
Abstract

Preferences: Putting More Knowledge into Queries *

M. Lacroix and P. Lavency

Philips Research Laboratory, Brussels

Classical query languages provide a way to ex-
press mandatory qualifications on the data to be re-
trieved. They do not feature facilities for expressing
preferences or desirable qualifications. The need
for preferences is illustrated in a software engineer-
ing framework. A preference mechanism is then
presented as an extension of a language of the Do-
main Relational Calculus family, and the expressive
power of the resulting language is discussed. The
proposed mechanisms are shown to effectively allow
the use of queries for supporting software configu-
ration management functions.

*This work is funded in part by the “Services de Pro-
grammation de la Politique Scientifique” under Contract
KBAR/SOFT/4.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment.

1 Introduction

The database query languages have established a
style of putting queries where mandatory charac-
teristics of what is to be retrieved have to be spec-
ified in a rather rigid way. For some applications
however, one is generally ready either to weaken the
initially required characteristics ifthere is no object
satisfying them, or to strengthen them if there are
too many answers. For example, one might query a
program database for module versions whose target
is a 16 bit machine, and whose status is “released”,
but one might accept module versions whose status
is only “tested” when there is no released version
satisfying the target characteristics. Similarly, one
is likely to specify further characteristics if the set
of answers to the query happens to be large.

Our approach was developed as an answer to
the difficulty of expressing in traditional query lan-
guages desirable characteristics of what has to be
retrieved. Those difficulties were particularly expe-
rienced in the retrieval of versions of objects from
the database of an experimental programming envi-
ronment. The proposed solution is thus illustrated
and discussed in a software engineering .database
framework; it should however be relevant to more
traditional applications as well.

The present paper is organized as follows. In Sec-
tion 2, we illustrate the role of a query language in

Proceedings of the 13th VLDB Conference, Brighton 1987 217

a progr amming environment. In this setting, the
“intensional” aspect which normal queries already
present is stressed. Preferences can then be viewed
as a device for allowing the users to express more
thoroughly their intents to the system. In Section
3, we present our’query language and the constructs
to express preferences. In Section 4, we discuss
the expressive power of the language. In Section 5,
we illustrate with some examples how queries with
preferences can be used in software engineering ap-
plications. Finally, in Section 6, we compare our
approach with other approaches proposed in the
literature.

2 Denoting Objects with Queries

A standard way to explain the function of queries
is to present them as a mean of retrieving from
a database information that is needed for taking
some decision or performing some action. A typical
query fuIfilling this kind of function is e.g.: “Get
the status of version 2.3 of module getdata”.

In engineering applications, however, another
function of queries appears to be prevalent. Queries
are essential because they are in fact “intensional”
denotations of objects in a database, i.e. they de-
note objects by their properties rather than by their
name. A typical query fulfilling this kind of func-
tion is e.g.: “Get the versions of module getdata
whose status is released”. This is to be contrasted
to the above query where one is interested in prop-
erties of an object which is explicitly named.

The latter kind of query is used in our pro-
gramming environment for constructing members
of large program families by selecting particular
versions of the component modules. The denota-
tion of versions by their properties rather than by a
mere list of identifiers presents definite advantages.
These advantages, which stem from their being a
system interpretable specification of the user’s in-
tents, are twofold:

l Queries can be re-evaluated when the database
state changes. This provides a basic mecha-
nism for change propagation - a key feature
in programming environments.

l Queries also constitute a basic self-
documentation of why particular versions are

218

chosen. This is to be contrasted with the se-
lection of particular versions by their name,
which in terms of documentation can just pro-
vide a record of which versions went into a pro-
gram, thus loosing the user’s intent.

The machinery of the traditional query languages
unfortunately proves in practice not to be fully ad-
equate for the scheme sketched above. The reason
is that one is most often only interested in one an-
swer to a query, and not in a set of them. Manually
designating the preferred answer would make one
loose the key advantages of “intensional” queries:
the reasons behind a manual selection would re-
main opaque to the system. Facilities allowing one
to make explicit to the system the knowledge one
would use for manually selecting the preferred an-
swers are thus essential. Such knowledge is ex-
pressed as preference clauses in the query language
described in the next section.

