
A COMPARBON OF SELF-CONTAINED AND EMBEDDED
DATABASE LANGUAGES.

A. Christensen and T.U. Zahle

Dept. of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Kobenhavn 0, Denmark

ABsTRAcr..

The purpose of this paper is to compare self-contained
and embedded database languages. An overview is
presented, summarising the differences between the two
types. It is observed that the principle differences stem
from the fact that many things are prespecified in the
self-contained languages. It is then argued, that these
prespecifications can be carried over to the embedded
languages, thereby improving compactness. These
embedded languages should also contain the possibility of
overriding the prespecifications so that the flexibility of
them is preserved. Finally, two examples of such
improved embedded query languages are given and
illustrated with examples.

1. Introduction.

Usually there are two ways of accessing a relational
database, either through a selfcontained language in an
interactive dialogue, or through commands embedded in a
high-level language like COBOL or PI+&

The self-contained languages are often introduced as a tool
for the ordinary user, as a simple and easy-to-learn
high-level language. The embedded languages on the other
hand are meant for programmers and other computer
oriented professionals.

Permission to copy without fee all or part- of this material is
granted provided that the copies are not made. or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
inent. To copy otherwise. or to republish. requires a fee and/or spe
cial permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

For the user of the self-contained language, the
possibilities of manipulating data from the database is
restricted to what is offered by this language, while the
programmer using the embedded language, as well as
having the possibilities of the database commands, is
given the often much wider possibilities of the host
language.

From a number of practical projects we have experienced
that the self-contained languages are rarely able to fulfill
the needs of the user - they lack sufficient flexibility,
even with the use of common aggregate functions.

On the other hand even a simple query is of a considerable
size in an embedded language, and the starting point of
this investigation has been an attempt to pin down the
reasons for this size.

2. A comparison between self-contained and embedded

Two languages were chosen for the comparison,
QUEL/EQUEL from the INGRES database system, and
SQL/ESQL which is used in several different database
systems. (We introduce here the term ESQL for the
embedded version of SQL).

INGRES with QUEL was developed at the University of
Berkeley for the UNIX operating system in 1973, and in
1974-75 an embedded version of the query-language
was introduced.

The first SQL version was developed for the System R
database at the IBM Research Laboratory in San Jose,
with the name SEQUELZ. Like QUEL, SEQUEL2 was
developed as a self-contained language, but an embedded
version soon followed, first in PL/I, and later in a
number of other programming languages. SQL is today
recommended for standardization in ISO, both as a
self-contained language and as an embedded language
for a number of standard programming languages
[ISOSS].

Both SQL/ESQL and QUEL/EQUEL contain
data-definition and data-manipulation, offering the
possibility of mixing definition and manipulation within
the same session.

209

1 SELECTs#,QTY
2 FROM SP
3 wHEREP#=‘p4

ns& *****+*+******

* s#*QTY*

* s1* loo *
* s3 * 150 *
* s5 * loo +
+*******

1 UPDATE SP
2 SET QTY = QTY’l.1
3 wHEREP#=F4’
4 AND S# IN (sl’,‘S3’)

Fig. 2.1. SQL

1 SQLEXPROC OPTIONS (MAIN);
2 EXEC SQL BEGIN DECLARE SECTION;
3 DCLSI CHAR(5);
4 DCL ANSWER CHAR(3);
5 DCL QTY FIXED BINARY(31):
6 EXEC SQL END DECLARE SECTIONi
7
8 EXEC SQL INCLUDE SQLC&
9 EXEC SQL DECLARE 2 CURSOR mR
10 SELECT S#, QTY
11 FROM SP
12 wHEREP#k%‘p4
13 FOR UPDATE OF QTY;
14
15 EXECSQLOPENZ;
16 lFSQLCODENGT=Ol-HEN
17 GO TO QUITi
18 DO WHILX (SQLCODE = 0)
19 EXEC SQL FETCH Z
20 INTO :S#. QQTY;
21 IF SQLCODE = 0 THEN
22 Do;puT SKIP LIST(W=‘.S#.’ QTY=‘.QTY);
23 GET LIST(ANSWER);
24 IFANSWER=‘YEs’ THEN
25 Do;ExEc SQL UPDATE SP
26 SET QTY = QTY*l.l
27 WHERECURRENTOFZ;
28 IF SQLCODE NOT = 0 THEN
29 PUT SKIP LIST (‘UPD-ERROR’);
30 END:
31 END;
32 END;
33
34 IF SQLCODE NOT = 100 THEN
35 PUTSKIP LIST(‘SQLCODE=‘,SQLCODE);
36 ELSE
37 Do; EXEC SQL CLOSE z;
38 EXEC SQL COMMIT;
39 END;
40 QUITzRETuRN;
41 END;

Fig. 2.2. ESQL - embedded in PL/l

210

In order to make compare the two types of languages, we
refer to a number of problems, which represent the
most common types of database queries and
manipulations. They are shown and discussed in detail in
[CHRI86], and a typical example is shown on the
following pages.

