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Abstract 
In this paper, a new compression method for constant 

removal from very large scientific and statistical databases is 
presented. The new method combines the best features from 
several classical constant removal compression methods. The 
result, both analytical and expprimental, shows that the 
method is superior to these popular methods in terms of 
compression effectiveness and eficient searching on the. 
compressed data. In addition to the development, analysis and 
validation of this new method, this paper also presents analysis 
of several traditional constant removal methods for the purpose 
of analytic comparison. A large collection of experiments have 
been designed and run to observe and validate the behavior of 
the compression methods. Another contribution of the paper is 
that performance characteristics are identified for different 
compression methods under diierent data properties sssump- 
tions. The result can be used as a bssis of selecting compres- 
sion methods by matching the properties of the database at 
hand to the data properties experimented in the paper. 

1. Overview and MotSvation 
We are interested in very large Scientific and Statistical 

databases (SSDBs) ([5], [4]). SSDEls are prevalent in scientific, 
so&-economic, and business applications. Examples of SSDBs 
are experiments and simulations for scientific applications, 
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census, health, and environmental data for socio-economic 
applications, and inventory and transaction analysis for busi- 
ness applications. These databases are often very large and 
sparse. Examples are scientific databases such as earthqu&e 
monitoring databases and high energy physics databases where 
the so-called noise (values that fall below certain threshold 
values) are converted into nulls or zeros (referred to w con- 
stants in the literature). The volume of these data is large 
because they are typically collected by automatic devices and 
most of the collected data are noise because interesting events 
typically scatter between long periods of inactivity. Other 
kinds of databases such as summary databases prevalent in 
SSDBs are also very large and sparse. 

To remove the large collection of constants is an essential 
requirement for managing these SSDBs. This requirement rules 
out a large body of compression techniques in the literature 
that deals with transmission and text compression such as 
Huffman encoding [8] and those in [1,7,8,9,10,11,12] ss men- 
tioned in [13]. 

In addition to the amount of compression one can achieve 
using a compression method, there are two other important 
requirements that we stress in evaluating and selecting a 
compression method. The first is the ability to perform 
efficient and random searching in the compressed database, 
given a logical position of the original database. This require- 
ment is essential to provide a querying capability on the data- 
base using the compressed data structure as the physical struc- 
ture. Another equally important requirement on a compression 
method is the capability to provide an efficient mapping from 
arbitrary positions in the compressed data back to the 
corresponding logical positions in the original database. 
Because of the size and sparsity of SSDBs ss mentioned before, 
it is desirable to have operators that can directly operate on 
compressed data without first decompressing it. Operators such 
as transposition and aggregation are good examples of why 
direct manipulation on compressed data is desirable [17]. 
These operators, however, rely heavily on the ability to dis 
cover efficiently, given an arbitrary position in the compressed 
data, the corresponding logical position in the original dnta- 
base, in order to reposition the data items in the new tran- 
sposed space. For each data item in the compressed data, a 
backward mapping is necessary to discover the coordinates of 
the original space, so that a new position can be computed 
corresponding to the new requdsted space. To have an efficient 
transposition algorithm depends strongly on the ability to per- 
form fast backward mapping. Classical methods such as run- 
length encoding [6] and its derivatives such as header compres- 
sion [2,3] provide good performance in terms of removing long 
runs of constants, but they have a poor forward and backward 
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mapping capability. Also, these methods can not be used on 
dynamic database environment where additions and deletions 
may be required. 

In this paper, a new constant removal compression 
method is proposed and is shown to be superior to the classical 
methods and their derivatives both analytically and experimen- 
tally in most situations. It also lends itself to dynamic changes 
in databases. There are three other important contributions in 
this paper. First, analysis in terms of compression ratios and 
searching efficiency is given for the new compression method ss 
well as for three other competing constant removal methods. 
Second, a large collection of experiments has been performed to 
validate the analytic results of these methods. Third, data 
characteristics have been identified under which a compression 
method can be selected to provide the best compression ratio. 

The rest of the paper is organized as follows, the next sec- 
tion provides some background and terminology for the sections 
to follow. Section three discusses our new compression method, 
called BAP. Experiments and analysis results are given in Sec- 
tion four. In that section, comparison of BAF’ with other con- 
stant removal methods is given to provide a performance 
metric under different situations. Finally, Section five provides 
some conclusion and a discussion’ for future work. 

