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Abstract is at least ae powerful as SQL. Two well known relational query 
languages that have a sound theoretical foundation are relational 
algebra and relational calculus. As SQL is more closely related to 
relational calculus, we define the semantics of SQL by translation 
into calculus. However, relational calculus has to be extended in 
order to deal with aggregate functions and null values. The op 
timiation of SQL queries is thus reduced to the optimiaation of 
relational calculus queries, which makes the following results also 
applicable to other query languages based on relational calculus 
(e.g. QUEL). 

In this paper, we give a precise definition of the semantics of 
SQL queries having aggregate functions, identify the problems 
associated with the optimisation of such queries and give some 
solutions. The semantics of SQL queries is defined by translating 
them into expressions of an extended relational calculus (exten- 
sions are necessary for a correct treatment of aggregate functions 
and null values). The discussion of the optimization problems is 
based on a new transformation of a relational calculus expres- 
sion into relational algebra. By investigating the transformation 
of aggregate functions we are able to identify two major prob- 
lems: correct integration of the values of aggregate functions 
applied to empty relations and unnecessary computation of un- 
needed function values. To solve these problems we propose to 
interpret an aggregate function applied to a calculus expression 
with some free variables as a function on the attributes of these 
variables that are referenced in the expression. Doing so, we are 
able to develop several new processing strategies that should be 
considered by an optimiser. 

1 Introduction 

The SQL query language has become the standard relational 
manipulation language, as is reflected by ongoing standardisa- 
tion activities [ANSI85]. An important feature of SQL are ag- 
gregate functions like sum, average, minimum etc. However, the 
processing of queries with aggregate functions is not well un- 
derstood. A formal definition of the semantics of SQL queries 
having aggregates is still lacking, as is a unified operator tree 
model covering this class of queries [Kies 861. This paper is an 
attempt to solve these problems. 

In order to give a formal definition of the semantics of SQL 
queries, we have to translate them into a formal language which 
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To develop an operator tree model for SQL and extended 
relational calculus, an algebraic query representation has to be 
found; the basic problem here is to identify a suitable set of al- 
gebraic operators. A possible choice is relational algebra with 
aggregate functions developed by [Klug82], with an extension to 
cover null values. To rtudy the problem whether thii is a good 
choice, we present a translation of relational calculus queries 
into relational algebra. Investigating the translation of aggre- 
gate functions, we are able to identify two major problems of 
the representation in relational algebra: correct integration of 
the values of aggregate functions applied to empty relations and 
duplicated computation of certain function values. 

To solve these problems we propose to interpret an aggregate 
function applied to a calculus expression with some free variables 
as a function F on the attributes of these variables that are ref- 
erenced in the expression, and to include selection using such 
a function into relational algebra. We develop a general pm 
cessing strategy using this approach and present several special 
instances of the general strategy that are intended to approxi- 
mate the minimal representation of F (i.e. each function value 
is represented only once for a ret of arguments). 

The major contributions of our work are threefold: first, the 
extension of relational algebra and relational calculus to cover 
a significant subset of SQL. Second, the translations from SQL 
into calculus and from calculus into algebra, showing that the 
extended versions of relational algebra and relational calculus 
have the same expressive power. Third, the development of a 
new general processing strategy for aggregate functions, which 
may form the foundation of an operator tree model for the class 
of queries considered. 

While this work was primarily motivated by [K&85] who 
illustrated the semantic problems associated with efficient prc+ 
cessing of queries having aggregates, several other papers are 
relevant to our discussion. [Kim82,CeGo85, Levi851 are con- 
cerned with the transformation of an SQL query into some kind 
of normal form which is more suitable for further optimiiation. 
[Kim821 describes a translation from SQL into SQL, transform- 
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ing one complex query into several simpler ones. [Levi851 pro- 
poses a translation from SQL into QUEL and [CeGo85] gives 
a translation from SQL into relational algebra having aggregate 
functions. All have in common that they treat only subsets of the 
SQL query language. Subqueries may contain either no GROUP 
BY - HAVING clause [Kim82,CeGo85] or no referential variables 
[Levi851 (i.e. variables declared in an outer query block). The 
SQL feature of null values and query evaluation using three- 
valued logic is generally ignored. Furthermore, arithmetic oper- 
ators and control of duplicate elimination are omitted. 

While we agree that the last restriction is justified for techni- 
cal simplification and does not constrain the applicability of the 
transformations, we claim that to ignore three valued logic leads 
to severe semantic problems. This is the case even if attributes 
may have only nonull values, as the application of an aggregate 
function like average, sum, min and max to an empty relation 
gives null as a result [ANSI85]. Consequently we include the 
treatment of null values and three-valued logic in our dicussion. 
Furthermore we pose no restrictions on subqueries. However, for 
technical simplification we also omit arithmetic operators and 
control of duplicate elimination. 

Besides their limitations, the above-mentioned approaches 
cannot be used directly for two reasons: Fist, as has been 
pointed out by [K&85], the transformations of [Kim82,LeVi85] 
are incorrect in general: The application of the aggregate func- 
tion count to an empty relation is not treated appropriately. Sec- 
ond, [CeGo85] translates an SQL query directly into relational 
algebra. Therefore the application of optimbation techniques 
developed for relational calculus like [ JaKo 831 is impossible and 
the problems associated with the processing of aggregate func- 
tions cannot be identified as easily. 