The example we use here solves the following problem,
for the well known suppliers - parts database :

Find S# and QTY for shipments with P# = ‘P4’, and
ask the user whether to increase some QTY with 10%.

(Here shipments with S# = ‘S 1’ and ‘S3’ are increased.)

Primarily ESQL makes it possible to perform searching
and updating in a single pass. The program steps are as
follows:

line 8 : A communication ama (SQLCA)
is included in the program.

lines9-13: Theactualqueryisstatedheminthe
cursor declaration.

line15 : The query is perfcnmed here, when the
cursor is opened.

lines 16-17: Ermr conditions are check&

lines 18-32: A loop is performed once for each selected
row, unless an error occurs (SQLCODE
+ 0). The values of the fields in each row
are put in the variables S# and QTY by the
FETCH operation, the values are shown,
and it is decided if the row is to have its
quantity increased. If ‘YES’ the increase is
performed at once in the UPDATE operation
in line 25. The UPDATE statement does
not identify the shipment row by the usual
combination of part number and supplier
number, but uses the cursor Z, which is
already pointing at the row, by specifying
‘WHERE CURRENT OF Z’. This special
ESQL feature can used when the ‘FOR
UPDATE OF columnames’ is specified.
(Note that ESQL makes it possible to
pehrm the searching and the update in a
single pass instead of having to solve the
problem in two passes as in SQL.)

lines 34-39: If all the rows have not been processed
properly (SQLCODE = 100) then an error
message is printed. Otherwise the cursor is
closed and the changes committed.

Proceedings of the 13th VLDB Conference, Brighton 1987

1 RANGE OF SUPPART IS SP
2
3

RETRIEVE (SN = SUPPART.SN, QTY = SUPPART.QTy)
WHERE SUPPART.PN = “P4”

result *****a**++*******
* SN * QTY *

* Sl l loo +
* s3 * 150 *
* ss * loo *
**********+******

1 REPLACE SUPPART (QTY = SUPPART.QTY*I.l)
2 WHERE SUPPART.PN = “P4”
3 AND (SUPPART.SN = “S 1” OR
4 SUPPART.SN = “S3”)

Fig. 2.3. QUEL

1 mo
2 1
3 CHAR ANSWER (3);
4 #mlTlNDx,QTY;
5 ##CHAR SNRTAB[25][6]. SNR[6]. CMPSNR[61;
6 ##INGRES “-210” ANKERSDB
7 INDx=o;
8 ##RANGE OF SUPPART IS SP
9 ##ltmRlEVE (SNR=SUPPART.SN, QTY=SUPPART.#QTY)
10 ## WHERE SUPPART.PN = “P4”
11 ##(
12 pRINTF(‘SNRI%S,QTy=%MN”,SNR,QTy);
13 scANF(%s”#iIwvER);
14 IF (ANSwER[O] = Y?
15 STRCPY(SNRTAB[INDX++l.SNR);
16 W)
17 WHILE (INDX-- > 0)
18 1
19 STRCPY(CA4PSNR.SNRTABfINDXl);
20 ## REPLACE SUPPART (#QTY=SUPPART.#QTY*l.1)
21 ## WHERE SUPPART.SN = CMF’SNR
22 ## AND SUPPART.PN = “P4”
23 1
241

Fig. 2.4. EQUEL - embedded in C

Comments to the EOUEL solution,

In EQUEL you have to separate the operation into a query
and an update, just as in SQL and QUEL.

The reason why the EQUEL program does not have the
same logical and straight-forward structure as the ESQL
program is because it is not possible to mix host language
and EQUEL operations in the same block. If this was
possible, then lines 20 through 22 could replace line 15,
performing the update inside the query-loop as in SQL.
(This is unfortunately not possible in the used INGRESS
version,and it is a serious limitation.)