2. Background 
In this section, some important terms on constant rem* 

val compression will be introduced. Also, we will survey three 
popular techniques for constant removal. They are bit map, 
run-length encoding and header compression. The terms logical 
database and phyaicsl database are used to refer to the 
uncompressed and compressed database respectively. The jsr- 
word mapping is a mechanism that determines the position in 
the physical database for a given position of a value in the logi- 
cal database. The backward mapping is a mechanism that 
determines the position in the logical database for a given phy- 
sical position in the physical database. 

2.1. Bit Map 
A bit map compression scheme consists of a bit map and 

a physical database which stores the non-constant values. The 
bit map is employed to indicate the presence or absence of 
non-constant data. The following example shows how the bit 
map compression scheme can be employed to implement a ver- 
sion of constant suppression. 

Example: 
Original data string 

dl, c, c, d2, c, c, c, d3. 
Comprcaacd data string 
bit map: 10010001. 
physical database : dl, d2, d3. 
For the bit map compression method, the mapping 

mechanism must search the whole bit map for both forward 
and backward mapping. And thus, the access time for both for- 
ward and backward mapping is O(N), where N is the number of 
bits in the bit map or equivalently the number of elements in 
the database. 

2.2. Run-Length Encoding 
The application of run-length encoding to constant rem* 

val is that each consecutive run of constants (there can be a 
few different types of constants to be removed) is replaced by a 
triple consisting of a separator SEP, an encoding of the con- 
stant X to be removed and a counter C indicating the length of 
the run. 

To search a run-length encoded database for both forward 

and backward mapping, a sequential search has to be done to 
sequence through the data, counting the number of 
unsuppressed values and references to the number of repeated 
values. The time required here is again O(N). 

2.3. Header Compression 
The header compression scheme is shown below. The vec- 

tor L, represents the uncompressed form of a database, in which 
the O’s are the constant to be suppressed and the V’s are the 
unsuppressed values. Beneath the vector L is the list of counts 
which comprise the compression header, H. The odd-positioned 
counts hold accumulations of unsuppressed values; and the 
even-positioned counts hold the accumulations of zeros. The 
physical, compressed form of the data is represented by P. 

L:V1V2000000000V3V4V5V6V700V8V9V10000 

H: 2,9,7,11,10,14 

P: Vl V2 V3 V4 V5 V6 V7 V8 V9 VlO 

For the header compression method, the forward and 
backward mapping can be processed by binary searching on the 
header, H. Both of them require O(log s) time where s is the 
size of the header. 

3. The BAP Compression Scheme 
In this section we consider a new compression method 

which incorporates the advantages of several existing tech- 
niques. 

The compression technique presented here constructs a 
physical database which consists of three parts: Bit vector 
(BV), Addrcra vector (AV), and Physical vector (PV), and is 
therefore called the BAF’ compression technique. 

3.1. An overview of the BAP method 
Let DB=(x,,xs, ,xn) be a logical database, and c be the 

constant to be suppressed. The bit vector, BV, indicates loci+ 
tions of constants and non-constants in the database and will 
be stored on disk in a compressed form as explained later. The 
physical vector PV is the vector of the non-constants in DB, i.e. 

pv - (Y,,Y% ,Y.) 

where, ye are in DB and yjfc. The yp are arranged according 
to their logical order in DB for 1 5 j < n , n 5 N and are 
stored on disk. It is assumed that non-constants cannot be 
compressed, hence no compression algorithm is applied to PV. 
Finally, the address vector AV is typically small and will be 
used as an index for searching in the database; we will show 
that in most practical applications it can be stored in fast 
storage. 

The idea behind our method is that in addition to 
efficient compression we need fast forward and backward map 
ping capabilities between the logical and physical database. In 
fact we will show that after compressing the logical database 
DB, we can find what is the position in PV of any of the xi’s in 
one disk access, provided that AV is maintained in fast storage. 
Conversely, given a position j in the physical database PV, we 
can determine what was its original location in DB, again using 
only a single disk access. 

We now describe the components BV and AV in more 
detaii. 