In [Klug82] a precise definition of relational algebra and re- 
lational calculus query languages having aggregate functions is 
given and the expressive power of the two languages is proven 
to be equivalent. However, the case that an aggregate function 
may have null as a result is not considered and the proof of 
equivalence is quite complex, making it difficult to discuss the 
processing of aggregate functions. 

Though not directly applicable, we can make use of some of 
the techniques proposed earlier. The definition of extended relk 
tional algebra and relational calculus given in section 2 is based 
on [Klug82]. The translation of au SQL query into extended re- 
lational calculus (section 3) makes use of the preprocessing step 
of [CeGo85] and some of the techniques developed in [LeVi85], 
which have to be extended to deal with three-valued logic. The 
proof of equivalence of extended relational algebra and relational 
calculus (section 4) is - as far as we know - new and considers 
a more powerful class of languages than considered before. The : 
processing techniques for aggregate functions developed in sec- 
tion 5 contain as one special case the technique proposed by 
IKim82]. 

2 Formal Definitions 

Before giving definitions of relational algebra and relational 1 
calculus expression we first define the relational model in the 
usual way [Maie83,Klug82]. A relation scheme consists of a 
name R and a degree deg(R)E N. Associated with R is the 
set attrs(R)={l, . . . , deg(R)} of attribute names (i.e. attribute 
names are assumed to be natural numbers). For reasons of sim- 
plicity, the domain of each attribute is assumed to be the set 
fi=NU{w} of natural numbers including the null value w. Tuplcs 
and relations over a relation scheme are defined in the usual way. 

A schema is a sequence <RI,. . ., RN> of relation schemes. An in- 
stance I of schema <RI,. . ., RN> is a sequence <ri,. . .,r,v>, where 
for each i=l ,. . .,N, r; is a relation over scheme R;. Throughout 
this paper, one fixed schema <RI,. . .,RN> is assumed. 

An aggregate function fcAgg is a function f: R + fi, where 
R is the set of all relations. To translate SQL queries into re- 
lational calculus we will need aggregate functions of the form 
f = agg(Ai), where agg E {sum, tin, maz, aug, count} 
and A; E N is an attribute name. For example, the function 
sum(Ai) determines the sum of the values of attribute Ai when 
applied to a relation. Aggregate functions f = agg(Ai) with 
agg # count yield w as result, if the relation they are applied to 
is empty or does not have an attribute with name A;. An aggre- 
gate function with agg = count has 0 as result when applied to 
an empty relation. 

2.1 Relational Calculus 

The definition of relational calculus given in this section is 
based on [Klug82]. However, the following extensions are neces- 
sary in order to be as expressive as the subset of SQL we consider, 
i.e. in order to include the treatment of null values and predicate 
evaluation using three-valued logic: 

l First, the set 8 of comparison operators 0 has to be ex- 
tended: 8 = {=, f, <, 5, >, 2, m}. The special compar- 
ison operator z yields TRUE if the values compared are 
identical in the usual sense or both w, and FALSE other- 
wise. The other operators are evaluated to UNKNOWN 
if at least one of the values compared equals w, TRUE if 
the comparison is TRUE in the usual sense and FALSE 
otherwise. 

l Second, we need two new logical connectives T and I 
which map the truth value UNKNOWN into TRUE and 
FALSE respectively. 

Calculus expressions are defined recursively using several clas- 
ses of objects: variables, terms, formulas, range formulas and 
alphas. Thereof only the closed alphas (alphas containing no 
free variables) correspond to calculus expressions. The definition 
starts with atomic alphas, i.e. relations defined in the schema. 
Free variables, bound variables and closed objects are defined in 
the usual way. 

Variables: V={vi, va, vs, . . . } is the set of variables. 

Terms: Terms correspond to elements of A. The set T of terms 
is defined as follows. For any c &, c E T (constants). 
If vi EV and A is an attribute name, then vi[A] ET (at- 
tribute values). If fEAgg and cr EA, then f(a)ET (appli- 
cation of an aggregate function to a relation). 

Formulas: Formulas correspond to truth values. The set F of 
formulas is defined as follows. If tl, t2 are terms and 0 E 0 
is a comparison operator, then tit& EF. If +,$I and $2 
are formulas, then l(/ EF, T$ EF, IJ, EF, $1 V $2 EF, 
$1 A $2 EF. For any formula J, EF and range formula 
ri(ui) EBF we have (Brc(ui))$ EF and (Vri(vi))J, EF. 

Range formulas: Range formulas bind variables tp relations that 
are described by closed alphas, i.e. alphas containing no 
free variables. The set RF of range formulas is defined as 
fOlloWs. If ail, . . . , oii are closed alphas and ui EV, then 
ri(ui) EBF with ri = oiz V.. V air. 
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r Terms T: I 

q,a) E IQ 
4,P) = c 

vi[A](Z,P) = B(ui)[Al 
f(a)(Z, B) = f(4Zl a)) 

Formulas F: 
+(I, a) E {~(TRuE), O(FALSE), ~(UNKNOWN)) 

tl& I,B ) = tl(z,a)etz(z,a) 

($1 v $2)(1, B) = m4+l(Zl Bh +a(Z, 81 

($1 A $2W, /3) = mid+l(Z, B), +2(Z, PII 

(-w, a) = 1 - w, B) 