Proceedings of the 13th VLDB Conference, Brighton 1987

lines 8- 10 : The query is stated, exactly as in QUEL.

lines 12-15: This block of C statements is executed for.
each selected row and the contents of the
row is written onto the output file. A
dialogue with the user determines
whether the user wants to in- the
shown shipment row or not. If so, the
supplier number is kept in afield in the C
variable SNRTAB, by the operation
STRCPY.

lines 17-23: After having shown all the selected rows to
the user, the actual update is performed by
looping. For each supplier number in
SNRTAB (but not mom than 25) a
REPLACE operation is performed, updating
the quantity of the specified row.

Finally it should be noted, that the character ‘# appearing
immediately before the column name QTY in the lines 9
and 20, is used to indicate that this is an INGRES
column name and not the C variable of the same name.
(This marking is only necessary when variable names
and column names are alike).

Summing UD the exanmles.

The SQIJESQL examples show that it is possible to
create an embedded language in such a way that the host
language expands the possibilities of acting on the results,
thus showing the power of the embedded language.

These examples, along with a number of others
discussed in [CHRI86], make it apparent that the number
of statements needed to write programs in embedded
languages is much more than in the similar self-contained
languages. The self-contained langauges am therefore often
much mom compact.

On the other hand, this very example shows a problem that
is hard to solve in self-contained languages, since it is
both aquery to gain knowledge about thedatabase, and
an update of certain tuples from the answer.

It is thus apparent that the advantage of self-contained
languages is their compactness, while the advantage of
embedded languages is their power of expression.
Would it be possible to combine the advantages of both?

3. A schematic overview of the typical tasks performed in
a database pm

To analyze these examples, we have divided the
programs into their basic tasks. The basic tasks are all
actions to be performed, directly or indirectly, when
accessing the database.

211

It has been our intention to make a list of tasks that cover
all the actions to be performed by the user when creating
a program, whether they are explicitly or implicitly
specified This includes tasks prior to writing the actual
program, and the tasks necessary to execute the program.

This list of tasks makes it possible to describe the
differences between self-contained and embedded
languages . The list has been ordered in the sequence in

which a session on the database usually takes place.
This means that “logon” and database identification are
wormed fust, and saving and “logout” are last.

Along with the list of tasks, follows a classification
which shows how the task is triggered in both
self-contained and embedded languages. The task can
be either explicitly specified in the program, or can be
implicitly pmspecified.

4

imp.
emb. emb.
lang. king. lang.

ogin (user-id, Password) S s s
monitor-start (monitor-name) S s s

DB-open @B-name) S s s
editor-start P P s

program-- P s
curscrdeclaration/open/close - s s
input-Parameter decl/assigament - s s
intermediaW-variabledecl/assign. - p s
transaction-start P P s

table or&ion I deletion S s s
DB-oper: selection S s s

function S s s
printins P P s
ok-reaction: handling P P s

message P P s
crrcr-reaction: handling P P s

message P P s
transaction-end P P s

program*nd P s
=wProgram S s s

editor-end P P s
precompile P P s
compile P P s
link P P s
load P P s
execute P s s

DB-close P P P
monitor-logout S s s

ogout S s s

specified=‘s’. prespecified=‘p’ and unused=‘-‘.

Fig. 3.1 Typical tasks for database programs.

comments to figure 3.1:

First let us explain what is meant by the tasks listed in
the figure.

Login and monitor: The first two and the last two are
obvious, since login, monitor-start, monitor-end and
loaout are almost always explicitly defined in a
session with a computer.

Datebase: The w is a statement that identifies which
database is referred to in the statements to come. In
some systems it is possible to disconnect one
database and connect another without leaving the
monitor. Thus we have placed the DB-close before
the monitor-end.

Editor: Usually a standard editor is used when creating a
program with embedded statements, without any
connection to the database. Conversely the
self-contained statements are entered after having
entered a monitor. These statements are kept in a
buffer, until they are finished and executed.

Program: After having entered the editor, (specified
explicitly or implicitly), the program is typed in. Host
language programs with embedded statements are
in our examples always started with one or two
standard statements, which we will call proara start
In self-contained languages there is usually no Z&red
program start The program-end must be stated in
both EQUEL and ESQL.

Cursor: Another characteristic of embedded languages is
the cursor, which is explicitly declared, opened and
closed in embedded SQL, while in EQUEL it is
declared, opened and finally closed through a single
statement. The cursor is not used in the chosen
self-contained languages.

