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Abstract 

Consider a database containing not only base relations 
but also derived relations (also called materialized or con- 
crete views). Relation fragments in a distributed database, 
view indexes, and intermediate results obtained during 
query procsssing are all examples of derived relations. The 
query transformation problem is then the following: Given 
a query (or a subquery), can it be computed from the avail- 
able set of derived relations, and, if so, how? We have 
solved the query transformation problem for the case when 
both the query and the derived relations are defined by 
P&I-expressions, that is, relational algebra expressions con- 
taining only projects, selects and joins. This paper gives an 
overview of the underlying theory, shows how to reduce the 
number of attribute mappings to be considered, and 
presents a prototype system for query transformation. 

1. Introduction 

A derived relation is a relation resulting from the 
evaluation of a query over some database instance. Assume 
that we have available in stored form a set El, E2, . . . , En 
of derived relations, where each derived relation is defined 
by a relational algebra expression over the conceptual rela- 
tions RI, Re . . . , R,,,. We are given a query &, that is, a 
relational algebra expression over RI, RS . * . , R,,,. The 
general query transformation problem is then the follow- 
ing: Can & be computed from the data available in the 
derived relations El, E% . . . , E,, and, if so, how? There 
are two different versions of this problem. Here we con- 
sider only the version which requires that the query be 
computable from the derived relations for every possible 
instance of the database (the intensional version). A more 
limited version of the problem is to restrict the question to 
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the current instance of the database (the eztensional ver- 
sion). 

We are investigating the query transformation prob- 
lem under the assumption that both queries and derived 
relations are defined by PSJ-expressions. A PSI-expression 
is a relational algebra expression constructed from an arbi- 
trary number of projects, selects, and joins. This work has 
progressed to the point where the theoretical issues of the 
query transformation problem for PSI-expressions are 
essentially solved. Note that any query can be transformed 
by isolating the subqueries consisting of PSJ-expressions 
and then transforming each subquery separately. One of 
the key concepts in query transformation is that of an 
attribute mapping. An attribute mapping uniquely defines 
a subquery over the derived relations El, E% . . . , E,,. 
When this subquery is evaluated, it produces tuples con- 
taining the correct attributes and satisfying the conditions 
of the query &. The problem of query transformation then 
boils down to selecting a set M = {M,, M,...,M,} of attri- 
bute mappings, such that the union of the corresponding 
subqueries is equivalent to Q 

The first part of this paper gives a brief overview of 
the theory of query transformation. The underlying theory 
is presented in detail in [LY87]. Some early results were 
reported in [LY85]. A main part of query transformation is 
the generation of a sufficient set of attribute mappings. 
However, there may be many such sets and the number of 
possible attribute mappings may be large. In the second 
part of the paper we show that a only limited set of map- 
pings need be considered. In the last part of the paper we 
briefly present a prototype system for query transformation 
and show the transformation of a few example queries. 

The query transformation problem arises, in various 
forms, in several different areas of query processing for rela- 
tional databases. In the context of distributed databases, 
derived relations can be interpreted as relation fragments 
stored at various sites. This variant of the problem has 
been studied extensively, normally under the assumption 
that each fragment is derived from a single relation using 
only selections and projections [CP84]. The problem also 
arises in traditional query optimization [MA83]. In this 
context, a derived relation can be interpreted as an inter- 
mediate result obtained in the process of computing a 
query. If some other part of the query can easily be com- 
puted from available intermediate results, the cost of pr* 
cessing the query may be reduced. The problem of recog- 
nizing common subexpressions and the equivalence problem 
for relational expressions [As79, SY81) are special cases of 
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the query transformation problem where the query Q is 
required to exactly match one of the derived relations 
El, ~35 . . . , E,,. It may be worthwhile saving intermedi- 
ate results and using them for processing other queries. 
View indexing is a variant of this approach which has been 
implemented in the ADMS system [R082, R086]. In multi- 
ple query optimization, the potential for cost reductions by 
sharing of intermediate results is even greater [FS82, S&36]. 

Our main motivation for studying this problem stems 
from a different area: the problem of structuring the stored 
database in relational systems. In current systems, there is 
a one-to-one correspondence between conceptual relations 
and stored relations, that is, each conceptual relation exists 
as a separate stored relation. We are investigating a more 
flexible approach where the stored database consists of a 
set of derived relations and conceptual relations do not 
necessarily exist in stored form. The choice of stored rela- 
tions should be guided by the query load so that frequently 
occuring queries can be answered rapidly. The structure of 
the stored database should be completely transparent at 
the user level, and user queries and updates should be 
expressed solely in terms of conceptual relations. The sys- 
tem must then be able to automatically transform user 
queries and updates into equivalent queries and updates 
against stored relations. To make this approach viable the 
two fundamental problems of query transformation and 
update transformation must be solved. Some early work 
based on similar ideas but restricted to prejoining relations 
is reported in (SS81, BA82]. The update transformation 
problem is discussed in [BC86). 

2. Notation and basic results 

We consider only derived relations and queries defined 
by PSJ-expressions, that is, relational algebra expressions 
containing only the operations project, select and join. 
Cartesian product is seen as a special case of a join. Any 
valid PSJ-expression E can be transformed into a standard 
form consisting of a Cartesian product, followed by a selec- 
tion, followed by a projection: 

We can therefore represent any E&expression by a triple 
E - (A, R, C) where A - {Al, Al, * * * , A} is called the 
attribute set, R - {RI, RP, . . . , Rk} the relation set or 
base, and C the selection condition of the expression. It is 
easy to see that this is correct by considering the operator 
tree representation of a ES&expression. The standard 
form is obtained by first pushing all projections to the root 
of the tree and thereafter all selection and join conditions. 

