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Abstract. The problem of generating a cover for the set of 
functional dependencies that hold in a given relation is studied. ‘Ihe 
problem is an instance of the general problem of concept learning. 
It has applications e.g. in relational database design and in query 
optimization. A straightforward solution algorithm is shown to 
require exponential time for all inputs. We show that for some 
relations this time requirement is unavoidable, i.e., there are small 
relations where an exponential number of nontrivial dependencies 
hold. However, such relations are rate ln practice. An algorithm is 
then developed that works efficiently with respect to the sire of its 
input and its output. 

1. Intmduction 

We consider the following dependency inference problem: 

Given a relation r, fii a set of functional dependencies 
that logically determines all the functional dependencies 
holding in r. 

The problem area of lnferrlng general rules from instances of data 
has become popularly lcno%i as muchine learning [MCM83, 
MCM861 or knowfedpe acouisifion. In our case the simole and 
regular form of data Q relahon) makes the problem par&ularly 
attractive. The concept (a set of dependencies) fitting the data (the 
relation) exactly always exists. Thus, for our problem, the learning 
can be solved exactly, whereas in inductive learning there is always 
a possibility of error. 

Gur interest in the dependency inference problem arouse from 
database design, which is traditionally based on constraints that the 
stored data must satisfy. Such constraints are abstract entities, and 
it is easy for the database designer to overlook some constraints that 
should hold. In our previous work we have proposed the use of 
examples to help the designer in getting a better intuitive i&a about 

*) On lerve from the Uoiveraity of Tunpae. Dcputment of Computer 
sCicace.Iheworkof~~wu~pportsdbytheAcdanyofpinlud. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VL.DB copyright notice and the 
title of the publication and its date appear, and notice is given that 
copying is by permission of the Very Large Data Base Endow- 
ment. To copy otherwise, or to republish, requires a fee and/or spe- 
cial permission from the Endowment. 

University of Tampere, Depamnent of Computer Science 
P.O. Box 607, SF-33101 Tampere, Finland 

the consequences of the constraints. Algorithms for generating the 
examples are given in [BDFS841 and lMR861 for the relational 
modei and in [r;Ia87] forthe entity-relatioasbip model. 

The first orooosal to use exanglle nzlations in database de&n 
WAS made by Sllvjl and Melkanoff @M81]. They suggested the t& 
of a single example relation generated for the universal relation 
scheme. In m86] we argue that using a sepamte example for erch 
relation scheme ls tmxe useful, and study in detail problems related 
to the use and generation of examples. Gur approach has been 
implemented [MRK87]. Another system supporting the use of 
examples is described ln [BGM85]; however, the paper contains IY) 
algorithms for dealing with the example relations. 

The role of the examples is more profound than just being an 
illustration of a prospective design. The best examples satisfy 
exactly the set of constraints required by the designer, i.e., they are 
Armstrong relations [Ar74, Fa82] (or corresponding 
ER-instances). That is, the example and the set of constraints are 
simply dual, equally powerful representations of the same facts. 
Incorrect constraints are easier to spot from the list of con+rain% 
whereas the examples are better ln reveal@ mlsslng ConstratnEB 

To make full use of this duality, we need algorithms ‘for 
transforming the two representations into each other. The example 
generation problem is fairly well understood, but the opposite 
direction has received less attention. Related questions have, 
however, been posed by others. 

Delgrande [De1871 studies the problem of finding supporting 
evidence for the validity or lnvalldity of a given integrity constraint 
His work differs from ours in several aspects. First, his integrlty 
rules can be very general: they are arbitrary expressions in a 
(slightly weakened) relational algebra. We concentrate on 
dependencies, since they are the most @ottant integrity rules for 
(re)designing the database s&em. Second, Delgrande uses only a 
pait of &e database to find the supporting evidence. He assuk 
that the alaorlthm is amlied durinn the actual use of the database for 
‘monitoring’ the valid& of the coii, and therefore the enthe 
database is prohibitively large. Instead, we assum that the dambase 
has been explicitly constructed to help the designer, and it is 
therefore small. Finally and mst importantly, Delgrande only 
considers finding evidence for the dependencies proposed by the 
user or designer. No attempt is made to automatically generate the 
set of all valid dependencies. (Considering the general form of 
constraints, such an attempt would not even be mlistic.) 

