
FAD, a Powerful and Simple Database Language

Francois Bancilhon
Ted Brlggs

Setrag Khoshafian
Patrick Valduriez

Microelectronics and Computer Technology Corp.
Austin, TX 79759

Abstract
FAD is a powerful and simple language designed for a highly
parallel database machine. The basic concepts of the language
are its data structures (which we call objects) and its programs
(defined in terms of operators and predicates). The primary

features of the language are (i) the support of complex objects
with built-in notion of object identity; (ii) an abstract data type
capability; (iii) a persistent object space; and (iv) the efficient
support of iteration, conditionals, and set operations. FAD is
functional and uses low level operators and operator construc-
tors. This provides for the opportunity of dataflow execution in
a parallel architecture. FAD has been successfully imple-
mented in (i) an interpreter working on a main memory data-
base and (ii) integrated in a prototype of a database machine.

1. Introduction
The relational model [Codd 19701 provides simple and power-
ful features for supporting business applications. However, it is
insufficient to handle at the same time new applications like
Knowledge Base Systems, Office Automation and Computer
Aided Design. For these types of emerging applications, there
are two inherent problems; -First, the reia&onai model imposes
the first normal form. With the first normal form (1) ioins are
necessary for the construction of hierarchical obje& (2) artifi-
cial identifiers must be introduced to perform decompositions
of real world objects; (3) it is difficult to display hierarchical
objects to a user interface. Furthermore, in the relational
framework special provisions need be made to accommodatefor
objects (triples) with missing (or null) values. There have been
several recent attempts to address this issue and introduce some
generality to the relational model by relaxing the first normal
form constraint. For example [Jaeschke and Schek 19821 pre-
sent an algebra for a non first normal form model which allows
attributes to be sets of atomic objects. [Zaniolo 19851 on the
other hand introduces an algebra for a data model which sup-
ports nested tuples (i.e.,tuple valued attributes). More recently
[Schek and Scholl 19861 have presented a model where attrib-
utes could themselves be relations, which in turn could have

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish. requires a fee and/or spe-
cial permission from the Endowment.

relation valued attributes. Other attempts to model un-nor-
malized relations are given in [Ozsoyoglu and Yuan 1985, Oz-
sovoalu and Ozsovoelu 1983. Abiteboul and Bidoit 1984. Hull
and kap 1984, JacGbs 1982, Furtado and Kerschberg i977,
Roth et al. 1984. Thomas 19821. Each of these models intro-
duce some generality to the relational model. A more general
model was given in [Bancilhon and Khoshafian 19861. In this
model, a calculus of complex objects based on a sub-object
relationship among objects is presented.
Secondly, the relational model does not allow a direct represen-
tation for the sharing of objects. The models mentioned in the
previous paragraph also suffer from this limitation, All these
models lack the capability of modeling the built-in notion of
object identity [Khoshafian and Copeland 19861. With object
identity, objects can be distinguished from one another regard-
less of their content. location, or addressing. Furthermore, ob-
jects could be shared. In other words, the object space could he
a dag (directed acyclic graph) or even a graph with cycles. An
interesting data model which captures object identity is the
Logical Data Model [Kuper and Vardi 1984, 19851.
Note that with the relational model the object space is a collec-
tion of flat n-ary relations, and with the non-first normal form
models the object space is a collection of trees. In these data-
base models and especially the relational model [Codd 19701,
objects are identified descriptively through user defined identi-
fier keys. To model dags and graphs, one needs to specify “for-
eign key” constraints and to compose the hierarchical objects
by performing foreign key joins. There are numerous other
problems with using user defined descriptive data for object
identifications (see [Kent 1978, Khoshafian and Copeland
19861). For instance, with object identity we do not need to
maintain referential and existential integrity constraints. A re-
lated semantic and performance motivated advantage is that
joins will be replaced by path traversals in models which sup-
port object identity [Maier and Stein 19861.
A commercially available system which incorporates this notion
of object identity in its model is the object-oriented database
language OPAL of the Gemstone object oriented database sys-
tern [Maier and Stein 1986, Maier et a1.19861. The model is
based on Smalltalk [Goldberg and Robson 19831 which is a
representative object oriented programming system (which also
supports object identity).
Another approach of modeling objects and inter-object rela-
tionships independent of the object content is the functional
data modeling approach used in languages such as DAPLEX
[Shipman 19811, EFDM [Kulkami and Atkinson 19861. and
PROBE [Manola and Dayal 19861. The functional data model
constructs the object space out of “entities” and “functions”.
Entities are identifiable independent of content (which in the

Proceedings of the 13th VLDB Conference, Brighton 1987 97

functional model are obtained by applying a specific set of
functions to entities of a given type), and the same entity might
exist in multiple relationships, thus providing the capability of
object sharing.

In this paper we present a novel database model called FAD
(the France-Armenian Data model!). which supports object
identity and allows us to represent arbitrary complex objects
built out of atoms, tuples. and sets.