The notation a(C) and a(R) is used to denote the set 
of attributes mentioned in a condition C and the attributes 
of a relation R, respectively. The logical connectives are 
denoted by v for OR, juxtaposition or A for AND, 1 for 
NOT, and * for logical implication. To indicate that all 
variables of a condition C are universally quantified we 
write VC, and similarly for existential quantification. If we 
need to explicitly indicate which variables are quantified we 
write VX(C) where X is a set of variables. A partial 
evaluation of a condition C is obtained by replacing some 
of its variables by values from the corresponding domains. 

Let t be a tuple over some set of attributes. The partial 
evaluation of C with respect to t is denoted by C[t]. The 
result is a new condition with fewer variables. The result 
of evaluating a relational algebra expression E over an 
instance d = {rl, r2, . . . , r,) of a database 
D - W,, R2, . . , R,,,} is denoted by V(E, d). The result 
is a set of tuples, that is, a relation instance. 

The concept of the Wended attribute set of a derived 
relation was introduced in [LY85]. Consider a derived rela- 
tion defined by E = (A, R, C). Given a tuple from E we 
may be able to correctly reconstruct the value of an attri- 
bute not in A. The extended attribute set, denoted by A+, 
consists of A and all attributes whose values can be 
correctly reconstructed from the values of the attributes in 
A for any tuple that satisfies the condition C. The exact 
definition and a general reconstruction procedure are given 
in [LY85, LY87). A simple example clarifies the basic idea. 
Consider the derived relation defined by 
$;(b%~C), 19e&)1 (B-CXD-5) 1 over &(A, B) and 

extended attribute 
A+ i {A, B, C, D} because for any tuple sr&fyini 
(B-C)(D=5), we know that the value of B must be equal 
to the value of C and the value of D must be 5. We often 
refer to the attributes in the extended attribute set as uisi- 
ble attributes. 

Transforming a query involves testing whether or not 
certain Boolean expressions are valid or equivalently, 
whether their complements are unsatisfiable. Let 
C(G, 25 . . . I 2,) be a Boolean expression over variables 
Zl,%b”‘, z,,. C is valid if it evaluates to true, and unsa- 
tisfiable if it evaluates to false for all possible values of its 
variables. It is satisfiable if it evaluates to true for some 
value. Proving the validity of a Boolean expression is 
equivalent to disproving the satisfiability of its complement. 
Proving the satisfiability of a Boolean expression is, in gen- 
eral, NP-complete. However, for a restricted class of 
expressions polynomial algorithms exist. Rosenkrantz and 
Hunt [RH80] developed such an algorithm for conjunctive 
Boolean expression. The expression must be in the form 
B - Bl~Bd . * * AB,,, where each Bi is an atomic condi- 
tion. An atomic condition must be of the form z op y+c or 
x op c where op E {-,>,r,<,S}, z and y are integer vari- 
ables, and c is a constant. The running time of the algc+ 
rithm is O(n”) where n is the number of distinct variables. 
We (LY85, LY87] designed a similar algorithm with running 
time O(n’) for the case when all variables range over some 
finite (integer) interval. However, it does not handle atomic 
conditions of the type z op y+c where c # 0. A modified 
version of the algorithm by Rosenkrantz and Hunt can be 
found in [BC86]. 

An expression not in conjunctive form can be tested 
by first converting it into disjunctive normal form and then 
testing each conjunct separately. In the worst case, this 
may cause the length of the expression to grow exponen- 
tially. 
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3. Theoretical background 

To gain some understanding of what is involved in 
computing a query from derived relations, we take a look at 
an example. 

Ezample: Consider the following query and derived rela- 
tions defined over relations R(A, B, C) and S(D, & F). 
We assume that A is the key of R,and E the key of S. 

Q - ({R.B, R.c, s.E), {R, s), (R.A - S.D)(R.C < 20)) 

El - ({R.A, R.C, s.E), (R, s), (R.A - s.D)) 

E2 - (@.A, R.B, R.c), {R), (R.B > IO)(R.C < 20)) 

E8 - ({R.A, R.B, S.F}, {R, S}, (R.A - S.D)(R.B < 20)) 

The extended attribute sets of the derived relations are 
A;t - {R.A, R.C, S.D, S.E), &+ - {R.A, R.B, R.C}, 
&+ - {R.A, R.B, S.D, S.F}, respectively. El contains all 
the tuples required to answer the query, but attribute R.B 
is missing. R.B can be obtained from El and El by a 
“back-join”. Both E* and E8 are needed. Neither E2 nor 
El can alone contribute all the necessary R-tuples because 
of the conditions (R.B>lO)(R.C<PO) and (R.B<20). The 
following transformed query will give the desired result: 

Q = F,UF% where 

Fl - ({E,.R.B, EI.R.C, EJ.E}, (El, Es}, 

(E,.R.A = E*.R.A)) 

F2 - ({E,.R.B, EI.R.C, EI.S.E}, {E,, E8}, 

(E1.R.A - E8.R.A)(E1.R.C < 20)) 

The back-join is expressed in Fl by the condition 
EI.R.A - E2.R.A. The joined tuples will automatically 
satisfy the selection condition of Q and no further qualifica- 
tion is necessary. The back-join in F* is expressed by 
E1.R.A - E%R.A. The joined tuples must be further quali- 
fied by E1.R.C < 20 because the second part of the condi- 
tion of Q is not automatically satisfied. The two back-joins 
are “safe” (lossless) because the join is over the key of R. 0 

Given a query Q and a set {El, El ,..., E,,,} of derived 
relations, we attempt to construct an equivalent query of 
the form Fl U F8 U . . . u F,, where each Fi is a (general- 
ized) PSJ-query expressed in terms of a subset of the 
derived relations {El, E,..., E,,,}. For every attribute men- 
tioned in Q, there is only a limited number of “value 
sources” in {E,, E,..., E,}. In the example above, the pos- 
sible sources for R.B were {E2, E8} and for R.A the possible 
sources were {El, E% E8}. The concept of attribute map- 
pings defined further below formalizes the idea of value 
sources. 

