
--_

A New Compression Method with
Fast Searching on Large Databases

Jian-zhong Li*, Doron Rotem** and Harry I<. T. Wang***

Lawrence Berkeley Laboratory,
University of California

Berkeley, California 94720

Abstract
In this paper, a new compression method for constant

removal from very large scientific and statistical databases is
presented. The new method combines the best features from
several classical constant removal compression methods. The
result, both analytical and expprimental, shows that the
method is superior to these popular methods in terms of
compression effectiveness and eficient searching on the.
compressed data. In addition to the development, analysis and
validation of this new method, this paper also presents analysis
of several traditional constant removal methods for the purpose
of analytic comparison. A large collection of experiments have
been designed and run to observe and validate the behavior of
the compression methods. Another contribution of the paper is
that performance characteristics are identified for different
compression methods under diierent data properties sssump-
tions. The result can be used as a bssis of selecting compres-
sion methods by matching the properties of the database at
hand to the data properties experimented in the paper.

1. Overview and MotSvation
We are interested in very large Scientific and Statistical

databases (SSDBs) ([5], [4]). SSDEls are prevalent in scientific,
so&-economic, and business applications. Examples of SSDBs
are experiments and simulations for scientific applications,

Supported by the Ofice of Energy Research, U.S. DOE
under Contract No. DEAC03-76SFOOO98.

* on leave from Dept. of Computer Science, Heilongjinng
Univ., China.

l * on leave from University of Waterloo, Canada.
*** Now with Ashton-Tate Advanced Development

Center.

Permission to copy without fee all or part of this mated is
granted provided that the copies are not made or dism%uted for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of rhe Very Large Data Base Endow-
ment. To copy otherwise, or to republish, re@res a fee and/or spe
ciaS permission from the EndowmeaN.

census, health, and environmental data for socio-economic
applications, and inventory and transaction analysis for busi-
ness applications. These databases are often very large and
sparse. Examples are scientific databases such as earthqu&e
monitoring databases and high energy physics databases where
the so-called noise (values that fall below certain threshold
values) are converted into nulls or zeros (referred to w con-
stants in the literature). The volume of these data is large
because they are typically collected by automatic devices and
most of the collected data are noise because interesting events
typically scatter between long periods of inactivity. Other
kinds of databases such as summary databases prevalent in
SSDBs are also very large and sparse.

To remove the large collection of constants is an essential
requirement for managing these SSDBs. This requirement rules
out a large body of compression techniques in the literature
that deals with transmission and text compression such as
Huffman encoding [8] and those in [1,7,8,9,10,11,12] ss men-
tioned in [13].

In addition to the amount of compression one can achieve
using a compression method, there are two other important
requirements that we stress in evaluating and selecting a
compression method. The first is the ability to perform
efficient and random searching in the compressed database,
given a logical position of the original database. This require-
ment is essential to provide a querying capability on the data-
base using the compressed data structure as the physical struc-
ture. Another equally important requirement on a compression
method is the capability to provide an efficient mapping from
arbitrary positions in the compressed data back to the
corresponding logical positions in the original database.
Because of the size and sparsity of SSDBs ss mentioned before,
it is desirable to have operators that can directly operate on
compressed data without first decompressing it. Operators such
as transposition and aggregation are good examples of why
direct manipulation on compressed data is desirable [17].
These operators, however, rely heavily on the ability to dis
cover efficiently, given an arbitrary position in the compressed
data, the corresponding logical position in the original dnta-
base, in order to reposition the data items in the new tran-
sposed space. For each data item in the compressed data, a
backward mapping is necessary to discover the coordinates of
the original space, so that a new position can be computed
corresponding to the new requdsted space. To have an efficient
transposition algorithm depends strongly on the ability to per-
form fast backward mapping. Classical methods such as run-
length encoding [6] and its derivatives such as header compres-
sion [2,3] provide good performance in terms of removing long
runs of constants, but they have a poor forward and backward

Proceedings of the 13th VLDB Conference, Brighton 1987 311

mapping capability. Also, these methods can not be used on
dynamic database environment where additions and deletions
may be required.

In this paper, a new constant removal compression
method is proposed and is shown to be superior to the classical
methods and their derivatives both analytically and experimen-
tally in most situations. It also lends itself to dynamic changes
in databases. There are three other important contributions in
this paper. First, analysis in terms of compression ratios and
searching efficiency is given for the new compression method ss
well as for three other competing constant removal methods.
Second, a large collection of experiments has been performed to
validate the analytic results of these methods. Third, data
characteristics have been identified under which a compression
method can be selected to provide the best compression ratio.

The rest of the paper is organized as follows, the next sec-
tion provides some background and terminology for the sections
to follow. Section three discusses our new compression method,
called BAP. Experiments and analysis results are given in Sec-
tion four. In that section, comparison of BAF’ with other con-
stant removal methods is given to provide a performance
metric under different situations. Finally, Section five provides
some conclusion and a discussion’ for future work.

