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Abstract 

This paper presents a general methodology to decompose 
the processing of relational queries into functional units. 
Each unit consumes a constant CPU usage, which 
depends on the DBMS and system configuration, but not 
on the database or the query. We describe how to 
measure the unit CPU consumption, as well as how to 
use it to predict and interpret query time. Two DBMSs 
were tested to validate and calibrate the model. Its 
applications on DBMS design, database &sign, query 
performance and DBMS comparison are discussed. 

1. Introduction 

This paper presents a general methodology to analyze 
the CPU consumption of relational queries on the 
functional operation level (e.g., input, output, 
comparison). It attempts to address the following 
fundamental problem: 

Given a query for certain database on certain 
database system, how much CPU time will each 
processing step consume? 

This problem is a basic issue in many database research 
and practice arenas, including DBMS design, database 
and query design, DBMS comparison, system tuning and 
work scheduling. 

Some effort has been made to attack this problem to 
various extents. For two-variable queries, lYA0 791 
describes a general mode1 consisting of processing steps 
such as indexing, record access, sorting, joining, 
projection, etc. Unfortunately, this model has not been 
validated. [HAWT 791 studied the percentage of CPU 
time that Ingres (university version, [STON 761) spent in 
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each of its five processes. But the technique only applies 
to the level of process. In [STON 831, the UNIXQ9 
“profile” package was utilized to get a procedure-level 
breakdown. However, profiling requires access to the 
source code, and the CPU distribution is by subroutine, 
instead of by functionality*. lMACK 861 presents a 
validated CPU cost mode1 for the local query processing 
of R* &OHM 851 (it also applies to System R [CHAM 
811). But the mode1 is tightly geared to the internal 
structure of R and R*. 

Our objective is to develop a CPU time mode1 for 
query processing, that isolates functionally independent 
operations from one another. It can help us understand 
the underlying timing distribution, the relative weights, 
the influencing factors, and other dynamics of query 
processing. To be useful, the model should be as generic 
as possible with respect to various DBMSs, and can be 
calibrated readily with common user privilege, e.g., 
access to the source code should not be prerequisite. 

This paper describes a model that decomposes query 
processing into elementary operations. It is assumed that 
each elementary operation consumes a fixed amount of 
CPU time (called coefficient), which is a parameter of the 
DBMS and system configuration, but independent of the 
database and the query. We show how to measure the 
CPU consumption coefficients. We tested the mode1 on 
two DBMSs: Ingres and Informix. The tests contirm our 
assumption on the stability of coefficients. The 
calibrated mode1 can be used to predicts queries’ CPU 
time. Some applications based on this methodology are 
discussed. 

Q UNIX is a Trademark of BeLl Laboratoriu 
1. For example, if a program ccnsists of three s&routines A, B and C, 

when both A and B call C. Profiling can provide the CPU usage 
and the num.ber of calls of each submutine. But k is hard to break 
down C’s CPU consumption into the shams d A and B. 
Partitioning subroutines by funaiuulity is very onnplii. if not 
impossible, especially for big sotiware packager ProMing b almost 
useless in DBMS comparison. rina ucb DBMS has its own 
subroutine structure-. 
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This paper considers only simple selection queries, as 
defined in Section 2.1. This subset of queries covers a 
set of elementary operations which constitute the basis of 
more complicated query processing. It is these basic 
operations we’d like to focus first. General queries will 
be addressed in a subsequent paper currently being 
drafted. Their processing involves query optimization 
issues, which we’d like to defer to the second stage. 

The paper is organized as follows. Section 2 presents 
the model. Section 3 describes how to calibrate it. 
Section 4 addresses how to use the calibrated model to 
predict the CPU time of a query. Section 5 discusses the 
model’s potential applications. Section 6 concludes thii 
Paper. 

2. A Model of Elementsry Operation 

2.1 Simple Selection Querles 

A simple selection query is a query satisfying the 
following conditions: 

1. The query involves only one relation; 
2. Its quali6cation consists of one or zero non- 

indexed selection condition; 
3. The query does not build new relation(s) or 

eliminate duplicate output tuples. 

Some examples in QUEL are: 
retrieve (emp.name, empdept) where emp.sal>50,000 
retrieve (projectname, project.budget) 

This paper will focus on simple selection queries, 
since they cover a set of “basic” elementary operations 
that are of critical importance to general query 
processing. The processing of simple selection queries is 
straightforward. For general queries that contain 
indexing, multiple selections, joins and relation build-up, 
the issue of query optimization and some complicated 
processing ate involved. They will be addressed in 
another paper. 