In addition FAD incorporates and combines three other impor-
tant characteristics. These are (i) operations which make FAD
powerful, yet which are amenable to both pipelined and set
oriented parallelism for database machine lmplementation
[Boral and Redfield 19851, (ii) separation of the temporary
and persistent object spaces, and (iii) the provision for a user
de&ted abstract data type layer (which constitutes the atomic
object space) [Ong et al. 1984. Osbom and Heaven 19861.

Concerning the operations of FAD, two distinct issues were
considered: choosing a computational model and choosing the
base operators. The computational model is functional. It offers
many advantages; in particular, it is suitable for dataflow imule-
mentation, which is- a natural way to implement parallelism
[Ackerman 19821. The operator constructors were selected to
optimiu parallel&n: the pump represents the parallel expres-
sion of a divide and conquer strategy and the filter is the most
elementary expression of parallelism on a set, Also, a basic
group operation allows the efficient implementation of more
complex operations (e.g., duplicate elimination and grouping)
through hashing. Finally, explicit set operations (intersection,
union and difference) and operations to manipulate tuples
(construct and extract) were included in the language.

There have been several approaches to providing users with
general purpose programming capability, yet allowing and pro-
viding access to a persistent database. In some implementations
“external” database calls (through subroutines) are made from
a host programming language (e.g., SQL calls in COBOL). This
approach suffers from the serious impedance mismatch prob-
lem. Another approach .is extending an existing language with
database capabilities (in particular persistence). The classic ex-
ample of this approach is PS-Algol [Atkinson et al 19831. It
should be noted that the programming language community is
recognizing the need of persistence in programming languages
[Atkinson et al 19851. On the other hand database researchers
are recognizing the limltations of some of the existing data
models. Attempts to design logic based languages [Tsur and
Zaniolo 19861, as well as object oriented database models
[OODBW 19861 are a response to this requirement.

In addition to the powerful operations and the capability of de-
fining abstract data types in another language, FAD partitions
its object space into persistent objects and temporary objects.
Persistent objects are shared among users; temporary objects
exist only during a transaction’s lifetime and are not visible to
other transactions. Although the object space is divided, the
operators can be applied to both persistent and temporary ob-
jects. We found this separation very useful and powerful since it
gave us the capability to impose performance and protection
motivated restrictions on the persistent object space. Our imple-
mentations verified this fact.

One of the advantages of the relational model is its relative sim-
plicity and elegance. This point could not be overemphasized.
We believe many sophisticated models which attempt to offer
“more and better” have either failed or will fail because of
complexity and lack of robustness. We have attempted to maln-
tain this motherhood of simplicity and elegance in FAD.

Given these basic choices, the language underwent a trial pe-
riod ln which many solutions were investigated. The proposed
language has been validated and extensively tested by imple-

menting a FAD interpreter. The current state is the result of
numerous compromises between complexity, expressivity and
efficiency. FAD is the conceptual interface model of a proto-
type database machine, Bubba, being built by the Database
Program at MCC. Besides the interpreter, we have also lnte-
grated FAD with the Bubba’s storage manager.

The rest of the paper is organized as follows. The basic con-
cepts of the language are given in Section 2. Section 3 defines
programs in terms of operators and predicates. Operators are
functions (which return results) or updates (which modify the
state of the system). Predicates return true/false answers. In
Section 4, we describe the FAD interpreter and in Section 5 we
give the summary.

2. Basic Concepts
2.1 User Defined Environment

FAD is built on top of a lower level layer of abstract data types.
The annroach is similar to the ones in lone et al. 19841 and
[Osboi and Heaven 19861. This layer defines a set of atomic
types, the operations on these atomic types and their imple-
mentation. This layer is defined using some conventional pro-
gramming language such as C. Examples of atomic types are
integer, string, boolean, matrix, degree Farenheit, etc. With
each atomic type (or set of atomic types) is associated a set of
operations. For instance, with string we define:

concatenation: (string, string) -> string
substring: (string, string) -> boolean

Each of these operations is defined by the user and “specified”
by a program which implements it. The main advantages of
such an approach are:

(0

69

(iii)

It provides extensibility. The functionality of the system
can be easily enhanced and the base operations do not
have to be all frozen.

It makes FAD a fully general purpose programming lan-
guage. If the user wants to perform matrix multiplication
in FAD, he/she does not have to simulate this feature in
a more or less contorted way but can write a routine to
do it in his/her favorite programming language.

It allows the execution of the entire application in the
database machine. In a conventional system. the gen-
eral purpose programming language is on top of the da-
tabase language. In this approach, the database lan-
guage is on top of the general purpose language. This
allows us to store the routines in the database and the
unique features of FAD will allow us to invoke them
naturally, which a relational system cannot do.

2.2 System Def’ined Environment

The system knows about three special sets.

(i) A set A of atomic types which are abstract data types
defined by the user.

(ii) A set N of attribute names. These are supposed to be
recognizable from any other entity in the system (for
instance they are distinguishable from user defined
types).