2. Background
In this section, some important terms on constant rem*

val compression will be introduced. Also, we will survey three
popular techniques for constant removal. They are bit map,
run-length encoding and header compression. The terms logical
database and phyaicsl database are used to refer to the
uncompressed and compressed database respectively. The jsr-
word mapping is a mechanism that determines the position in
the physical database for a given position of a value in the logi-
cal database. The backward mapping is a mechanism that
determines the position in the logical database for a given phy-
sical position in the physical database.

2.1. Bit Map
A bit map compression scheme consists of a bit map and

a physical database which stores the non-constant values. The
bit map is employed to indicate the presence or absence of
non-constant data. The following example shows how the bit
map compression scheme can be employed to implement a ver-
sion of constant suppression.

Example:
Original data string

dl, c, c, d2, c, c, c, d3.
Comprcaacd data string
bit map: 10010001.
physical database : dl, d2, d3.
For the bit map compression method, the mapping

mechanism must search the whole bit map for both forward
and backward mapping. And thus, the access time for both for-
ward and backward mapping is O(N), where N is the number of
bits in the bit map or equivalently the number of elements in
the database.

2.2. Run-Length Encoding
The application of run-length encoding to constant rem*

val is that each consecutive run of constants (there can be a
few different types of constants to be removed) is replaced by a
triple consisting of a separator SEP, an encoding of the con-
stant X to be removed and a counter C indicating the length of
the run.

To search a run-length encoded database for both forward

and backward mapping, a sequential search has to be done to
sequence through the data, counting the number of
unsuppressed values and references to the number of repeated
values. The time required here is again O(N).

2.3. Header Compression
The header compression scheme is shown below. The vec-

tor L, represents the uncompressed form of a database, in which
the O’s are the constant to be suppressed and the V’s are the
unsuppressed values. Beneath the vector L is the list of counts
which comprise the compression header, H. The odd-positioned
counts hold accumulations of unsuppressed values; and the
even-positioned counts hold the accumulations of zeros. The
physical, compressed form of the data is represented by P.

L:V1V2000000000V3V4V5V6V700V8V9V10000

H: 2,9,7,11,10,14

P: Vl V2 V3 V4 V5 V6 V7 V8 V9 VlO

For the header compression method, the forward and
backward mapping can be processed by binary searching on the
header, H. Both of them require O(log s) time where s is the
size of the header.

3. The BAP Compression Scheme
In this section we consider a new compression method

which incorporates the advantages of several existing tech-
niques.

The compression technique presented here constructs a
physical database which consists of three parts: Bit vector
(BV), Addrcra vector (AV), and Physical vector (PV), and is
therefore called the BAF’ compression technique.

3.1. An overview of the BAP method
Let DB=(x,,xs, ,xn) be a logical database, and c be the

constant to be suppressed. The bit vector, BV, indicates loci+
tions of constants and non-constants in the database and will
be stored on disk in a compressed form as explained later. The
physical vector PV is the vector of the non-constants in DB, i.e.

pv - (Y,,Y% ,Y.)

where, ye are in DB and yjfc. The yp are arranged according
to their logical order in DB for 1 5 j < n , n 5 N and are
stored on disk. It is assumed that non-constants cannot be
compressed, hence no compression algorithm is applied to PV.
Finally, the address vector AV is typically small and will be
used as an index for searching in the database; we will show
that in most practical applications it can be stored in fast
storage.

The idea behind our method is that in addition to
efficient compression we need fast forward and backward map
ping capabilities between the logical and physical database. In
fact we will show that after compressing the logical database
DB, we can find what is the position in PV of any of the xi’s in
one disk access, provided that AV is maintained in fast storage.
Conversely, given a position j in the physical database PV, we
can determine what was its original location in DB, again using
only a single disk access.

We now describe the components BV and AV in more
detaii.

3.2. Bit Vector (BV)
The bit vector is

BV = (Wz, hi)

312 Proceedings of the 13th VLDB Conference, Brighton 1987

where,

b, =
1 If x,#c
0 if x~=c for 1 2 i < N

Since BV is a bit vector of N bits, we can compress it using run
length encoding in which we replace each run of zeroes by a
counter which indicates the length of this run. There are
several methods for achieving efficient run length encoding, the
main problem here is how to encode the counters and provide a
separator between counters. We chose to use in our case the
Golomb encoding method [14,15] which was proven to achieve
a compression ratio close to the information theoretic lower
bound.

We had to modify this method so that we could also
search in the compressed data. To this end, we divide BV into
subvectors of D bits each, where D is a parameter chosen by the
user. We will later show a mathematical analysis of how D is
determined in order to maximize the eficiency of our compres-
sion scheme, subject to limitations such as storage size, block
size and required response time. Each subvector in BV is
compressed independently using Golomb’s method and stored
on a separate disk block (or a sequence of a few consecutive
blocks). We now give an overview of Golomb’s encoding
method.

