
DEF’ENDENCYINFERENCE

(Extended Abstract)

University of Helshrkl, Department of Computer Science
Tukhohnankatu 2, SF-00250 Helsinki, Finland

Abstract. The problem of generating a cover for the set of
functional dependencies that hold in a given relation is studied. ‘Ihe
problem is an instance of the general problem of concept learning.
It has applications e.g. in relational database design and in query
optimization. A straightforward solution algorithm is shown to
require exponential time for all inputs. We show that for some
relations this time requirement is unavoidable, i.e., there are small
relations where an exponential number of nontrivial dependencies
hold. However, such relations are rate ln practice. An algorithm is
then developed that works efficiently with respect to the sire of its
input and its output.

1. Intmduction

We consider the following dependency inference problem:

Given a relation r, fii a set of functional dependencies
that logically determines all the functional dependencies
holding in r.

The problem area of lnferrlng general rules from instances of data
has become popularly lcno%i as muchine learning [MCM83,
MCM861 or knowfedpe acouisifion. In our case the simole and
regular form of data Q relahon) makes the problem par&ularly
attractive. The concept (a set of dependencies) fitting the data (the
relation) exactly always exists. Thus, for our problem, the learning
can be solved exactly, whereas in inductive learning there is always
a possibility of error.

Gur interest in the dependency inference problem arouse from
database design, which is traditionally based on constraints that the
stored data must satisfy. Such constraints are abstract entities, and
it is easy for the database designer to overlook some constraints that
should hold. In our previous work we have proposed the use of
examples to help the designer in getting a better intuitive i&a about

*) On lerve from the Uoiveraity of Tunpae. Dcputment of Computer
sCicace.Iheworkof~~wu~pportsdbytheAcdanyofpinlud.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VL.DB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or spe-
cial permission from the Endowment.

University of Tampere, Depamnent of Computer Science
P.O. Box 607, SF-33101 Tampere, Finland

the consequences of the constraints. Algorithms for generating the
examples are given in [BDFS841 and lMR861 for the relational
modei and in [r;Ia87] forthe entity-relatioasbip model.

The first orooosal to use exanglle nzlations in database de&n
WAS made by Sllvjl and Melkanoff @M81]. They suggested the t&
of a single example relation generated for the universal relation
scheme. In m86] we argue that using a sepamte example for erch
relation scheme ls tmxe useful, and study in detail problems related
to the use and generation of examples. Gur approach has been
implemented [MRK87]. Another system supporting the use of
examples is described ln [BGM85]; however, the paper contains IY)
algorithms for dealing with the example relations.

The role of the examples is more profound than just being an
illustration of a prospective design. The best examples satisfy
exactly the set of constraints required by the designer, i.e., they are
Armstrong relations [Ar74, Fa82] (or corresponding
ER-instances). That is, the example and the set of constraints are
simply dual, equally powerful representations of the same facts.
Incorrect constraints are easier to spot from the list of con+rain%
whereas the examples are better ln reveal@ mlsslng ConstratnEB

To make full use of this duality, we need algorithms ‘for
transforming the two representations into each other. The example
generation problem is fairly well understood, but the opposite
direction has received less attention. Related questions have,
however, been posed by others.

Delgrande [De1871 studies the problem of finding supporting
evidence for the validity or lnvalldity of a given integrity constraint
His work differs from ours in several aspects. First, his integrlty
rules can be very general: they are arbitrary expressions in a
(slightly weakened) relational algebra. We concentrate on
dependencies, since they are the most @ottant integrity rules for
(re)designing the database s&em. Second, Delgrande uses only a
pait of &e database to find the supporting evidence. He assuk
that the alaorlthm is amlied durinn the actual use of the database for
‘monitoring’ the valid& of the coii, and therefore the enthe
database is prohibitively large. Instead, we assum that the dambase
has been explicitly constructed to help the designer, and it is
therefore small. Finally and mst importantly, Delgrande only
considers finding evidence for the dependencies proposed by the
user or designer. No attempt is made to automatically generate the
set of all valid dependencies. (Considering the general form of
constraints, such an attempt would not even be mlistic.)

Similarly, Borgida, Mitchell and Williamson ([BW85],
[BMW86]) suggest a method for automatically maintaining a set of
exceptions to the integrity constraints. When sufllciently many
exceptions are found, possible corrections to the constraints (based
on some heuristics) are proposed to the designer. Again, no rules
are automatically inferred.