Similarly, Borgida, Mitchell and Williamson ([BW85], 
[BMW86]) suggest a method for automatically maintaining a set of 
exceptions to the integrity constraints. When sufllciently many 
exceptions are found, possible corrections to the constraints (based 
on some heuristics) are proposed to the designer. Again, no rules 
are automatically inferred. 

Another, completely different application of dependency 
inference arises in query optimization. Traditionally queries are 
Optimizedwith~ttoagi~nsetofcansaaintPthatanyinsturce 
of the database must satisfy. However, the particular instance 
existing at the time of 

1 
uery evaluation may well satisfy additional 

dependenclesthatcoul beusedtospeedupquuyevahtation. h 
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algorithm specifically designed for instance based query 
optimization is presented in lDec87]. If the dependency inference 
probkm can be solved efficiently, its tlme usage can be subsumed 
by ~n~viq~o~hitved in query evaluation. - 

T 
IS agamxed as follows. A naive solution 

to the dependency t erence problem is presented in Section 2, 
where the exponential time complexity of this algorithm is also 

EL: 
ved. Section 3 shows that ln some cases we cannot do any 

there are small relations with large nontrivial dependency 
sets. However, in practical situations the naive algorithm behaves 
poorly, since most relations do not have this property. Therefore 
the remaining sections are devoted to developing a practical 
algorithm. Section 4 introduces some useful COnCeptS that 

summar& the properties of a relation from the point of view of 
dependency inf-. Section 5 contains rules and algorithms for 
simplifying this summary information, and outlines a practical 
rlgorithm for dependency inference. Section 6 makes some 
additional observations about the behavior of the algorithm. Open 
queetions are listed in Section 7. 

2. AnalvealgalthfbrdependencyhS- 

We atart this section by introducing some notation. Let r be a 
relation over a relation scheme R. If F is a set of functional 
depe&&es, then r l=F ttkans that alI depe&ncks of F hold ln r. 
IfX+Ylsaslnpledenendencv.rl=X+Ymeansr~~X+Y1. 
The set of all deI&kn&es hold&g in r is denoted by &R(r), i.d, 

X+YE &p(r)lfandonlyifr!=X+Y. 

The dependency X + Y is a consequence of F, denoted 
F~X-,Y.ifforallr.r~FimDliesr~‘X~Y. 

If F and G are &mivalem dependency sets. i.e. all the 
dependencies of G are &sequences‘of F and vice veraa, we say 
thatFisacoverofG(andGlsacoverofF).Ingetkral,dcp(r)hat 
several equivalent covers of vatying sixe, and we are interested ln 
finding a small cover. 

In this section we study a straightforward way of inferring a 
cover of &p(r) for a given relation r. Consider the following 
al@thm. 

1. F:=0; 
2. forallsubsetsXrRdo 

i: 
foraIIatbibutesA~ R-Xdo 

ifrl=X+AthcnF:=Fu{X-+A}; 

Clearly, F contains only dependencies that hold in r. Moreover, 
simx the almrithmexamines all nossibk nontrivial denetukncies of 
the form X-+ A, F will in the &d con&n all such &pendencks 
thltholdinr.SincealldependenciesX~Ycanbederivedfrom 
dependencies with a single attrllte on the right hand side, F ia a 
de8ired cover of &p(r). 

To analyze the time compkxity of the naive algorithm, let us 
usentodenote~l(tbenumbadataibutesinR)PndptodenoteIrl 
(thenumberoftupleslnr).‘IhedependmcyX+Acanbechosen 
in tr2*l ways. Testing wlmther r l=X -+ A takes time 0(&X& if 
erch~oftuptesiscbectedindividuolly.Another~b~tyIsto 
sorttherowsofronXbeforemaldngerchtest.Sorting~ti~ 
O(lXj.plogp), and checking that the aded relation satisfies 
X + A takes time O(lxl-p). Since Ixl< n, the total complexity of 
this altemative is therefore 

G(~2*l.rt7Plogp) = 0(&2*17P10gp). 