2.2.1. Golomb’s encoding scheme
We dehne the compression ratio of a binary vector to be

the ratio between the number of bits it occupies before and
after it is compressed. The efficiency of Golomb’s scheme is
achieved by encoding the counters and the separators using a
special method. The codeword for each counter is constructed
as foUows. A parameter m is chosen BS explained later, and
then each run of r consecutive zero bits is divided into [r/m]
groups consisting of m bits each except for the last group which
may contain less than m bits. Each group is encoded by a I-bit
and the lsst group is encoded by a counter of fixed length. The
idea of the method is illustrated below. The codeword for each
counter consists of a variable-length prefiz which has a l-bit for
each group of m O-hits, and a fixed-length tail which counts the
number of &bits in the last group. The prefix consists of
[r/m j l-bits followed by a &bit as a separator. The tail con-

sists of a binary number of logsm bits and its value is:
r - rn’ [r/m 1. It is shown in 115 i ’ that in order to maximize the
efficiency of the method, the parameter m should be chosen as
the integer such that pm is as close ss possible to 0.5, where p is
the O-bit probability. The compression ratio is shown in 1151 to
be a random variable with expected value R where

R=
(1-p)(log*li+(l-pm)+)

where m 1
=-loglp. Run

l%e IYst of the run-length
represented as a bin&y

iiiuber of [logp) bits

<= tafll

3.2.2. Using Golomb’s method in BAP
Turning back now to the BAP method, we will compress

each subvector in BV independently and store it on a disk
block. Let us assume that the probability P(c), of finding a con-
stant in each location of the database is fixed and independent
of other locations. From [15], we know that the expected value
of the compression ratio in this case is

R= (1-P(c)Xlog~+(I-P(c)m)-l)

1 where m=--.
bQY4

We are now in a position to explain how the user should
choose the parameter D. It is intuitively clear that we are
interested in having D as large ss possible to maximize the
compression efficiency. On the other hand as we explain later,
in order to ensure that no more than k block accesses will be
required for searching in the database, we require that each
compressed subvector will fit on a sequence of at most k con-
secutive blocks. In most practical applications we will require
k=l. Given a block size of S bits and an expected compression
ratio R, it follows from the above restriction that the size of the
subvector D should be chosen such that after compression ,each
subvector of D bits should with a very high probability occupy
less than kS bits. We found experimentally (see Table 1) that
the distribution of the compression ratio hss a very small stan-
dard deviation for all practical values. of P(c) (typically less
than 1.2 percent of R). Hence by using a compression ratio
R’ =.98R which is slightly smaller than the expected compres
sion ratio R, we ensure with extremely high probability that no
overflow will occur when we choose D to be the maximum
integer such that

+kS

In practice, a small overflow area may be assigned to the file so
that in the unlikely event that any of the compressed subvec-
tars requires more than kS bits, the remaining bits will be
stored in the overflow area. Assuming no overflow, the
compressed database will occupy IN/D 1 blocks, each block of
size S bits.

3.3. Address Vector (AV)
The division of BV into subvectors imposes a division of

the database DB into d= [N/D 1 sections, each consisting of D
elements. In each one of these sections we may have zero or
more non-constants. We define the address vector ss

where, a,=O, and for i>Z, ai is the relative position in PV of
the last non-constant element in the (i-1)“’ section of DB if such
a non-constant exists; otherwise (all elements in the (i-l)‘b sec-
tion are constants) , we set ai=*,.

The key point of this compression technique is that AV
can reside in main memory by choosing the parameter D to be
sufficiently large. Our experiments indicated that for all practi-
cal database sizes and values of P(c), no further compression of
AV is needed. However, if the size of AV turns out to be larger
than the available memory, we can take advantage of the fact
that the difference between two successive elements in AV is
very small (and bounded by 2D) as compared to the absolute
value of each element, which depends on the size of PV.

In order to compress AV, we may use a rclotive encoding
method [IS] in which we store the difference of two consecutive
elements instead of storing the actual elements. In this way,
the size of each element is encoded in logd2D) bits instead of
logd] PV]) bits where] PV] denotes the number of elements

Proceedings of the 13th VLDB Conference, Brighton 1987 313

in the physical vector.

3.4. An Example of BA.P
The following example will be used to illustrate the BAF’

compression technique. For simplicity we will not specify BV
and AV in their compressed form. Given
DB = (1,0,0,4,0,0 0 0 0 0 0 0 8 0 0 0 12,0,0,0,0,17,0,0,20), Iet the con- ,,,,I I I II0
stant be 0 and assume D = 5. Using BAP, the database DB
will be compressed ss follows

BV = (1 00 100000,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1) ,,,,I#,,

PV = (1,4,8,12,17,20),

and

AV = (0,2,2,3,4).