Unless otherwise stated, we will in the sequel consider 
every attribute name to be prefixed with the name of the 
derived relation or query from which it is taken. A com- 
plete attribute name then consist of three parts: the name 
of the derived relation/query, the relation name, and the 
attribute name. This makes it possible to uniquely identify 
attributes mentioned in several derived relations. Let 
atrr(&) - & lJ a(Ci), denote the set of attributes (using 
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complete attribute names) mentioned in Ei, and similarly 
for at&(Q). 

We have to introduce some additional notation at this 
point. Let T be a set of complete (three-part) attribute 
names. Then ptoj(R, 2”) will denote the set of attributes in 
T that originate from (conceptual) relation R (using three- 
part names). ezp(T) will denote the set of derived relations 
and/or queries from which the attributes are taken. 
noezp(T) will denote the set of attribute names in T but 
without the name of the derived relation or query from 
which they originate (that is, using two-part names). 

Example: 
For T - {Q.R.A, E1.R.A, E,.S.B, E,.R.A} we have 

proj(R,T) - {Q.R.A, EI.R.A, E,.R.A} 

edT) - {Q, El> ~921 

noezp(T) - {R-A, S.B} 

Definition: An attribute mapping 
tion) from attr(Q) to u attr(Ei) 

129 
perties: 

1. M is one-to-one (injective). 

2. For every attribute 

M is a mapping (func- 
with the following pro- 

Q.&.Aj E attr(Q), 
n-il(Q.Rk.Aj) = Ei.Rk.Aj for some i, 1 5 i 5 m, that is, 
an attribute mentioned in Q can only be mapped to an 
attribute having the same relation name and attribute 
name. 

The need for these requirements is obvious: each 
attribute mentioned in Q must be associated with one, and 
only one, corresponding attribute in one of the derived rela- 
tions. The set of derived relations in the image of attr(Q) 
is given by ezp(M(attr(Q))) - {Ei,, Ei,..., Eik}. We call 

this the base of the mapping M and denote it by By. 

A mapping M identifies a value source for each attri- 
bute in Q. Assume, for the moment, that all attributes in 
4 are mapped to visible attributes. The expression 
rM(AqjEilXEi2X . . . XEik) would then generate tuples of 
the correct form, that is, containing all the required attri- 
butes. The problem is, of course, that not all tuples gen- 
erated are valid “response tuples”. The task is to define a 
function FM that extracts as many valid tuples as possible 
from the Cartesian product of the derived relations in the 
base BM. In order to accept a tuple t from the Cartesian 
product into the response set, we must guarantee that it 
has the following three properties: 

1. t is not a spurious tuple 
2. t satisfies the query condition C, 
3. the values of all attributes in 4 are either visible in t 

or can be reconstructed from the values visible. 

Necessary and sufficient conditions for a tuple to satisfy 
these requirements are given (without proofs) in the next 
three sections. The conditions can all be tested at run time 
and thus define the required function FM. A tuple is 
rejected by FM either because it is not a valid response 
tuple or because it is unsafe. Unsafe means that the tuple 
may be valid, but it cannot be guaranteed. FM thus 
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extracts from the base the maximal sset of tuples that M 
can safely contribute to the response set. 

The function FM can be viewed as an extended PSJ- 
expression, which can be written in the following form 

The operators are generalizations of the corresponding rela- 
tional algebra operators. When all the attributes required 
by the operators are available in the base of M, they are 
regular select and project operators. The operator 0g 

M 
selects from the Cartesian product all tuples which are 
guaranteed not to be spurious. The condition C& is called 
the back-join condition of M. The operator U% then 

extracts all tuples that can be shown to satisfy the query 
condition C,. The condition C& called the weakest sa/e 
selection condition of M, accepts the maximal set of tuples 
that can be safely accepted. Finally, the operator X~f,,~j 
projects the tuples onto the desired set of attributes, in the 
process reconstructing values for required but missing attri- 
butes whenever possible, and discarding tuples for which 
this cannot be done. 

3.1. Back-joins 

We already saw in the example above the need for 
back-joins. In the example, El provided all the required 
tuples, but attribute R.B was missing. The missing attri- 
bute could be obtained from El and Es (in fact, both were 
required). Let tl - (ai, ci, ei) be a tuple from El and 
t2 - (aa bb cs) a tuple from E2. How do we guarantee that 
tl and t2 originate from the same tuple t in R? If they do 
not, and we accept the tuple (b. ci, e,) formed from tl and 
t2 into the result set, then we have a spurious tuple in the 
result. The tuple is spurious if no tuple of the form 
(2, as, ci), for some value of z, exists in the current 
instance of R. We cannot guarantee that a result set con- 
taining spurious tuples is correct because the original query 
Q does not generate spurious tuples. Not surprisingly, we 
show in [LY87] that spurious tuples can be avoided if all 
back-joins are over keys. (There are a few other cases but 
they are of minor importance in practice). 

Let key(R) denote the attributes of the key of a rela- 
tion R. Now define the following set of derived relations: 

UAd(R)- (El, :E L: IS in the base of M and an attribute of 
R in attr(&) is mapped by M into an attribute 
in attr(Ek) } 

M specifies a back-join over R if UAR) contains more than 
one derived relation. The back-joins over R are safe (loss- 
less) if key(R) E M for every derived relation & E UAR). 
The mapping M is safe if this holds for every relation 
R ER,. To guarantee that a tuple from the base of M is 
not spurious it must satisfy the following back-join condi- 
tion: 

c&=/l A 
Rj E R( E,,Et E U~Rj) 

E/Et 

A (EB.Rj.Ak - Et.R+Ak) 
Ak~ icy 

This condition involves only visible attributes and is hence 
easy to test. If two tuples from R agree on the key of R, 
they also automatically agree on all other attributes. 
Hence every tuple that satisfies the back-join condition 
above also satisfies the following eztended back-join condi- 
tion: 