(iii) A set I of identifiers which are also distinguishable from
the rest of the world. Those will never be manipulated
as such bv FAD nroarams. An identifier provides a
unique, invariant *refrence to an object. - One can
think about them as pointers or addresses which can be
used to reference objects, but can never be printed.or
updated.

98 Proceedings of the 13th VLDB Conference, Brighton 1987

2.3 Objects

An object o is a triple (identifier, type, value) where:
the identifier is in I,
the type is in A U { null-type, set, tupfe }

The value of an object depends on its type and is represented
in the following manner:
null-type: no value

The null object is a unique, special object without a
value. It has an identifier null, which is a FAD re-
served word.

atomic type: an element of a user defined domain of

set:

tuple:

atomic values.

{il. i2. in}
where the ij’s are distinct identifiers from I.

The value of a set represents the mathematical notion
of a set as an unordered collection of identifiers. The
null object is considered to be an element of every set
value. An empty set value is represented by {) and is
equivalent to (null 1.

[al:il, a2:i2,..., an:in]
where the ai’s are distinct attribute names

from N, and the ij’s are identifiers from I.
The value of a tuple represents a collection of identifi-
ers which are labeled by attribute names. The value
taken by the tuple object o on attribute aj is ij and is
denoted o.aj .

A tuple is considered to take a value on every attribute
name in N. In general, this value is the null object for
all but a few attributes. The value of a tuple is gener-
ally written to specify only the non-null attribute val-
ues. An empty tuple has only null attribute values and
is represented by [1:

ordered tuple: (il, i2, in)

An ordered tuple is a special case of a tuple where the
attribute names (ai’s above) are consecutive integers
starting with 1.

An Object System is a set of objects. An object system is consis-
tent iff (i) identifiers are unique for each object (unique identi-
fier assumption) and (ii) for each identifier present in the sys-
tem there is an object with this identifier (no dangling pointers
assumption). All object systems will be assumed consistent in
the sequel.

2.4 Graphical Representation of Objects
An object system can be represented by a graph. The graph of
an object system is defined as follows.

(i) Each object is represented by a node, the type of which is
determined bv the object type. A node representing an
atomic type 6 denoted by jie its value. A node repre-
senting a set type is denoted by . A node representing a
tuple type is denoted by a +. It is sometimes conven-
ient to furtber label the nodes with the identifiers of the
objects they represent.

(ii) If object o, represented by node n, is of type tuple and
o.a is the identifier of object o’, represented by node n’,
then there is an arc labeled a going from node n to node
n’ .

(iii) If object o, represented by node n. is of type set and the
identifier of object 0’. reDresented bv node n’. is in the
value of object o, then there is an unlabeled arc going
from node n to node n’ .

Consistent object systems are represented by graphs such that
from each tuple node there is at most one arc with a given label
and terminal nodes (i.e., nodes which do not have any out
arcs) are either empty set nodes, empty tuple nodes or atom
nodes.
An object system is clean if its graph is a forest.
its graph is a DAG.

It is acyclic if

Figure 1 illustrates the graphical representation of a FAD ob-
ject where sl. s2 and s3 are set identifiers and tl, t2, t3 and t4
are tuple identifiers. This object describes two persons who
have a common child.

Tdm io Ah ‘s

Flgure 1: A FAD Object System

2.5 Linear Representation of Objects

In an acyclic object system, an object with identifier i has a
linear representation denoted by unfold(i) , which is defined re-
cursively as follows:

null-type: nothing
atomic type: value of the object
set: { unfold(il), unfold(i2), un.fold(in) }
tuple: [al: unfold(il), an: unfold~in)]
ordered tuple: (unfold(i1). unfold(i2), unjold(in))

A linear representation is a structured collection of atomic val-
ues. Thus an object may be specified with a linear representa-
tion purely with the atomic values which compose it, through
set and tuple constructors. Note that only objects in a clean
object system can be uniquely represented by their linear repre-
sentations . Since a linear representation is value based, the
identity of contained objects is lost and it is no longer possible
to distinguish objects which have the same linear representa-
tion.
Examples of linear representations of simple objects include:

1, 2, 2.5, VljohnV1, “doeV* are atomic objects
{l, 2, 3) isa set
[name : II j ohn-doe 11 , age : 271 is a tuple
(I1 john” , “doe”) is an ordered tuple
[name: [first:lljohnl*, last:“doeHl,
children: {[name: [first: “joell,last: ‘ldoel’]],

[name: [first:l*ann*V,last:**doen]]}]

2.6 ObJect Equality

Several languages have distinguished different forms of equal-
ity. A strongly typed language such as ML [Harper, Mac-

Proceedings of the 13th VLDB Conference, Brighton 1987
99

Queen, and Milner 19861, provides a single overloaded predi-
cate ‘=’ which means identity with references, equality with val-
ues, and recursive application of the record structure. In lan-
guages without strong typing the distinction between predicates
must be explicit. The Lisp family (cf. [Abelson and Sussman
19851) traditionally provides EQ, which tests addresses and is
hence implementation dependent, and EQUAL, which tests for
isomorphic structures. Object oriented languages must also
provide predicates which distinguish between objects. Smalltalk
[Goldberg and Robson 19831, provides two nredicates: eauiva-
ience, ‘2 which is tests for-the same object, and equality, ‘=’
which is implemented separately for each class. The LDM
(LO&~ Data Model) of Kuper and Vardi [Kuper and Vardi
1984, 19851 also distinguishes a “shallow” equality which com-
pares the r-values of objects.