2.2 A Model of Elementsry Operation 

The most efficient processing strategy for a simple 
selection query should be: 

1. Sequentially retrieve each page of the queried 
relation; 

2. If a selection condition is involved, for each tuple, 
get the appropriate attribute and compare its value 
to the given constant; 

3. For each qualifying tuple, get the attributes in the 
target list and output them. 

To capture the above processing, we propose the 
following elementary operations: 

1. Get a page (get-page) 
2. Get a tuple (get-tuple) 

3. Compare an attribute of a certain data type; for 
example, 

a Compare a 2-byte integer (cmp-a) 
b. Compare a 4-byte integer (crnpd) 
c. Compare a 4-byte floating point (cmp-f4) 
d. Compare a l-byte character string (cmp-cl) 
e. Compare a character in a string (cmp-char) 

4. Output a tuple (out-tuple) 
5. Output an attribute of a certain data type; for 

example, 
a. Output a 2-byte integer (outd) 
b. Output a 4-byte integer (o&4) 
c. Output a 4-byte floating point (o&&4) 
d. Output a l-byte character string (our-cl) 
e. Output a character in a string (out-char) 

We assume that for a given database system 
configuration, each elementary operation consumes a 
fixed amount of CPU time, which is independent of the 
database and query. This fixed CPU consumption is 
called the coefficient of that operation. A query can be 
coded into a vector of operation counts, called query 
vector. The total CPU consumption of a query is the 
sum of the operation counts in the query vector, each 
weighted by the corresponding coefficient. 

2.3 Discussions on the Model 

The above model was built up empirically. Some of 
its features ate discussed below. 

2.3.1 Data Access 

For data access, two factors, i.e., page count and 
tuple count, are explicitly spelled out in the model. 
Another factor, get un attribute, is captured implicitly in 
attribute comparison and attribute output2. 

2.3.2 Get-Page 

Get-page is a complex operation. It is rather simple 
if the operating system buffering is bypassed (i.e., raw 
dish). However, when operating system buffering is 
involved (as in most UNIX DBMSs that employ UNIX 
file system), disk access involves two steps: 

1. reading data from dish to system buffer; 
2. copying data from system buffer to user space. 

If the page to be accessed exists already in system buffer, 
Step 1 will be skipped. Moreover, a DBMS may 
manage its own buffer pool (e.g., Ingres [SIGN 811). 
This makes the scenario more complicated. 

2 Wha M 8ttributc is i3caxscd more thtm axe, get M olfribule may 
bc involved 1) for each ~ccers or 2) cdy onoz. llte latter case will 
fd this implicit qm8c.h. cspccirlly when the coefficient for get an 
affribtic is signikant. We did not observe this effect in our tat. 
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We choose to define get-page uniformly as the “full 
fetch” from disk to user space3. The buffering effect, if 
exists, could be estimated and discounted from the count 
of gef-page, as illustrated in Section 4. 

2.33 Numerical Comparison Condition 

For numerical attribute comparison, the CPU usage is 
assumed to depend only on data type; but not affected by 
the identity of relational operator (e.g., be it “6, “=” or 
“d), nor by the constant value to be compared with4. 
This conjecture is confbmed with test queries, 

2.3.4 Character String Comparison and Output 

For comparing character strings, the complexity is 
assumed to be linear in the number of bytes actually 
compared (which may be less than the string length), 
captured by elementary operations cmp-c/tur. For 
outputting strings, the complexity is assumed to be linear 
in the number of output bytes, captured by elementary 
operations our-char. Test queries that confirm this 
conjecture are described in Sections 3.2.4 and 3.2.5. 

2.35 Other Aspects 

This model focuses on data processing. Other DBMS 
activities, e.g., query input, query parsing and query 
optimization, appear to consume negligible CPU in our 
measurements. To avoid the issue of concurrency 
control at this stage, DBMSs were set to lock at the 
database level, and all tests were run without other 
database users. There is a stable overhead in initializing 
DBMS. 

In a multi-user environment, CPU usage may be 
impacted by total system load (due to job switching, 
timing granularity, etc). At this stage,, this impact is not 
explicitly expressed in the model, but will be reflected in 
the coefficient measurement result. 

Granularhy other than page may be allowed in diifmi stages of 
disk access. For instana, data can be copied from system buffer to 
user space by byte instead of a whole page. This approach may be 
bendcial if only limii bytes (e.g., a tuple) in a page have to be 
accessed. ‘bit byte-driven complexity will appear in operations 
such aa get an attribute , insted of get-pzgr. We did non observe 
significant byte-driven complexity for data access. It indicates the 
DBMSs we tested choose to move data by page, presumably due to 
the high oveabead of each buffa access (see Section 51.1 and 
[S’lDN 811). 