W)(Z, PI = l@l P)J 

(T+)(Z, P) = I’@, 81 

((%(ui))+)(Z, P) = m=40, m=m,u,~) (/ItI, BI~ilTl)) 
((Vri(Vi))+)(Z,8) = min{l,minm,(m) clr(~~BI~iPI)~ 
Range Formulas RF: 

ri(ui)(Z,/3) E {l(TRUE),O(FALSE)} 
ail V V CYik Vi I, @ 

= 1, ifp(Vi) E ai,(Z,/3) U...UC+(I,P) 

0, otherwise 
Alphas A: 

4,P) E R 
&(Z,/3) = ri 

&x.j>(a)(Z,B) = {Wlou: TEa(Z,8) A 
y = f{T’ E a(Z, a) : T’[X] G T[X]}} 

((h,..., L) : n(u1) ,...,*m(4:O)(Z,B) 

= {(h(Z,B’),..., L(Z, a’)) : w, a’) = 1 A 

B’= B[Vl/Tl,... ,h/Tm] A ri(Vi)(Z,B') = 11 
d 

Table 1: Semantics of Calculus Objects 

Alphas: Alphas correspond to relations. The set A of alphas is de- 
fined as follows. If & is in the schema, then & EA (atomic 
alphas). If tl,..., ,, t are terms not containing aggregate 
functions, tl(V1), . . . r,(v,) are range formulas and (/, is a 
formula, then 

(t 1,. .., tn) : rl(v1) ,..., rm(v,) : (/, E A. 

This definition is recursive, baaed on range formulas that 
consist of atomic alphas. 

If a is a closed alpha, feAgg and Xcattrs(a), then 

d<x,f>(a) EA (aggregate formatIon). 

In contrast to [Klug82], we do not allow aggregate functions 
in the target list of an alpha. Instead calculus includes the al- 
gebraic aggregate formation operator 4. The reason for these 
modifications are that translation of an SQL query into calculus 
as well as translation of a calculus expression into algebra become 
easier. However, the expressive power remains the same. 

The semantics of calculus objects is defined in table 1. Ob- 
jects of relational calculus are interpreted with respect to a sche- 
ma instance I and a mapping /3 (called a valuation) which asso- 
ciates with each variable vi EV a tuple a(vi) = 2’. B[vi/T] is 
defined to be the valuation, which yields T when applied to Vi 
and equals a(v) when applied to another variable v. 

The aggregate formation operator d<x,f> groups its input 
relation on the attributes X (Z’[X] denotes the tuple consisting of 
the X-values of 2’; I yields TRUE, if the tuples being compared 
are identical). It applies the function f to each group and returns 

the X-values and the associated function value for each group (o 
denotes concatenation). It can be general&d such that several 
functions are applied to each group (&x,(~~,.J~,,). 

2.2 Relational Algebra 

The definition of the set E of relational algebra expressions 
over our fixed schema and the value e(1) of an expression on 
an instance I of the schema is given in table 2. The following 
notations are used in the definition: c denotes an element of fi. 
e, cl and e2 denote relational algebra expressions. A and B are 
attribute names, X and Y sets of attribute names of equal rise. 

Relational Algebra Expressions: e(Z) E R 
L&ml cz=c 
Base Relation &(Z) = ri 
Projection TX(e)(Z) = {T[X] : T E e(Z)} 
Union (el U es)(Z) = ei(Z) Ue2(Z) 
Diflerence (el \ e2)(Z) = cl(Z) \ e2(l) 
Product (el x ez)(Z) = cl(Z) x e2U) 

&atriction uAeB(e)(Z) = {T E e(Z) : T[A]BT[B] = 1) 
Restriction’ uLes(e)(Z) = {T E e(Z) : T[A]BT[B] E (1, i}} 
Aggregate kx,~ (e)(Z) = {WI 0 Y : T E e(l) A 

formation W’ E 4’) : W4 = Vl~~ 
Intersection 

lel n e2)(z) re; 
(r) n e2(l) 

Selection aAec(e)(Z) = {T E e(Z) : T[A]gc] = 1) 
Selection’ u>o,(e)(Z) = {T E e(Z) : T[A]Bc E (1, $}} 
Join (elW’B]eN) = oAe&l x 4(Z) 

Table 2: Relational Algebra Expressions 

In order to be at least as expressive as SQL, relational al- 
gebra also has to be extended to include the h&dling of null 
values. This is accomplished by introducing modified versions 
u’ of restriction and selection, which retain tuples for which the 
corresponding predicate yields UNKNOWN. Thii extension cor- 
responds to the introduction of I and T as logical connectives 
into relational calculus. In fact, instead of defining new operators 
we could aa well introduce the logical connectives in the restric- 
tion/ selection predicate. Selection, intersection and join are or 
can be defined in terms of the other of the above operators. 

3 Translating SQL Queries into Rela- 
t ional Calculus 

As we are primarily interested in the translation and opti- 
misation of queries having aggregate functions, we consider only 
a relevant subset of SQL, which is still more powerful than the 
subsets covered in earlier papers [CeGo85,LeVi85,Kim82]. The 
only restrictions are that attribute domains are restricted to the 
set fi of natural numbers including w, terms are restricted to 
contain no arithmetic operators and duplicates may not be re- 
tained in the result of a query or subquery (yhich actually does 
not restrict the formulation of subqnery predicates). The effect 
of these restrictions is a technical simplification of the transla- 
tion into calculus and algebra, the extension to complete SQL 
being straightforward. 