3 A Language with Preference Clauses

The query language is basically a language of
the Domain Relational Calculus family (DRC, see
[LAa77,ULL82]). It is an application oriented sim-
plification of DRC in that the form of queries is
geared towards the retrieval of versions of software
components. These modifications are not essential
for the topic of the present paper.

The database schema in which the versions are
managed is quite simple: each software component
is modeled by a relation whose key attribute iden-
tifies the versions, and whose non-key attributes
model characteristics of the versions. For instance,
an attribute DEFAULT can be used for indicat-
ing whether or not a version is a default one, the
attribute STATUS for describing the development
state of the version, and the attribute TARGET
for indicating for which kind of target machine the
version is developed.

The application oriented modifications of DRC
are aimed at making more straightforward (i) the
retrieval of versions of component modules by spec-
ifying constraints on their characteristics (in rela-
tional terms, retrieval of key attribute values of
relations by stating conditions on the non-key at-
tributes, without having to explicitly mention the

Proceedings of the 13th VLDB Conference, Brighton 1987

name of the relation linking them), and (ii) the re-
trieval of versions for all the component modules of
a program without having to list the target vari-
ables corresponding to each component module.

Besides those modifications, a lot of syntactic
sugaring has been used. The reader will however
easily recognize DRC behind it; this should allow
us to present the basic flavor of the language just
on examples.

The query (Ql) selects the versions of the MAIN
component which have the status ‘coded’ (indicat-
ing that the coding phase is finished). These ver-
sions are typically selected by the version tester.

select the versions of MAIN
having STATUS = coded

Query Ql.

The query (Q2) selects the most recent version
of MAIN. This is typically a selection made when
developing new versions.

select the versions of HAIN
having DATE = mx (DATE 0f

a version of MAIN)

Query 82.

The query (63) builds the instances of the
CONF program (having three components : MAIN,
PROCESS-DATA, GET-DATA) which are neces-
sary to perform the integration testing of the ver-
sions of MAIN. We assume that the versions must
be tested with the default versions of the other
components (developed for the same TARGET ma-
chine).

select the instances of CONF
having

the version of MAIN
having STATUS = tested and

same TARGET as the version
of PROCESS-DATA and

same TARGET as the version
of GET-DATA;

the version of PROCESS-DATA
having DEFAULT = true;

the version of GET-DATA
having DEFAULT = true

Query 83.

3.1 Simple Preference Clauses

Let us consider the versions of interest for the
testers and let us assume that the testers should
first deal with the versions developed for the 16 bit
target machines. The query (Ql) should thus be
refined with a qualification expressing that if there
are versions which are ‘coded’ and developed for a
16 bit machine then these ones must be preferred
to those whose status is ‘coded’ but not developed
for such a machine.

With the help of a “prefer” clause appended to
(Ql), this is expressed as follows.

select the versions of MAIN
having STATUS vwoded

from which prefer those
having TARGET = 16

Query 84.

The qualification in a preference clause is simi-
lar to the qualification of a standard query. The
semantics of a preference clause can operationally
be defined as follows (a more formal definition is
given in Section 4.). The query without the pref-
erence clause is evaluated. The preference clause
is then applied on the answer. It either turns the
answer into an empty set in which case the prefer-
ence clause is void, i.e. everything happens as if it
were absent, or it hopefully reduces the cardinality
of the answer.

The answer to query (Q4) above will thus be the
coded versions developed for a 16 bit machine if
there are such versions, otherwise it will be the
coded versions developed for machine with a bit
size different from 16.

3.2 Compound Preference Clauses

When several preferences are specified, some pref-
erences are more important than others or they are
equally important. In this section we present the
constructs corresponding to these two possibilities.

3.2.1 Nested Preferences
Let us assume one wants to select the instances of
CONF built with versions developed for the same
type of machine, and prefers those built with tested
versions of MAIN and PROCESS-DATA. If getting
a tested version of MAIN is more important than
getting a tested version of PROCESS-DATA, the
query is