Parameters and Variables: Variables as jnnut-Dammeters
(ANSWER in the examples) or as
intermediate vartableg (QTY, SN and S# in the
examples) is another feature of embedded languages.
In both of the embedded languages these variables
must be declared in specially marked statements, and
also marked in the embedded database statements.
Variables such as these are not available in usual
self-contained languages.

Transactions: The next tasks are expressing action towards
the database, but operations that change the database
must be put into transactions if using ESQL. Here the
COMMIT is the end of one transaction and the
beginning of the next. The first transaction is started by
the first updating statement. This is not necessary inb
self-contained language, since each single statement
can be regarded as a transaction,(unless it is
overruled by an explicit transaction- start and
transaction-end pair enclosing a number of
statemen@ Consequently transaction-start and
transaction-end can be classified as prespecified in
selfcontained languages, while only transaction-end is
specifkd (explicitly) in embedded languages.

Selection: The next step is to access the data Of the
database. These are the actual database operations,
and they have been subdivided into a number of tasks.
First is the selection of the data to be operated Upon.

212 proceedings of the 13th VLDB Conference, Brighton 1987

Function: Next is the function, which is the action
performed on the data selected. In the example in
section 1, the function is the update of the selected rows
in the SP-table.

Printing: Next is the intermediate storing or printing of the
selected data. In self-contained languages the most
common is the printing of data in a prespecified
format, while in embedded languages the selected
data is usually stored in host language variables.

Error-reaction: Another important part of the selection is
the specification of reactions on successful and
erroneous operations. Both the ok- reaction and the
error-reaction can be subdivided into the action taken
and the message given. In the self-contained
languages the error-message is usually an error-code,
perhaps followed by an explanatory text, and the
ok-message is a count of the rows updated, inserted,
deleted or selected. In embedded langages as ESQL
and EQUEL it is necessary to check status-codes in
order to discover errors. Furthermore the errors must
be reacted upon, either by returning messages to the
user, or by programming other database
manipulations.

Saving: After having entered the program with the editor,
you might wish tom it for later use, especially if
it is a program for general use. This mainly concerns
programs with embedded statements, but some
programs in self-contained language might also be
useful to keep. The way SQL and EQUEL work, it is
expedient to keep the.program at least temporarily,
zdause of the separatron between editing, compiling

runnmg, and both of the self-contamed
versions offer a possibility of keeping programs in a
library.

Execution: After having saved the nrogram, it is time for

4.

A

executing it. This - includ>s compiling
(perhaps including a precompiling), linking/loading and
finally execution. These tasks are usually
performed transparent to the user when executing
self-contained programs, but when using embedded
languages the user must specify each of the steps.

Conclusions about the overview.

look at the schema in fig. 3.1 shows many differences
between self-contained and embedded languages,
although the basic constructs of the databaselanguages are
the same. The example in the first section showed
similarity in the way the selection and update constructs
were specified, but never-the-less the number of lines
necessary to solve the problem in the embedded languages
far exceeded the number of lines used in the selfcontained
languages.

In self-contained languages there are no extra
surroundings or declarations, and there are no statements
for printing or reading, so what is left is the basic
operations on the database. In embedded languages a lot of
work is done starting, ending and controlling the flow of
the program, declaring and initializing variables and
printing and reading the dialogue with the user.

Proceedings of the 13th VLDB Conference, Brighton 1987

The reason for this is that a number of things that are
explicitly specified in embedded languages are pxespecified
in self-contained languages. The concept of variables is
unknown in self-contained languages, the only media for
temporary storing of data is the user’s head or paper
and pencil. The signalling of errors or of ok-messages is
standardized in a way that makes it unnecessary to
express anything about these reactions in self-contained
languages. Embedded languages offer only a status-code
for internal use in the host program, which makes it
necessary to specify in detail any reaction that has to do
with the status code, even when it is only to show it to the
user of the program.

Another big difference is how the actions are performed in
order to execute the typed statements. In self-contained
languages you can execute the statements directly after
entering them, without really knowing what goes on
behind the screen, such as compiling or interpreting. In
embedded languages you have to perform a number of
actions in order to execute the program.(Qf course it is
possible to make a standard macro to perform
precompiling, compiling, linking, loading and execution
of the program, but in order to write this macro, you have
to know the basic process.)