A grammar for the subset of SQL being considered is given 
in the appendix. We can represent an arbitrary query of our 
subset in a form according to this grammar if we allow two simple 
preprocessing steps [CeGo85]: 
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Sub Query SQ Predicate Calculus Formula 

SELECT f EXISTS SQ: TRUE 
FROM n(vdr...,rn(vn) 
WHERE P, t 0 SOME SQ: tf?f’(* : ri(vi), . . ., r,(v,) : Pw) 

SELECT ( 1 
4;($ f 

EXISTS SQ: ( 3rl (VI ), . . ., 3r,(v,))(lP,) 
FROM ,...,r,(v,) 
WHERE P, t6’SOMESQ: (3ri(vi),..., 3rn(vn))(lPw A th) 

SELECT t. EXISTS SQ: ( 31 vl , . . . , ( ) 3r,(vn)) (I(Pw A PA)) 
FROM 
WHERE 

;(vl),...,r,(v,) 

vi:!& ] 
t B SOME SQ (3ri(vi), . . . , 3rn(vn)) (I(P, A PA) A tet:) 

GROUP BY 1 t**-,Vir(AirI 
HAVING Ph ao= (* : rl(v~),...,r,(v~) : Pw[Vi/4] A 

vi1 [A;,] E vi, [Ail] A . A Vik[Ai,] 2 4,[&,] ) 

P; = Ph(f/f’(oo), f E ph], t: = blf/f’(aO), f E t.1, 

Table 3: ‘Ikanslation of Snbquery Predicates 

SQL Query 

SELECT fi,...,fl 
,...,r,(vJ 

SELECT h,..., t1 (# f) 
,...,rJh) 

SELECT tl,...,tj 
FROM n (~1) ,...,rn(vn) 
WHERE 
GROUP BY $[A. ] (1 ,***gvi,[Ai,] 
HAVING Ph 

Calculus Expression 

(fi,. ..,f;)( * : n(w), . . .,m(v,) : Pw ) 

(ti ,..., ti) : rl(v1) ,..., rn(v,) : P, 

(&...,ti) : a(v) : Pi 

CI = (&(A,~ ,..., +),(f; ,..., jg>( * : rl(vl),...,rn(vn) : Pw 1); 

(G,..., t;,ph) = (tl,***, t1, Ph)[fi/V[k + ;]9 Vij[AijI/V[jll; 

(fir..., fm aggregate functions in tl, . . . , tl, Ph) 

Table 4: Query ‘Ikanslation 

SQL Query 

SELECT sum(vl l]), vi 3 
FROM WI) 
WHERE P, 
GROUP BY vi[3] 
HAVING maz( v1 [4]) > 0 

P, = -7 ( v1[2] = SOME 
SELECT 
FROM zz’ll) 
GROUP BY &I 
HAVING min(v2[3]) > vl[3] ) 

Calculus Expression 

(VIZ], v[l]) : a(v) : v[3] > 0 

Q = 4<s,(,um(1),maz(r))>( * : Rl(vl) : Pw ) 

P,,, = - (3Rs(vl)) (I min(t)(ao) > ~(31 A ~112) = maz(l)(ao)) 

a0 = ( * : R&I;) : v: [3] > 431 A y[2] q v;[2] ) 

Example 1: l’kanslation of SQL Queries 
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l Associate with each relation in a FROM clause a unique 
variable and extend each attribute reference to contain the 
variable it refers to. 

l Transform each predicate into one of the three basic pred- 
icates. For instance, an *in predicate* can be reduced 
to a cquantif ied predicates. 

To translate an SQL query into a calculus expression, the qn- 
tactical differences between SQL and calculus (subquery predi- 
cates, GROUP BY - HAVING clause and position of aggregate 
functions) must be resolved. Thii is accomplished with two kinds 
of translations, i.e. translation of subquery predicates and tram+ 
lation of the query (see Tables 3,4). 

In SQL, aggregate functions are represented in the form j = 
agg(ui[&]), where vi is bound to a relation ri in the FROM 
clause of an SQL query or subquery (FROM ri(ur), . . . , r,,(u,)). 
j is applied to the result of the evaluation of the FROM and 
WHERE clauses of the query or subquery, which is a subset of 
r = tl x ... x rn, or to partitions of this subset (in case the 
query or subquery contains a GROUP BY clause). Hence j is 
translated into j’ = ogg(Ai), where Ai names the attribute of r 
that corresponds to the attribute Ai of ri (In tables 3,4 this is 
indicated by j and j’). 

The translation of eubquery predicates has the following prop 
erty: The calculus formula yields the same truth value as the , 
original SQL predicate when applied to the same schema in- 
stance I and the same valuation ,9 for the free variables of the 
calculus formula resp. SQL predicate. In the translation, three 
types of subqueries are distinguished: 

l The first type yields exactly one value as the result of an 
aggregate function. Hence the caxiatr predicate> is al- 
ways TRUE and the <quantified predicate> is evalu- 
ated by comparison with the result of the aggregate func- 
tion. 

l The second type is evaluated to a set S of values. The <ex- 
irta predicate> is TRUE, if S is not empty, and FALSE 
otherwise. The *quantified predicate> is TRUE, if the 
comparison is TRUE for at least one value in S. It is 
FALSE, if S is empty or if the comparison is FALSE for 
every value in S, and UNKNOWN otherwise. The subtle 
point in the translation of this eubquery type is that we 
have to mahe sure that the comparison is evaluated only 
for values in S, i.e. that values for which P, is evaluated 
to UNKNOWN may not be ‘included. This is accomplished 
by application of the special logical connective I to P,. In 
example 1, if QO = 0 for some Tl E rl, P, is evaluated to 
TRUE and T qualifies. If I would be omitted, P,,, would 
be evaluated to UNKNOWN and T would not qualify. 

l The third type is evaluated to a set of values, one value for 
each group of tnples built when processing the GROUP BY 
- HAVING clause (t, is either a grouping attribute or an 
aggregate function). The special problem here is that we 
have to mahe sure that each aggregate function contained 
in t, or P, is applied to the correct gronp of tuples. This 
is done by means of the alpha 00, which yields the group 
corresponding to a listof values of the grouping attributes. 
Any aggregate function j contained in the SELECT clause 
or in the HAVING clause has to be applied to ae, i.e. j 
has to be substituted by j’(ao) (In example 1, min(~[S]) 
is substituted by min(3)(ao)). 