219 proceedings of the 13th VLDB Conference, Brighton 1987

select the instances of CONF
having

the version of MAIN
having

same TARGET as the version
of PROCESS-DATA and

same TARGET as the version
of GET-DATA

from which prefer those
having

the version of UAIN
having STATUS = tested

from which prefer those
having

the version of PROCESS-DATA
having STATUS = tested

Query Q5.
To express relative importance among prefer-

ences, we thus repeat the “from which” construct;
the preferences following the “from which” keyword
being considered less important than the preceding
ones. This kind of multiple preference clauses can
be operationally viewed as filters that are applied
in the order they appear to what the preceding part
of the query returns. Those that would reduce the
answer to the empty set are ignored. For a more
formal definition, see Section 4. In any case, the
answer of (QS), will be instances of the CONF pro-
gram built with the versions developed for the same
type of machine. If some of these instances have
tested versions of MAIN and PROCESS-DATA the
answer is restricted to these instances. If no such
instances exist but some instances have a tested
version of MAIN, these instances constitute the an-
swer. If no such instances exist and if some in-
stances have a tested version of PROCESS-DATA,
the answer is restricted to these instances, other-
wise the answer is not restricted.

For ordered domains, the expression of prefer-
ences on the same attribute as in

select the versions of MAIN
having AUTHOR = Pierre

from which prefer those
having STATUS = integrated

from which prefer those
having STATUS = tested

from which prefer those
having STATUS = coded

Query Q6.

220

can be expressed as (Q7) below (assuming that in-
tegrated > tested > coded)

select the versions of MAIN
having AUTHOR = Pierre

from which prefer those
having a maximum STATUS

Query 97.

3.2.2 Equally Important Preferences
Let us now consider a user of CONF who wants to
select the instances built with versions developed
for the same type of machine and who prefers those
built with tested versions of MAIN and PROCESS-
DATA. If having a tested version of PROCESS-
DATA is as important as having a tested version of
MAIN, the query is

select the instances of CONF
having
the version of MAIN
having

same TARGET as the version
of PROCESS-DATA and

same TARGET as the version
of GET-DATA

from which
prefer those
having

the version of
having STATUS

prefer those
having

the version of
having STATUS

UAIN
= tested

PROCESS-DATA
= tested

Query 88.

Equally important preferences are thus expressed
by repeating the “prefer” construct. The answer
to this kind of queries will be those satisfying a
maximum number of preferences. In any case, the
answer of (Q8), will be among the instances of
the CONF program built with the versions devel-
oped for the same type of machine. If some of
these instances have tested versions of MAIN and
PROCESS-DATA the answer is restricted to these
instances. If no such instances exist but some in-
stances have a tested version of MAIN or some in-
stances have a tested version of PROCESS-DATA,
these instances constitute the answer, otherwise the
answer is not restricted.

Proceedings of the 13th VLDB Conference. Brighton 1987

3.3 Second Order Constructs

To deal with very large programs with many com-
ponents, second order constructs have been intro-
duced for avoiding the tedious repetition of the
same qualification for the different modules. For
example, if the instances of the CONF program
with all the tested versions must be built, one can
specify

select the instances of CONF
having

the versions of all the modules
having STATUS = tested

Query Q9.

Second order preference constructs to express
equally important preferences on all the versions
are also available. For instance, to build the in-
stances of the CONF program with all the versions
developed for a 16 bit machine while preferring
those with tested versions, one can ask:

select the instances of CONF
having

the versions of all the modules
having TARGET = 16

from which prefer those
having

the versions of a maximum number
of modules

having STATUS = tested

Query QlO.

4 Expressive Power of the Language

In this section we describe the correspondence
between the different forms of preference clauses
in our language and Domain Relational Calcu-
lus (DRC) expressions. For the sake of clarity,
we introduce an intermediate step, a DRC ex-
tended with preference clauses. Another advan-
tage of this intermediate step is to show how
the notion of preference presented in this pa-
per can be integrated in DRC. A query such as

or

cx I P(x)
from which prefer Pi(x)>

Query Qll'.

is equivalent to

-Iz I Q(x) A
PY Q(Y) A WY) * Pl(dl)

Query Q12.

This kind of query is safe (see [ULL82]) since it
can be expressed in relational algebra

(P x (Pi - R))[ll u ((P l-l pi) x-q11

where R is defined as

((9 r-l Pi) x pi)[21

A query with nested preferences such as

select the versions of X
having Cj

from which
prefer those having Pi

from which
prefer those having P2

or
Query Q13.