Another, completely different application of dependency
inference arises in query optimization. Traditionally queries are
Optimizedwith~ttoagi~nsetofcansaaintPthatanyinsturce
of the database must satisfy. However, the particular instance
existing at the time of

1
uery evaluation may well satisfy additional

dependenclesthatcoul beusedtospeedupquuyevahtation. h

proceedings of the 13th VLDB Conference, Brighton 1987 155

-.

algorithm specifically designed for instance based query
optimization is presented in lDec87]. If the dependency inference
probkm can be solved efficiently, its tlme usage can be subsumed
by ~n~viq~o~hitved in query evaluation. -

T
IS agamxed as follows. A naive solution

to the dependency t erence problem is presented in Section 2,
where the exponential time complexity of this algorithm is also

EL:
ved. Section 3 shows that ln some cases we cannot do any

there are small relations with large nontrivial dependency
sets. However, in practical situations the naive algorithm behaves
poorly, since most relations do not have this property. Therefore
the remaining sections are devoted to developing a practical
algorithm. Section 4 introduces some useful COnCeptS that

summar& the properties of a relation from the point of view of
dependency inf-. Section 5 contains rules and algorithms for
simplifying this summary information, and outlines a practical
rlgorithm for dependency inference. Section 6 makes some
additional observations about the behavior of the algorithm. Open
queetions are listed in Section 7.

2. AnalvealgalthfbrdependencyhS-

We atart this section by introducing some notation. Let r be a
relation over a relation scheme R. If F is a set of functional
depe&&es, then r l=F ttkans that alI depe&ncks of F hold ln r.
IfX+Ylsaslnpledenendencv.rl=X+Ymeansr~~X+Y1.
The set of all deI&kn&es hold&g in r is denoted by &R(r), i.d,

X+YE &p(r)lfandonlyifr!=X+Y.

The dependency X + Y is a consequence of F, denoted
F~X-,Y.ifforallr.r~FimDliesr~‘X~Y.

If F and G are &mivalem dependency sets. i.e. all the
dependencies of G are &sequences‘of F and vice veraa, we say
thatFisacoverofG(andGlsacoverofF).Ingetkral,dcp(r)hat
several equivalent covers of vatying sixe, and we are interested ln
finding a small cover.

In this section we study a straightforward way of inferring a
cover of &p(r) for a given relation r. Consider the following
al@thm.

1. F:=0;
2. forallsubsetsXrRdo

i:
foraIIatbibutesA~ R-Xdo

ifrl=X+AthcnF:=Fu{X-+A};

Clearly, F contains only dependencies that hold in r. Moreover,
simx the almrithmexamines all nossibk nontrivial denetukncies of
the form X-+ A, F will in the &d con&n all such &pendencks
thltholdinr.SincealldependenciesX~Ycanbederivedfrom
dependencies with a single attrllte on the right hand side, F ia a
de8ired cover of &p(r).

To analyze the time compkxity of the naive algorithm, let us
usentodenote~l(tbenumbadataibutesinR)PndptodenoteIrl
(thenumberoftupleslnr).‘IhedependmcyX+Acanbechosen
in tr2*l ways. Testing wlmther r l=X -+ A takes time 0(&X& if
erch~oftuptesiscbectedindividuolly.Another~b~tyIsto
sorttherowsofronXbeforemaldngerchtest.Sorting~ti~
O(lXj.plogp), and checking that the aded relation satisfies
X + A takes time O(lxl-p). Since Ixl< n, the total complexity of
this altemative is therefore

G(~2*l.rt7Plogp) = 0(&2*17P10gp).

This exponential time uiremnt is clearly much too big to make
“R the naive algorithm use 1. For a relation with 10 tupks and 1

attributes the bound (albeit pessimistic) would be about 1.51 08 .
For a relation of realistic size the tink usage is intokmble.

Ourgoalis~oupwithanalgarIthmtht~~better.
Inmostcasesthepoapelformance ofthenaivealgorlthmiscaused
by the fact that it generates a huge number of redundant
dependencies. Making the algorithm generate only nonmdundant

156

dependencies is already a big improvement over the naive version.
Unfortunately, there are still cases that are inherently hard, i.e.
cases where the size of MY correctly inferred cover is big. ‘lhis is
shown in the next section.

3. Size bounds for the inferred dependency sets

Theorem 1. For each n there exists a relation rover R such that
n = IRI, Irl = 0
dependencies. d

n), and each cover of d&r) has n(2”‘*)

In practice, relations that have inherently large depsets should be
rare. The fact that &p(r) haa only large covers implies that either r
has many different keys, or the relation scheme is highly
unnormalized (since lots of non-key dependencies hold). Both
situations are unlikely.

