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Abstract. The problem of generating a cover for the set of
functional dependencies that hold in a given relation is studied. The
problem is an instance of the general problem of concept learning.
It has applications e.g. in relational database design and in query
optimization. A straightforward solution algorithm is shown to
require exponential time for all inputs. We show that for some
relations this time requirement is unavoidable, i.e., there are small
relations where an exponential number of nontrivial dependencies
hold. However, such relations are rare in practice. An algorithm is
then developed that works efficiently with respect to the size of its
input and its output.

1. Introduction
We consider the following dependency inference problem:

Given a relation r, find a set of functional dependencies
that logically determines all the functional dependencies
holding in r.

The problem area of inferring general rules from instances of data
has become popularly known as machine learning [MCMS83,
MCMB86] or knowledge acquisition, In our case the simple and
regular form of data (a relation) makes the problem particularly
attractive. The concept (a set of dependencies) fitting the data (the
relation) exactly always exists. Thus, for our problem, the learning
can be solved exactly, whereas in inductive learning there is always
a possibility of error.

Our interest in the dependency inference problem arouse from
database design, which is traditionally based on constraints that the
stored data must satisfy. Such constraints are abstract entities, and
it is easy for the database designer to overlook some constraints that
should hold. In our previous work we have proposed the use of
examples to help the designer in getting a better intuitive idea about
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the consequences of the constraints. Algorithms for generating the
examples are given in [BDFS84] and [MR86] for the relational
model and in [Ma87] for the entity-relationship model.

The first proposal to use example relations in database design
was made by Silva and Melkanoff [SM81]. They suggested the use
of a single example relation generated for the universal relation
scheme. In [MR86] we argue that using a separate example for each
relation scheme is more useful, and study in detail problems related
to the use and generation of examples. Our approach has been
implemented [MRK87]. Another system supporting the use of
examples is described in [BGM85]; however, the paper contains no
algorithms for dealing with the example relations.

The role of the examples is more profound than just being an
illustration of a prospective design. The best examples satisfy
exactly the set of constraints required by the designer, i.c., they are
Armstrong relations [Ar74, Fa82] (or corresponding
ER-instances). That is, the example and the set of constraints are
simply dual, equally powerful representations of the same facts.
Incorrect constraints are easier to spot from the list of constraints,
whereas the examples are better in revealing missing constraints.

To make full use of this duality, we need algorithms for
transforming the two representations into each other. The example
generation problem is fairly well understood, but the opposite
direction has received less attention. Related questions have,
however, been posed by others.

Delgrande [Del87] studies the problem of finding supporting
evidence for the validity or invalidity of a given integrity constraint.
His work differs from ours in several aspects. First, his integrity
rules can be very general: they are arbitrary expressions in a
(slightly weakened) relational algebra. We concentrate on
dependencies, since they are the most important integrity rules for
(re)designing the database scheme. Second, Delgrande uses only a
part of the database to find the supporting evidence. He assumes
that the algorithm is applied during the actual use of the database for
‘monitoring' the validity of the constraints, and therefore the entire
database is prohibitively large. Instead, we assume that the database
has been explicitly constructed to help the designer, and it is
therefore small. Finally and most importantly, Delgrande only
considers finding evidence for the dependencies proposed by the
user or designer. No attempt is made to automatically generate the
set of all valid dependencies. (Considering the general form of
constraints, such an would not even be realistic.)

Similarly, Borgida, Mitchell and Williamson ([BW85],
[BMW86]) suggest a method for automatically maintaining a set of
exceptions to the integrity constraints. When sufficiently many
exceptions are found, possible corrections to the constraints (based
on some heuristics) are proposed to the designer. Again, no rules
are automatically inferred.

Another, completely different application of dependency
inference arises in query optimization. Traditionally queries are
optimized with respect to a given set of constraints that any instance
of the database must satisfy. However, the particular instance
existing at the time of guery evaluation may well satisfy additional
dependencies that could be used to speed up query evaluation. One
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algorithm specifically designed for instance based query
optimization is presented in [Dec87]. If the dependency inference
problem can be solved efficiently, its time usage can be subsumed
by the savings achieved in query evaluation.
The rest of the is organized as follows. A naive solution
to the dependency inference problem is presented in Section 2,
where the exponential time complexity of this algorithm is also
m. Section 3 shows that in some cases we cannot do any
: there are small relations with large nontrivial dependency
sets. However, in practical situations the naive algorithm behaves
poorly, since most relations do not have this property. Therefore
the remaining sections are devoted to developing a practical
algorithm. Section 4 introduces some useful concepts that
summarize the properties of a relation from the point of view of
dependency inference. Section 5 contains rules and algorithms for
simplifying this summary information, and outlines a practical
algorithm for dependency inference. Section 6 makes some
additional observations about the behavior of the algorithm. Open
questions are listed in Section 7.