Ix I P(x)
from which prefer Pi(x)
from which prefer P2(x)>

Query Q13'.

becomes in DRC

{x I
A

A

A
select the versions of X
having Q

from which prefer those
having Pi

; Pi(z) A P2(x)]
1-3~ Q(Y) A PI(Y)
A

3~ Q(Y) f\ Pi

* Jw)l
b3y Q(Y) A PI(Y)
A

‘3~ Q(Y) A PI(Y)
A

~YQ(Y) A J'~(Y)
* w411

Query Qll.
Query 814.

proceedings of the 13th VLDB Conference, Brighton 1987 221

Aud a query with equally important preferences
such as

select the versions of X
having Q

from which
prefer those having Pi
prefer those having P2

Query 815.

<x I t?(x)
from which
prefer Pi(x)
prefer PZ(x)>

Query Q15'.

becomesin DRC

G I Q(x)
A PYQ(Y) A WY) A WY)

*Jqt) A P2(t)]
A [-~YQ(Y) A PI(Y) A J'~(Y)

A

~YQ(Y) A W(Y) v Pi)
*Pi(z) v P2(t)]}

Query 916.

It is thus possible to express preferences in any com-
plete language [COD72]. Preferences clauses with a
maximum or a minimum can similarly be expressed
in DRC.

select the versions of X
having Q

from which
prefer those having a maximum T

Query Q17.

or

<x I Q(x)
from which prefer those having

a maximum Ct I P(x,t)I)

Query Q17'.

222

Note that P in (Q17’) is the predicate correspond-
ing to the relation linking X to T in (Q17); P is
implicit in (Q17). This query can be expressed in
DRC as (Ql8).

lx I QWA
PY 3 Q(Y) A P(Y, t))
=+ P(x, tl) A
tl = m=it I 3~ WY, t) A Q(y)313

Query 418.

The closed subformula (3y 3t Q(y) A P(y, t))
is necessary since there could be no t such that
(Q(z) A P(z, t)). Note that parts of the query are
repeated in the scope of the maximum (here Q(x)
is repeated). Furthermore it could be shown that
when these preferences are nested, the equivalent
DRC expression contains nested maximums.

As illustrated by (Q12), (Q14), (Ql6) and (Q18),
the relational calculus formula of a preference
clause contains a closed subformula. A closed sub-
formula is potentially dangerous: since the subfor-
mula is closed , there is no free variable that can be
used to connect it with the other elements of the
query and with the target variable. In languages
allowing closed subformulas, there is thus no syn-
tactic safeguards preventing one from stating com-
pletely unrelated propositions. Note however that
preference clauses are not “disconnected”, the con-
nection is here made by repeating part of the closed
subformulas as open subformulas.

To avoid “disconnected” queries, the syntax of
languages such as ILL [LAb77] has been designed in
such a way that closed subformulas cannot be speci-
fied. Since in its basic form, the language described
here can be viewed as a variant of [LAb77] , it was
impossible to express preferences. The introduc-
tion of the preference construct solves this problem,
with the advantage of restricting the queries con-
taining closed subformulas to “non-disconnected”
ones.

Our approach allows one to easily express multi-
ple preferences while the corresponding relational
calculus formulas become more and more cum-
bersome as the number of preference clauses in-
creases (compare our queries with the equivalent
DRC queries). In fact, it could be shown that the
number of conjunctions in the DRC expression is

Proceedings of the 13th VLDB Conference, Brighton 1987

a combinatorial function of the number of prefer-
ences. The complexity of such formulas might ex-
plain why traditional query languages have estab-
lished a style of putting queries with mandatory
qualifications rather than desirable qual$ications.

5 Examples

In this section we illustrate the role of queries with
preferences in a software development process.

As a first example, we consider queries defining
on what objects a development task can be per-
formed (i.e. the view of the database specific to this
task). Considering the integration testing task, the
instance which must be constructed to test a ver-
sion of MAIN can be characterized by the following
w=Y

select the instances of COHF
having

the version of BAIB
having STATUS = coded and

same TARGET as the version
of PBOCESS-DATA and

same TARGET as the version
of GET-DATA;

the version of PROCESS-DATA
having DEFAULT = true;

the version of GET-DATA
having DEFAULT = true

Query Q19.