Because of Theorem 1 we have to be modest in our search fa
an efficient algorithm for the dependency inference problem.
However, there is still room fa improving the naive algorithm,
which takes exponential time even in the best case. We would like
to find an algorithm that works in polynomial time with respect to
both Irl and the size (i.e., the number of dependencies) of a
minimum cover of dcp(r) (the cover having the fewest
dependencies).

Such an algorithm will have to start by inspecting the entire
relation r and by gathering suitable information for produclng a
cover of &p(r). Any algorithm (such aa the one given in [MRllfr])
that simply steps through all pairs of tuples in an arbitrary order and
at each step maintains a cover of the dependency set that still has
not been invalidated, is bound to be inefftcient. This follows from
the proof of Theorem 1.

In the next section we will study what kind of essential
information can be efftciently obtained from r to produce a small
cover of d@(r).

4. Necmarysets

In this section we describe an algorithm for the dependency
inference problem. The remaining sections will concentrate on
moditlcations and analysis of this method.

The algorithm is based on the following concept. Let r be a
fmed relation over attribute set R. Let s and t be two tuples from r.
Defhle

disug(s, t) = {B E R I s[B] # t[E]}.

Suppose an attribute A belongs to disag(s, t) and let X =
dim&, t) - {A}. Then X is a nece~sury set for A. Let n&z(A)
denote the collection of all neassary sets for A, i.e.

ncc(A) = { disug(s, t) - {A} I s, t E r, A E disug(s, t) }.

Example 1. Consider the following relation r over R(ABCD):

A B C D

0 0
:: 1 0 8
0 2 0 2
1 2 3 4

For this relation,
nec6-Q = {{W, 04 C, Dl, (4 4, {C, 41,
neW) = {{Al, WI, 14 C, Dl, {A, Dh W, Dll,
net(C) = {{A, 4 Dl, Cl4 D3, CA, WI,
n+=(D) = {VI, {A, 4 Cl, CA W, 14 Cl, Us Cl). 0

Thetermmzemarysetcomesfromtheobservationthatiftwormvs
s and t differ in attribute A (i.e., A E disug(s, t)), then for any set
X, if X + A holds in r., X must contain some attribute in
disag(s, 1). This is formahxed in the following.

procw&gs of the 13th VLDB Conference, Brighton 1987

Let A E R be an attribute. Consider the family of all nontrivial
sets Z E R such that Z + A holds in the relation r:

Ih(A)={ZsRlr!=Z+AandAeZ}.

Moreover, for any set S = {X,, . . ., Xk} define

and B(s)={ YrRlXnY#IZIforallXo S}

%9 = 1 cq, e-e, Bk}IEie XifOr 1 <is&}.

Lemma 1. h(A) = B(nec(A)). Cl

Lemma2.&p(r)={Y+AlYtR,Ae R-Y,
XnY+0forallXe m(A)}. Cl

Lemma 2 gives us an alternative naive way of computing the set
&R(r): we fust compute the necessary sets, and then use them to
generate all the dependencies. The fmt step is reasonably fast:

Lemma 3. The collection u { WC(A) 1 A E R } can be computed in
time O@2n2), where p = Irl and n = lR[. 0

But the remaining step again requires us to step through all possible
dependencies, and thus it is too slow. However, it is easy to
improve on this. Let S = {Xl, . . ., Xk} be a collection of attribute
sets. Denote

gendep(S)={X+A IXE a(s)}.

Lemma 4. The collection u { gendep(nec(A)) I A E R } is a cover
of &p(r). cl

Hence it is possible to get a representation for &p(r) by generating
all deoendencies X + A. where A is in R and X contains an
attribute from each set in &x(A). This can be substantially faster
than considering all the dependencies. The next section discusses
ways to obtain further improvements.

5. siiplifkatiunlemmas

There are two problems with the use of the gendep-sets to the
dependency inference problem as outlined in the end of Section 4.
The fust is that the generation process may produce a lot of
unnecessary dependencies. E.g., in Example 1 we had net(E) =
{{Al, CW, 14 C, Dh{A, Dl, W, WI. The only ~~pendency
one really has to produce for B is AD + B; however, the set
gcndep(R) contains also the dependency ACD + B. It is easy to
construct more extreme examples where exponentially many
unnecessary dependencies are produced.

Example 2. Let

mc(A) = {Ws 14 C,,D,l, (4 C,, D2,s V, C, D,,>.

Then the only nonredundant dependency is B + A, but a simple
generation method would produce 2& dependencies. Cl

The second problem is that the generation method does not consider
the interaction of dependencies.