A 
Ak 

(E,.Rj.Ak - &Rj.Ak) 
E “CRJ 

Example: The example in the beginning of this section used 
two mappings, which both specified a back-join over R. 
The key of R is the single attribute A. The back-join con- 
dition and the extended back-join condition for the first 
mapping are then 

Cf,,- (E1.R.A = E,.R.A) 

CM” = (EI.R.A - E*R.A)A(E,R.B - E,.R.B) 

A(E~.R.C - E,.R.C) 

and for the second mapping 

Cfi - (EI.R.A - Es.R.A) 

Cff - (E1.R.A - Es.R.A)A(E,R.B = E,.R.B) 

A(E~.R.C - E,.R.C) 

3.2. Tuple selection 

Once a tuple from the base of a mapping M has been 
shown to satisfy the back-join condition we know that it is 
not spurious. The next step is to determine whether it 
satisfies the query condition Cr. If all the attributes men- 
tioned in C, are mapped to visible attributes, we can sim- 
ply substitute in the corresponding values and evaluate the 
condition. However, even when some attributes mentioned 
in Cg are not mapped to visible attributes, we may still be 
able to determine that the tuple satisfies C,. This is illus- 
trated by the following example. 

Ezample: Consider the following query and derived relation 
defined over the relation R(A, B, C): 

Q = (6% BL {W, (C>lOXB<5) ) 

E - ((4 B), W, t-4 ) 

There are no other attribute mappings than the obvious 
one which maps all attributes of Q into the corresponding 
attributes of E. We cannot guarantee that the query can 
be computed from E alone, but we may be able to extract 
some tuples from E towards the result of the query. The 
condition (C>lO) in the query cannot be tested directly 
because attribute C is not visible in E. However, it is easy 
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to see that any tuple in E with an A-value greater than or 
equal to 10 must be the projection of a tuple with a 
C-value greater than 10. Hence we can safely accept any 
tuple where A>lO, provided that it satisfies the additional 
condition (B<5). On the other hand, it is unsafe to accept 
any tuple where A<lO. We simply cannot decide whether 
or not such a tuple satisfies the query condition. 

Let t - (a, 6) be a tuple from E. To accept t into the 
query result we must prove that the following condition 
holds 

QE.R.C (E.R.C>a =+ (E.R.C>10)(6<5) ) 

This condition can be paraphrased as follows. Whatever 
the missing C-value of t was, it must have been such that t 
satisfied the condition of E. Otherwise, the tuple would 
not be in E at all. If, for every such C-value, it follows 
that t must also satisfy the query condition, then we can 
safely accept t into the result, 

To further clarify the idea, consider the following 
instance of E. 

E: A B 
15 5 
12 3 
6 0 

For the tuple (15,5) we get the condition 

QE.R.C (E.R.C>lS =$ (E.R.C>10)(5<5) ) 

The implication does not hold because the consequent is 
always false. Hence the tuple is rejected, which is obvi- 
ously the correct decision because it does not satisfy the 
condition (B<S) of the query. 

For the tuple (12,3) we get 

VE.R.C (E.R.C>lS a (E.R.C>10)(3<5) ) 

It is easy to see that the implication holds and hence the 
tuple is accepted. The tuple satisfies the condition (B<S) 
and the missing C-value must have been greater than 12. 

For the tuple (6,0) we have 

VE.R.C (E.R.C>G + (E.R.C>lO)(O<S) ) 

The implication does not hold and the tuple is rejected. 
Here we have an unsafe tuple. The C-value may or may not 
have been greater than 10. To be on the safe side we must 
reject the tuple. 0 

Let us now return to the general case. Let t be a 
tuple from the base of a mapping M, 
BM - {Ei,, Eif . . * n Ei,}, and assume that t satisfies the 

back-join conditions of M. To guarantee that t is the pro- 
jection of a tuple satisfying the query condition C,, t must 
satisfy the following condition, called the weakest sa/e 
selection condition: 

C& - V((Ci,ACi,A ’ ’ ’ ACikA6f?JltI * M(Cp)ltI 1 
The notation M(C,) means the condition C, where every 
attribute name has been substituted by its image under M. 
The above condition extracts the maximal set of tuples 
that can be safely extracted. If a tuple does not satisfy this 

condition we cannot guarantee that it satisfies the query 
condition. 

When all attributes in C, are mapped to visible attri- 
butes, M(C,)[t] contains no variables and can be evaluated 
directly. The implication then holds if it evaluates to true, 
otherwise not. In other words, all we have to do is to test 
whether the tuple satisfies the query condition or not. This 
IS exactly what one would expect, of course. 

3.3. Attribute reconstruction 

Consider a mapping M that maps some of the attri- 
butes in 4 to attributes not visible in the derived relations 
of the base of M. At first glance, it appears that such a 
mapping would be useless because we would not know the 
exact values for some of the attributes in 4. However, 
there are situations when we are able to correctly recon- 
struct the missing values. This is illustrated by the follow- 
ing example. Note that B is not in the extended attribute 
set. 

Example: Consider the following query and derived relation 
over R(A, B). 

& = ({A, B),W, (A>lOXA-B) ) 

E - ({A }, {R}, (A>lS)(A=B)V(A~lS) ) 

As in the previous example, there are no other mappings 
than the obvious one. The query cannot be computed from 
E alone, but we can extract a subset of the tuples needed. 
Tuples satisfying the condition (A>lO) can easily be 
extracted from E. For a subset of those, namely all tuples 
where A>15, we can reconstruct the missing value of attri- 
bute B because they must have satisfied the condition 
(A-B). Hence, we can obtain from E all tuples satisfying 
(A > lS)(A = B). The remaining tuples, that is, tuples satis- 
fying (A > lO)(A < lS)(A - B) must be found somewhere else. 