Let us consider the element se in AV. Since it is equal to N we
know that there are no non-constants in the second section of
DB. Az a further illustration, we note that the last non-constant
in the third section of DB is 8 which appears in the third posi-
tion of PV. We therefore have 4=3.

8.5. Forwud Mapping
In thii section we diicuzs the mapping from the logical

database to the physical database.
Given the ordinal position, LP, of a desired instance in

the logical database, we want to determine whether this
instance is a suppressed constant or an unsuppressed value. In
the case it is unsuppressed, we would like to find its position in
the physical vector (PV). In the description of the mappings,
we lusume k=l, i.e., each subvector is compressed into a single
block. A generalization to any k is straightforward. The algo-
rithm is as follows.

ALGORITHM FM
(I). SN:= fLP/D 1; offset:==LP mod D;
(2). READ block with relative position SN in compressed

BV and decompress it into a buffer;
(5). IF bv(offiet)=O THEN return DB(LP)=c;
ELSE return DB(LP)=PV(AV(SN)+bitm(oliset));

where, the function bitzum(x) is a function which counts the
number of l’s among the fir& x bits in the buffer and bv(j) is a
function which gives the value of the j&z bit in the buffer.

Consider the following example where D==S,

BV = (1 00 1000 1000 1 OOO,O,l,O,O,l) I,,,,,,,, #I,,,

and

PV = (2,5,9,13,18,21),

AV = (0,2,3,4).

Let the required logical position be LP=12. Then
fLP/D I== [12/S]==3, we read in the third subvector of BV into

the buffer, (in this example no decompression is performed) and
find that bv(2) is a I-bit and bitsum(2)=1. Thus,
DB(l2)==PV(AV(S)+l)==PV(3+l)=PV(4)=13.

TBEOREM 1, Given that AV is in fast storage, Algo
rithm FM requires one disk access to find the position in PV
corresponding to a logical position LP and two disk accesses to
find the value of the element in logical position LP of DB.

Proof. From the algorithm FM, it is obvious that since
AV resides in main memory, we need to access a single block of
BV in order to find the position in PV of the element which is
in position LP in DB. In the case that the required element is a

non-constant and we need its actual value, one more block
access in PV is needed. All the other operations specified by
the algorithm do not require access to the disk. Q.E.D.

3.8. Backward Mapping
Given a position PP of a non-constant element y in PV,

we want to find the logical position LP of this element in DB.
The algorithm is a little more complicated than the forward
mapping algorithm. As before, we denote the number of elc
ments in AV by d where d= [N/D 1.

ALGORITHM BM
(1) Perform a binary search in AV to find the first entry

larger than PP:

I:=min

Comment: At this point we know that the required non-
constant y is in the (1-l)” section of DB;

(2) READ the (I-1)” block of BV and decompress it into
the buffer;

(3) set j:=PP-AV(I-1);
Comment: j-1 indicates how many non-constants precede

the input non-constant y in the (I-l)* section of DB;
(4) Let rel(j) be the relative position in the buffer of the j*

l-bit.
(5) LP:=rel(j) +(I-2)D;

The last step is justified by noting that there are (I-2)D
elements in preceding sections of the database and the input
non-constant y is in position rel(j) of the (I-l)” section of DB.

Consider the example we used for the forward mapping
again. Let PP-4 and therefore the input non-constant y is 13.
Then I=4 and we read into the buffer the (I-l)n block of BV. b
this case j-43=1 which means that no non-constants appear
in the (I-1)” section before the input non-constant y. We find
rel(j)=2 which means that y is the second element in its section.
The logical position LP is therefore 12.

As in the case of forward mapping, we have the following
theorem.

THEOREM 2. If AV is contained in fast storage, back-
ward mapping can be performed using one disk access.

3.7. Compression Effkiency
DEFINITION 1. The compression ratio B(X) of a given

compression method X will be defined = the ratio of the total
size of the database before and after it is compressed using
method X.

Let BAv be the number of bits of each element in AV and
Bw be the number of bits of each element in PV. Using the

BAF’ compression technique, BV requires d= g blocks which
I 1

is Sd bits where S is the block size in term of bits, AV requires
d x B*v bits and PV requires an expected space of N(l-P(c))x BW
bits. Thus, the number of bits to store the compressed data-
base by BAP is

NOB(BAP)=Sd + N(l-P(c)).B+d,B.,v.
It is obvious that P(c) is inversely proportional to

NOB(BAP). We have the following theorem.

THEOREM 9. The compression ratio of BAP is

R(BAP) -
N.Bpv

NOB(BAP)

314 Proceedings of the 13th VLDB Conference, Brighton 1987

We assume that Bw, the size of each uncompressed element, is
the same in the logical database and PV.