This exponential time uiremnt is clearly much too big to make 
“R the naive algorithm use 1. For a relation with 10 tupks and 1 

attributes the bound (albeit pessimistic) would be about 1.51 08 . 
For a relation of realistic size the tink usage is intokmble. 

Ourgoalis~oupwithanalgarIthmtht~~better. 
Inmostcasesthepoapelformance ofthenaivealgorlthmiscaused 
by the fact that it generates a huge number of redundant 
dependencies. Making the algorithm generate only nonmdundant 
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dependencies is already a big improvement over the naive version. 
Unfortunately, there are still cases that are inherently hard, i.e. 
cases where the size of MY correctly inferred cover is big. ‘lhis is 
shown in the next section. 

3. Size bounds for the inferred dependency sets 

Theorem 1. For each n there exists a relation rover R such that 
n = IRI, Irl = 0 
dependencies. d 

n), and each cover of d&r) has n(2”‘*) 

In practice, relations that have inherently large depsets should be 
rare. The fact that &p(r) haa only large covers implies that either r 
has many different keys, or the relation scheme is highly 
unnormalized (since lots of non-key dependencies hold). Both 
situations are unlikely. 

Because of Theorem 1 we have to be modest in our search fa 
an efficient algorithm for the dependency inference problem. 
However, there is still room fa improving the naive algorithm, 
which takes exponential time even in the best case. We would like 
to find an algorithm that works in polynomial time with respect to 
both Irl and the size (i.e., the number of dependencies) of a 
minimum cover of dcp(r) (the cover having the fewest 
dependencies). 

Such an algorithm will have to start by inspecting the entire 
relation r and by gathering suitable information for produclng a 
cover of &p(r). Any algorithm (such aa the one given in [MRllfr]) 
that simply steps through all pairs of tuples in an arbitrary order and 
at each step maintains a cover of the dependency set that still has 
not been invalidated, is bound to be inefftcient. This follows from 
the proof of Theorem 1. 

In the next section we will study what kind of essential 
information can be efftciently obtained from r to produce a small 
cover of d@(r). 

4. Necmarysets 

In this section we describe an algorithm for the dependency 
inference problem. The remaining sections will concentrate on 
moditlcations and analysis of this method. 

The algorithm is based on the following concept. Let r be a 
fmed relation over attribute set R. Let s and t be two tuples from r. 
Defhle 

disug(s, t) = {B E R I s[B] # t[E]}. 

Suppose an attribute A belongs to disag(s, t) and let X = 
dim&, t) - {A}. Then X is a nece~sury set for A. Let n&z(A) 
denote the collection of all neassary sets for A, i.e. 

ncc(A) = { disug(s, t) - {A} I s, t E r, A E disug(s, t) }. 

Example 1. Consider the following relation r over R(ABCD): 

A B C D 

0 0 
:: 1 0 8 
0 2 0 2 
1 2 3 4 

For this relation, 
nec6-Q = {{W, 04 C, Dl, (4 4, {C, 41, 
neW) = {{Al, WI, 14 C, Dl, {A, Dh W, Dll, 
net(C) = {{A, 4 Dl, Cl4 D3, CA, WI, 
n+=(D) = {VI, {A, 4 Cl, CA W, 14 Cl, Us Cl). 0 

Thetermmzemarysetcomesfromtheobservationthatiftwormvs 
s and t differ in attribute A (i.e., A E disug(s, t)), then for any set 
X, if X + A holds in r., X must contain some attribute in 
disag(s, 1). This is formahxed in the following. 
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Let A E R be an attribute. Consider the family of all nontrivial 
sets Z E R such that Z + A holds in the relation r: 

Ih(A)={ZsRlr!=Z+AandAeZ}. 

Moreover, for any set S = {X,, . . ., Xk} define 

and B(s)={ YrRlXnY#IZIforallXo S} 

%9 = 1 cq, e-e, Bk}IEie XifOr 1 <is&}. 

Lemma 1. h(A) = B(nec(A)). Cl 

Lemma2.&p(r)={Y+AlYtR,Ae R-Y, 
XnY+0forallXe m(A)}. Cl 

Lemma 2 gives us an alternative naive way of computing the set 
&R(r): we fust compute the necessary sets, and then use them to 
generate all the dependencies. The fmt step is reasonably fast: 

Lemma 3. The collection u { WC(A) 1 A E R } can be computed in 
time O@2n2), where p = Irl and n = lR[. 0 

But the remaining step again requires us to step through all possible 
dependencies, and thus it is too slow. However, it is easy to 
improve on this. Let S = {Xl, . . ., Xk} be a collection of attribute 
sets. Denote 

gendep(S)={X+A IXE a(s)}. 