2. Anaivealgorithml’ordependmcyinfm‘

We start this section by introducing some notation. Let r be a
relation over a relation scheme R. If F is a set of functional
ies, then r FF means that all dependencies of F hold in r.
IfX > Y is a single dependency, r FX - Y means r F{X —» Y}.
The set of all dependencies holding in r is denoted by dep(r), i.e.,

X > Ye dep(r)if and only if r FX > Y.

The dependency X — Y is a consequence of F, denoted
FEX Y, if for all r,r FF implies rFX - Y.

If F and G are equivalent dependency sets, i.c. all the
dependencies of G are consequences of F and vice versa, we say
that F is a cover of G (and G is a cover of F). In general, dep(r) has
several equivalent covers of varying size, and we are interested in
finding a small cover.

In this section we study a straightforward way of inferring a
cover of dep(r) for a given relation . Consider the following
algorithm,

1. F:=0;

2. for all subsets X c R do

3. for all attributes A € R—-X do

4, itrEXs>Athen F:=F u {X - A};

Clearly, F contains only dependencies that hold in r. Moreover,
since the algorithm examines all possible nontrivial ndencies of
the form X — A, F will in the end contain all such ndencies
that hold in r. Since all dependencies X — Y can be derived from
dependencies with a single attribute on the right hand side, Fis a
desired cover of dep(r).

To analyze the time complexity of the naive algorithm, let us
use n to denote |R| (the number of attributes in R) and p to denote |r|
(the number of tuples in 7). The dependency X — A can be chosen
in 2271 ways. Testing whether 7 FX —» A takes time O(p?-|X]), if
each pair of tuples is checked individually. Another possibility is to
sort the rows of  on X before making each test. Sorting takes time
O(IX|-p-logp), and checking that the ordered relation satisfies
X — A takes time O(]X]-p). Since |[X] < n, the total complexity of
this alternative is therefore

O(n2™1-n:plogp) = O(n®-2"1:plogp).

This exponential time reguuirement is clearly much too big to make
the naive algorithm useful. For a relation with 10 tuples and 1
attributes the bound (albeit pessimistic) would be about 1.5-10°.
For a relation of realistic size the time usage is intolerable.

Our goal is to come up with an algorithm that performs better.
In most cases the poor performance of the naive algorithm is caused
by the fact that it generates a huge number of redundant
dependencies. Making the algorithm generate only nonredundant
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dependencies is already a big improvement over the naive version.
Unfortunately, there are still cases that are inherently hard, i.e.
cases where the size of any correctly inferred cover is big. This is
shown in the next section.

3. Size bounds for the inferred dependency sets

Theorem 1. For each n there exists a relation r over R such that
n = |R|, |r| = O(n), and each cover of dep(r) has Q(2"/2)
dependencies.

In practice, relations that have inherently large dep-sets should be
rare. The fact that dep(r) has only large covers implies that either r
has many different keys, or the relation scheme is highly
unnormalized (since lots of non-key dependencies hold). Both
situations are unlikely.

Because of Theorem 1 we have to be modest in our search for
an efficient algorithm for the dependency inference problem.
However, there is still room for improving the naive algorithm,
which takes exponential time even in the best case. We would like
to find an algorithm that works in polynomial time with respect to
both |r| and the size (i.e., the number of dependencies) of a
minimum cover of dep(r) (the cover having the fewest
dependencies). .

Such an algorithm will have to start by inspecting the entire
relation r and by gathering suitable information for producing a
cover of dep(r). Any algorithm (such as the one given in [MR86))
that simply steps through all pairs of tuples in an arbitrary order and
at each step maintains a cover of the dependency set that still has
not been invalidated, is bound to be inefficient. This follows from
the proof of Theorem 1.

. In the next section we will study what kind of essential
information can be efficiently obtained from r to produce a small
cover of dep(r).

4. Necessary sets

In this section we describe an algorithm for the dependency
inference problem. The remaining sections will concentrate on
modifications and analysis of this method.