Let t - (a) be a tuple from E. To guarantee that the 
value of attribute B is reconstuctible, t must satisfy the fol- 
lowing condition: 

V E.R.B, E.R.B’ 

( {(a > 15)(a = E.R.B)v(a 5 15)}A(a > lO)(a - E.R.B) 

r\{(a>15)(a=E.R.B’)V(a~15)}A(a>lO)(a-E.R.B’) 

* (E.R.B- E.R.B’) ) 

Consider the following instance of E where all tuples have 
been chosen so that they satisfy the condition (A>lO) of 
the query. 

E: A 
20 

12 

For the first tuple we get the condition 

V E.R.B, E.R.B’ 

( {(20>15)(20-E.R.B)~(20~15)}~(20>10)(20-E.R.B) 

/\{(20>15)(20-E.R.B’)~(20<15)}A(20>10)(20=E.R.B’) 

=F (E.R.B= E.R.B’) ) 

which can be simplified to 
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V E.R.B, E.R.B’ mappings. 

( (201E.R.B)(20- E.R.B’) ==a (E.R.B- E.R.B’) ) 

It is now easy to see that the implication holds and that 
the only possible value for B is 20. Hence we add the tuple 
(20, 20) to the result. 

The second tuple cannot be accepted because we can- 
not guarantee that it satisfies the condition (A-B) of the 
query. Hence we need not test whether the value of B is 
reconstructible. 0 

For mapping Mb to contribute t[h] to the response 
set, t must satisfy all the conditions associated with the 
function FM~. Let ~~~ = {Ei,, Eif . . . . Eimk} denote the 

base of mapping Mk, cGk s CiIACi2A ’ ’ ’ ACimkr\Cif, 

and t’ - t[A+J+J . . * UAlnlt]. The conditions sssoci- 

ated with ~~~ that t must satisfy are: 

1. t must exist in the base of h&, that is, satisfy 

For the general case, the condition that a tuple must 
satisfy to guarantee reconstructability of missing attributes, 
is somewhat complex. Let BM - {Ei,, Ei?, . . * , Eik}. The 
set of attributes in A( mapped by M into non-visible attri- 
butes is given by I = M(h) - (&,IJ&JJ . . . ~4~). Let 
Cp denote the following condition 

2. t must satisfy the weakest safe selection condition 
associated with Mk, that is, 

cgk = vx(&ik ItI * (Mdc,))[tl) 
Cp - CiIACi2A ’ . . ACikACgAM(Cq) 

Now consider a tuple t over the visible attributes in the 
base of M, that is, over the attributes in 
A+Ai*u . . . U&&. The values of the attributes in I can 
be reconstructed if t satisfies the condition 

where all variables in the set X - (attt(Ej)-Aj) 

Ej kll 
Mk 

vwyC (cPltlXrXcPItlXr) + ,$ Yj’Y’j) 1 
,I’ 

where y- 4cPlfl)u~ - {YbY, * . . 1 and 
I” - a(Cp[t])iJZ - {y’i,y’e, * * * }. The expression (Cp[t]XY) 
denotes the partial evaluation of Cp with respect to t, 
evaluated over the variables in Y, and similarly for 
(G+lXV. A ii eneral reconstruction procedure is outlined 
in [LY85] and given in more detail in [LY87]. Note that the 
condition trivially holds and need not be tested when 
I - 0, that is, when every attribute in A( is mapped to an 
attribute in A$uA$ - * . u&‘;. 

are universally quantified. Note that the conditions 
Cfik and &(C,) are over attributes having three-part 
names. However, after the partial evaluation with 
respect to t’ and quantification, the resulting condition 
is just a function of t, that is, a function of the attri- 
bute values in t 

3. t must satisfy the condition guaranteeing reconstructa- 
bility of all the attributes in 4 mapped to non-visible 
attributes, that is, 

where Z - M&)- U Aj and all variables in 
Ejmk 

3.4. Sufficient sets of mappings 

Given a query Q and a set of derived relations 
PI, EL..., Em}, there may be many ways of mapping the 
attributes of the query into the corresponding attributes of 
the derived relations. As shown above, each mapping 
defines a function over the derived relations in its base and 
contributes some tuples towards the result of the query. 
The problem then is to find a sufficient set of mappings, 
that is, a set that is guaranteed to generate all the required 
tuples. We therefore need some criterion for deciding 
whether a set of mappings is sufficient. 

Y = r = a((c$kkfk(cq))[tl)UI are universally quanti- 
fied. Note again that the resulting condition is just a 
function of the attribute values in t 

If a set of mappings is suffient, then for any tuple t 
over the attributes in B - R,uR,U . . . UR, that satisfies 
the query condition, the tuple must also be generated by 
one of the mappings in the set. We show in [LY87] that 
M - {M,, MS, . . 1 , M,} is sufficient if and only if the fol- 
lowing condition holds: 

, 

Consider a set h4 - {Mi, Me,..., M,} of attribute map- 
pings, mapping the attributes of Q into attributes of the 
derived relations El, Ea..., Em. The conceptual relations of 
interest are B - R,uRIu . . . uR,. Assume that 
B - {R,, RB..., R,,}. Let ti, to..., t, be tuples over 
RI, Rzl..., 4, respectively, t - (tlXt&-Xtn) and sssume 
that C,(t) - true. (In fact, we only need to consider a 
tuple defined over the attributes in 
A&r.$C,)lJ * . * uo(C,,,).) If the query were computed 
directly from the original query expression, t [AJ (the pro- 
jection of t onto 4) would occur in the result and we must 
show that it will also be contributed by one of the 

Once we have a set of mappings we can use this condition 
to test sufficiency. However, finding a sufficient set of 
mapping, or showing that no such set exists, may be expen- 
sive. This problem is addressed in the next section. 
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4. Reducing the set of mappings proves the theorem. 0 

Corollary 1.1: Consider two safe attribute mappings Ml 
and M2. Then MI s M2 if and only if 

For a given query Q and a set of derived relations, 
there may be many possible ways of mapping the attributes 
of Q into the corresponding attributes of the derived rela- 
tions. In this section we show how to reduce the number of 
mappings that need be considered. We give necessary and 
sufficient conditions for detecting when a mapping is sub- 
sumed by another mapping, and for detecting when a map 
ping does not generate any tuples at all. 