9.8. Experimenta
We experimented with a simulated data base of 400,000

elements to find the standard deviation of the compression
ratio. The results are summarized in Table 1. For a given
P(c), we took groups of 12288 bits and compressed them using
Golomb’s method and then recorded the number of bits in the
compressed vector (E.S.). From this we computed the actual
compression ratio and standard deviation among the groups.
Aa we see from the table, the standard deviation is very small
and increases with P(c). In our experiments, we took a slightly
smaller compression ratio (.98*R) to guarantee with a very high
probability that no overflow occured. Assuming a blocksize of
4096 bits , the D computed using this compression ratio is also
listed in Table 1 (Theoretical D).

We conducted some simulations to examine the size of
the database that can be compressed using BAF’ subject to a
given block size, internal memory for storing AV and required
response time for searching. We looked at 3 different blocksizes
(512,1024 and 4098 bytes). For each of these block sizes we
looked at the compression efficiency when searching must be
performed in 1, 3 or 5 block accesses of the database. We con-
ducted these experiments for P(c)=.9 in Table 2. For example,
we can see from Table 2 that if the blocbise is 512 and intelc
nsl memory is sufficient to hold 1000 elements of AV, we can
compress a database of 8,429,570 elements and perform search-
ing in one block Bcceas.

We alao conducted experiments to examine the relation-
ship between the compression ratio, R(BAP), and the probabil-
ity P(c) of the occurrence of a constant. For each P(c) in the
range 0.2 up to 0.9 (step 0.1) and P(c)=0.95, we generated a file
of 400,ooO elements. In this experiment the probability of a
constant in each. location of the database was generated
independently. Az expected, the results in Figure 1 indicate
that the compression ratio Ft(BAP) increases rapidly with P(c),
for P(c) equal to .95 the compression ratio exceeded 16.

4. Compulson with Other Compreaaion Teclmlquea
In this section, we compare the efficiency of the compres-

sion techniques BAF’, header, bi: map and run-lengfh both from
the point of view of efficiency of searching and compression
efiicieney.
4.1. Compsrieone of the Time Complexity

We consider the time complexity of the forward mapping
and the backward mapping of the four compression techniques
mentioned above. We discuss the time complexities in term of
accesses of secondary memory.

As we saw in Section 3, the forward mapping algorithm of
the BAP compression technique requires O(1) accesses. As
opposed to this algorithm, the run-length and bitmap compres
sion techniques require O(N) accesses for forward mapping
where N is the number of elements in the database. The
header compression technique is much better than the run-
length and bit-map compression techniques. It requires
O(log (HS)) accesses where HS is the expected size of the header.
Thus, with respect to the forward mapping, BAP is the best
one of the four techniques, the header compression is superior
to the run-length and bit map compression techniques.

As we saw in Section 3, the backward mapping algorithm
of BAP’s is a O(1) algorithm. In case of backward mapping,
BAF compression technique is still the best one of the four
techniques. The header compression technique, which requires
again O(log(HS)) accesses for the back mapping, is superior to
the run-length and the bit map compression techniques.

Proceedings of the 13th VLDB Conference, Brighton 1987

4.2. Compression Efliciency
First, we will derive the analytic expressions which

represent the compression efficiency for the header, bit map,
and run-length compression techniques. Then the compression
efficiency of these techniques are compared to BAP.

The derivation of the analytic expressions of compression
efficiency for the header, bit map, run-length compression tech-
niques are similar to that of BAP in section 3.

4.2.1. Header Compresalon
In order to derive the compression ratio of the header

compression technique, we need to derive the average header
size of this technique.

LEMMA 1. Let DB be a logical database with size N
and constant probability P(c). The average number of ele-
ments in the header of the header compression technique is

HS = 2(N-l).P(c).(l-P(c))

Proof. We define a brcok as a consecutive pair of ala
ments in which the first is a constant and the second is a non-
constant. Each occurrence of a break represents a switch from a
constant run to a run of non-constants. The probability of 8
pair of elements in DB to form a break is P(c)jl-P(c)). There
are N-1 possible pairs, thus the average number of breaks is
(N-l),P(c)(l-P(c)). And hence, the average number of constant
and non-constant run pairs, is

(N-I).P(c)(l-P(c))

Since each constant run and nonconstant run pair requires
2 elements in the header [2,3], the average number of elements
in the header is

HS = 2(N-l),P(c)(l-P(c)).

Q.E.D.
Let BH3 be the average number of bits of each element in

the header and Bw be the average number of bits of each non-
constant in the compressed database (this is also the size of
each element in PV of BAP). In the header compression tech-
nique, the header size is H8,Bw; bits and the non-constants
require N(l-P(c))x& bits. Thus, the number of bits to store
the compressed database by the header compression is

NOB(HC) - N(l-P(c))Br=&18~Bllc.