The calculus expression resulting in the translation of an SQL 
query gives the same result as the query when applied to the 
same schema instance I. As the structure of a calculus expree- 
sion directly relects the structure of the original SQL query, 
the translation given in Table 4 should be self-explanatory. The 
alpha cz built in the translation of the third query type is the 
result of evaluating FROM, WRERE and GROUP BY clause 
of the SQL query to which the aggregate functioue contained in 
the HAVING clause and the SELECT clause are applied. At- 
tribute references and aggregate functions contained in the latter 
constructs have to be substituted such that they reference the 
corresponding attributes of o (In example 1, eum(vr[l]), ur[3] is 
substituted by u[2], u]l]). 

4 Equivalence of Extended Relational 
Algebra and Relational Calculus 

In order to show that our extended relational algebra and 
relational calculus have the same expressive power, we have to 
prove the following two propositions: 

(1) For every algebraic expression e EE there is a closed alpha 
Q EA with e(Z) = a(Z) for all schema instances 1. 

(2) For every closed alpha a EA there is an algebraic expres- 
sion e EE with a(Z) = e(Z) for all schema instances I. 

Proposition (1) can be proven in the usual way (e.g. [Klug82]). 
Hence we will prove proposition (2) only. It has been proven 
before by [Klug82] for query evaluation using two-valued logic 
without null values. His approach is to produce for all terms, 
formulas and alphas an equivalent algebraic expression. How- 
ever, his proof is unnecessarily complicated, as it is sufficient to 
produce an equivalent algebraic expression for all closed alphas. 

Our construction of the algebraic expression correrpondiig 
to a closed alpha will be similar to Codd’s proof of equivalence 
for queries not having aggregate functions [Codd72]. To solve 
the special problems associated with the translation of aggn- 
gate functions, we introduce an extended selection/restriction 
operator u as intermediate representation: 

Let J, EF be a calculus formula, e EE an algebraic expres- 
sion and 7 a mapping which maps each term ui]A], ui free 
in 4, to an attribute name in attm(e) and leaves constants 
c unchanged. Then 

$,&)(Z) := {T E e(l) : tl(Z,kr) E I&;, 1 

with &(ui)[A] = T[r(t~[Al)]. The purpose of 7 is to bid 
each free variable in J, to the corresponding attributes of e. 
Hence the valuation & associates with each free variable 
in J, the corresponding attributes of T. 

We will 5rst construct for any closed alpha an algebraic ex- 
pression using the extended selection operator. Afterwards we 
show how an extended selection can be reduced to a regular al- 
gebraic expression. 

Construction of the eztcnded algebraic czpnssion: 

(0) For a schema relation & the corresponding algebraic ex- 
pression is simply &. 
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~7mab(4 = ~7.~wu~h6~(4 

7,(T@)(e) = u:.@.(e) 

w3rmbk) = ~attrde)~7~,~(e x er) 

u&(vj&) = u~,~(3r~v~~(~3~(4 

u7.tret2k) = u7w7(trjk) 

u~,c3r(ujj+(4 = ~attrs(e)u~r,3(e x e,) 
, u%tletlk) = %l,e7(t,,k) 

tl, t2 are not of the form f(a); 7’ equals 7 except that terms of the form u[A] 
are mapped on the corresponding attribute of e, 

Table 5: ‘Lkanslation rules for the extended selection operator 

Lemma 1: Let a = (tr,. . .,t,,) : rl(u:), . . . , rm(&) : cl, be an alpha. Then 

u7,tOfb)(d(1) = ~~ttrs(e)“71t)eA,(ej)(l) and u&j(a)kW) = ~~ttrs(e)u~(t)eA,(ej)(Z) 

with ej = 4.httr+),f >(e ‘4 U (e \ kr.te) (e a)) x f(e) 
and (e a) = “(attrs(e),,l(tl),...,~~(t,))u~l,~(e x e,, x t. x e,,), 

where 7’ equale 7 for the variables free in a and associates with $[A] the corresponding attribute 
in e,, X X er, and A, names the attribute of ej that contains values of the aggregate function. 

