” and “A B *’ would all
match. Tbttr this rate contains extra processing.

Some examples are given below.

5.2.1 Database Design

Table 1 enables users to judge whether to set an
attribute as 2-byte integer, 4-byte integer, or character
string. The impact can be estimated for various
processing aspects, e.g., input, comparison, output, then
weighed with their relative importance, along with other
factors such as storage cost.

For logical and physical database design, elementary
operation analysis is useful too. We’ll discuss the issue
in the paper that addresses complex queries.

5.2.2 Query Design

For query and application design, users can
investigate the driving factors behind the query
performance and write more efficient queries. For
example, Tables 2 to 4 illustrate for the DBMSs that we
tested, how sensitive the query time is to the selectivity
(e.g., query series q.sl vs. q.s2 vs. q.s3). to the output
attribute(s) (e.g., query series n vs. i vs. IV), and even to
the output format (as explained in Section 4).

5.3 DBMS Comparison

The discussion in the above sections has already
involved the issue of DBMS comparison. This section
will summarize it and compare this analytical method
with benchmarking.

Elementary operation analysis reveals the relative rate
of each generic operation. It also can be used to estimate
the CPU time for a given benchmark. We do not think it
can replace benchmarking completely since the analysis
of complex queries is not trivial, as we’ll show in
another paper. However, the analysis is valuable for
benchmark design and result analysis. It can address
problems such as:

1. How to characterize an application?
In addition to the crude category of CPU or I/O
intensive, elementary operation analysis provides
finer classification based on data processing.

2. How to design a query set that properly
benchmarks an application? What are the key
factors to control?

3. If a target application involves big databases and/or
time-consuming queries, how to “mimic” it with
cheaper installation and still get cmrect
comparison?

4. How to interpret the benchmark result?

The discussion in Sections 5.1 and 5.2 has already
covered these problems. It is interesting to notice that
elementary operation analysis can help benchmark design
to focus on the difference of the DBMSs tested. For
example, from Table 1 we find that Ingres is 2-3 times

356 Proceedings of the 13th VLDB Conference, Brighton 1987

faster than Informix in getting tuple, outputting tuple and
numerical comparison, whereas Informix is 3 times faster
than Ingres in outputting character. Thus a benchmark
designed for these two DBMSs has to pay special
attention to these processing steps and ensure they are
properly modeled as in the target application. Different
combinations of processing steps can lead to contrary
comparisons, such as in query pair q.s3n vs. q.s3i, or
query pair q.dn vs. q.sln. For each pair, Informix
outperforms Ingtes on the tirst query whereas Ingres
outperforms on the second. This also illustrates how
important it is to properly interpret benchmark results.

For mimicking application, since elementary
operation analysis resolves a query into a query vector,
big database/queries can be simulated by small ones with
prorated query vectors.

In summary, elementary operation analysis provides
decomposition by processing function, guidelines for
designing custometized benchmarks, and capability of
result interpretation. These are exactly what the
conventional benchmarking methodology lacks for. Our
analysis indicates it can be quite misleading to apply
generalized benchmarks (e.g., [BI’IT 83, BOGD 831) to
all applications and environments. For the DBMSs that
we tested, the following basic design assumptions of
[BITT 831 are not trueza:

1. Relative performance of DBMSs is the same for
integer comparison and string comparison;

2. it is adequate to test selectivity factor with 1% and
10% [BORA 841.

6. Conclusion

This paper describes an empirical model for
decomposing relational query processing into individual
functional components, called elementary operations.
The processing of a query can be decoded into a vector
of the counts of elementary operations, where each
operation takes a fixed amount of CPU time, dependent
on DBMS configuration only. This method lends itself
to query time prediction and interpretation, as well as
microscopic study of query processing mechanism.
These capabilities can be used to enhance our
understanding in many theoretical and practical database
fields.

Discussing simple selection queries only, this paper is
aimed primarily at elementary operations for input,

20. Another major drawback of [BITI 831 is its focusing on retrieve
info, whose complexity is drastiually different fmm data outputting,
as we’ll discuss in another paper.

comparison and output. Complicated query processing
plans are built with these basic operations. For example,
indexed selection employs input (and comparison)
operations to get through the directory structure; each
pass of a sort-merge join consists of input, comparison
and output (or temporary file building). Those queries
will be addressed in a subsequent paper.

7. Acknowledgements

We would like to thank John Walden and Ann
Martin for their help.

8. References

[ASTR 761 Astrahan, M., et al., “System R: A Relational Approach to
Database Management”. ACM Transacticns un Database
Systems, Vol. 1. No. 2, June 1976.

[BlTI 831 Bitton. D., Dewitt,, D.. and Tutbyfill C.. “Benchmatkiig
Database Systems - A Systanatic Approach”, Technical
Repurt 1526. Computer Scienue Depamnatt, University of
Wisconsin-Madison, December 1983.

[BOGD 831 Bogdanowicz, R.. Cmcker. M.. Hsiao, D., Ryder, C..
stale, v., and Strawscr, P.. “Bxpariments in
BenchmazCng Relational Database Machines”, Database
Machines, Springer-Verlag, 1983.

[BORA 841 Botal. H.. and Dewitt, D.. “A Methodology for Database
System Petfomtancn Evaluation”, Proceed& of 1984
SIGMOD Cunfemnce, Bostcn. MA, June 1984.

[CHAM 81]Chantberlin, D., et al., “Suppott for Repetitive Tmnsactiats
and Ad Hoc Queries in System R”. ACM Ttansactions at
Database Systems, VoL 6, No. 1. March 1981.

[HAWT 79]Hawthom, P., and Stonebraker. M., “Use of Technological
Advances to Fnhanrzu Data Base Management System
PClfOXlllMC#. Proceedings of 1979 ACMSIGMOD
Conference on the Management of Data, Bostat. MA, June
1979.

[LOHM 85lLohman. G., et al, “Query Processing in R*“, Query
Processing in Database Systems, Springer-Verlag. 1985.

[MACK 86]Mackert, L.. and Lehman. Cl., “R+ Optiiizcr Validation
and Petfomrance Evaluation for Local Queries”.
Procmdings of 1986 SIGMOD Cmfemnce, Washington D.
C., May 1986.

(KBRN 781 Kemighan. B.. Ritchie, D.. “The C programming
Language”, Pmntice-Hall, 1978. p.101.

[STON 761 Stunebraker. M.. Wang. E.. Kmps. P.. and Held. G., “Tha
Design and Implementation of INGRBS”. ACM
Transactions un Database Systems, Vol. 1, No. 3,
September 1976.

[STON 811 Stonebmker. M., “Operating System Support for Database
Management”, Communication of the ACM, Vol. 24. No.
7, July 1981.

[STON 831 Stcmebraker, M.. et al., “Performance Enhancements to a
Relational Database System”, ACM Transa&ms an
Database Systems, Vol. 8, No. 2, June 1983.

[UPRM 86]“UNDf Pmgmmmer Reference Manual”, 4.3 Berkeley
Softwam Distribution, April 1986.

[UURM 86]“uNM User Reference Manual”, 4.3 Berkeley Software
Distributiat, April 1986.

Proceedings of the 13th VLDB Conference, Brighton 1987 357

[YAO 791 Yao. S.. “Optimiiioo of Query Evaluation Algorithm”
ACM Tnnrrctionr on Database Systems, Vol. 4, No. 2,
June 1979.

358 Proceedings of the 13th VLDB Conference, Brighton 1987