The ccmstant is assumed to be a legitimate value for the attribute. 
Otherwise, a smart query optimii may be able to detect and skip 
he cunparism completely, as we found in Ingres. 

3. Measurement of Coeftlclents 

This section describes how to measure the 
coefficients of the above elementary operations. Section 
3.1 addresses the general principles. Section 3.2 presents 
a design of test database and queries, illustrated with 
Ingres and the query language QUEL. There am many 
designs. These designs apply generally to relational 
DBMSs, but may need slight adjustment from one 
DBMS to anothe?. 

Section 3.3 reports our measurement for Ingres and 
Informix on a VAX 11/785 running BSD 4.3 UNIX 
operating system. 

3.1 General Prtnclples 

The principle of coefficient measurement for 
elementary operation is to design a series of queries that 
isolate the impact of an operation, and amplify thii 
impact to a measurable extent. All other influencing 
factors must be carefully controlle$. 

For measuring CPU time, timing tools provided by 
the operating system are more appropriate than those in 
DBMSs, since 

1. the outcomes of different timing tools fran 
different DBMSs may not be comparable. 

2. many DBMSs, e.g., Informix, do not provide 
timing tools. 

Since total system load affects CPU usage, it should 
be specified as a pammeter of measurement, and then 
well controlled throughout the test. When CPU time 
shows fluctuation, queries should be run repeatedly to 
average out background noise. To minimize the impact 
of system load and noise, test queries should be designed 
to minimize constant overhead7, but maximize the target 
processing that varies from query to query. The 
difference of query time in a series should be 
significantly larger than the background noise. 

3.2 A Test Database and Query Set 

This section describes a design of test database and 
queries, illustrated with Ingres and QUEL. 

For example, since Ingres and h&mix use diiemnt methods to 
allocate tuples into pages, the definition of Ations #J to d in 
Sectian 32.2 should be changed slightly as rpplying to fnfonnix, 
such that the five relations still occupy the same nllmber of pages. 
For example, buffering may cause the disaeprncy af the number of 
get-page, as discussed in section 2.32 To avoid this adverse 
effect, queries that address small relations (compared to the size of 
system buffer) should be interluved pmpeIiy to ensure uch pIoe is 
freshly fetched from disk. 
For example, query series for input (g+%-ppgc, get-fuplc) avoid 
generating output. 
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32.1 Get-Page 

The coefficient for get-page can be measured with the 
following relations: 

Relation Attributes Tuple No. of No. of 
Name (Data Type*) Width Tuples Pages’ 

Attribute i is populated with integers between 0 and 9. 
No index is built. 

The test query series is as follows: 
q.get-page.1: retrieve (p1.i) where pl.i>lO 
q.get-page.2 retrieve (p2.i) where p2.i>10 
q.get-page.3: retrieve (p3.i) where p3.i>10 
q.get-page.4: retrieve (p4.i) where p4.i>10 
q.get-page.5: retrieve (p5.i) where p5.i>10 

These five queries requite the same number of tuple 
fetching (#get-tupk==64,000), the same number of 
attribute comparison (#cmp-i&64,000), and generate no 
output Their only difference resides in how many pages 
each query needs to retrieve. (since the length of 
attribute v varies.) We found the measured CPU 
consumption can be linearly correlated to the page count; 
the slope is taken as the coefficient for get-page. 

322 Get-T&z 

One way to measure the coefficient of get-tuple is 
through the following five relations: 

Relation 

t1 
r2 
t3 
t4 

Attributes Tuple No. of No. of 
Name (Data Type) Width Tuples Pages 
s(clMW,vW 6 bytes 80,000 320 
sWjWv(c3) 8 bytes 64,000 320 
s(c1) j(i4),v(c13) 18 bytes 32,000 321 
s(cl)j(i4).v(c33) 38 bytes 16,000 321 

t5 1 s(cljj(iij,v(cl5ti) 155 bytes 3,832 321 

Notice that the tuple width and tuple counts are 
adjusted such that each relation occupies identical 
number of pages. Attribute i is populated with integers 
between 0 and 9. No index is built 