There can however be more than one version of
MAIN having STATUS coded, corresponding for
instance to the successive enhancements made by
the developer. The method or strategy consisting
in integrating only the last version of MAIN (i.e.
containing the last improvements) satisfying the
same characteristics as in (Q19) can be supported
by the following query

select the instances of COIF
having

the version of BAIY
having STATUS = coded and

same TARGET as the version
of PROCESS-DATA and

same TARGET as the version
of GET-DATA;

the version of PROCESS-DATA
having DEFAULT = true;

the version of GET-DATA
having DEFAULT = true

from which prefer those
having

the version of BAIB
having a maximum DATE

Query 620.

The method or strategy consisting in integrating
successively all the versions can be supported too:
“a maximum” must then be changed in “a mini-
mum” .

We can refine those queries and specify that the
versions developed to fix bugs (the bugs being de-
tected during the unit testing or during the integra-
tion testing) must be integrated before the others.
We then have the following query

select the instances of COBF
having

the version of MAIN
having STATUS = coded and

same TARGET as the version
of PBOCESS-DATA and

same TARGET as the version
of GET-DATA;

the version of PBOCESS-DATA
having DEFAULT = true;

the version of GET-DATA
having DEFAULT =txue

from which
prefer those
having

the version of BAIE
having WIT-BUGFIX = true

prefer those
having

the version of XAIE
having IBTGR-BUGFIX = true

from which
prefer those
having

the version of PROCESS-DATA
having a maximum DATE

Query Q21.

These queries can be considered as basic specif&
cations of the task management facilities provided
by software engineering environments. They spec-
ify on what objects a task must be performed and
the environment could for instance warn the user

proceedings of the 13th VLDB Conference, Brighton 1987 223

when there is a new object on which the task must
be performed.

As a second example, we consider queries speci-
fying the instances of CONF to be used as compo-
nents of a larger system. One can decide that only
the instances built with integrated versions devel-
oped for the same kind of machine can be used in
this context and this defines the mandatory quali-
fication of the query. One can then choose a “cau-
tious style” (see [LEB83]) and select those built
with the default versions. The query is then

select the instances of COIF
having

the versions of all modules
having DEFAULT = true and
STATUS = integrated;

the versions of all modules
having same TARGET

Query 422.

Or one can chose a “dynamic style” ir la Make
[FEL79], where. the versions containing all the last
improvements are used as soon as they become
available. The query is then

select the instances of COED
having

the versions of all modules
having STATUS = integrated;

the versions of all modules
having same TAEGET

from which prefer those
hENiIlg

the version of MAIli
having a maximum DATE

from which prefer those
having

the version of PROCESS-DATA
having a maximum DATE

from which prefer those
having

the version of GET-DATA
having a maximum DATE

Query 623.

Note that the order of preferences in (Q23) in-
dicates what changes must be taken into account
when it is not possible to take them all into account
at the same time. For example in (Q23), if the most
recent integrated version of MAIN is not developed
for the same kind of machine as the most recent in-
tegrated version of PROCESS-DATA (i.e. the last

improvement of MAIN is not compatible with the
last improvement of PROCESS-DATA), then the
instance built with this version of MAIN and an-
other version of PROCESS-DATA, will be returned
since the preference on the DATE attribute of the
version of MAIN is specified as more important
than the preference on the DATE attribute of the
version of PROCESS-DATA.

6 Comparison with other Approaches

Different approaches [CHA76,MOT86] have been
proposed to express and handle desirable qualifi-
cations (preferences in [CHA76] , goal queries in
[MOT861). Unlike ours, these approaches as-
sume that numerical information about values of
the DB domains is available (membership func-
tions in [CHA76] and “distances” between values
in [MOT861).

The approach of [MOT861 is interesting because
the distance between two values is in many cases
a relevant information which is in the DB either
implicitly (e.g. absolute value of the difference of
numerical values) or explicitly (e.g. a relation in-
dicating the distance in miles between two loca-
tion names). Basic desirable qualifications are then
queries involving a distance to a target value which
must be minimized. This is a quite natural ap-
proach as long as the distance is predetied. For
instance it is quite natural to select the versions
whose price is as close as possible to a target price.

This technique however requires that the user de-
fines a distance between values when there is no
natural distance on their domain. For instance to
express preferences among authors, the user must
define a distance between authors such that author
A will be closer to the target author than author
B if A is preferred to B. The definition of this dis-
tance is the indirect way provided to define an or-
der, the values of the distances themselves being
quite meaningless. Furthermore a new distance has
to be defined each time the user’s order of prefer-
ences changes.