The conclusion that can be drawn from this example (and
others), must be that the basic difference between
self-contained and embedded languages is the number of
actions that are either prespecified or unnecessary in
self-contained languages. In embedded languages the rule
is, that there is no standard solution to anything, so you
have to specify everything yourself.

The reason for this difference is, that the self-contained
languages are meant for the user who is not a computer
professional, while the embedded languages are for the
programmer, who wants to control everything himself.
Consequently the self-contained languages are kept as
simple as possible, by a great number of
prespecifications, while the main goal in embedded
languages has been to offer as many possibilities as
possible, with much less thought for simplicity.

Is it possible to combine the two philosophies into a
single language, offering at the same time the simplicity of
the self-contained languages and the wide variety of
possibilities of the embedded languages? Why not let the
prespecifications and standardizations of the self-contained
language survive in the embedded languages, leaving it
open to the programmer to overrule the prespecifcations?!

In order to explain how this combination could change the
embedded language, the overview from fig. 3.1 is used. It
has now been given a column showing what an improved
embedded language could look like.

This figure shows the kind of changes we feel are
necessary to improve embedded languages. It must be
noted, bat a “p” in this figure in general means that there is
a presp&kd handling of the task, but the prespecified
handling can be overruled by the programmer.

213

5. Improving an embedded language.

The next question is how to introduce a higher level of
prespecification in an embedded language. We have seven
targets for simplification:

A: Program surroundings.
B: Variables.
c: cursors.
D: OK-reactions
E: Error-reactions.
F: Transaction handling.
G: Program execution.

A. Program -dings.

Target A is perhaps a minor problem, but if an embedded
language is to be simple and short, there is no reason to
have to start and end every program with two or three extra
lines, when the precompiler might as well put them them.
In case a name is wanted for the program, it must be
possible to snecifv a name in the beginning of the
program. For instance:

PROGNAME (Name).

B. Variables

Target B is somewhat more tricky. It should be possible to
refer directlv to the && in the current row, when using a
tuple-at-a-time facility such as the cursor-loop. This is not
possible in ESQL or EQUEL, but the ability to refer
directly to the fields would reduce the number of
variable-declarations and assignments considerably, since
many variables are only used for printing, or for storing in
other tables. In [ZAHL78] the language SCAN was
introduced with this facility, and the implementation of the
language shows the viability of this facility.

c. cursors.

Target C is connected to target B, since the cursor is the
tuple-at-a-time construct which passes through all the
selected rows, returning field-values to the program.

Our wish for improvement is based on the
RETRIEVE-statement in EQUEL and on the Sypp
in [ZAHL78]. It is desirable that the gx~ress o o the

tie-@
te a s ou d be ocated as close as Dossible tQ

erethesel iLdhm Is areL!d, A way to do this is to
let the cursor-specific:tion be the beginning of the loop,
and to introduce a statement, END-CURSOR, to end the
loop. The statements performed for each of the selected
rows will be the statements between the cursor-specifi-
cation and the END-CURSOR. For example:

CURSOR C SELECT S#, QTY
FROM SP
WHERE P# = P4’;

. . .

. . .
END-CURSOR,

In cases where the cursor-loop is not needed, such as in a
simple retrieval of data to be presented in a standard
format, it should be possible to specify a selection without
a cursor. In this case the rows selected should be ‘tte
to the standard-outnut in the
QUEL. For example:

format known from SQymi

,

SELECT S#, QTY
FROM SP
WHERE P# = ‘P4’;

D. OK-reaciions

Concerning ok-reactions there are no reactions at all in
ESQL and EQUEL, leaving it to the surrounding program
to inform the user that the operation was successful. In a
simple selection, presentation of the data is sufficient, but
operations such as delete and update should finish with
a standard message showine how manv ro s ere
Ehanaed or deleted, just like the messages giverin ;QL
and QUEL today. In some cases such messages are not
wanted, and in those cases they can be excluded by
specifying

EXCLUDE OK-MESSAGES

in the beginning of the program. Then all ok-responses
must be specified in detail in the program.

E. Error-dons,

Concerning error-reactions it is always necessary to
return serious error-mess- to the user, but usually the
error-code will be sufficient to enable the user to correct
the error. If the standard error reactions are not
sufficient, a way of disabling the standard reactions
could be the inclusion of the status-communication-area,
in SQL called SQLCA. When this area is included by
specifying

INCLUDE SQLCA

in the beginning of the program, the error-reactions must
be explicitly expressed in the program. They can be
programmed as a test of the status-parameter SQLCODE,
followed by an action depending on the status. The action
could be informative to the user (to help him correct the
error).