8. Duioted by me chmcler for type (“c” for Wing, ‘5” for integer, “f 
for floating). and the number of bytes. 

9. In fqyes. each page has 2K bytes. 

The test query series is as follows: 
q.get-tuple.1: retrieve (t1.i) where tl.i>lO 
q.get-tuple.2: retrieve (t2.i) where t2.i>10 
q.get-tuple.3: retrieve (t3.i) where t3.i>10 
q.get-tupled: retrieve (t4.i) where t4.i>10 
q.get-tuple.5: retrieve (t5.i) where t5.i>10 

These five queries fetch the same number of pages 
(#get-page-320) and generate no output For each query, 
the number of tuples to get (#get-tuple) is the number of 
tuples in the queried relation, as listed above, and so is 
the number of i4 comparison (#h&4). We found the 
measured CPU time is linear in the tuple count. By 
subtracting the coefficient of cmp-i4 (as measured in 
Section 3.2.3) from the slope, we can get the coefficient 
of get-tuple. 

3.2.3 Attribute Comparison 

The following relation can be used to measure the 
CPU usage for comparing an attribute: 

Relation Attributes No. of 
Name (Data Type) Tuples 

m i2(i2) j4(i4)$4(f4) 
cl(cl).out(cl) 16,000 

Each numerical attribute is populated with values evenly 
distributed between 0 and 9. Attribute cl is populated 
with strings between “0” and “9”. 

The test queries for comparing a numerical or l- 
character attribute are: 

q.dummy: retrieve (m.out) 
q.cmp-i2: retrieve (m.out) where m.i2<10 
q.cmp-i4: retrieve (m.out) where m.i4<10 
q.cmp-f4: retrieve (m.out) where m.f4clO 
q.cmp-cl: retrieve (m.out) where m.cl<“a” 

Each query scans through the whole relation and 
outputs attribute out for each tuple. Attribute comparison 
is the only difference that the comparing queries perform 
in addition to query q.dummy. Subtracting the CPU 
usage of query q.dummy from that of each comparing 
query, then dividing the difference by the tuple count of 
relation m, the result is the coefficient of comparing an 
attribute of the corresponding data type. 

3.2.4 Character Comparison 

For character strings of various length, the following 
relation and queries can be used to check the relationship 
between comparison time and string length. 
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1. For each regression, conducting the goodness of fit 
test. It indicates the linear regression line fit the 
data adequately. 

2. Repeating the lO-run measurement. Each 
operation was measured at least five times. 

3. Varying query design. For example, for get-page, 
get-&de and out-tupZe, attributes other than i were 
used to generate parallel query series for test. 

4. Varying database design, including relation 
definition and size. 

5. Checking the coefficients that are mutually related. 
For example, if the model is valid, the following 
reIationships should hold: 

cmp-cl + (8-l) * cmpchar = cmp-c8 
out-cl + (8-l) * out-char = out-c8 

Throughout the above checking, the observed 
discrepancy is within 10%. which confirms our 
assumption about the consistency of coefficient. 10 

Table 1. The Coefficients of Elementary Operations 
for Ingres 4.0 and Informix 2.00 

(on VAX 11/785 running BSD 4.3 UNIX operating system) 

Elmentar) 
Operation 
get-page 

Coefficient Qtsec) 
Ingres Informix 
5122.2 3056.6 

(norm.) 2561.1 3056.6 
get-tuple 244.2 805.0 
cmp-i2 123.0 149.3 
cmp-i4 118.1 478.4 
cmpf4 115.0 865.9 
cmp-cl 252.8 461.3 
cmp-c8 383.0 462.1 

cmp-char 17.5 0.3 
out-tuple 550.0 2219.9 

out-i2 820.7 625.1 
out-i4 1277.4 723.7 
out-f4 996.4 972.7 
out-c 1 230.7 186.8 
outc8 903.8 390.4 

out-char 95.9 24.5 
overhead 6.Osec 1.9sec 

NOtIS 

Page size: 2KB for Ingres, 
1KB for Informix 

Normalized to 1KB page 

Out Bytes Vert. Coef’* 
6 653.3 
11 674.2 
9 890.2 
1 294.1 
8 395.3 

14.1 
for initiahzine DBMS 

12 Cacfficientr for Infonnix vertical wput fonnat (Section 3.2.5); 
Each output includcr 1 byte for data and 3 bytes for attribute name, 
except out-c8. whose data latgth is 8 byte. #OIU-char has to be 
adjusted for the real length of data and attribute name. 
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4. Rstlmatlng CPU Usage of Queries 

The model of elementary operation assumes the CPU 
consumption of a query is the summation of the counts 
of elementary operations it performs, each multiplied by 
the coefficient of that operation. Once the coefficients 
are measured, we can predict a query’s CPU usage from 
its operation count vector (i.e., query vector). 