Lemma 4. The collection u { gendep(nec(A)) I A E R } is a cover 
of &p(r). cl 

Hence it is possible to get a representation for &p(r) by generating 
all deoendencies X + A. where A is in R and X contains an 
attribute from each set in &x(A). This can be substantially faster 
than considering all the dependencies. The next section discusses 
ways to obtain further improvements. 

5. siiplifkatiunlemmas 

There are two problems with the use of the gendep-sets to the 
dependency inference problem as outlined in the end of Section 4. 
The fust is that the generation process may produce a lot of 
unnecessary dependencies. E.g., in Example 1 we had net(E) = 
{{Al, CW, 14 C, Dh{A, Dl, W, WI. The only ~~pendency 
one really has to produce for B is AD + B; however, the set 
gcndep(R) contains also the dependency ACD + B. It is easy to 
construct more extreme examples where exponentially many 
unnecessary dependencies are produced. 

Example 2. Let 

mc(A) = {Ws 14 C,,D,l, (4 C,, D2,s . . . . V, C, D,,>. 

Then the only nonredundant dependency is B + A, but a simple 
generation method would produce 2& dependencies. Cl 

The second problem is that the generation method does not consider 
the interaction of dependencies. 

Example 3. Suppose we have a relation where exactly the 
Frdencies B + B2, Bg + B,, . . . . Bzcsl + B2 and 

B + A Aold (that is we have an Armstrong re ation f 
f& &s*set%f dependencies). Then the family MC(A) contains the 

In this section we consider mainly the flrat source of ineffi ’ 
Thesecond(andseemingly~difficult)onewillbeddresr( ’ “L 
Section 6. 

First we give a result which enables us to reduce the ebr of 
the sets net(A) drastically. 

Lemma 5. Suppose U, V E MC(A) and U c V. Tha 
gendep(nec(A) - {v)) is a cover of gendep(nec(A)). 0 

Thatis,ifonenecessarysetincludesrmtha,brelrrgaret~k 
removed without changing the result@ aet of depeadenclr h 
ExampleltheuseofLemmr5wouMnduceUle~rt 
collections to 

A: CCW, {C, WI, 
B: {VA), VII, 
C: {{A, Dh 14 WI, and 
D: CW, {A, Cl}. 

Lemma 5 enables us to preprocess the ncc(A)-sets by 
removing unneeded sets from them. Denote by n&(A) &a 
subfamily of net(A) left after all unnecessary sets have ka 
removed using Lemma 5. 

While replacing net(A) by MC’(A) yields a coasider&ly 
smallerdependencyset,thereisstillmomfarimpwmmt 
of the product construction used in the gene&on of & 
In our example e.g. a(nec’(C)) = {{A, B}, {A, D}, {B, D}, 
{D}}, which produces four dependenuea in gendcp(nec’(C)). 
However,onlyAR+CandD+Caremallym&ed.Wesborr 
next how the redundant se&canbepruneddurhlgthegelKsatim, 

Wef~tdefineasubfamil con&ingofsuchlefthamlaUaa 
whichdonotcontalnanyotha eftharulsidez 7 

nrlhs(A)={Z~ Urr(A)lforallY~ uu(A),Y~ZonlyifY=Z} 

(N COIMS from KUU’t?dUndiillt). 
An algorithm which does not take the interco~tiom d 

attributes into account canatbeat~ucetbe d#Md=kSZ+A. 
where Z E nrZhr(A), for each aanbute A E R. ext we ahow bw 
our basic algorithm can do this. ‘I& following lemma relatea 
nrh(A) to m’(A). 

Lemma 6. t&s(A) s a@+(A)) E k(A). q 

Our task is to recover the set n&r(A) from the collection n&A). 
We give a result showing how the +(A)-family caa be pnasd 
during the generation of the w 

Let gendep(nec’(A), B) denote the depender&s Y + A E 
gendep(nec’(A)) such that E E Y. Hence 

gendep(nec’(A)) = u { gendep(nec’(A), E) I E E R }. 