And hence, the compression ratio of the header compression
technique is

R(HC) = N’Bw
NOB(HC)

4.2.2. Bit Map Comprcuion
In bit map compression technique, the bit map requires N

bits, and the non-constants require N(l-P(c))xBw bits. Thus,
the number of bits to store the compressed database by the bit
map technique is

NOB(BM) = N(I-P(c)),BpvtN

Thus, the compression ratio of the
technique is

bit map compression

R(BM) = N%v
NOB(BM) ’

4.2.9. Run-length Compraeeioa
For this method we assume the values in the database are

drawn from a certain domain and allow the compression of any
run of similar values in the database. For this reason we intm

315

duce the variable domain size (DS) of the database which
counts how many different values the elements can assume. For
a given value xi in the domain, we denote by P(q) the probabil-
ity it is found in any location of the database. First, we derive
the average length of runs in a given database. Let DB be a
given database with size N and domain size DS.

LEMMA 2. The average run length in DB is

Proof : The proof follows by observing that the length
of a run of xi’s is a random variable with geometric distribution
where the run is terminated ss soon as a non xi appears. The

1 expected value of this random variable is -.
1-P(xJ

The above

result is obtained by summing over all elements of the domain.
Q.E.D.

Let Bm, be the number of bits of the counter field in the
run length encoding scheme, Bpv be the average number of bits
of the record fields in the compressed database and F be. the
number of bits of the separator field that indicates run-length
encoding follows. We sssume that runs of size smaller than
four are left uncompressed in the database, since compression
only increases the length of the stored object. Assume that RN
is the expected value of the number of runs to be compressed.

The total number of bits to store the compressed data-
base required by the run-length compression technique is

NOB(RL) = RNx(h+B+F)+(N-RNx=)xBpv.

The second term represents uncompressed runs in the database.
The compression ratio of the run-length compression tech-

nique is

R(RL) =
N.Bw

NOB(RL) ’

4.9. Comprrkma of Compreuion Efficiency
In the following experiments, we use the assumption that

the counters in AV of BAP, those in header compression and
run-length encoding are all of the same size B. Using our previ-
ous notation, B~v===Brm~Bm,=B. We also we HC, BM and
RL as a short-hand notation for the header compression, bit
map compression and run-length compression technique respec-
tively.

4.3.1. BAP and Header compression
In this section we want to derive a condition under which

the compression ratio of BAP is higher than that of HC .

THEOREM 4. If HS > 9 then R(BAP) >

R(HC) otherwise R(BAP) <_ R(HC).
Proof. From section 3 and section 4, the difference,

NOB(HC)-NOB(BAP), between the average numbers of the
bits of each value required by the two techniques is

HSB+N(l-P(c)).B,+-(Sd +N(l-P(c)).Brv +d.B)

The theorem follows by finding the condition on HS
which makes the left hand side of the above equation greater
than zero. Q.E.D.

To compare the compression ratios of the BAP and HC in
practice, we did experiments in case of clustering and non-
clustering of constant runs.

In the clustering run experiment we tried to simulate clus
tering of runs rather than generating them’independently. In
many realistic data base environments we can expect such clus
terings to occur. We first chose a P(c), which is the ratio of

constants to all values in the data base. We then generated files
of 400,000 elements for each chosen run-length and scattered
the runS randomly in the database such that the overall
number of zeros is consistent with the required ratio. The
results 01 these experiments are shown in Figure 2 where B was
set at 33. The ratios were set at P(c)=O.9. Let R&rc be the
experimentally generated total length of the constant run and
non-constant run pairs. The goal of this experiment was to find
the “break point”, b, of RLno such that R(BAP) > R(HC)
when RLno<b and R(BAP) ,< R(HC) when RLn&b. We
found that the breakpoint was approximately 180. Both
compression ratios increase with the increase in RLno.

We also conducted experiments on databases in which the
generation of constants is independent between the different
locations. In this csse we found that the compression ratio of
BAP always dominates that of HC. The relationship between
the two methods is summarized in Figure 3 for various values
of P(c).

4.3.2. BAP and Bit Map Compression
Since the BAP method is a derivative of bit map

compression, it is clear that if we use Golomb’s encoding in
both cases we will end up having a slightly better compression
efficiency using bit maps. For that reason we examined the
effect of Golomb’s method by trying one method with Golomb’s
compression and the other without it, ss explained next.