Coding a simple selection query into query vector is 
straightforward. However, the following operations need 
special attention: 

Get-page: If no buffering or data sharing is involved, the 
operation count for get-page should be the number of 
pages in the queried relation. However, as mentioned 
in Section 2.3.2, if pages can be fetched from a buffer, 
the get-page count has to be adjusted accordingly. 

Example 1. For query q.s.5n (described below), Informix 
has to retrieve 3910 pages (Table 4). If 10% of them 
are retrieved from the buffer, then 0.6 msec (CPU time 
for reading a 1K page from disk to main memory, see 
Section 5.1) can be saved from the 3.1 msec 
(Informix’ coefticient of get-page) procedure for each 
of those pages. Hence the actual count for get-puge 
should be 

3910 * 90% + 3910 * 10% * (l- 8) = 3832 

Cmpchar: The number of characters actually compared 
for a string has to be estimated by the distribution of 
data. 

Output attribute: As mentioned in Section 3.2.5. the 
format of attribute output varies on many factors. If 
the format chosen by the query differs from that used 
in coefficient measurement, either the coefficients, or 
the count of out-char, should be adjusted accordingly. 

Example 2. For query q.sSw (described below) which 
takes Ingres default output format, Ingres outputs the 
30 i2 attributes with 6 bytes, the only i4 attribute with 
13 bytes, and each of the 87 character string attributes 
with a minimum width 6 bytes. Each string attribute 
contributes 1 to the count of out-cl. The remaining 
bytes (5 per attribute), plus the 2 extra bytes that the 
i4 field outputs, can be put in the count of out-&r as 

#out-char = (6 - 1) * 87 + (13 -11) * 1 = 437 
If the 6-byte threshold of string output is 

overridden, simply by specifying a parameter, most of 
the out-char operations (accounting for 40% of CPU 
time) in queries q.sfiw, q.s6w and q.s7w can be saved. 

We checked the correctness of query time prediction 
extensively. The relative error is generally less than 
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Table 2. The Calculated and Observed CPU Usage of Queries on Ingres 

Table 3. The Calculated and Observed CPU Usage of Quezies on Irkxmi~‘~ 

DBMS Informix 
Querv II asln I a.s2n I a.s3n I as4n II a.sli I a.s2i I a.s3i I a.& II a.slw I a.s2w I a.s3w I as4w 

9 #get-page l3 1831 
#get-tuple 1OOOC 

i #cmp-i2 (per get-tuple) 1 
#out-tuple 100 

#out-cl (per out-tuple) II 1 
o #out-char (per out-tuple)ll 51 
r #out-i2 (per out-tuplc) II 2 

1 

m out-tuple 1 0.22 

P out-cl I 0.02 
out-char 0.13 

n out-i2 0.13 
s subtotal 21.63 
e initial. overhead 1.87 
c 
v calculated time 23.5a 

obscrvcd time 21.31 
absolute error 2.19 

relative error II 10.29% 

1831 1831 1831 
10000 10000 1OOOC 

1 1 C 
1000 10000 lOCHIC 

11 11 1 

I I 

1 2.08 ( 4.461 4.8t 

1831 
1OOOC 

a 

4 

5.60 
8.05 
7.49 
0.22 

Cl 
a 

0.22 
21.61 

1.87 
23.48 
21.39 
2.09 

- 
9.78% 

1831 
10000 

8.05 

0 
0 

2.50 
25.86 

1.87 
27.73 
25.66 
2.07 

- 
8.07% 

0 0) 250 2501 2501 250 
4 41 13 131 131 13 

0 0 0.09 0.88 8.82 8.82 
0 0 0.35 3.50 35.00 35.00 

25.00 25.00 0.85 8.48 84.80 84.80 
I II 1 I 

68.341 60.85II 22.651 36.221 171.%1 164.47 i 
1.87 1.87 1.87 1.87 1.871 1.87 

70.21 62.72 24.52 38.09 173.831 166.34 
64.77 54.60( 25.77 39.121 177.881 168.70 

5.44 8.121 -1.25 -1.03 ) 4.051 -2.36 
, I, 1 1 

8.40%1 14.87%11 -4.86%1 -2.63%1 -2.28%( -1.40% 
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Table 4. ‘Ibe Calculated and Observed CPU Usage of Queries on Ingres and Informi~~~ 

r DBMS I II Informix I 

t 
0 

r 

1 14 

#out-cl (per out-tuple) 11 81 8 ( 811 871 871 8711 _ 
Y 

#out-char (per out-tuple) 40 40 40 437 437 437 
#out-i2 (per out-tuple) 3 3 3 30 30 30 
#out-i4 (per out-tuple) 0 0 0 1 1 11 