Proof: Follows by observing that M, and MS are 
equivalent if and only (M, 5 n-i,) A (Mc 5 M,), and apply- 
ing Theorem 1. 0 

4.1. Partial ordering of mappings 
Corollary 1.2: MI<M2 if the following conditions all 
hold: 

Let M be an attribute mapping, relating the attri- 
butes of Q to attributes of derived relations in the set 
{E,, Es ,..., E,}. Denote the base of M by BM and assume 
that BM - {E;,, Eil,...,Eik}. M defines a function over 
Eil X Eiz X...X Eik which we denote by FM. The relation 
resulting from evaluating this function over a database 
instance d is denoted by V(FM, d). Based on the set of 
tuples generated by the associated function, we can define 
a partial ordering on the set of mappings between Q and 
{Ei,, Ei,,...,Eik}. We consider only safe mappings. 

Proof: Follows 
((a-bb)A(c-etf)) =t (ac4$. 

wplyiw the rule 

Corollary 1.3: M1=M2 if the following conditions all 
hold: 

Proof: Follows directly from corollary 1.2. 

Definition: Let Mi and Ms be attribute mappings associ- 
ated with a query Q. 

(4 MI is inferior to M,, denoted by M, 5 MS if 
V(F+ d) s V(F+ d) for every database instance d. 

Theorem 2: If two mappings M, and MS have the same 
base and specify the same back-joins, then M1 E MS. 
Proof idea: Proved by showing that the three conditions 
of corollary 1.3 are satisfied. 

(ii) MI is superior to Ma denoted by M, 2 Me, if 
V(F+ d) 2 V(FM& d) for every database instance d. 

(iii) MI is equivalent to M2, denoted by M, = Ma if 
V(FM~, d) = V(FM$ d) for every database instance d. 

(iv) Ml is a null-mapping, denoted by Ml = 0, if 
V(F+ d) - 0 for every database instance d 

If we can show that a mapping M, is inferior to 
another mapping Ma then Ml can be discarded immedi- 
ately. If two mappings are equivalent, either one of them 
can be used. The following theorem enables us to compare 
two mappings. Note that in the conditions of the theorems 
and corollaries of this section, two-part variable names 
(without the name of the derived relation) must be used for 
the variables quantified by the outermost quantifier. How- 
ever, for all variables quantified by the quantifier which is 
part of Cg or Cfi, three-part names are still required. 

Theorem 1: Consider two safe attribute mappings Ml 
and Mz. Then Ml 5 MS if and only if 

Using this theorem we can significantly reduce the 
number of mappings to be considered. Let R be a relation 
that occurs in several derived relations in the base of a 
mapping. A subset of those will be back-joined over R. 
Then it does not matter to which derived relation in the 
subset we map the attributes of R. The resulting mappings 
are all equivalent, and hence we need consider only one of 
them. To simplify the weakest safe selection condition and 
the condition for attribute reconstructability, we always 
use one that maps as many attributes as possible to visible 
attributes. 

Theorem 3: Let M be a mapping which maps all attri- 
butes of the query into visible attributes. Then any map 
ping obtained from M by adding another derived relation 
to the base of M is inferior to M. 
Proof: C’s - true and & - C, because all attributes in 
the query are mapped to visible attributes. Let M1 be a 
mapping with base Ba{Ei). Then C& = ChACi. and 
the condition V(C& 1 * Cb) trivially holds. The condition 
V(C$i =$ Cz) holds because Cg = C,. The condition 
V(C&, * Cfi) holds because Cfi - true. The theorem 
then follows from corollary 1.2. 0 

Proof sketch: Let t = (t,xt,x...xtl) be a tuple from the 
Cartesian product of the underlying base relation 
RI, R,,...,Rl. Then the projection of t onto 4 is contri- 
buted to the result set by Ml if and only if t satisfies 
C~pqq, and similarly for Ms. If the condition 
holds, every tuple contributed by M, will also be contri- 
buted by M2. If the condition does not hold, we can easily 
construct a database instance (containing one tuple for 
each of RI, Ra...,Rl) such that Ml contributes one tuple to 
the response set of Q but MS contributes none. This then 

This theorem is useful as a stopping condition when 
generating attribute mappings. Once all attributes have 
been mapped to visible attributes, there is no point in 
further augmenting the base by additional derived rela- 
tions. Note that the theorem does not (necessarily) hold 
when some attributes of the query are mapped to non- 
visible attributes. 
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4.2. Detecting null-mappings 

A null-mapping is a mapping that never generates any 
tuples to the result, The following theorem states necessary 
and sufficient conditions for a mapping to be a null- 
mapping. 
Theorem 4: A safe attribute mapping M is a null- 
mapping if and only if the condition C~ACEAC$ is unsa- 
tisfiable. 

Proof sketch: From the discussion in section 3.4 it is 
clear that a tuple t must satisfy the three conditions above 
in order to qualify for the response set of &. If the condi- 
tion above is unsatisfiable no tuple satisfies it, and hence 
M is a null-mapping. On the other hand, if the condition 
above is satisfiable, we can construct, a database instance 
such that M contributes one tuple to the response set. 0 

Provided that, the satisfiability of the condition 
C&ACE& can be tested at run-time, we can use this 
theorem to detect null-ma pings. 

J 
However, this is not 

always possible because CM and C$ may contain univer- 
sally quantified variables. Let C(z, y) be a Boolean expres- 
sion over variables z and y, and assume that, y is univer- 
sally quantified. The condition V y C(z, y) is then unsatisfi- 
able if yz(V yC(z, y)). We have the following equivalences: 

Y4VYCb, Y)) = v~-(vYc(~, Y)) = Vz3y-C(z, Y). 