3.2. Bit Vector (BV) 
The bit vector is 

BV = (Wz, hi) 
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where, 

b, = 
1 If x,#c 
0 if x~=c for 1 2 i < N 

Since BV is a bit vector of N bits, we can compress it using run 
length encoding in which we replace each run of zeroes by a 
counter which indicates the length of this run. There are 
several methods for achieving efficient run length encoding, the 
main problem here is how to encode the counters and provide a 
separator between counters. We chose to use in our case the 
Golomb encoding method [14,15] which was proven to achieve 
a compression ratio close to the information theoretic lower 
bound. 

We had to modify this method so that we could also 
search in the compressed data. To this end, we divide BV into 
subvectors of D bits each, where D is a parameter chosen by the 
user. We will later show a mathematical analysis of how D is 
determined in order to maximize the eficiency of our compres- 
sion scheme, subject to limitations such as storage size, block 
size and required response time. Each subvector in BV is 
compressed independently using Golomb’s method and stored 
on a separate disk block (or a sequence of a few consecutive 
blocks). We now give an overview of Golomb’s encoding 
method. 

2.2.1. Golomb’s encoding scheme 
We dehne the compression ratio of a binary vector to be 

the ratio between the number of bits it occupies before and 
after it is compressed. The efficiency of Golomb’s scheme is 
achieved by encoding the counters and the separators using a 
special method. The codeword for each counter is constructed 
as foUows. A parameter m is chosen BS explained later, and 
then each run of r consecutive zero bits is divided into [r/m ] 
groups consisting of m bits each except for the last group which 
may contain less than m bits. Each group is encoded by a I-bit 
and the lsst group is encoded by a counter of fixed length. The 
idea of the method is illustrated below. The codeword for each 
counter consists of a variable-length prefiz which has a l-bit for 
each group of m O-hits, and a fixed-length tail which counts the 
number of &bits in the last group. The prefix consists of 
[r/m j l-bits followed by a &bit as a separator. The tail con- 

sists of a binary number of logsm bits and its value is: 
r - rn’ [r/m 1. It is shown in 115 i ’ that in order to maximize the 
efficiency of the method, the parameter m should be chosen as 
the integer such that pm is as close ss possible to 0.5, where p is 
the O-bit probability. The compression ratio is shown in 1151 to 
be a random variable with expected value R where 

R= 
(1-p)(log*li+( l-pm)+) 

where m 1 
=-loglp. Run 

l%e IYst of the run-length 
represented as a bin&y 

iiiuber of [logp) bits 

<= tafll 

3.2.2. Using Golomb’s method in BAP 
Turning back now to the BAP method, we will compress 

each subvector in BV independently and store it on a disk 
block. Let us assume that the probability P(c), of finding a con- 
stant in each location of the database is fixed and independent 
of other locations. From [15], we know that the expected value 
of the compression ratio in this case is 

R= (1-P(c)Xlog~+(I-P(c)m)-l) 

1 where m=--. 
bQY4 

We are now in a position to explain how the user should 
choose the parameter D. It is intuitively clear that we are 
interested in having D as large ss possible to maximize the 
compression efficiency. On the other hand as we explain later, 
in order to ensure that no more than k block accesses will be 
required for searching in the database, we require that each 
compressed subvector will fit on a sequence of at most k con- 
secutive blocks. In most practical applications we will require 
k=l. Given a block size of S bits and an expected compression 
ratio R, it follows from the above restriction that the size of the 
subvector D should be chosen such that after compression ,each 
subvector of D bits should with a very high probability occupy 
less than kS bits. We found experimentally (see Table 1) that 
the distribution of the compression ratio hss a very small stan- 
dard deviation for all practical values. of P(c) (typically less 
than 1.2 percent of R). Hence by using a compression ratio 
R’ =.98R which is slightly smaller than the expected compres 
sion ratio R, we ensure with extremely high probability that no 
overflow will occur when we choose D to be the maximum 
integer such that 

+kS 

In practice, a small overflow area may be assigned to the file so 
that in the unlikely event that any of the compressed subvec- 
tars requires more than kS bits, the remaining bits will be 
stored in the overflow area. Assuming no overflow, the 
compressed database will occupy IN/D 1 blocks, each block of 
size S bits. 

3.3. Address Vector (AV) 
The division of BV into subvectors imposes a division of 

the database DB into d= [N/D 1 sections, each consisting of D 
elements. In each one of these sections we may have zero or 
more non-constants. We define the address vector ss 

where, a,=O, and for i>Z, ai is the relative position in PV of 
the last non-constant element in the (i-1)“’ section of DB if such 
a non-constant exists; otherwise (all elements in the (i-l)‘b sec- 
tion are constants) , we set ai=*,. 