The algorithm is based on the following concept. Let 7 be a
lgue‘?i‘xi\e relation over attribute set R. Let s and ¢ be two tuples from r.

disag(s, t) = {B € R|s[B] #{B]}.
Suppose an attribute A belongs to disag(s, t) and let X =
disag(s, t) — {A}. Then X is a necessary set for A. Let nec(A)
denote the collection of all necessary sets for A, i.e.

nec(A) = { disag(s,t) - {A}|s,te r,A e disag(s,1) }.
Example 1. Consider the following relation r over R(ABCD):

A B C D
0 0 0 0
1 1 0 0
0 2 0 2
1 2 3 4
For this relation,

nec(A) = {{B}, {B,C, D}, {B, D}, {C, D}},

nec(B) = {{A}, {D}, {A, C, D}, {A, D}, {C,D}},
nec(C') = {{A» B, D}: {B! D}’ {A’ ’

nec(D) = {{B}, {A, B,C}, {A, B}, {B,C}, {A,C}}. O

The term set comes from the observation that if two rows
s and ¢ differ in attribute A (i.e., A € disag(s, 1)), then for any set

X,if X —» A holds in r, X must contain some attribute in

disag(s, t). This is formalized in the following. :
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Let A € R be an attribute. Consider the family of all nontrivial
sets Z R such that Z — A holds in the relation r:

Ihs(Ay={ZcR|rFZ—>AandAeg Z}.
Moreover, for any set S = {X 1 --+» Xy} define

q BS)={YCcR|XNnYzDforallXe S}
an

o) ={ {By, ..., B} | B;e X;for 1 Si<k }.
Lemma 1. Ihs(A) = B(nec(A)). O

Lemma2.dep(r)={Y 5 A|lYcR,Ae R-Y,
XnY#QDforall X e nec(A) }. O

Lemma 2 gives us an alternative naive way of computing the set
dep(r). we first compute the necessary sets, and then use them to
generate all the dependencies. The first step is reasonably fast:

Lemma 3. The collection U { nec(A) | A € R } can be computed in
time O(p?n?), where p = |r|and n = |R|. OJ

But the remaining step again requires us to step through all possible
dependencies, and thus it is too slow. However, it is easy to
improve on this. Let § = {X,, ..., X} be a collection of attribute
sets. Denote

gendep(S)={X>5A |Xe o(S) }.

Lemma 4. The collection U { gendep(nec(A)) | A € R } is a cover
of dep(r). O

Hence it is possible to get a representation for dep(r) by generating
all dependencies X — A, where A is in R and X contains an
attribute from each set in nec(A). This can be substantially faster
than considering all the dependencies. The next section discusses
ways to obtain further improvements.

5. Simpilification lemmas

There are two problems with the use of the gendep-sets to the
dependency inference problem as outlined in the end of Section 4.
The first is that the generation process may produce a lot of
unnecessary dependencies. E.g., in Example 1 we had nec(B) =
{{A}, {D}, {4, C, D}, {A, D}, {C, D}}. The only dependency
one really has to produce for B is AD — B; however, the set
gendep(B) contains also the dependency ACD —» B. It is easy to
construct more extreme examples where exponentially many
unnecessary dependencies are produced.

Example 2. Let
nec(A) = {{B}, {B, Cll Dl}’ {8, C2) Dz}, - {B, Ck! Dk}}'

Then the only nonredundant dependency is B — A, but a simple
generation method would produce 2* dependencies. [J

The second problem is that the generation method does not consider
the interaction of dependencies.

Example 3. Suppose we have a relation where exactly the
dependencies B, — By, By > By, ..., By 1 — By, and
ByBy...By, oA ilold (that is, we have an Armstrong relation
for this set of dependencies). Then the family nec(A) contains the
sets

{819 Bz}, {83) B4}) srey {sz.l’ Bu}-

This leads into the generation of 2* dependencies with right hand
side A; one would be enough, [J
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In this section we consider mainly the first source of mefficmn
g‘he second (and seemingly more difficult) one will be addressed
ection 6.
First we give a result which enables us to reduce the siss of
the sets nec(A) drastically.

Lemma 5. Suppose U,V € nec(A) and U c V. Thea
gendep(nec(A) — {V}) is a cover of gendep(nec(A)). O

That is, if one necessary set includes another, the larger set can be
removed without changing the resulting set of dependencies. Ia
Exl:ilmple 1 the use of Lemma 5 would reduce the necessary set
collections to

A: {{B}, {C,D}},

B: {{A}, {D}},

C: {{A, D}, {B, D}}, and
D: {{B}, {A,C}}.

Lemma 5 enables us to preprocess the nec(A)-seta by
removing unneeded sets from them. Denote by nec’(A) the
subfamily of nec(A) left after all unnecessary sets have beea
removed using Lemma 5.