In FAD, we have three sorts of equality. The first is equality of
identifiers. In a clean object system two objects have equal
identifiers if and only if they are the same object (i.e. objects
are distincr if their identifiers are not equal). We shall call this
the identical predicate, which corresponds to ‘==’ in Smalltalk.

Two objects are value-equal iff they have identical types and
equal object values. Equality of object values is defined as fol-
lows: (i) two atomic object values are equal if they denote the
same element in the user defined domain of values, (ii) two set
values are value-equal if there exists a bijection f between the
values of the two sets such that if y = f(x) then x and y are
identical, and (iii) two tuples are value-equal if the values they
take on every attribute are identical. Value-equal corresponds
to r-value equality in LDM and it is a shallow equality. Intui-
tively, the objects might be different but their types and con-
tents are identical.

Finally, if we are interested in “equality” of the linear represen-
tation of objects in an acyclic object system, we have the all-
equal predicate which is defined recursively as follows: (i) two
atomic object representations are all-equal iff they are value-
equal, (ii) two set objects are all-equal if every element of one
is all-equal to an element of the other, and (iii) two tuple ob-
jects are all-equal if the values they take on every attribute are
all-equal. It can easily be seen that two objects which are all-
equal have linear representations which are the same up to du-
plicates and permutations of elements for sets and permutations
of <Attribute: Value> pairs for tuples.

2.7 Programming Environment

The programming environment is composed of two object sys-
tems: persistent and temporary. The two object systems differ
only in the lifetime of the objects they contain. Temporary
objects exist only during program execution, while persistent
objects persist between program executions.

The database is a persistent object with identifier database.
Initially, the persistent object system contains only this single
object. Other persistent objects are created by updates to the
database. FAD can support a database object represented by a
directed graph structure.

3. FAD Programs
3.1 Base Concepts

A FAD program is either an operator or a predicate.

Programs take FAD object identifiers, attribute names, and ab-
stractions as input and return FAD object identifiers (for opera-
tors) or true or false (for predicates) or cause an exception to
be raised (error).

The input arity of any program is fixed at compile time. The
output arity of all programs is one. Note that an operator may
return multiple results by returning the identifier of an ordered
mple, the value of which are the identifiers of the results.

-Predicates return the boolean values true and false which are
FAD reserved words and not objects.

Operators are either functions or updates. Functions return an
identifier as output. Updates do the same, but also modify the
value of their input objects as a side effect.

A function returns either the identifier of an existing object, the
identifier of a new temporary object generated by the function,
or an error. The temporary object system is modified by a func-
tion only if a new object is created. In any case, the persistent
object system is not modified by the application of a function.

An update modifies the state of an object system. It either (i)
modifies the value of the object whose identifier was given as
input and returns the identifier of the modified object or (ii)
the update fails, nothing is modified, and an error is generated.
An update can be viewed as a function with side effects.

Operators and predicates may be of two kinds: base and con-
structor. The base operators and predicates provide the under-
lying functionality of FAD. Constructors allow more compli-
cated operators and predicates to be built from simpler ones. A
base predicate takes object identifiers as input. A constructor
predicate takes boolean values as input. Both return boolean
values. A base operator takes object identifiers and attribute
names as input. An operator constructor takes as input object
identifiers as well as abstractions of operators and/or predi-
cates. The reserved word fun is used to denote lambda ab-
straction[Eingali and Kathal 841. Abstraction in FAD is al-
lowed only to specify anonymous operators and predicates as
arguments

In the following sections, the syntax and semantics of FAD op-
erators and predicates is given. When defining the semantics of
an operator, the symbol <- denotes assignment. If the specified
conditions are not met, an error is raised. Examples will be
written in typewriter font and the symbol => will be used
to indicate the result of evaluating an expression. In the exam-
ples, we will use the linear representation of objects.

3.2. Base Functions

Let e be an expression denoting identifier i and let el, e2, . . . ,
en be expressions denoting identifiers il, i2, . .., in. In the
sequel, when we give examples of FAD base functions, we will
use the linear representation of objects. Several groups of base
functions exist and are defined as follows:

Object constructors are expressions which denote the identi-
fier of a new temporary object with the given value. They are
used to create new temporary objects. There are object con-
structors for atomic types, tuples, ordered tuples, and sets.