The key point of this compression technique is that AV 
can reside in main memory by choosing the parameter D to be 
sufficiently large. Our experiments indicated that for all practi- 
cal database sizes and values of P(c), no further compression of 
AV is needed. However, if the size of AV turns out to be larger 
than the available memory, we can take advantage of the fact 
that the difference between two successive elements in AV is 
very small (and bounded by 2D) as compared to the absolute 
value of each element, which depends on the size of PV. 

In order to compress AV, we may use a rclotive encoding 
method [IS] in which we store the difference of two consecutive 
elements instead of storing the actual elements. In this way, 
the size of each element is encoded in logd2D) bits instead of 
logd ] PV ] ) bits where ] PV ] denotes the number of elements 
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in the physical vector. 

3.4. An Example of BA.P 
The following example will be used to illustrate the BAF’ 

compression technique. For simplicity we will not specify BV 
and AV in their compressed form. Given 
DB = (1,0,0,4,0,0 0 0 0 0 0 0 8 0 0 0 12,0,0,0,0,17,0,0,20), Iet the con- ,,,,I I I II0 
stant be 0 and assume D = 5. Using BAP, the database DB 
will be compressed ss follows 

BV = (1 00 100000,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1) ,,,,I#,, 

PV = (1,4,8,12,17,20), 

and 

AV = (0,2,2,3,4). 

Let us consider the element se in AV. Since it is equal to N we 
know that there are no non-constants in the second section of 
DB. Az a further illustration, we note that the last non-constant 
in the third section of DB is 8 which appears in the third posi- 
tion of PV. We therefore have 4=3. 

8.5. Forwud Mapping 
In thii section we diicuzs the mapping from the logical 

database to the physical database. 
Given the ordinal position, LP, of a desired instance in 

the logical database, we want to determine whether this 
instance is a suppressed constant or an unsuppressed value. In 
the case it is unsuppressed, we would like to find its position in 
the physical vector (PV). In the description of the mappings, 
we lusume k=l, i.e., each subvector is compressed into a single 
block. A generalization to any k is straightforward. The algo- 
rithm is as follows. 

ALGORITHM FM 
(I). SN:= fLP/D 1; offset:==LP mod D; 
(2). READ block with relative position SN in compressed 

BV and decompress it into a buffer; 
(5). IF bv(offiet)=O THEN return DB(LP)=c; 
ELSE return DB(LP)=PV(AV(SN)+bitm(oliset)); 

where, the function bitzum(x) is a function which counts the 
number of l’s among the fir& x bits in the buffer and bv(j) is a 
function which gives the value of the j&z bit in the buffer. 

Consider the following example where D==S, 

BV = (1 00 1000 1000 1 OOO,O,l,O,O,l) I,,,,,,,, #I,,, 

and 

PV = (2,5,9,13,18,21), 

AV = (0,2,3,4). 

Let the required logical position be LP=12. Then 
fLP/D I== [12/S ]==3, we read in the third subvector of BV into 

the buffer, (in this example no decompression is performed) and 
find that bv(2) is a I-bit and bitsum(2)=1. Thus, 
DB(l2)==PV(AV(S)+l)==PV(3+l)=PV(4)=13. 

TBEOREM 1, Given that AV is in fast storage, Algo 
rithm FM requires one disk access to find the position in PV 
corresponding to a logical position LP and two disk accesses to 
find the value of the element in logical position LP of DB. 

Proof. From the algorithm FM, it is obvious that since 
AV resides in main memory, we need to access a single block of 
BV in order to find the position in PV of the element which is 
in position LP in DB. In the case that the required element is a 

non-constant and we need its actual value, one more block 
access in PV is needed. All the other operations specified by 
the algorithm do not require access to the disk. Q.E.D. 

3.8. Backward Mapping 
Given a position PP of a non-constant element y in PV, 

we want to find the logical position LP of this element in DB. 
The algorithm is a little more complicated than the forward 
mapping algorithm. As before, we denote the number of elc 
ments in AV by d where d= [N/D 1. 