Lemma 7. Let X E net’(A), and let Z E n&z(A) such that Z # X. If 
B E Z A X, then gendep(nec’(A) - (Z}, B) is a cover of 
gendep(nec’(A), B). Cl 

Thus, if we have started to generate the dependencies in a cover of 
gendep(nec’(A)) by choosing an attribute E from some set X in 
net’(A), we can leave out all sets Z E MC’(A) which contain B. 
New attributes are chosen repeatedly until all the sets in xec’(A) are 
represented. Then backtracking is used (and the cormsponding aeta 
zarerein~)unrilallthealternati~havebeen~. 

If the left hand sides in ~&T(A) sn disjoint, the algorithm is 
particularly efficia since no ba&r&mg is mquired. 

Theorem2.IfthesetsinxruIs(A)aredi8’ ’ t,thecomplexityofthe 
above algorithm is polynomial in IRI. d”” 

This leads into the generation of 2’ dependencies with right hand 
side A; one would be enough. Cl 
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6. Globalamsidemtions 

In the previous section we considered only the problem of inferring 
the left hand sides determining a given attribute. In this section we 
consider the interaction of attributes. The following lemma is 
useful. 

Lemma 8. Let A, 8, C E R and suppose net’(B) = {X}, where 
C Q X. Suppose 2 E net’(A) and B, C E 2. Then Z can be 
rephced by Z - {C} in MC’ E) without altering the closure of the 
raultingdependencyset. 6 

TkuseofLemma8takescamofcasesresemblingExample3. 
The size of the cover for dep(r) produced by our methods can 

bebounded,ifweknowthatrisinnormalform,sayBCNF.This 
result is based on Theorem 2 and the fact that in BCNF schemes 
dependencies do not interact. 

‘Ilreorem 3. If the relation is in BCNF and the keys are disjoint, the 
generalalgdhmtkdstheminpolynomialtim. Cl 

The point of Theorem 3 is not that this special case is singularly 
muortant or difficult to solve usina suecialized methods. Rather. it 
shbws that the general algorithm~w&s efficiently, even in this 
CBse. 

We have considered the problem of inferring the functional 
dependencies holding in a grven relation. We started by discussing 
the connections and applications of this problem We showed that 
the trivial algorithm is hopelessly slow, and proved that the result 
can sometimes be exponentially large, no matter what algorithm is 
used. We outlined a aeneral method which works fast for relations 
sa* . 

T 
g few non&ial dependencies. 

everal open problems remain. The analysis of the general 
dgorithm is by no fans complete. In general, dealing with an 
example relation is not necemnly easier than dealing with a set of 
dependencies: for example, in [BDFS84] it is shown that the 
problem of determining whether a relation has a key of size less 
than a given integer is NP-complete. This states some limitations 
which any depemlency inference algorithm must face. 

There are also mteresting extensions to this nroblem. One 
could consider inferring other types of dependencies, like 
multivalued deoendencies or inclusion deoendencies ICFP841. The 

the incrementalvers& of ihe dependency inference 
P 

lem: given 
a relation r, a set of dependencies that is a cover o &F(r), and a 
tuple 1, find a cover of dep(r u {t}). This version of the problem is 
especially important in iruxemntal database design. 

From the point of view of concept learning, a functional 
dependency X + A is a rule of the following form: if something 
(t[x] = s[xI) holds, then something else (t[A] = s[A]) holds. The 
necessary set approach seems to give interesting learning 
algorithms for other classes of rules, too. This is a topic of a future 
Paper. 

Ar74 W.W. Armstrong, Dependency structures of database 
relationships. Injixm&on Processing 74, Proceedings of 
IFIP Congress 74, J.L. Rosenfeld (ed.), North-Holland 
Publ. Co., Amsterdam, 1974,580-583. 

BDFS84 C. Beeri, M. Dowd, R. Fagin, R. Statman, On the 
structure of Armstrong relations for functional 
dependencies. J. ACM 31,l (1984), 30-46. 

158 Proceedings of the 13th VLDB Conference, Brighton 1987 