(1) <abstract data type name> (<value string>) is an expres-
sion denoting the identifier of new atomic object provided
the name and value are valid.

Examples of atomic constructors are:
int (3) integer object with value 3

string (Iljohn”) string object with value “john”

date (July 23, 1986) date object with value July
23, 1986

(2) [al:el, a2:e2, anzen] is an expression denoting the
identifier of a new temporary tuple with value
[al:il, a2:i2, an:in]

Examples of tuple constructors are.

1 1

[name: ltjohn”]

100 Proceedings of the 13th VLDB Conference, Brighton 1987

[name:V’john”, age:301

[name: [first : “john”, last: Mdoe8’] 1

(3) (el, e2, .,., en) is an expression denoting the identifier of
a new temporary ordered tuple with value
[l:il, 2:i2, n:in].

An example of ordered tuple constructor is:
(*‘john”

(4) {el, e2,I

%arytl)

en} is an expression denoting the identifier of
a new temporary set with value (il, i2, . . . , in}. Duplicate
identifiers are eliminated.

Examples of set constructors are:

I 1

{ rrjohnV’, @‘mary”, ‘*john”}

{ {l’john”, Qary”}, {tVjoeVl, “bettyI*}}

{ [name:“john8’, age:30], [name:“mary”])

Copy Functions are expressions which denote the identifier of
a new temporary object of the same type and value as the speci-
fied object. There are two copy functions, corresponding to
two notions of equality.

(5) copy (e) is an expression denoting identifier i’ of a new
temporary object which is a copy of the object identified
by i. That is, the two objects have identical types and val-
ues, i.e., they are value-equal. This is a shallow copy of
the object, i.e., if the object is a tree, only its first level
will be duplicated.

In the following example. the expression copy (11) generates
the object identified by t3 and returns t3.

(6) all-copy (e) is a new object obtained from e by generating
a new identifier i’ for every sub-object of e and replacing
its identifier with i’. The graphs of e and all-copy(e) are
isomorphic. Furthermore, e and all-copy(e) as well as all
their corresponding sub-objects are all-equal. The ex-
pression all-copy (rl) generates the object identified by
t4 and returns t4 (in the example above).

Tuple Functions provide operations on tuples.

(7) e.a, where a is an attribute name, is an expression denot-
ing i.a, if i is the identifier of a tuple.

Examples include:
[a:l].b + null

{ ajohn” }.a => error

[name : I1 j ohn” , age:301 .name => njohn8’

(lljohn”, lljoe”, “betsy”) .2 => I8 joe”

[name: [firat:8~john*V,last:“doe”] ,age:301 .name
.first => 81john”

Set Functions provide the usual union, difference, and inter-
section operations on sets. The set functions union, intersec-
tion, and difference return identifiers of new temporary sets. If
the argument is not a set, an error is encountered.

For notational convenience:
set (i, X) indicates X is the value of the set object with

identifier i
Assume set (il, Xl) and set (i2, X2) for the following defini-
tions.

(8) union (er, e2) is an expression denoting the identifier of
{X]XEXlV XEX2)

An example of union is:
union ({il,i3}, {i3,i5)) => {il,i3,i5}

(9) intersection (el, e2) is an expression denoting the identi-
fier of { x 1 x E Xl A x E X2}

(10) difference (el. e2) is an expression denoting the identifi-
erof{x]xEXlA xeX2)

User Defined Functions are abstract data type functions or
represent a user defined fad function.

(11) f (el, e2, en), where f is an n-ary user defined func-
tion or an abstract data type function name, is an expres-
sion denoting the identifier of the result of applying f to
il. i2, in.

For example :
sum (10.2, 4) => 14.2
concat (rIR88, **IS**) => ttIRIS**

3.3. Base Updates

FAD has a general assignment statement plus some specialized
ones for sets and tuples.

Let e be an expression denoting identifier i and let e 1, e2, , . . ,
en be expressions denoting identifiers il, i2, .., in. For clarity,
we will use the linear representation of objects in the examples.
For notational convenience:

set (i, X) indicates X is the value of the set object with
identifier i

(1) assign (el, e2) is an expression denoting il, if il is not
null, with the following side effect:

type (il) <- type (i2)
value (il) <- value (i2)

The following example modifies the age of “john”
assign ([name: I@john”, age: 301 .age, 20)

Even though this assignment is sufficient to do most updates, it
is reasonable both for performance and expressiveness reasons
to introduce assignment operating on slots of objects. These are
specialized by object type.