Proof: For T E e(r) let &- be the following valuation: &(Vi)[A] := T[7(vi[A])], for each free variable ui 
in a. Note that with this definition 

4,/h-) = ~(71(t1)....,71(tn))u~~,~({T} x er, x .. x er,)(Z) 

and (e a)(Z) = ~(attr~(e),7’(t,),....71(t,))u?l.~(e x er, x . . . x er,N) = UTEe(l)@‘l x 4, P-r) 

Now 

v(Z) = Lttr+j,j>(e~ a)(Z) U (44 \ rattr+)(e. a)(l)) x Ml 
= ~<ott+r(c).l>(UTEe(I){T} x a(Ah)) U (44 \ utr4UTEc I,(T) x 44 P-r))) x f(V 

{To f(a(Z P-r)) : T E 44 A 41, &I # 0) U (44 \ {T E 44 : 4,P-r) # 0 1) x f(e) 
f {Tof(a(Z:&)) : TE e(Z)} 

Hence 

, 

~0ttr~(c)a,(t)ej(cj)(Z) 
= ratrr(ep7(t)ej({TO f(a(Z, h)) : 2’ E e(Z)}) 
= P’ E 44 : Wt)l@fW, &)I = 1) 
= u7,tejbjk)M 0 

Calculus Query Relational Algebra Expression 

(ulll]) i RI(Q) : VI(~) = f(a) 

z = vzll] : R~(Y) : ~1[3l~v2[31 

Relations: Rr(1,2,3), R41,2,3); 7(Vl [i]) = i, 7’ 01 i =iand7’mi =i+3 

~(7(~~111))~,,~~121=j(~)(R1) = ql)u2=&) 

ej = ~~~1,2.3~,j~~(1.2,3,~~(v,[11))~~~,~1[s~ev,1s~(R1 x R2) 

U (RI \ R(1,2,s)u?l,v,131eVt1s1(Rl x R2)) x f(e) 

= ~<(1,2,s).r>91,2,3,r)Oges(R1 x R2) 

U (RI \ ~(w,s)~se6(Rl x Ra)) x f(e) 

Example 2: Translation of a calculus query into algebra 
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(1) 
(2) 

(3) 

For the following steps assume that for any closed alpha a 
contained in the one currently translated a corresponding 
algebraic expression e, has been constructed. 

TO a range ri = a;, V . . V oib corresponds 
e,, = e,,l U U e,+. 

To a = ((tl,...,tn) : rl(ul), . . . , rm(vm) : $1 corm- 
sponds 

e a= ?r(7(t,),...,7(t,))u?.~(erl x x erJr 
where 7 associates with each term v;[A] the corresponding 
attribute of e,, x x e,,. 

In order to translate an extended selection operation u7,e(e) 
into a regular algebraic expression, we have to break down the 
operation into parts, thereby reducing the complexity of the se- 
lection predicate $. Most of the translation rules necessary to 
achieve this reduction are quite simple. These rules are given in 
table 5. (As (T) maps UNKNOWN to TRUE, a selection with 
a predicate (T$) yields exactly the tuples where J, is evaluated 
to TRUE or UNKNOWN. A similar rule holds for (I).) 

Note that the translation of a negation (7) transforms u into 
u’ and vice versa. This has been a source of inconsistency in 
earlier approaches that did not include u’. For example, the 
translation of an all subquery in [CeGo85] is performed by means 
of a negation. Therefore it is incorrect, if the predicate in the 
WHERE clause of the subquery contains an aggregate function 
that may return the null value as a result. 

The only nontrivial rule is concerned with the translation of 
an extended selection where the selection predicate contains an 
aggregate function (i.e. an expression 07,te,(al(e)). The idea 
behind this rule is as follows: We construct an algebraic expres- 
sion el representing {To f(o(Z,/?r)) : T E e(Z)}, i.e. to each 
tuple T E e(Z) the corresponding function value is attached, and 
obtain the result by applying selection and projection to “f ap 
propriately. 

Basically, cl is constructed by applying an aggregate for- 
mation operator to an expression (e a) representing the union 

U TEefl)W x a(Z,kr), i.e. each tuple T E e(Z) is concate- 

nated with the tuples of a(Z,&). However, this represents only 
{Toj(a(Z, &-)) : T E e(Z)Aa(Z, /IT) # B}, as for empty relations 
a(Z, /?r) no tuple is contained in the union. Hence, ej will con- 
tain a second part representing (Tof(0) : T E e(Z) A(z(Z, /3~) = 
0). Formally the rule is presented in lemma 1. The translation 
of a calculus query containing an aggregate function into algebra 
is illustrated in example 2. 

5 Processing Strategies for Aggregate 
Functions 

The purpose of this section is to develop a general strategy 
for the processing of aggregate functions, i.e. of expressions of 

the form u7,tej(p)(4(Z) ( we adopt the notation used in lemma 
1) and to present several special strategies following the general 
approach. Two obvious processing strategies are the following: 

l Nested Iteration: Determine a(Z, &) for each T E e(Z), 
apply the aggregate function and test the selection predi- 
cate. 

. Algebraic Processing: Determine {To f(a(Z, &)) : T E 
e(Z)} as in lemma 1 and apply selection and projection. 
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Nested iteration is in general inefficient, as has been shown 
by [Kim 821. Algebraic processing has the disadvantage that 
computation of ef leads to duplication of work if ] {f(a(Z, a)) : 
T E e(Z)} ] c ] e(Z) ], as then several function values are com- 
puted more than once. Specially, to compute {To f(fl) : T E 

, e(Z)Aa(Z, /3r) = 0) is wasted, as f is constant. It is however nec- 
essary to compute this set if we want to stay inside relational al- 
gebra. What we really would like to do in this case is to find some 
kind of minimal representation of the aggregate function com- 
bined with an efficient method to obtain the value corresponding 
to a tuple T E e(Z). To state this problem more formally, we 
define for an arbitrary but fixed expression u7,tej(a)(e)(Z) the 

following function F, which computes f(a(Z,&)) for T E I@, 
where k is the number of attributes of e(Z): 

F : fi” -+ A, F(T) = f(a(Z, &)). 