First of all the inclusion of the communication area
SQLCA will disable all standard error-reactions, and
leave everything to be specified explicitly. Then it is
possible to use the handling from the ISO-standard,
giving general error procedure& for the entire program by
specifying:

WHENEVER SQLERROR . . . and
WHENEVER NOT FOUND.. .

or testing directly on the variable SQLCODE after every
database operation, giving a special exit-handling for each
operation.

214 Proceedings of the 13th VLDB Conference, Brighton 1987

F. Transaction handling.

Target F has only little impact on the size of the programs,
but it will ease the writing of small uncomplicated
programs, since these programs often need no transaction
handling. The standard transaction handling should be that
the running of a nrosrram is treated as one transaction, no
matter how many updating state- ments there are in the
program. This would mean that if an error occurs in one
of the updating operations during the execution of a
program, none of the operations are performed. It also
means that if the operations of a program are to be sepa-
rated into several transactions, it should be possible to
disable the standard transaction handling, simply by
explicitly issuing the statement

TRANSACTION COMMIT

after the last operation in each transaction. The
TRANSACTION COh4MIT is also the beginning of a new
transaction, and if this transaction is not finished explicitly
by a TRANSACTION COMMIT, the standard transaction
handling will ensure that the last operations are committed
when finishing the program

G. Programexecution.

The previous points have all been focusing on the contents
of the program itself, but the facilities concerning entering,
compiling and executing the programs are also issues
where the techniques of the self-contained languages
could be introduced for the embedded languages. It
should only be necessary to issue a single
execute-state e t without having to know about
precompilationndtcn This could easily be handled by the
supervising monitor.

Altogether these changes would give rise to a language
combining the comnactness of the self-contained languages
with the flexibilitv of the the embedded languages.

6, An improved Embedded Query Language, EQL-

Let US first demonstrate how the improvements
described will change the embedded solution to the
problem in section 2. First we show an example of how to
solve the problem in a language that is different from
ESQL and EQUEL. This language is SCAN, described in
[ZAHL78]:

1 var ANSWERzpacked army [1..3] of char,
2 begin
3 scan SP where P# = ‘P4’z
4 writeln (SP.S#, SP.QTY);
5 Radhl (ANSWER);
6 if ANSWER = ‘yes’ then begin
7 SP.QTY := SP.QTY * 1.1;
8 modify SP;
9 end;
10 endscan;
11 end.

In this language the basic construct is the scan-loop,
processing all rows fulfilling the condition. Within the
loop the fields of the current row can be referenced and
changed with no restrictions, just like any variable. The
actual row is updated when a modify-statement is
executed.

The possibility of overriding the prespecifications in a
simple way is just as important as the definition of the
prespecifications themselves. Otherwise the language will
be of no use for application programming, which is a
major purpose of embedded languages. That is why we
have tried to make an improved embedded language, based
upon the proposal from IS0 for the embedded database
language SQL.This improved language, which we have
called Embedded Query Language (EQL), have all the
improvements proposed in section 4. A solution to the
recurrent problem is shown in fig. 6.2.

DCL ANSWER CHAR(3);
CURSOR C SELECT S#, QTY

FROM SP
WHERE p# = ‘p4’;

PUT SKIP LIST(‘S# = ‘,S#.’ QTY = ‘,QTY);
GET LIST(ANSWER);
IF ANSWER = ‘YES’THEN

UPDATE CURRENT OF C
SET QTY = QTY * 1.1;

10 END-CURSOR;

fig. 6.2: EQL-embedded in PL/I.

This example uses a lot of the prespecifications, and
consequently it is very short, compared to the embedded
SQL program in fig. 2.2, which does exactly the same.

The new program is considerably shorter, since the
surroundings, most of the variables and all
specification of error-reactions have been removed. The
prespecifications will ensure that all error-codes are
displayed to the user on the standard output media, and
the precompiler will place a standard program heading
and footing around the specified statements.