We know of no efficient, general algorithm for testing con- 
ditions with mixed universal and existential quantifiers. 
When the quantifiers are all either universal or existential 
the algorithm in [LY85, LY87 L can be used. Hence, the con- 
dition can be tested when CM and Ca contain no quanti- 
fied variables or when the quantified variables can be elim- 
inated. 

Corollary 4.1: A mapping M is a null-mapping if any one 
of the conditions C&, C&, or Cfi is unsatisfiable. 

This is an extremely useful corollary. The condition 
C& contains no quantified variables and can be tested using 
the algorithm in [LY85, LY87). Note that CL is just the 
conjunction of all the selection conditions of the derived 
relations in the base of M. We could speed up detection of 
null-mappings even further by keeping track of which 
derived relations have contradictory selection conditions. If 
the base contains two derived relations with contradictory 
conditions, then the mapping is a null-mapping. 

The conditions C& and Cfi are more difficult to test 
for satisfiability. As discussed above, the problem is that 
they may include universally quantified variables and we 
have no general algorithm for testing the satisfiability of a 
universally quantified expression. The following corollaries 
identify a number of special cases that can be handled suc- 
cessfully. Both CL and CE are of the form 

wc.w, r) * ccwt r)) (1) 

where Y is the set of universally quantified variables and X 
is the set of variables not quantified. We therefore consider 
only conditions of the above type. 

Corollary 4.2: Assume that C,(X, Y) - C,$X)r\CaY) 
and CJX, Y) - C,‘(X)l\C,“(Y). If 3Y~(C~Y) =) Car)), 
then condition (1) is equivalent to 7 C:(X). 

This corollary enables us to eliminate the universal 
quantification in certain cases. The condition 
3fi(C,YY) - cwl) 
-((VdC,yY) =a C8Y))h h’ ;1” 

equivalent to 
w IC can be tested efficiently. 

Corollary 4.3: Assume that C.(X, Y) - C,$X)CaY) and 
C,(X, Y) - C,“(X, y)cc’yr) v C,“(X, r)c,“(r). 
3y-1 (CXY) =+ CiyY) v C,“(Y)), then condition (1) :i 
equivalent to 7 C:(X). 

5. A prototype implementation 

We have implemented a prototype system for query 
transformation based on the concepts discussed in the pre- 
vious sections. It runs on a VAX 11/780 and consist of 
approximately 8000 lines of C code, divided into four major 
parts. 
User interface: The user interface was deliberately kept 
simple in this first prototype. Conceptual relations are 
defined by listing the relation name, attribute names, and 
candidate keys. Stored relations are defined using the tri- 
ple representation. Queries are defined by relational alge- 
bra expressions, using a syntax similar to that in [DA86]. A 
query can be issued as a sequence of simpler queries using 
intermediate variables. The output from this stage is an 
operator tree representation of the query. 

Handling of Boolean ezpressions: This part handles 
storage, conversion, full and partial evaluation, and validity 
testing of Boolean expressions. The most crucial operation 
is validity testing, which is done using the algorithm 
presented in [LY85, LY87]. The current version restricts 
atomic conditions to a comparison between two variables or 
a comparison between a variable and a constant. All the 
normal comparison operators are handled. 

Generation o/ candidate mappings: For each relation in 
the base of the query, the set of source relations is identi- 
fied. A derived relation is a potential source for a concep 
tual relation in the query if the conceptual relation occurs 
in the base of the derived relation. For each source relation 
we have a partial mapping of the attributes in the query. 
Every combination of partial mappings covering all the 
relations in the base of the query is then a candidate map- 
ping. Candidate mappings which are complete, that is, 
contain all the attributes in the query are kept. Candidate 
mappings which are not complete, but which can poten- 
tially be augmented by safe back-joins are also kept (defi- 
cient mappings). Incomplete mappings that cannot be aug- 
mented by safe back-joins are rejected immediately. 

Candidate mappings are also tested to determine 
whether the join conditions of the query are realizable, 
either by join conditions inherited from the derived relation 
or by explicitly forming the needed join conditions. Candi- 
date mappings satisfying this requirement are said to be 
join compatible with the query. Mappings that are not join 
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compatible with the query are discarded. (This is a simplifi- 
cation In practice, such mappings are of limited use, but 
they are not always null-mappings or subsumed by other 
mappings.) 

Final query transformation: The candidate mappings gen- 
erated in the previous stage are sorted according to the 
number of derived relations involved and the number of 
join conditions satisfied. Before any mapping is added to 
this list, it is tested to determine whether it is a null- 
mapping, and, if so, it is discarded. The idea is to consider 
the least expensive mappings first. The more derived rela- 
tions in the base, the more joins will be required and the 
more expensive the execution of the correspondmg query is 
likely to be. Deficient mappings are augmented at this 
stage to make them complete. This involves introducing 
additional derived relations into the base of the mapping 
and adding back-join conditions. 

To find a sufficient set of mappings, the next mapping 
from the sorted list is extracted and added to the set of 
mappings considered so far. At each step, the current set 
of extracted mappings is then tested to determine whether 
the set is sufficient. If the total set of candidate mappings 
is not sufficient, the query cannot be computed from the 
given derived relations. 

The current implementation is intended merely as a 
“proof-of-concept” prototype. Its main role is as a learning 
tool used for experimental purposes. We need to find out 
which steps in the transformation process are the most 
expensive ones and what types of queries are difficult to 
transform. Based on the experience gained from the proto- 
type we plan to implement a more comprehensive and more 
efficient version Iater on. 

To facilitate implementation several simplifications 
were made. The most important ones are listed below. 

l All attributes are restricted to integer domains. 

6 Only two cases of uniquely determined attributes are han- 
dled: an attribute equal to another attribute and an attri- 
bute equal to a constant. 

l Every visible attribute in a query must be mapped to a 
visible attribute in a derived relation. For such mappings 
the condition for attribute reconstructability is trivially 
satisfied and need not be tested. 