I 

get-page 9.57 9.57 9.57 9.57 9.57 9.57 I 
get-tuple 5.45 5.45 5.45 5.45 5.45 5.45 
cmo-i2 2.75 2.75 0 2.75 2.75 0 

Itt - 

I 1 

cmp-i4 II 01 01 2.6411 ot 

I’,1 out-tuple 11 0.761 5.211 12281) 0.76 

I 111 e 1 . out-char out-cl 11 11 2.55 5.301 ( 36.29 17.471 I 41.2211 85.63tl 27.76 57.93 
I -I 

II ----I -----I -----II - ---I 
.- a .- ---̂  _.̂  ̂ _.̂ _ 

01 2.64tt 01 01 lo.6911 01 ot 

n 

s 
e 

out-u 3.41 23.30 34.YY 34.03 

out-i4 0 0 0 1.77 
subtotal 29.80 180.03 211.79 140.04 

u 

5.21 12.28 
189.95 448.28 
396.41 935.53 
233.01 549.91 

12.09 28.53 
I 

854.45 1 1992.21 tt 

17.98 I 17.98 I 
1 16.741 

0 0 0 0.93 6.38 
55.99 110.45 191.13 122.80 567.66 

I *.I initial. overhead 11 6.001 6.001 6.0011 6.001 6.001 6.0011 I.871 1.871 1.87il 1.871 1.871 1.87 1 
calculated time 35.80 106.03 217.79 146.04 860.45 1998.21 57.86 112.32 193.80 124.67 569.53 1272.03 
observed time 34.30 104.00 214.00 141.00 838.00 1894.00 52.70 97.60 166.50 128.00 594.08 1314.00 
absolute error 1.50 2.03 3.79 5.04 22.45 104.21 5.16 14.72 26.50 -3.33 -24.47 -41.97 

t ' 

I, I 1 I, I I II I 1 I, I I 

relative error 11 4.36% 1 1.96% 1 1.779611 3.58% 1 2.68% 1 5.50%(19.79% 115.08% 1 1592%/l -2.60% 1 4.1251 -3.19% 

13. Each Ingms page is 2KB, whereas Informix page is 1KB. These UC the page sizes used for measuring the coefficients of gel- 
pge. see Table 1. 

14. IlIcK am lhe total CPU time cm scam&) r&en by cdl clanaUfy opaalial (alcaMd by multiplying the coefficient with 
lhc count of opemtion) or specified camgory. 

15. hformix’ tpc’y series w uses vmtical format for ouqmt (see Sectia~ 3.2.5). 
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15%. Tables 2.3 and 4 show some results, based on the 
following relations (with no indices) and queries16. 

customer ] 160 Bvtes ] 22.338 1 5.6MB 

Queries'7: 
Range of t is tenKtup1 

q.slw: retrieve (tall) where tuniqu2<101 
q&w: retrieve (tall) where tuniqu2<1001 
q.s3w: retrieve (t.aIl) where t.uniqu2&XlO1 
q&w: retrieve (tall) 

q.sln: retrieve (tuniqul,t.uniqu2,t.stringul) 
where tuniqu2clOl 

q.s2n: retrieve (t.uniqul,tuniqu2,t.stringul) 
where t.uniqu2<1001 

q.s3n: retrieve (tuniqul,t.uniqu2,t.stringul) 
where t.uniqu2&lOO1 

q&n: retrieve (t.uniqul,tuniqu2.t.stringul) 

q.sli: retrieve (t.uniqu1,t.uniqu2,t.two,t.fou.r) 
where tuniqu2<101 

q&i: retrieve (t.uniqul,tuniqu2,t.two,t.four) 
where t.uniqu2clOOl 

q.s3i: retrieve (t.uniqul ,tuniqu2,ttwo,tfour) 
where t.uniqu2clOOOl 

q.s4i: retrieve (t.uniqul,tuniqu2,t.two,t.four) 