Queries containing more than one distance in the
qualification are then used to express compound
desirable qualifications. They are handled by mm-
imising the (possibly weighted) sum of the dis-
tances. In this process the values of the distances

Proceedings of the 13th VLDB Conference, Brighton 1987 224

become critical and since some of these distances
are rather artificial, weights (as well as other pa-
rameters such as scaling factors) are provided to
let the user control this process and give more im-
portance to some distances. These weights not
only hide the real user intents but also are an indi-
rect way to express them. In some case they must
be “fine tuned” recalling the process of emulating
desirable qualifications with mandatory qualifica-
tions.

The approach suggested in [CHA76] has the same
drawbacks since defining the values of the mem-
berships functions of some basic fuzzy predicates
is as difficult as defining distances on some do-
mains. These values are nevertheless very impor-
tant since the evaluation of membership functions
of compound fuzzy formulas is based on them.

Our approach avoids having to resort to metrics
for supporting desirable qualifications. It should
however be noticed that it is not incompatible with
these other approaches. When distance operators
are available, it is still possible to use them in
mandatory qualifications as well as in preferences.
As a matter of fact, the notion of priority goals in
[MOT861 can be seen as a special case of nested
(minimum) preferences (e.g. the preference quaI.%
cations may only involve distance operators).

7 Concluding Remarks

The notion of preference is motivated in this paper
in the context of software engineering applications,
and more precisely for configuration management
functions. For this domain we contend that the
reasons why some solutions are selected must be
governed by explicit rules which directly capture
the knowledge the developers would use for doing
the same job manually. For this kind of applica-
tions, preferences are definitely to be preferred to a
mechanism based on the minimization of distances.

The preference rules are part of queries rather
than part of the database. In the context of soft-
ware engineering applications, those queries are
however not mere throw-away queries. They are
used for determining the views of a database of
module versions that are required for various tasks
during a software development process.

We believe that the concept of preference is inter-

Proceedings of the 13th VLDB Conference, Brighton 1987

esting in itself and should be useful in other applica-
tion domains, especially when the stress is similarly
put on the need for explicit preference rules. The
proposed preference constructs can in principle be
integrated in most existing query languages.

Since the transformation of preference clauses
into DRC results in a combinatorial growth of the
query, it seems worthwhile trying to directly sup-
port the preference construct in the query eval-
uation machinery. This is indeed what we have
done in a prototype Prolog implementation of our
language, which follows the operational semantics
given in Section 3. Anyway, the optimization of
queries with preferences has not been thoroughly
studied and still largely constitutes an open prob-
lem.

References

[LAa77]

[ULL82]

[COD721

[LAb77]

[LEB83]

[FEL79j

[CHA76]

M. Lacroix, A. Pirotte, “Domain-oriented Rela-
tional Languages”, Proceedings of the 3rd Inter-
national Conference on Very Large Data Bases,
Tokyo, Japan, October 1977, 370-378.

J. Ullman, “Principle of Database Systems”,
Computer Science Press, 1982.

E. F. Codd, “Relational Completeness of Data
Sublanguages”, Data base systems, Courant
computer science symposium 6, Rustin (ed.),
Prentice Hall, Englewood Cliffs, NJ, 1972, 65-98.

M. Lacroix, A. Pirotte, “An English Structured
Query Language for Relational Databases”, Pro-
ceedings Information Processing TC-2 Work-
ing Conf. on Modeling in Database Manage-
ment Systems, Nice, January 1977, Niissen (ea.),
North-Holland, New York, NY, 1977.

D.B Leblang, R.. P. Chase, “Computer-Aided
Software Engineering in a Distributed Worksta-
tion Environment”, ACM Software Engineering
Notes 9, 3, May 1983, 104-112.

S. I. Feldman, “Make - A Program for Main-
taining Computer Programs”, Software - Prac-
tice and Experience 9, 4, April 1979.

C. L. Chang, “Deduce - A deductive query lan-
guage for relational data base”, Pattern Recogni-
tion and Artificial Intelligence, C. H. Chen (ed.),
Academic Press, Inc, New York, 1976, 108-112.

[MOT861 A. Motro, “Supporting Goal Queries in Rela-
tional Databases”, Proceedings of the First In-
ternational Conference on Expert Database Sy5
terns, Charleston, South Carolina, 1-4 April
1986, 85-96.

225