ALGORITHM BM 
(1) Perform a binary search in AV to find the first entry 

larger than PP: 

I:=min 

Comment: At this point we know that the required non- 
constant y is in the (1-l)” section of DB; 

(2) READ the (I-1)” block of BV and decompress it into 
the buffer; 

(3) set j:=PP-AV(I-1); 
Comment: j-1 indicates how many non-constants precede 

the input non-constant y in the (I-l)* section of DB; 
(4) Let rel(j) be the relative position in the buffer of the j* 

l-bit. 
(5) LP:=rel(j) +(I-2)D; 

The last step is justified by noting that there are (I-2)D 
elements in preceding sections of the database and the input 
non-constant y is in position rel(j) of the (I-l)” section of DB. 

Consider the example we used for the forward mapping 
again. Let PP-4 and therefore the input non-constant y is 13. 
Then I=4 and we read into the buffer the (I-l)n block of BV. b 
this case j-43=1 which means that no non-constants appear 
in the (I-1)” section before the input non-constant y. We find 
rel(j)=2 which means that y is the second element in its section. 
The logical position LP is therefore 12. 

As in the case of forward mapping, we have the following 
theorem. 

THEOREM 2. If AV is contained in fast storage, back- 
ward mapping can be performed using one disk access. 

3.7. Compression Effkiency 
DEFINITION 1. The compression ratio B(X) of a given 

compression method X will be defined = the ratio of the total 
size of the database before and after it is compressed using 
method X. 

Let BAv be the number of bits of each element in AV and 
Bw be the number of bits of each element in PV. Using the 

BAF’ compression technique, BV requires d= g blocks which 
I 1 

is Sd bits where S is the block size in term of bits, AV requires 
d x B*v bits and PV requires an expected space of N( l-P(c))x BW 
bits. Thus, the number of bits to store the compressed data- 
base by BAP is 

NOB(BAP)=Sd + N(l-P(c)).B+d,B.,v. 
It is obvious that P(c) is inversely proportional to 

NOB(BAP). We have the following theorem. 

THEOREM 9. The compression ratio of BAP is 

R(BAP) - 
N.Bpv 

NOB(BAP) 
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We assume that Bw, the size of each uncompressed element, is 
the same in the logical database and PV. 

9.8. Experimenta 
We experimented with a simulated data base of 400,000 

elements to find the standard deviation of the compression 
ratio. The results are summarized in Table 1. For a given 
P(c), we took groups of 12288 bits and compressed them using 
Golomb’s method and then recorded the number of bits in the 
compressed vector (E.S.). From this we computed the actual 
compression ratio and standard deviation among the groups. 
Aa we see from the table, the standard deviation is very small 
and increases with P(c). In our experiments, we took a slightly 
smaller compression ratio (.98*R) to guarantee with a very high 
probability that no overflow occured. Assuming a blocksize of 
4096 bits , the D computed using this compression ratio is also 
listed in Table 1 (Theoretical D). 

We conducted some simulations to examine the size of 
the database that can be compressed using BAF’ subject to a 
given block size, internal memory for storing AV and required 
response time for searching. We looked at 3 different blocksizes 
(512,1024 and 4098 bytes). For each of these block sizes we 
looked at the compression efficiency when searching must be 
performed in 1, 3 or 5 block accesses of the database. We con- 
ducted these experiments for P(c)=.9 in Table 2. For example, 
we can see from Table 2 that if the blocbise is 512 and intelc 
nsl memory is sufficient to hold 1000 elements of AV, we can 
compress a database of 8,429,570 elements and perform search- 
ing in one block Bcceas. 

We alao conducted experiments to examine the relation- 
ship between the compression ratio, R(BAP), and the probabil- 
ity P(c) of the occurrence of a constant. For each P(c) in the 
range 0.2 up to 0.9 (step 0.1) and P(c)=0.95, we generated a file 
of 400,ooO elements. In this experiment the probability of a 
constant in each. location of the database was generated 
independently. Az expected, the results in Figure 1 indicate 
that the compression ratio Ft(BAP) increases rapidly with P(c), 
for P(c) equal to .95 the compression ratio exceeded 16. 

4. Compulson with Other Compreaaion Teclmlquea 
In this section, we compare the efficiency of the compres- 

sion techniques BAF’, header, bi: map and run-lengfh both from 
the point of view of efficiency of searching and compression 
efiicieney. 
4.1. Compsrieone of the Time Complexity 

We consider the time complexity of the forward mapping 
and the backward mapping of the four compression techniques 
mentioned above. We discuss the time complexities in term of 
accesses of secondary memory. 