In this experiment, eight files of size 400,000 elements
were generated for P(c)=O.3, 0.3, 0.4, 0.5, 0.8, 0.7 , 0.8 and 0.9

Each file was generated with B=3? and D=4096. We
compressed the files using BAP with Golomb’s method and the
bit map without it. We then examined the difference of
R(BAP) and R(BM). Figure 4 shows that R(BM) is greater
than R(BAP) when P(c) < 0.5 and R(BM) is smaller than
R(BAP) when P(c) > 0.5. The difference of R(BAP) and R(BM)
is very small when P(c) < 0.7. But when P(c) > 0.7, the
difference increases rapidly, that is, BAP becomes much better
than BM. The conclusion from this experiment is that the
additional overhead involved in using Golomb’s encoding is
justified for bit map and BAP for databases in which P(c) is
larger than 0.5.

4.3.3. BAP and Run-length Compression
It is difficult to compare these two methods ss they

should be used under different environments. As we explained
earlier, run-length encoding can be used in cases were many
different values from the domain can be compressed where ss
BAP is mainly used to suppress a single prevalent constant.
We can still compare under a given situation the expected
compression ratio of the two methods using the analytical
expressions as in section 4.3.1. Here, we only give the experi-
mental results.

Again in this set of experiments we generated clustered
runs of different sizes based on a predetermined ratio, P(c), of
constants and non-constants in the data base. The file size in
each csse was 400,000 elements and for each test we fixed a run
length and randomly scattered runs in the data base of this
fixed length. The number of runs was of course determined by
P(C) and the run length. For run length compression, for each
specified run length ,we generated files with 500 runs and 1000
runs for P(c)=O.9.

The goal of this experiment was to examine the “break
tint”, b, of run lengths such that R(BAP) > R(RL) when
RLCb and R(BAP) < R(RL) when R?;zb. In this experiment,
we assume that B=32 and D=4098.

Figure 5 illustrates the experimental results when
P(c)=O.9. The break points in this case are approximately 720

316
Proceedings of the 13th VLDB Conference, Brighton 1987

and 360 when RN=500 and 1,000 respectively. We also con-
ducted experiments in which zeroes are randomly scattered in
the data base. We generated a file with domain size DS equal
to 100. However, the most likely element in the file was zero
which was generated with probability P(c); all the other 99
values were equally likely and generated with a total probabil-
ity of l-P(c). The run length encoding compression was allowed
to compress any run of values of length more than three. The
results of this experiment are shown in Figure 6. As we can
see, the BAP method always dominates run-length encoding in
this experiment.

5. Summary and Conclusions
In this paper, a new compression method called BAP for

constant removal has been introduced. The analysis of BAP’s
compression effectiveness and searching complexity was
developed. In order to compare BAP with other classical con-
stant removal methods such as run-length encoding, header
compression, and bit map, these methods were also analysed
using similar assumptions on data characteristics. Extensive
experiments were performed to validate the analytical results
obtained. We experimented with databases in which runs are
clustered as well as independently generated constants. We
identified ranges under which a partial order of compression
methods is derived in terms of the effectiveness of compression
ratio.

One of the conclusions of this study is that there is no
overall winner under all circumstances. However, BAP is the
clear winner in many ranges of data characteristics with respect
to compression ratio. In addition to compression effectiveness
in terms of physical size, BAP also gives very fast searching for
both forward and backward mapping, typically, just one disk
access. BAP is also more flexible in that it allows the user’s
computing environment to be incorporated to achieve a more
tailored solution to the compression problems. For example,
the available amount of main memory storage and effective
block size can have direct impact on the performance of BAP
both in terms of compression ratio and searching time.

One of the major disadvantages of the classical methods
such as run-length encoding is that they cannot support
updates to the database without completely readjusting the
runs starting at the affected position all the way to the end of
the file. The proponents of these methods claim that SSDBs
are primarily static, but it is still an important requirement to
support limited amount of updates in order to provide services
such BS removing outlien, adjusting scientific observations, etc.
In BAP, the support of a dynamic database is provided by
allowing some small percentage of free space in each block.
Since each block is an independent unit of compression, the rest
of the blocks are not affected by an overflowed block.

We are planning to perform more experiments by model-
ling the data clustering characteristics in finer detail, in many
more different file sizes, main storage availability, block sizes,
etc. to obtain a more detailed performance metric of BAF’ with
respect to other constant removal compression methods for
SSDBs.

We are also working on algorithms that can directly
operate on compressed data using the method BAP without
first decompressing the database. In addition to searching,
operators such as transposition and aggregation are being
developed on databases compreged by BAP. Results will be
compared to the collection of similar algorithms of transposi-
tion and aggregation on databases compressed by header
compression and run-length encoding [17].

References

Proceedings of the 13th VLDB Conference, Brighton 1987

1. Aronson, J , “Data CompressIon -
Institute for Computer Science and

A Comparison of Methods”,
Technology, National Bureau of

Standards, Washington. D.C., pp. 3-5.

2. Eggers, S. J., Shoshani. A., “Efiicient Accesses of Compressed
Data”, Proceedings oJ the International ConJerence on Very Large
Database, 6, Montreal, 1980, 205-211.