(2) tupleassign (eel, u, e2). where a is an attribute name, is an
expression denoting ii, if il is a tuple, with the following
side effect:

i1.a <- i2

The following example modifies the department of “john”
tupleassign ([name: t’john’t, dept: “sales”1 ,

dept , “marketing”)

(3) delete (el, e2) is an expression denoting il. if set (il, Xl)
and set (i2, X2), with the following side effect:

Xl <- { x] x E Xl A x I$ X2)

Proceedings of the 13th VLDB Conference, Brighton 1987 101

The following example deletes the objects with identifiers il
and i2 from the set

delete((i1, i2, i3}, {il, i2)) + {i3}
(4) insert (el, e2) is an expression denoting il, if set (il, Xl)

and set 02, X2), with the following side effect:
Xl <- { x 1 x E Xl V x E X2)

The following example inserts “john” as a new employee:
insert(database.emps,

{ lname:“john~~, age:271})

(5) f (el, e2, en), where f is an n-ary user defined or an
abstract data type update name, is an expression denoting the
identifier of the result of applying f to il. i2, in.

3.4. Predicates
FAD provides base predicates of boolean value, tests for object
type, and tests for equality. The predicate constructors pro-
vided are not, and, and or.
Let e be an exnression denoting identifier i and let e I, e2, . . . ,
en be express&s denoting ide&iers il. i2. in. Let pl and p2
be predicates with boolean values VI and v2 respectively. For
clarity, we will use the linear representation of objects in the
examples.

(1)

(2)

(3)

is-tuple (e), is-set (e). is-atom (e), is-singleton (e) are
expressions denoting true if i identifies respectively a
tuple. a set, an atom or a singleton set and false other-
wise.

is-tuple ([name: “john”, age: 301) + true
is-set ((1)) => true
is-singleton ({null}) -> false
is-atom (null) -> false

identical (el, e2) is an expression denoting identical(i1,
i2).

equal (el, e2) is an expression denoting value-equal(i1,
i2). This tests for shallow equality. Considering the ex-
ample in section 3.3.. we have :
equal (t, copy (t)) => true
equal (tl, t3) => true
equal (tl, t4) => false

(4) all-equal (el, e2) is an expression denoting all-equal(i1,
i2). This tests for the deep equality. Considering the ex-
ample in section 3.3.. we have :

all-equal (t, all-copy (t)) + true
all-equal (tl, t4) =0 true
all-equal (tl, t3) => true

(5) not @I) denotes the predicate value -VI.
(6) and @I, ~2) denotes a predicate value VI A v2.
(7) or ($1. ~2) denotes a predicate value VI v v2

(8) p(eJ, e2, en), where p is an n-ary user defined predi-
cate or abstract data type predicate name, is an expres-
sion denoting the identifier of the result of applying p to
il, i2, in. If the type or value of the arguments is not
appropriate, error is returned.

For example :
substring (%In, **IRIS”) => true
greater (2, “john”) => error

3.5. Abstraction and application

Operator and predicate abstraction allow the construction of
anonymous functions which are used as arguments to operator
constructors.

(I) Pun (xl, x2, xn) e is an n-ary operator abstraction
with parameters xl, x2, . . ., xn. The body of the operator
abstraction is the expression e. The scope of the parame:
ters is restricted to the body of the abstraction.

For instance:
fun(x) x denotes the identity function,

fun(x) x.a denotes the function returnlng the a
attribute value.

fun(x,y) ta:x,b:yl
denotes a function returning a

new tuple with attributes a and b.

(2) fun (xl, x2, xn) p is an n-ary predicate abstraction
with parameters xl, x2, xn. The body of the predicate
abstraction is the predicate p. The scope of the parame-
ters is restricted to the body of the abstraction.

For instance:
fun(x) true denotes the constant predicate true

fun(x) equal(x,**johnU9)
denotes a predicate which tests for “john”

(3) let rl be el
let r2 be e2

let m be en
in e

where rl, m are reference names and el, e2, en
and e are expressions, is an expression. It denotes the
expression e in which every occurrence of a reference
name is replaced by the identifier denoted by it’s associ-
ated expression. Within a reference declaration block,
references are defined in the order written.

Application expressions are introduced to allow a name
(i.e., reference) to be bound to a constant. References are
useful to eliminate common sub-expressions from expres-
sions and thus avoid duplicate work.
Examples of application are: (assume sum and mult are
functions retumlng the sum and product of two integers)

let x be int (3)
in
[a:x, b:2, c:xl + [a:int(f), b:2, c:int(S)]

The following updates the total tax paid by an employee.
Emp, and the payroll of department, Dept, based on the
amounts paid to and withheld fom the employee:

let withhold be mult(0.10, Emp.salary)
let paid be sub(Emp.salary, withhold)
in

(add(Emp.tax, withhold),
add(Dept.payroll, paid)

(4) p --> e, where p is a predicate denoting a value v and e is
an expression which denotes an identifier i, is an expres-
sion denoting i if v is true and null otherwise.