As we saw in Section 3, the forward mapping algorithm of 
the BAP compression technique requires O(1) accesses. As 
opposed to this algorithm, the run-length and bitmap compres 
sion techniques require O(N) accesses for forward mapping 
where N is the number of elements in the database. The 
header compression technique is much better than the run- 
length and bit-map compression techniques. It requires 
O(log (HS)) accesses where HS is the expected size of the header. 
Thus, with respect to the forward mapping, BAP is the best 
one of the four techniques, the header compression is superior 
to the run-length and bit map compression techniques. 

As we saw in Section 3, the backward mapping algorithm 
of BAP’s is a O(1) algorithm. In case of backward mapping, 
BAF compression technique is still the best one of the four 
techniques. The header compression technique, which requires 
again O(log(HS)) accesses for the back mapping, is superior to 
the run-length and the bit map compression techniques. 
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4.2. Compression Efliciency 
First, we will derive the analytic expressions which 

represent the compression efficiency for the header, bit map, 
and run-length compression techniques. Then the compression 
efficiency of these techniques are compared to BAP. 

The derivation of the analytic expressions of compression 
efficiency for the header, bit map, run-length compression tech- 
niques are similar to that of BAP in section 3. 

4.2.1. Header Compresalon 
In order to derive the compression ratio of the header 

compression technique, we need to derive the average header 
size of this technique. 

LEMMA 1. Let DB be a logical database with size N 
and constant probability P(c). The average number of ele- 
ments in the header of the header compression technique is 

HS = 2(N-l).P(c).(l-P(c)) 

Proof. We define a brcok as a consecutive pair of ala 
ments in which the first is a constant and the second is a non- 
constant. Each occurrence of a break represents a switch from a 
constant run to a run of non-constants. The probability of 8 
pair of elements in DB to form a break is P(c)jl-P(c)). There 
are N-1 possible pairs, thus the average number of breaks is 
(N-l),P(c)(l-P(c)). And hence, the average number of constant 
and non-constant run pairs, is 

(N-I).P(c)( l-P(c)) 

Since each constant run and nonconstant run pair requires 
2 elements in the header [2,3], the average number of elements 
in the header is 

HS = 2(N-l),P(c)(l-P(c)). 

Q.E.D. 
Let BH3 be the average number of bits of each element in 

the header and Bw be the average number of bits of each non- 
constant in the compressed database (this is also the size of 
each element in PV of BAP). In the header compression tech- 
nique, the header size is H8,Bw; bits and the non-constants 
require N(l-P(c))x& bits. Thus, the number of bits to store 
the compressed database by the header compression is 

NOB(HC) - N( l-P(c))Br=&18~Bllc. 

And hence, the compression ratio of the header compression 
technique is 

R(HC) = N’Bw 
NOB(HC) 

4.2.2. Bit Map Comprcuion 
In bit map compression technique, the bit map requires N 

bits, and the non-constants require N(l-P(c))xBw bits. Thus, 
the number of bits to store the compressed database by the bit 
map technique is 

NOB(BM) = N( I-P(c)),BpvtN 

Thus, the compression ratio of the 
technique is 

bit map compression 

R(BM) = N%v 
NOB(BM) ’ 

4.2.9. Run-length Compraeeioa 
For this method we assume the values in the database are 

drawn from a certain domain and allow the compression of any 
run of similar values in the database. For this reason we intm 
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duce the variable domain size (DS) of the database which 
counts how many different values the elements can assume. For 
a given value xi in the domain, we denote by P(q) the probabil- 
ity it is found in any location of the database. First, we derive 
the average length of runs in a given database. Let DB be a 
given database with size N and domain size DS. 

LEMMA 2. The average run length in DB is 

Proof : The proof follows by observing that the length 
of a run of xi’s is a random variable with geometric distribution 
where the run is terminated ss soon as a non xi appears. The 

1 expected value of this random variable is -. 
1-P(xJ 

The above 

result is obtained by summing over all elements of the domain. 
Q.E.D. 

Let Bm, be the number of bits of the counter field in the 
run length encoding scheme, Bpv be the average number of bits 
of the record fields in the compressed database and F be. the 
number of bits of the separator field that indicates run-length 
encoding follows. We sssume that runs of size smaller than 
four are left uncompressed in the database, since compression 
only increases the length of the stored object. Assume that RN 
is the expected value of the number of runs to be compressed. 