Range of c is customer 

q.s5w: retrieve (call) where c.count=l 
q&w: retrieve (call) where c.sizec4 
q.s7w: retrieve (call) where c.usagec=lOO 

q.dn: retrieve (c.cid,c.count,c.si,c.indexl,c.index2, 
c.index3,c.index4,c.levell,c.level2,c.level3,c.level4) 

where c.count=l 
q&n: retrieve (c.cid,c.count,c.size,c.indexl,c.index2, 

c.index3,c.index4,c.levell,c.level2~.level3,c.level4) 
where c.size<rl 

q.s7n: retrieve (c.cid,c.count,c.size,c.indexl,c.in&xlL, 
c.index3,c.index4,c.levell,c.level2,c.level3,c.leve14) 

where c.usags<=lOO 

Notice that in Informix, query series w takes the 
vertical output format, hence its timing may not be 
directIy comparable to that of Ingres. Even for queries 
that do use the same output format, the underlying 
mechanism may be quite different for the two DBMSs. 
For example, for queries q.s.h, q.s6n and q.sh, both 
Ingres and Informix output 6 bytes for each of the 8 cl 
fields. But for Ingres, it is due to Ingres’ default &byte 
threshold in outputting string field; whereas in Informix, 
it is because each field has a 6-byte name. Manipulating 
output format can generate drastic performance change in 
output-intensive queries, as shown in Example 2. 

5. Appllcatlons 

Elementary operation analysis uucovers the 
microscopic dynamics of query processing. The 
coefficients of elementary operations measure how fast 
each processing step is. The breakdown of query time 
indicates the relative signiticance of different functions. 
The capability of predicting query time based on query 
specification allows users to forecast how long a query 
would take without running it. In this section we briefly 
discuss some applications of this technique. 

5.1 DBMS Design 

The model of elementary operation is useful in 
analyzing the strengths and weaknesses of DBMS design. 
The following are some observations about Ingres and 
Informix, based on Table 1 and some C program tests”. 

5.1 .l Page Retrieval 

Both Ingres and Informix need 2.5 to 3 msec to 
retrieve a 1K page. As a comparison, it takes 0.6 msec 
for a C program to call read (a UNIX system call 
iUPRM 861). read takes another 0.6 msec to fetch a page 
of 1KB from disk to system buffer, and another 0.4 msec 
to move 1KB from system buffer to user space; it is 1.6 
msec in total 

lf5. Relation renKtup1 and relevant queries am based on Wisconsin 
Bcnchmulr [BITT 831, with some minor modifications. Relation 
cns1oms1 is fnnn a real-life database. 

17. lhe w suflix in query names means wi& ou~puf, n for nurrow, and 
i for integer. The sysem buffer was flushed before each query ran. 

18. Run on VAX ll/785 (1.4 MIPS) with BSD 4.3 UNIX apcnting 
system. 
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5.1.2 Character String Comparison 

Ingres and Informix appear to reflect quite different 
designs. Informix’ CPU consumption is relatively high, 
whereas almost insensitive to string length (up to 64 
bytes). Ingres’ overhead is lower, but grows at a rate of 
17.5 p,rec per characteri9. The breakeven point for the 
two DBMSs resides at roughly 13 characters. The 
tradeoff of the two designs should be judged by usage 
frequency analysis. 

As a comparison to the above rates, two C programs 
were tested: program CMP-BYTE explicitly compares 
strings byte by byte lKERN 781, it takes 6 p.rec of CPU 
time per character program CMP-STR calls the C library 
subroutine strcmp (KJPRM 861) that uses the long 
comparison instruction, it needs 2.5 psec per character. 

5.13 Character Output 

Ingres’ character output rate (96 wet per byte) is 
very slow. This drags down all the attribute output 
coefficients. Informix takes 25 p.rec to output a 
character. 

Both rates include: 
- buffering for piping; 
- piping data from backend process to frontend process 

(Ingres sends messages in the unit of 1024 bytes 
[STON 831); 

- outputting data. 

We also tested some C programs that perform similar 
functions. It takes 1.4 msec CPU time to send (write and 
read) a l-byte message through pipe, whereas 2.5 msec 
to send a 1024-byte message (averaged 2.5 p.rec per 
byte). Outputting data in the unit of 1024 bytes takes 
2.3 psec per byte. 

5.1.4 Summary on DBMS Design 

In the above we checked some DBMS processing 
rates and the rates of C programs that perform similar 
functions. It appears those DBMSs still have room for 
enhancement. 

5.2 Database and Query Design 

Elementary operation analysis provides users with 
query time prediction, the breakdown of time spent by 
individual operations, and how it varies as database 
and/or query changes. These capabilities can be used to 
measure the performance impact of a design decision. 

19. Ingres actually provides different functionality: it skips blanks in 
anttparison. e.g., strings “AB”, “A B” and “A B *’ would all 
match. Tbttr this rate contains extra processing. 