In the minima; representation of F each function value would 
be represented exactly once. The basic idea is to approximate the 
minimal representation by grouping tuples with identical func- 
tion values together and representing the function value only 
once for every group. Following this approach we can present the 
following general processing strategy for aggregate functions: 

General Processing Strategy: 

(1) 

(4 

(3) 

Define an equivalence relation I on a set 

Rz{TEe(Z): a(Z,/Sr)#B} 
such that 

T ET’ + F(T) = F(T’) 

The corresponding equivalence classes are 

f’ = {T’ E R : T I T’}, T E R. 

Represent A& = {~+‘(T):TER} 

in the form of a relation mF with a set Ah of attributes 

corresponding to p, and an attribute AF corresponding to 

F(T). 

Use rnj to compute c~~,~s~t~l(e)(Z) in one of the following 
ways: 

(3.1) Generally, we can compute F using mF and integrate 
selection using the function F into relational algebra: 

if T E rA&(mF) 

otherwise 

%,W(a)k)(z) = o,(t)eF(attr,(e))(e)(z). 

That is, we compute the result by repeatedly looking 
up the value of F in mp. 

(3.2) If f(0) = UNKNOWN, i.e. if f #COUNT, we can 
use mF directly to compute the desimd result, as all 
necessary function values are represented in mp: 

%.tej(o) te)fz) = ~ottrE(e)u7(t)eAru=~~=)=Ak (dz) xmF) 
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According to this general strategy, relational algebra has tcs 
be extended to allow equivalence classes and selection using a 
function, where the mechanism to identify a certain equivalence 
clam depends upon the special equivalence relation chosen. 

We are now able to define special processing strategies by 
specifying the choices made in steps (1) and (2). In the remain- 
der of this section, we will present several strategies with the 
corresponding choices. 

Strategy I: Miniial representation of F 

In the minimal representation of F each function value is 
represented exactly once: 

(1) R = U’ E 4l) : +,Bt) # 01, 
TIT’ - F(T) = F(T’). 

(2) It is an open problem to determine the minimal representa- 
tion rn~ corresponding to the equivalence relation defined 
in (1). Therefore the following strategies intend to approx- 
imate the minimal representation. 

(Rx.) For the query of example 2 we have 

R = ~(~,n,s)cws(& x R?) 

T= T’ - f(qxpsea(P’) x Rz)) 
= f(rc~,om({T’} x Rz)) 

Stratcgg t: Optimised algebraic processing 

We obtain an optimised version of the algebraic processing 
strategy (lemma 1) if we represent only the values of F 
corresponding to attributes of e that are referenced in Q: 
yt free(u) = 7(u;, [Ai,], . . . , vi&[&,]) be those attributes 
u,, , . . . , Vir are the free variables in o). 

R = {T E e(Z) : a(Z,/%r) #0}, 
T = T’ +=+ T[free(a)] E T’[free(a)], 
p is represented by T[free(a)]. 

mF = d<(l * . . . . kM>~(free(o),+(t,) ,...,,I ‘(b.)) 
U.r’,J,(C x %I x . . x G,)(Z) 

7’ is defined as in lemma 1. The difference between ml 
and eZ of lemma 1 is, that function values f(g) are not 
represented and a projection of the attributes free(a) is 
performed as early as possible. 

For the query of example 2 we have 

R = ~(1,2,3pee(& x &I 
T E T’ w T[3] 5 T’[3] 
ml = h,~>q~,qmdR1 x &I 

If f(0) # UNKNOWN, we have 

and ~~,v~p]=f(a)(Rl) = %~((l,z,s))(Rd 

If r(e) = UNKNOWN, we can use ml directly: 

u7,va12)+x)(R1) = ~(1,2,3)~2&%~4(Rl X ml). 

Strategy 3: Conjunctive equality predicate 

Ifthepredicate$inaistl, =~‘A~i~[Ai~]=ti~r\...h 
v<~[A~,] = ti,, where Jl’,til, . . , , ti, do not contain any VU& 

ables free in a, we can formulate the following strategy 
(here 7’ associates with the variables vi,. . . , v& of a the 
corresponding attributes of (e,, x . . . x e,,)): 
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(1) R = {TcNk: V441 E ~(7’(ti,).....7’(t,~)) 
u7~,tif(erl x . . . x kJ(l)l, 

T e T’ w T[f’ree(a)] = T’[free(a)]. 

(2) mF = d<(l ....,kk).f>~~Vlt,l ).....7'(t,,).7'(tl),...,~'(t-)) 

u,~.d+, x . - - x +J(Z)- 

Note that R and mF are defined without using e. Con- 
sequently mF can be determined independent of e. The 
correctness of this strategy follows from the fact, that R > 
{T E e(Z) : a(Z,fi) # 0) because a(Z,&) # @ only for 
tuples T[free(a)] matched by some (ti,, . . ., ti,). For the 
case f(g) = UNKNOWN, strategy 3 has been presented 
by (Kim82). 

(Rx.) If V equals ‘ =‘, we can compute the query of example 2 
in the following way: 

R = {T E Ns : T[3] E qs,(Rz)}, 
T n T’ - T[3] = T’]3], 
mf = ~<w>7ys.l)(R2). 

The integration of ml is accomplished as in strategy 2. 