Allmost all constructs in the EQL example are known in
the ISO-standard, but one is new, the cursor-loop. It
replaces the programmed cursor-loop in fig. 2.2, where
the cursor-handling is separated into a declaration, an
opening, a fetch and a close of the cursor. In EQL the
cursor is declared and opened at the same time, when the
loop initiated. Each time the loop is performed, a new row
is fetched. When the last row has been processed, the
cursor is closed and the program continues after the
END-CURSOR statement. The intent has been to declare
the semantic contents of the cursor, as close as possible
to the actual use of the cursor. Just like in the
GO-standard, the current row of the cursor can be
referenced through the CURRENT OF statement, but
without having to explicitly declare the cursor “for
update”.

fig. 6.1: SCAN-embedded in Pascal.

Proceedings of the 13th VLDB Conference, Brighton 1987 215

The CURRENT statement is not the only reason for the
explicit naming of the cursor, since it must be possible to
have one cursor-loop inside another on the same relation.
In order to ensure a unique naming of fields, it must be
possible to prefix field-names with the name of the cursor
controlling the field

In order to show how the prespecifications can be
overruled by the programmer, fig. 6.3 shows the same
program as in 6.2, but with two changes.

First of all the standard transaction handling, which makes
the entire program-execution one transaction, has been
overruled, in order to make each of the updates a single
transaction. This is done simply by stating
TRANSACTION COMMIT once for each successful1
update.

Second the prespecified error-handling has been overruled,
by stating INCLUDE SQLCA in the beginning of the
program. This means that all error-handling must be
specified explicitly in the program. The inclusion of
SQLCA implicitly makes the status-variable SQLCODE
available for cheking after the last DB-operation.
SQLCODE will be 0 after a successful1 operation, and it
will be 100 after the last read in a cursor-loop. Note that an
error during the reading in a cursor-loop will make the
program continue after CURSOR-END.

1. DCL ANSWER CHAR (3);
2. INCLUDE SQLCA;
3. CURSOR C SELECT S#. QTY
4. FROM SP
5. WHEREP#l=‘p4’;
6. PUT SKIP LIST (‘S# =‘, S#. ‘QTY =‘, QTY);
7. GET LIST (ANSWER);
8. IF ANSWER = ‘YES’ THEN
9. DO$JPDATE CURRENT OF C
10. SETQTY=QTY* 1.1;
11. lF SQLCODE = 0 TI-IEN
12. lltANSACl-ION COMMIT
13. ELSE
14. DO; PUT SKIP LIST (‘ERROR ON UPDATE?;
15. PUT SKIP LIST (‘ERROR-NO. ‘,SQLCODE);
16. END;
17. END;
18. END-CURSOR;
19. IF SQLCODE NOT = 100 THEN
20. Do; PUT SKIP LIST (‘ERROR ON SELECTION’);
21. PUT SKIP LIST (‘ERROR-NO. ‘, SQLCODE);
22. END;

Fig. 6.3 EQL, overriding prespecifications

7. Conclusion

By permitting the use of the constructs from
self-contained languages the difference between
self-contained and embedded languages is practically
removed. This means that there is no longer a need for
two languages, since EQL can be just as simple to use as
self-contained SQL is today, but it can also be used
as a powerful application programming tool by simply
specifying a special handling when the standard solutions
are not sufficient for the application.

8. REFERENCES.

[ASTR 751 M.M. Astrahal and D.D. Char&din:
“Implementation of a Structured English
Query Language”.
CAMC, Oct. 1975, p. 580-588

[CUR1861 Anker Christensen:
“En sammenligning af interaktive og
indlejrede relationsdatabasesprog”,
DIKU-rapport, 1986.

[DATE84a]: C. J. Date:
“A guide to DB2”,
Addison Wesley 1984.

[DATE 84b]: C. J. Date:
“Some principles of Good Language
Design”.
ACM SIGMOD Record 14 No.3, Nov.1984.

[DATE 84c]: C. J. Date:
“A Critique of the SQL Datebase
Languages”.
ACM SIGMOD Record 14 No.3, Nov.1984.

[IS0851 : ISO/rC 97/SC 21/WG 5 - 15:
“Database Language SQL”,
IS0 Match 1985.

[STON 771: M. Stonebraker and L. A. Rowe:
“Observations on Data Manipulation
Languages and their Embedding in General
Purpose Progmnming Languages”.
Electronics Research Laboratory,
College of Engineering,
University of California, Berkeley,
Memorandum No. UCB/ERL M77/53.

[ZAHL78]: Torben U. Zahle:
“SCAN - A simple record at-a-time DML for
the relational data model”, Proc.
ACM-SIGMOD 1978 Int. Conf. on DBMS.

216 Proceedings of the 13th VLDB Conference, Brighton 1987