While replacing nec(A) by nec’(A) yields a considerably
smaller dependency set, there is still room for improvement becasse
of the product construction used in the generation of
In our example e.g. a(nec’(C)) = {{A, B}, {A, D}, {B, D},

- {D}}, which produces four dependencies in gendep(nec’(C)).
We show

However, only AB — C and D — C are really needed.

next how the redundant sets can be pruned during the generation.
We first define a subfamily consisting of such left hand

which do not contain any other left hand side: :

nrihs(A) ={ Z € lhs(A) [forall Y € Ihs(A),YcZonlyif Y=2}

(nr comes from nonredundant).

An algorithm which does not take the interconnection of
attributes into account can at best uce the iesZ A,
where Z e nrlhs(A), for each attribute A € R. Next we show how
our basic algorithm can do this. The following lemma relates
nrihs(A) to nec’'(A).

Lemma 6. nrihs(A) < anec’(A)) < ths(A). O

Our task is to recover the set nrihs(A) from the collection nec’(A).
We give a result showing how the nec’(A)-family can be pruned
during the generation of the i

Let gendep(nec’(A), B) denote the dependencies Y > A €
gendep(nec’(A)) such that B € Y. Hence

gendep(nec’(A)) = U { gendep(nec’'(A),B)|Be R }.

Lemma 7. Let X € nec(A), and let Z € nec(A) such that Z # X, If
B e Z n X, then gendep(nec’(A) - {Z}, B) is a cover of
gendep(nec'(A), B). O

Thus, if we have started to generate the dependencies in a cover of
gendep(nec’(A)) by choosing an attribute B from some set X in
nec’(A), we can leave out all sets Z € nec’(A) which contain B.
New attributes are chosen repeatedly until all the sets in nec’(A) are
represented. Then backtracking is used (and the corresponding sets
Z are reintroduced) until all the alternatives have been produced.

If the left hand sides in nrihs(A) are disjoint, the algorithm is
particularly efficient, since no backtracking is required.

Theorem 2. If the sets in nrlhs(A) are d[iﬁjoint, the complexity of the
above algorithm is polynomial in |R].
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6. Global considerations

In the previous section we considered only the problem of inferring
the left hand sides determining a given attribute. In this section we
consider the interaction of attributes. The following lemma is
useful.

Lemma 8. Let A, B, C € R and suppose nec’(B) = {X}, where
C € X. Suppose Z € nec’(A) and B,C € Z. Then Z can be
replaced by Z - {C} in nec’(B) without altering the closure of the
resulting dependency set.

The use of Lemma 8 takes care of cases resembling Example 3.

The size of the cover for dep(r) produced by our methods can
be bounded, if we know that  is in normal form, say BCNF. This
result is based on Theorem 2 and the fact that in BCNF schemes
dependencies do not interact.

Theorem 3. If the relation is in BCNF and the keys are disjoint, the
general algorithm finds them in polynomial time. [

The point of Theorem 3 is not that this special case is singularly
important or difficult to solve using specialized methods. Rather, it
shows that the general algorithm works efficiently, even in this
case.

7. Conduding remarks

We have considered the problem of inferring the functional
dependencies holding in a given relation. We started by discussing
the connections and applications of this problem. We showed that
the trivial algorithm is hopelessly slow, and proved that the result
can sometimes be exponentially large, no matter what algorithm is
used. We outlined a general method which works fast for relations
satisfying few nontrivial dependencies.

everal open problems remain. The analysis of the general
algorithm is by no means complete. In general, dealing with an
example relation is not necessarily easier than dealing with a set of
dependencies: for example, in [BDFS84] it is shown that the
problem of determining whether a relation has a key of size less
than a given integer is NP-complete. This states some limitations
which any dependency inference algorithm must face.

There are also interesting extensions to this problem. One
could consider inferring other types of dependencies, like
multivalued dependencies or inclusion dependencies [CFP84]. The
latter class seems fairly easy. Another useful direction is to consider
the incremental version of the dependency inference lem: given
a relation r, a set of dependencies that is a cover of dep(r), and a
tuple #, find a cover of dep(r U {t}). This version of the problem is
especially important in incremental database design.

From the point of view of concept learning, a functional
dependency X — A is a rule of the following form: if something
(¢[X] = s[X]) holds, then something else (¢[A] = s[A]) holds. The
necessary set approach seems to give interesting learning
algorithms for other classes of rules, too. This is a topic of a future
paper.
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