For example, the following expression returns the age Of
“john” or null:

equal(x.name, sjohnlf) -> x.age

3.6. Operator constructors

In this section, we will base our examples on the following data-
base which contains a set of departments (called dept) and a

102 Proceedings of the 13th VLDB Conference, Brighton 1987

set of employees (called emps). The employees are of the
form:

Employee =
[ename: string, enum: integer,
salary : real, department: Department]

and departments are of the form:

Department =
[dname: string, dnum: integer,
budget: real, employees: {Employee}]

The database schema is (assuming a typing capability in FAD):

define type database =
IdeDt:{ Department }, emps: (Employee }]

Let f and g denote n-ary operator abstractions. Let e be an
expression denoting identifier i and let e 1, e2, . . . , en be ex-
pressions denoting identifiers il. i2, in. For clarity, we will
use object values instead of object identifiers in the examples.
For notational convenience:

set (i, X) indicates X is the value of the set object with
identifier i

(1) ifthenelse @, f, g, el, e2, en), where p is an n-ary
predicate abstraction, is an expression denoting

f(i1, i2. in) if p(i1. i2, in) denotes true
g(i1, i2, in) if p(i1, i2, in) denotes false

(2) whiledo& e) is an expression, if i is an ordered tuple,
denoting:

i if f (i.1, i.2, i.n) is null
whiledo (f, f (i.1. i.2, i.n)) otherwise

The whiledo construct is primarily used for hxpoint compu-
tations. The transitive closure of a binary relation R of or-
dered tuples is:

whiledo(fun(x,y) not(equal(y,{})) ->
(union(x,y),
filter(fun(2.w) equal(z.2,w.l)~>

(Z.l,W.2),
R, Y),

R, R).l

(3) filter (f, el, e2, en), is an expression denoting, if
set (&Xl) and . . . and set (in.Xn). the identifier of

{f(xl, x2, . ..) xn)l xl E Xl, xn E Xn }

The filter constructor is the most elementary expression of
parallelism on a set, i.e., each x of X can be applied “f(x)”
in parallel.
The following example gives the name and salary of employ-
ees who make more than SOK. The result is a set whose
elements are of the type { [en: string, sal : Integer I}.

filter (fun(x) greater(x.salary, 50K)
->[en:x.ename, sal: x.salaryl,

database. empsl

The following example gives the department name and the
names of employees of all departments whose budget is
greater than 100K. The result is a set whose elements are of
type {[name: String, employees: { Employee I]].

filter(fun(x) greater(x.budget, lOOK) ->
[name : x . dname ,

employees :
filter(fun(y) y.ename,

x.employees)l,
database.dept)

The following example gives the employee name of all em-
ployees who work in department toy and the employee num-
ber of all employees who do not.

filter (fun(x)
ifthenelse (fun (z)

equal(z.department.dnaate,“toy”),
fun (2) z.enarse,
fun (2) z.enum,
xl 9

database.emps)

(4) pump cf, g, e), where f is a unary operator abstraction and
g is a binary function abstraction which is associative and
commutative, is an expression. if set(i,X), denoting:

f(x) if X = {xx)

g(pump(f, g. A), vw’(f. g. WI
ifX=AUB I\ AnB=Q

The pump operator supports parallelism by a divide and
conquer strategy as shown on the following graph :

x2

t t t
f f f f

The pump operator’s main application is aggregate func-
tions. The average employee salary can be found as follows,
where totals is an ordered tuple (count. sum of salaries).

let totals be
pump (fun(x) (1, x.salary),

fun(x,y) (sum(x.1, y.11,
Sum(X.2, y.2))

database.emps) in
quotient(totals.2, totals.1)

(5) group cf, e), is an expression, if set(i, X). denoting:

identifier of { (a,{x})] x E X A all-equal(f(x), a)}

In other words, the group operator returns a set of pairs repre-
senting the equivalence classes of the set S under application of
the function abstraction f. The pair consists of the representa-
tive value for the class and the set of identifiers of objects in the
class. It gives a general framework for handling uniformly such
functions as hashing, grouping, duplicate elimination.

The following illustrates the use of group to eliminate the
duplicate values in a set X of abstract data types as follows :

filter (fun(x) x.1, group (fun(y) y, X))

The following example groups employees by salary:
group (fun(x) x.salary, database.emps)

The following example produces a set of employee names
without duplicates :

filter (fun(x) x.1, group (fun(y) y.ename,
database.emps))

4. The FAD Interpreter
We implemented the FAD interpreter (in C), primarily to test
the operational semantics of the language, but also to gain ex-

Proceedings of the 13th VLDB Conference, Bright& 1987 103

perience in the use of FAD itself by writing large application
programs.

quences. FAD programs may be debugged using breakpoint,
trace, and step commands.

The FAD interpreter provides an environment in which the us-
er may run and debug FAD programs. It is implemented with a
main memory database which resides on a file between ses-
sions. Within the interpreter, the user has capability to ma-
nipulate objects directly through both commands and fad pro-
grams. The overall architecture of the interpreter is given in
Figure 2.

IWUT + Lexical
Analyzer I

Figure 2: Architecture of the FAD Interpreter

Both temporary and persistent FAD objects are implemented
as entries in the Temporary and persistent Object Tables re-
spectively. Each entry contains a type, reference count, and a
value. The identifier of an object is given by a bit, to indicate
which table it belongs, plus an index into the table. The value
of set object is a pointer to a list of identifiers. The value of a
tuple object is a pointer to a list of attribute, identifier pairs.