The total number of bits to store the compressed data- 
base required by the run-length compression technique is 

NOB(RL) = RNx(h+B+F)+(N-RNx=)xBpv. 

The second term represents uncompressed runs in the database. 
The compression ratio of the run-length compression tech- 

nique is 

R(RL) = 
N.Bw 

NOB(RL) ’ 

4.9. Comprrkma of Compreuion Efficiency 
In the following experiments, we use the assumption that 

the counters in AV of BAP, those in header compression and 
run-length encoding are all of the same size B. Using our previ- 
ous notation, B~v===Brm~Bm,=B. We also we HC, BM and 
RL as a short-hand notation for the header compression, bit 
map compression and run-length compression technique respec- 
tively. 

4.3.1. BAP and Header compression 
In this section we want to derive a condition under which 

the compression ratio of BAP is higher than that of HC . 

THEOREM 4. If HS > 9 then R(BAP) > 

R(HC) otherwise R(BAP) <_ R(HC). 
Proof. From section 3 and section 4, the difference, 

NOB(HC)-NOB(BAP), between the average numbers of the 
bits of each value required by the two techniques is 

HSB+N(l-P(c)).B,+-(Sd +N(l-P(c)).Brv +d.B) 

The theorem follows by finding the condition on HS 
which makes the left hand side of the above equation greater 
than zero. Q.E.D. 

To compare the compression ratios of the BAP and HC in 
practice, we did experiments in case of clustering and non- 
clustering of constant runs. 

In the clustering run experiment we tried to simulate clus 
tering of runs rather than generating them’independently. In 
many realistic data base environments we can expect such clus 
terings to occur. We first chose a P(c), which is the ratio of 

constants to all values in the data base. We then generated files 
of 400,000 elements for each chosen run-length and scattered 
the runS randomly in the database such that the overall 
number of zeros is consistent with the required ratio. The 
results 01 these experiments are shown in Figure 2 where B was 
set at 33. The ratios were set at P(c)=O.9. Let R&rc be the 
experimentally generated total length of the constant run and 
non-constant run pairs. The goal of this experiment was to find 
the “break point”, b, of RLno such that R(BAP) > R(HC) 
when RLno<b and R(BAP) ,< R(HC) when RLn&b. We 
found that the breakpoint was approximately 180. Both 
compression ratios increase with the increase in RLno. 

We also conducted experiments on databases in which the 
generation of constants is independent between the different 
locations. In this csse we found that the compression ratio of 
BAP always dominates that of HC. The relationship between 
the two methods is summarized in Figure 3 for various values 
of P(c). 

4.3.2. BAP and Bit Map Compression 
Since the BAP method is a derivative of bit map 

compression, it is clear that if we use Golomb’s encoding in 
both cases we will end up having a slightly better compression 
efficiency using bit maps. For that reason we examined the 
effect of Golomb’s method by trying one method with Golomb’s 
compression and the other without it, ss explained next. 

In this experiment, eight files of size 400,000 elements 
were generated for P(c)=O.3, 0.3, 0.4, 0.5, 0.8, 0.7 , 0.8 and 0.9 

Each file was generated with B=3? and D=4096. We 
compressed the files using BAP with Golomb’s method and the 
bit map without it. We then examined the difference of 
R(BAP) and R(BM). Figure 4 shows that R(BM) is greater 
than R(BAP) when P(c) < 0.5 and R(BM) is smaller than 
R(BAP) when P(c) > 0.5. The difference of R(BAP) and R(BM) 
is very small when P(c) < 0.7. But when P(c) > 0.7, the 
difference increases rapidly, that is, BAP becomes much better 
than BM. The conclusion from this experiment is that the 
additional overhead involved in using Golomb’s encoding is 
justified for bit map and BAP for databases in which P(c) is 
larger than 0.5. 

4.3.3. BAP and Run-length Compression 
It is difficult to compare these two methods ss they 

should be used under different environments. As we explained 
earlier, run-length encoding can be used in cases were many 
different values from the domain can be compressed where ss 
BAP is mainly used to suppress a single prevalent constant. 
We can still compare under a given situation the expected 
compression ratio of the two methods using the analytical 
expressions as in section 4.3.1. Here, we only give the experi- 
mental results. 