Example 3. Suppose we have a relation where exactly the
Frdencies B + B2, Bg + B,, Bzcsl + B2 and

B + A Aold (that is we have an Armstrong re ation f
f& &s*set%f dependencies). Then the family MC(A) contains the

In this section we consider mainly the flrat source of ineffi ’
Thesecond(andseemingly~difficult)onewillbeddresr(’ “L
Section 6.

First we give a result which enables us to reduce the ebr of
the sets net(A) drastically.

Lemma 5. Suppose U, V E MC(A) and U c V. Tha
gendep(nec(A) - {v)) is a cover of gendep(nec(A)). 0

Thatis,ifonenecessarysetincludesrmtha,brelrrgaret~k
removed without changing the result@ aet of depeadenclr h
ExampleltheuseofLemmr5wouMnduceUle~rt
collections to

A: CCW, {C, WI,
B: {VA), VII,
C: {{A, Dh 14 WI, and
D: CW, {A, Cl}.

Lemma 5 enables us to preprocess the ncc(A)-sets by
removing unneeded sets from them. Denote by n&(A) &a
subfamily of net(A) left after all unnecessary sets have ka
removed using Lemma 5.

While replacing net(A) by MC’(A) yields a coasider&ly
smallerdependencyset,thereisstillmomfarimpwmmt
of the product construction used in the gene&on of &
In our example e.g. a(nec’(C)) = {{A, B}, {A, D}, {B, D},
{D}}, which produces four dependenuea in gendcp(nec’(C)).
However,onlyAR+CandD+Caremallym&ed.Wesborr
next how the redundant se&canbepruneddurhlgthegelKsatim,

Wef~tdefineasubfamil con&ingofsuchlefthamlaUaa
whichdonotcontalnanyotha eftharulsidez 7

nrlhs(A)={Z~ Urr(A)lforallY~ uu(A),Y~ZonlyifY=Z}

(N COIMS from KUU’t?dUndiillt).
An algorithm which does not take the interco~tiom d

attributes into account canatbeat~ucetbe d#Md=kSZ+A.
where Z E nrZhr(A), for each aanbute A E R. ext we ahow bw
our basic algorithm can do this. ‘I& following lemma relatea
nrh(A) to m’(A).

Lemma 6. t&s(A) s a@+(A)) E k(A). q

Our task is to recover the set n&r(A) from the collection n&A).
We give a result showing how the +(A)-family caa be pnasd
during the generation of the w

Let gendep(nec’(A), B) denote the depender&s Y + A E
gendep(nec’(A)) such that E E Y. Hence

gendep(nec’(A)) = u { gendep(nec’(A), E) I E E R }.

Lemma 7. Let X E net’(A), and let Z E n&z(A) such that Z # X. If
B E Z A X, then gendep(nec’(A) - (Z}, B) is a cover of
gendep(nec’(A), B). Cl

Thus, if we have started to generate the dependencies in a cover of
gendep(nec’(A)) by choosing an attribute E from some set X in
net’(A), we can leave out all sets Z E MC’(A) which contain B.
New attributes are chosen repeatedly until all the sets in xec’(A) are
represented. Then backtracking is used (and the cormsponding aeta
zarerein~)unrilallthealternati~havebeen~.

If the left hand sides in ~&T(A) sn disjoint, the algorithm is
particularly efficia since no ba&r&mg is mquired.

Theorem2.IfthesetsinxruIs(A)aredi8’ ’ t,thecomplexityofthe
above algorithm is polynomial in IRI. d””

This leads into the generation of 2’ dependencies with right hand
side A; one would be enough. Cl

Proceedings of the 13th VLDB Conference, Brighton 1987 157

-..

BMW86 A. Borgida! T. Mitchell, K.E. Williamson, Learning
improved integrity constraints and schemas from
exceptions in data and knowledge bases. On Knowledge
Base Management Systems, M.L. Brodie and J.
Mylopoulos (ads.). Springer-Verlag, 1986,259-286.

BW85 A. Borgida, K. Williamson, Accommodating exceptions
in databases, and refining the schema by learning from
them. Proceedings of the Eleventh International
Cg~f-rence on Very Large Data Bases, August 1985,

BGM85 M. Bouzeghoub, G. Gardarin, E. Metais, Database
design tools: an expert system approach. Proceedings of
the Eleventh Intemational Conjerence on Very Lurge Data
Bases, August 1985,82-95.