Some examples are given below. 

5.2.1 Database Design 

Table 1 enables users to judge whether to set an 
attribute as 2-byte integer, 4-byte integer, or character 
string. The impact can be estimated for various 
processing aspects, e.g., input, comparison, output, then 
weighed with their relative importance, along with other 
factors such as storage cost. 

For logical and physical database design, elementary 
operation analysis is useful too. We’ll discuss the issue 
in the paper that addresses complex queries. 

5.2.2 Query Design 

For query and application design, users can 
investigate the driving factors behind the query 
performance and write more efficient queries. For 
example, Tables 2 to 4 illustrate for the DBMSs that we 
tested, how sensitive the query time is to the selectivity 
(e.g., query series q.sl vs. q.s2 vs. q.s3). to the output 
attribute(s) (e.g., query series n vs. i vs. IV), and even to 
the output format (as explained in Section 4). 

5.3 DBMS Comparison 

The discussion in the above sections has already 
involved the issue of DBMS comparison. This section 
will summarize it and compare this analytical method 
with benchmarking. 

Elementary operation analysis reveals the relative rate 
of each generic operation. It also can be used to estimate 
the CPU time for a given benchmark. We do not think it 
can replace benchmarking completely since the analysis 
of complex queries is not trivial, as we’ll show in 
another paper. However, the analysis is valuable for 
benchmark design and result analysis. It can address 
problems such as: 

1. How to characterize an application? 
In addition to the crude category of CPU or I/O 
intensive, elementary operation analysis provides 
finer classification based on data processing. 

2. How to design a query set that properly 
benchmarks an application? What are the key 
factors to control? 

3. If a target application involves big databases and/or 
time-consuming queries, how to “mimic” it with 
cheaper installation and still get cmrect 
comparison? 

4. How to interpret the benchmark result? 

The discussion in Sections 5.1 and 5.2 has already 
covered these problems. It is interesting to notice that 
elementary operation analysis can help benchmark design 
to focus on the difference of the DBMSs tested. For 
example, from Table 1 we find that Ingres is 2-3 times 
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faster than Informix in getting tuple, outputting tuple and 
numerical comparison, whereas Informix is 3 times faster 
than Ingres in outputting character. Thus a benchmark 
designed for these two DBMSs has to pay special 
attention to these processing steps and ensure they are 
properly modeled as in the target application. Different 
combinations of processing steps can lead to contrary 
comparisons, such as in query pair q.s3n vs. q.s3i, or 
query pair q.dn vs. q.sln. For each pair, Informix 
outperforms Ingtes on the tirst query whereas Ingres 
outperforms on the second. This also illustrates how 
important it is to properly interpret benchmark results. 

For mimicking application, since elementary 
operation analysis resolves a query into a query vector, 
big database/queries can be simulated by small ones with 
prorated query vectors. 

In summary, elementary operation analysis provides 
decomposition by processing function, guidelines for 
designing custometized benchmarks, and capability of 
result interpretation. These are exactly what the 
conventional benchmarking methodology lacks for. Our 
analysis indicates it can be quite misleading to apply 
generalized benchmarks (e.g., [BI’IT 83, BOGD 831) to 
all applications and environments. For the DBMSs that 
we tested, the following basic design assumptions of 
[BITT 831 are not trueza: 

1. Relative performance of DBMSs is the same for 
integer comparison and string comparison; 

2. it is adequate to test selectivity factor with 1% and 
10% [BORA 841. 

6. Conclusion 

This paper describes an empirical model for 
decomposing relational query processing into individual 
functional components, called elementary operations. 
The processing of a query can be decoded into a vector 
of the counts of elementary operations, where each 
operation takes a fixed amount of CPU time, dependent 
on DBMS configuration only. This method lends itself 
to query time prediction and interpretation, as well as 
microscopic study of query processing mechanism. 
These capabilities can be used to enhance our 
understanding in many theoretical and practical database 
fields. 

Discussing simple selection queries only, this paper is 
aimed primarily at elementary operations for input, 

20. Another major drawback of [BITI 831 is its focusing on retrieve 
info, whose complexity is drastiually different fmm data outputting, 
as we’ll discuss in another paper. 

comparison and output. Complicated query processing 
plans are built with these basic operations. For example, 
indexed selection employs input (and comparison) 
operations to get through the directory structure; each 
pass of a sort-merge join consists of input, comparison 
and output (or temporary file building). Those queries 
will be addressed in a subsequent paper. 
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