3. Eggers, S. J , Olken, F., Shoshani. A., “A Compression Technique
for Laige Statistical Database”, Proc. of the International Conference
on Very Large Database, 1981, pp. 424-434.

4. Shoshani, A., Olken, F., Wong, H.K.T., “Characteristics of
Scientific Databases”, Proc. oJ the International Conference on Very
Large Databases, 1984, pp. 147-160.

5 Shoshanl. A., “Statistical Databases: Characteristics, Problems, and
some Solution”, Proc. oJ the International ConJerence on Vetq Large
Database, 198?, pp. 208-222.

6. Alsberg, P. A., “Space and Time Savings Through Lar 4 Database
Compression and Dynamic Restructurrng”, Proceeding a
Vol. 63, no. 8, August, 1975, pp. 1114-II??.

f the IEEE,

7. Gottlieb, D., Hag+, S., Lehot, P., Rabinowitz. H., “A
Classification of CompressIon Methods and their Usefulness for a
Large Data Processing Center”, Proceedings of Lhe Infernational
ConJerence on Management oJ Data, Boston, 1979, pp. 93-101.

8. Hufiman, D. A. “A Method for the Construction of Minimum
Redundancy Codes”, Proceedings oJ IRE, Vol. 40. September, 1952,
pp. 1098-1101.

9. Aronson, J. “Data Compression - A Comparison of Methods”,
ACM Transactions on Database Syatemr, Vol. 4, no. 4, December,
1979, pp. 531-544.

10. Hahn, B., “A New Technique for the Compression and Storage of
Data”, Communication oJ the ACM, Vol. 17, no. 8, August, 1974, pp.
434-436.

11. Knuth, D. E., The art oJ the Computer Programming, Volume 9:
Sorting and Searching, Addison-Wesley, Reading, Mass.. 1973, pp,
401.

12. Tarjan, R. E., Yao, A. C., “Storing a Sparse Database”, ui.
(Z;E6y;,nications of the ACM, Vol. 22, no. 11, November, 1979, pp.

13. Bsssiouni, M. A., “Data compression in Scientific and Statistical
Databases”, IEEE Transacfions on SoJkoore Engineering, Vol. SEll,
no. 10, October, 1985, pp. 1047-1058.

14. Bahl, L.R. and Kobayashi. H. “Image data compression by
predictive coding II: Encoding algorithm”, IBM 1. Rcs. Dcuelop.,
18(Z), 1974.

15. Teuhola, Jukka, “A Compression Method for Clustered Bit-
Vectors”, Information Processing Letters, Vol. 7, No. 6, October 1978.

16. Held, Gilbert, “Data Compression”, John Wiley & Sons, New
York, 1983, pp. 49-51.

17. Wang, H.I<.T and Li, Jlan-zhong, “Transposition Algorithm on
Very Large Compressed Databases”, Proc. oJ VLDB, Kyoto. Japan,
August 1986

D4.W’RVOW

Table 1.

to- ’

I

IS-

lo-

S-

o ,
- 0.s 0.4 OS 0.9 0.7 a9 a9 1

Fig 1. Compression ratio as a function of constant’s probability.

loI

Fig 2. Comparison of compression ratios for BAP and HC
in case of clustering run and P(c)=O.9.

lo,-- - msL_

o! RI
0.S 01

1
0.1 0.9 0.7 0.9 09

Fig 3. Comparison of compression ratios for BAP and HC
in case of non-clustering run.

4.2 !
02 0.s 01

I
oa 0.9 0.7 02 09

Fig 4. Comparison of com:ession ratios for BAP and BM.

IOJ

b- I-’

y-R(BAPl

#’
c- ’

, r;-rqRL)JLN-Im
- A”

4-r’

.@/’
I$,

$9

2- -- _#--
__---

0 ,

Fig 5. Comparison of compression ratios for BAP and RL
in case of clustering run and P(c)=O.9.

2-
-----------------(

O-l
01 0.J 01 as 0.9 0.7 0.0 0.9

r(z,

Fig 6. Comparison of compression ratios for BAP and RL
in case of non-clustering run.

6924200

3’4096
I 41545.7 P7729W

5*4096 ! 69242.9 34621400

1.4096 13848.6

3.4096
I

13848800

41545.7 41554700

69242900

138486W

3’8192 I 83091.5 41545700

69242900

27697200

3.8192
I

83091.5 83091300

138486WO

55394300

3.32768 332366
I

166183&M

s3276a I 553943 276927530

I.32768 110789 110789Wc

3’32768 332366 33236m

5.32768 553943 55394m

P(c)=O.9 R=?.I 0.98*R=2.058

Table 2.

! 500

4006

t-

loo0

-

0
I

N=D’d
limitation c
atabur rite

No. or
block
ICEeIe,

Per

318 proceedings of the 13th VLDB Conference, Brighton 1987