. Detection of null-mappings is restricted to testing 
whether the condition C&/K’$ is satisfiable. 

l No attempt is made to eliminate superfluous mappings 
from the final set of mappings. A mapping is superfluous 
if it can be discarded and the remaining set still is suffi- 
cient. 

We illustrate the performance of the prototype by a 
few example queries. All queries are against the following 
database. 
Conceptual relations: 
Rl( xl, yl, zl, tl ), key xl 
R2( x2, ~2, z2 1, key x2 
R3( x3, y3, 23, t3 ), key x3 

Derived relations: 
El - ( {xl, ~1, ~1, tl 1, {RI), yl>lo ) 
~5 - ( (xl, ~1, zl 1, N), ~I<50 ) 
ES - ( {xl, yl, tl }, {Rl}, y1<50 ) 

E, - ( (x2, ~2, ~3, 23, t3 }, {R2, R3}, (x2=x3)A(y3>0) ) 
E6 - ( (x2, ~2, ~3, 23, t3 }, (R2, R3}, (x2=x3)A(y3<30) ) 

Et, - ( (~2, ~2, 22 1, @2), 22.~0 ) 
E, - ( (~2, ~2, 22 1, @2), 2220 ) 
Relations E, to ES are horizontal and vertical partitionings 
of Rl. Note that the conditions of ES and Es overlap the 
condition of El, and that El and Ed do not contain all the 
attributes of Rl. Relations E, and E6 are essentially the 
join of R2 with two horizontal partitionings of R3. Again, 
note the overlap of the condition on y3 and that attribute 
22 is missing from both E, and Es. E,, and E, are straight 
horizontal partitionings of R2. It is assumed that the con- 
ceptual relations are not available in stored form. 

Query 1: Q - cT,~RZ) 

Mappings generated: 
Mi: Q+E, 
M,: Q-+E, 

CPU-time: 0.2 s 

The notation Q + EO means that all attributes in s are 
mapped to the corresponding attributes in E,,. For this 
query the system generated two mappings, which is clearly 

set. The transformed 
; - ~;!>zdE.)u Q,.my2>sd& 

query is 

Query 2: Q - T=I, #I. tP,dRl) 
Mappings generated: 

M,: Q+El 
MS: Q - Ed P,W) 
Ma: Q + Eat &Pl) 

CPU-time: 0.4 s 

The notation Ed (E,)Rl) means the back-join of Es and El 
over Rl, and similarly for Ed (E&?l). The back-joins in 
Ms and MS are necessary bacause zl is missing from Es. 
Mapping J%~ even though not a null-mapping, is not 
required. In fact, it is inferior to both M1 and Ms. This 
example shows the need for detection of superfluous map- 
pings. However, this has not been implemented in the 
current version of the prototype. 

Query 9: Q - ‘IT,2 se, sa, ,&,a~~@2 x .2-s&3) 

Mappings generated: 
Ml: Q -+ E,( (E&22, R3) 
M2: Q + EX (W=, E3) 

Cpu-time: 1.0 s 

The two mappings generated are both necessary to 
transform the query. The back-joins are required because 
attribute 22 is missing from E,. In the process of 
transforming the query two null-mappings were detected 
and discarded: Q + Ed (E6)R2, R3) and 

~ProcetSngs of the 13th VLDB Conference, Brighton 1987 253 



Q + Ed (E,)Ri, R3). 

Query 4: Q - ns2 s2 r4 tPy8dR2 x +2-r9R3) 

Mappings generated: 
MI: Q -Ed UW2, R3) 
% Q - Ed (&)R2, R3) 
bib: Q - EX &JR% R3) 
M,: Q -+ E,( (E,)R2, R3) 

Cpu-time: 28 s 

This query is similar to query 3; the only change is in the 
condition on y3. However, the transformation time 
increased dramatically. Mappings Mi and MS are superflu- 
ow but not null-mappings. Again the need for detecting 
superfluous mappings is seen. It was found that virtually 
all of the additional time was spent on proving the suffi- 
ciency of the final set of mappings. This and other exam- 
ples clearly indicate that the sufficency test is the most 
expensive step. The cost increases dramatically with the 
number of mappings in the set. We are currently investi- 
gating ways of reducing the cost of this step. 

Query 5: 

Mappings generated: 
Mr: Q + E,(Rl)xE,( (E,)R2, R3) 
&: Q - E,(RlWs( bW2, R3) 

CPU-time: 2.8 s 

This is a fairly complex query where the two mappings gen- 
erated both involve three derived relations. To get attri- 
bute 22 both E, and E6 must be augmented by a back-join 
of E,. The tuples required from Rl can all be obtained 
from El but the join represented by xl-x2 has to be expli- 
citly performed. In the process of transforming this query, 
six null-mappings were detected and discarded. 

8. Concluding remarks 

For queries and derived relations defined by PSJ- 
expressions the query transformation problem essentially 
boils down to finding a sufficient set of attribute mappings. 
Given an attribute mapping, we showed how to construct a 
function that extracts the maximal set of tuples that can 
safely be extracted towards the result of the query. This 
function correponds to a generalized select-project expres- 
sion. A set of attribute mappings is sufficient if the union 
of the corresponding functions is guaranteed to generate all 
the tuples required to answer the query, and we showed 
how to test a set of mappings for sufficiency. 

The number of attribute mappings corresponding to a 
query may be huge. In the second part of the paper we 
showed that many of the mappings can be eliminated, 
either because they are subsumed by other mappings or 
because they do not generate any tuples at all. 

Finally we gave a brief overview of a prototype system 
for query transformation, including a few examples. Even 
from these few examples, it was clear that the most expen- 
sive part of transforming a query is proving the sufficiency 
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of a set of mappings. The current version of the prototype 
does not attempt to eliminate superfluous mappings from 
the final set. We are currently working on eliminating 
these deficiencies of the prototype. 
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