CFP84 M.A. Casanova, R. Fagin, C.H. Papadimitriou,
Inclusion dependencies and their interaction with
functional dependencies. Journal of Computer and
System Sciences 28 (1984), 29-59.

Dec87 R. Dechter, Decomposing an n-ary relation into a tree of
binary relations. Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, March 1987.

Del87 J.P. Delgrande, Formal bounds on the automatic
generation and maintenance of integrity constraints.
Proceedings of the Sixth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database
Systems, March 1987.

Fa82 R. Fagin, Armstrong databases. IBM Research Report
RJ3440, San Jose, Calif., May 1982.

Ma87 H. Mannila, Generating example databases from
ER-schemes. Manuscript, 1987.

MR86 H. Mannila, K.-J. Rlihtl, Design by example: an
application of Armstrong relations. Journal OfComputer
and System Sciences 33,2 (October 1986), 126-141.

MRK87 H. MaMila, K.-J. Rlihti, M. Kantola, Design-by-
Example: a user guide. Manuscript, 1987.

MCM83 R.S. Michalslci, J.G. Carbonell, T.M. Mitchell (eds.),
Machine Learning: an Artificial Intelligence Approach.
Tioga, 1983.

MCM86 R.S. Michalski, J.G. Carbonell, T.M. Mitchell (eds.),
Machine Learning: an Artificial Intelligence Approach,
Vol. II. Morgan Kaufmamt, 1986.

SM81 A.M. Silva, M.A. Melkanoff, A method for helping
discover the dependencies of a relation. Advunces in Data
Base Theory, Vol. I, H. Gallaire, J. Minker, J.M.
Nicolas (eds.), Plenum Press, 1981, 115-133.

6. Globalamsidemtions

In the previous section we considered only the problem of inferring
the left hand sides determining a given attribute. In this section we
consider the interaction of attributes. The following lemma is
useful.

Lemma 8. Let A, 8, C E R and suppose net’(B) = {X}, where
C Q X. Suppose 2 E net’(A) and B, C E 2. Then Z can be
rephced by Z - {C} in MC’ E) without altering the closure of the
raultingdependencyset. 6

TkuseofLemma8takescamofcasesresemblingExample3.
The size of the cover for dep(r) produced by our methods can

bebounded,ifweknowthatrisinnormalform,sayBCNF.This
result is based on Theorem 2 and the fact that in BCNF schemes
dependencies do not interact.

‘Ilreorem 3. If the relation is in BCNF and the keys are disjoint, the
generalalgdhmtkdstheminpolynomialtim. Cl

The point of Theorem 3 is not that this special case is singularly
muortant or difficult to solve usina suecialized methods. Rather. it
shbws that the general algorithm~w&s efficiently, even in this
CBse.

We have considered the problem of inferring the functional
dependencies holding in a grven relation. We started by discussing
the connections and applications of this problem We showed that
the trivial algorithm is hopelessly slow, and proved that the result
can sometimes be exponentially large, no matter what algorithm is
used. We outlined a aeneral method which works fast for relations
sa* .

T
g few non&ial dependencies.

everal open problems remain. The analysis of the general
dgorithm is by no fans complete. In general, dealing with an
example relation is not necemnly easier than dealing with a set of
dependencies: for example, in [BDFS84] it is shown that the
problem of determining whether a relation has a key of size less
than a given integer is NP-complete. This states some limitations
which any depemlency inference algorithm must face.

There are also mteresting extensions to this nroblem. One
could consider inferring other types of dependencies, like
multivalued deoendencies or inclusion deoendencies ICFP841. The

the incrementalvers& of ihe dependency inference
P

lem: given
a relation r, a set of dependencies that is a cover o &F(r), and a
tuple 1, find a cover of dep(r u {t}). This version of the problem is
especially important in iruxemntal database design.

From the point of view of concept learning, a functional
dependency X + A is a rule of the following form: if something
(t[x] = s[xI) holds, then something else (t[A] = s[A]) holds. The
necessary set approach seems to give interesting learning
algorithms for other classes of rules, too. This is a topic of a future
Paper.

Ar74 W.W. Armstrong, Dependency structures of database
relationships. Injixm&on Processing 74, Proceedings of
IFIP Congress 74, J.L. Rosenfeld (ed.), North-Holland
Publ. Co., Amsterdam, 1974,580-583.

BDFS84 C. Beeri, M. Dowd, R. Fagin, R. Statman, On the
structure of Armstrong relations for functional
dependencies. J. ACM 31,l (1984), 30-46.

158 Proceedings of the 13th VLDB Conference, Brighton 1987