Strategy 4: Range predicate 

(1) 

(2) 

(W 

If the predicate J, in a is 1/, = 4’ A oo[Ao]& where 4’ 
does not contain any variables free in a, we can formulate 
a strategy, where the equivalence classes are basically in- 
tervaIls in N. The endpoints of the intervalls will be taken 
from the set 

CP = r,~(to)u,~,w(e,, x ... x e,,)(Z) U {-oo,oo} 

= {Pi : 1 I i I] GP ],ni < pi+l}- 

R = e(Z), 
Ts p * a(Z,h) = a(Z,&) 

If 19 E {<, z}, thii means 
T s T’ - T[v(uo[Ao])], ~[~(w[Ao])] E [gpi, pPi+l) 
for some mi, gp;+i E GP. T can be represented by gpia 

If B E {>, S}, thii means 
T a T' - T[~(~[Ao])],~I~(~[AoI)I E (gPi,oPi+lI 
for some pi, ni+i E GP. p can be represented by opi+i. 

mj = ~<o~.f>“(op,7’(t,),...,7’(t1))07’.3’hOP8~(t~) 
(er,(Z) x . . . x e,,(Z) x GP) 

If ‘0’ equals ‘ <‘, we can compute the query of example 2 
in the following way: 

GP = ys,(Rz) u {--OO,QO), 
R = N’, 
T n T’ - T[3], F[3] E [g&s Wi+l), Pit gPi+l E GP, 
mf = d<l,f>S(4, +4<S(R2 x GP). 

To compute F(T), we have to determine the opi corre- 
sponding to T[3] and look up the corresponding function 
value in ml. This can be accomplished by sorting rnf on 
gpi-values and performing a binary search. 

Strategy 4 can be generalised to deal with arbitrary conjunc- 
tions and disjunction of range predicates uij [&]6&, . In or& 

to accomplish this, GP has to be defined as the cross product of 
sets GPj, determined as above for each individual range predi- 
cate. 

Strategies 2-4 should be considered by an optimiser to pro- 
cess queries having aggregates more efficiently. Whether one of 
the strategies 3,4 is superior to strategy 2 depends on the rise 
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of mF (the number of function values that are represented) and 
on the complexity of the computation that is necessary to deter- 
mine mp. The optimizer should contain corresponding decision 
procedures. 

6 Summary and Future Work 

To recapitulate, we have extended relational algebra and re- 
lational calculus to cover a significant subset of SQL. We gave a 
translation from SQL into relational calculus, thus obtaining a 
formal definition of the semantics of SQL. We presented a trans- 
lation from relational calculus into relational algebra, which was 
a good foundation to study the processing of aggregate functions. 
Finally, we developed a new processing strategy for aggregate 
functions. 

Our results can be applied in the following areaz, thus forming 
a foundation for more work in these directions: 

l In [ANSI85], the semantics of an SQL query is defined by 
nested iteration evaluation: A subquery is completely eval- 
uated for each tuple of the outer query block. This has been 
directly implemented in System R for example [Seli79]. 
However, the direct implementation of this feature is in 
general inefficient [Kim 821. Therefore defining the seman- 
tics of an SQL query by translation into relational algebra 
and relational calculus opens up new optimization oppor- 
tunities: 

- The optimizer can investigate the whole query and is 
no longer constrained to look at one subquery at a 
time. 

- The optimizer can use the broad body of knowledge 
developed for the optimization of relational calculus 
and relational algebra queries (see [ JaKo85] for a sur- 
vey and further literature). 

l The representation of an SQL query in a formal language is 
useful for proving the equivalence of two queries. This can 
be applied to detect common subexpressions in one query 
or in a set of different queries [Jarke85]. 

l The new transformation from extended relational calculus 
into relational algebra has a simpler structure than previ- 
ously known. Therefore an easy comparison of relational 
algebra and relational calculus query optimization becomes 
possible. 

l The optimization strategies developed for aggregate func- 
tions can be integrated into existing optimizers to process 
queries with aggregates more efficiently. 

. Utilizing relational calculus or relational algebra as internal 
system language of a database management system makes 
it easier to support a multiple language environment, which 
is interesting for example in a distributed environment with 
a backend database machine. 

Our future work will focus on the development of an opti- 
mizer for SQL queries in a database machine environment that 
is based on the approach presented here. 
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Grammar for the SQL Subset 

< query> : := 8NUcT <select list> 
FROM <range list> 
WHEFE <predicate> 

[ GROUP BY <attribute list> 
[ HAVING <predicate> I I 

<select list> ::= cterm> [. <term> . ..I 
<range list> : : = <range f omula> 

[ , <range for8ula> . . .I 
<range formula> : := <relation mm> ( crariablo name> ) 
<attribute lirt> ::= cattr-zpec> [. <attr-zpoc> . ..I 
<predicate> ::= [NOT] ( <predicate> ) 

I <predicate> {ANDIOR) <predicate> 
I ccompariron predicates 
I cquantiiied predicate> 
1 <exirtm predicate> 

<comparison predicate> ::= <tell0 <cow op> <term> 
<quantified predicate> ::= <term> ccomp op> SOME cquorp 
<exists predicate> : := EXISTS <quay> 
<term> ::= clitoral> I Cattr-spa0 I *aggr-fun> 
cattr-zpec> : : = <variable name>. <attribute nu0 
<qp-fun> : := {A~glMAXlMINl~lWUNT}(Cattr_zpoc>) 

<relation name>. <variable nUe>. <lit&l>and<comp op>(8) 
are defined as in relational calculus. 
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