Again in this set of experiments we generated clustered 
runs of different sizes based on a predetermined ratio, P(c), of 
constants and non-constants in the data base. The file size in 
each csse was 400,000 elements and for each test we fixed a run 
length and randomly scattered runs in the data base of this 
fixed length. The number of runs was of course determined by 
P(C) and the run length. For run length compression, for each 
specified run length ,we generated files with 500 runs and 1000 
runs for P(c)=O.9. 

The goal of this experiment was to examine the “break 
tint”, b, of run lengths such that R(BAP) > R(RL) when 
RLCb and R(BAP) < R(RL) when R?;zb. In this experiment, 
we assume that B=32 and D=4098. 

Figure 5 illustrates the experimental results when 
P(c)=O.9. The break points in this case are approximately 720 
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and 360 when RN=500 and 1,000 respectively. We also con- 
ducted experiments in which zeroes are randomly scattered in 
the data base. We generated a file with domain size DS equal 
to 100. However, the most likely element in the file was zero 
which was generated with probability P(c); all the other 99 
values were equally likely and generated with a total probabil- 
ity of l-P(c). The run length encoding compression was allowed 
to compress any run of values of length more than three. The 
results of this experiment are shown in Figure 6. As we can 
see, the BAP method always dominates run-length encoding in 
this experiment. 

5. Summary and Conclusions 
In this paper, a new compression method called BAP for 

constant removal has been introduced. The analysis of BAP’s 
compression effectiveness and searching complexity was 
developed. In order to compare BAP with other classical con- 
stant removal methods such as run-length encoding, header 
compression, and bit map, these methods were also analysed 
using similar assumptions on data characteristics. Extensive 
experiments were performed to validate the analytical results 
obtained. We experimented with databases in which runs are 
clustered as well as independently generated constants. We 
identified ranges under which a partial order of compression 
methods is derived in terms of the effectiveness of compression 
ratio. 

One of the conclusions of this study is that there is no 
overall winner under all circumstances. However, BAP is the 
clear winner in many ranges of data characteristics with respect 
to compression ratio. In addition to compression effectiveness 
in terms of physical size, BAP also gives very fast searching for 
both forward and backward mapping, typically, just one disk 
access. BAP is also more flexible in that it allows the user’s 
computing environment to be incorporated to achieve a more 
tailored solution to the compression problems. For example, 
the available amount of main memory storage and effective 
block size can have direct impact on the performance of BAP 
both in terms of compression ratio and searching time. 

One of the major disadvantages of the classical methods 
such as run-length encoding is that they cannot support 
updates to the database without completely readjusting the 
runs starting at the affected position all the way to the end of 
the file. The proponents of these methods claim that SSDBs 
are primarily static, but it is still an important requirement to 
support limited amount of updates in order to provide services 
such BS removing outlien, adjusting scientific observations, etc. 
In BAP, the support of a dynamic database is provided by 
allowing some small percentage of free space in each block. 
Since each block is an independent unit of compression, the rest 
of the blocks are not affected by an overflowed block. 

We are planning to perform more experiments by model- 
ling the data clustering characteristics in finer detail, in many 
more different file sizes, main storage availability, block sizes, 
etc. to obtain a more detailed performance metric of BAF’ with 
respect to other constant removal compression methods for 
SSDBs. 

We are also working on algorithms that can directly 
operate on compressed data using the method BAP without 
first decompressing the database. In addition to searching, 
operators such as transposition and aggregation are being 
developed on databases compreged by BAP. Results will be 
compared to the collection of similar algorithms of transposi- 
tion and aggregation on databases compressed by header 
compression and run-length encoding [17]. 
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Fig 1. Compression ratio as a function of constant’s probability. 
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Fig 2. Comparison of compression ratios for BAP and HC 
in case of clustering run and P(c)=O.9. 
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Fig 3. Comparison of compression ratios for BAP and HC 
in case of non-clustering run. 
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Fig 4. Comparison of com:ession ratios for BAP and BM. 
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Fig 5. Comparison of compression ratios for BAP and RL 
in case of clustering run and P(c)=O.9. 

2- 
-----------------( 

O-l 
01 0.J 01 as 0.9 0.7 0.0 0.9 

r(z, 

Fig 6. Comparison of compression ratios for BAP and RL 
in case of non-clustering run. 
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