Abstract Data Types are implemented as a table of user sup-
plied routines given at compile time. The user must supply cer-
tain routines for the interpreter to manipulate each new ab-
stract data type. These include: converting to and from the
string representation used in a FAD program and the actual
internal storage representation, testing for equality, and retum-
ing the size in bytes of a given value. Abstract Data Type Val-
ues may be stored either in the object table (small, fixed length
data) or as a pointer to the actual data.

The interpreter automatically reads from and writes to a file
persistent object linear representations at the beginning and
end of a session. During a session, persistent objects reside in
the persistent Object Table in main memory. Temporary ob-
jects reside in the Temporary Object Table which exists only
during an interpreter session. Reference counts are used to
remove unneeded objects.

To facilitate debugging, development, and testing object “han-
dles’ which are basically object identifiers are visible to the user
within the interpreter. The value and linear representation of
an object may be printed using interpreter commands. FAD
programs may be written using object identifiers directly. This
allows a user to interactively construct a complex query and
examine the intermediate results.

Interpreter commands supplement FAD by allowing the user to
print object values and store object values in files. Files may
also be used to store and edit programs and command se-

Thus, the FAD interpreter consists of several components: a
command interpreter, FAD program executor, temporary and
persistent object tables. The parser, implemented using
YACC, generates both requests to the command interpreter
and code for the FAD abstract machine.

The FAD abstract machine is a stack based machine which
executes FAD base operators and predicates as single instruc-
tions . Functions constructors are compiled as sequences of
code in which the functional arguments are evaluated via sub-
routine calls. The stack is used to pass arguments and results.

5. Summary
In this paper, we have presented FAD, a language designed to
be the interface to a highly parallel. Some of FAD’s more rele-
vant features are summarized here.

FAD provides a rich set of built-in structural data types and
operations. Instead of normalized relations, FAD operates on
sets and tuples which can be nested within each other to an
unlimited degree, so that hierarchical structures can be directly
represented as either internal data or results. One of the strong-
est points of FAD is the explicit existence of the concept of set,
which is inherently parallel (all elements in a set can be proc-
essed in parallel). Furthermore, the FAD objects have an iden-
tity enabling support of graph structures and replacement of
most joins by path traversals. Instead of relational algebra op-
erations, FAD provides a lower-level set of functions which are
more general and yet allow maximum parallelism. The FAD
functions allow for efficient implementations of set operations.

FAD is a pure functional language except for updates. It con-
sists of a set of base operators and operators constructors. All
functions return identifiers of either new objects or previously
existing objects. FAD uses nested functions to model dataflow
dependencies and includes a function which allows common
sub-expression elimination. These dataflow dependencies ex-
hibit parallel and pipelined execution possibilities of FAD pro-
grams in a database machine. FAD partitions the object space
Into persistent and temporary. Update functions are applied to
the persistent objects and they have side effects since they
cause state changes to previously defined objects.

Most data languages provide a closed set of built-in atomic data
types which are not extendable by users. Instead, FAD is built
on top of a user-defined domain of abstract data types so that
users can define their data types using another programming
language such as C. Thus, any number of atomic data types can
be added or modified to satisfy changing requirements for func-
tionality or compatibility.

FAD was designed in 19851986. It has been successfully im-
plemented and extensively tested first using a FAD interpreter
working on a main memory database on UNIX. It is now being
implemented as the interface to the Bubba database machine.

As defined in this paper, FAD is an untyped language. Current
work includes the support of disjunctive, prescriptive and recur-
sive typing in FAD and of a general ADT capability where ADT
operations can be defined in a FAD data definition language.

Acknowledgements
Maxiy thanks are due to Haran Boral, George Copeland and
Shamim Naqvi who provided invaluable comments and sugges-
tions on the FAD language. The authors are also grateful to
Brian Hart for his great help in the implementation of the FAD
interpreter.

104 Proceedings of the 13th VLDB Conference, Brighton 1987

References

[Abiteboul and Bidoit 19841 “An Algebra for Non Normalized
Relations”, S. Abiteboui and N. Bidoit, ACM Int. Symp.
on PODS, March 1984.

[Abelson and Sussman 19851 Structure and Interpretation of
Computer Programs, H. Abelson and G.J. Sussman with J.
Sussman, The MIT Press, Cmabridge, MA, 1985.

[Ackerman 19821 “Dataflow Languages”, W.B. Ackerman,
Computer, February 1982.

[Atkinson et al. 19831 “An Approach to Persistent Program-
ming”, M. P. Atkinson, P. J. Bailey, W. P. Cockshott, K.
J. Chisholm and R. Morrison, Computer Journal, Vol. 26,
November 1983.

[Atkinson et al. 19851 Persistence and Data Types Papers
from the Aupin Workshop, M. Atkinson. P. Buneman. and
k. Morrison. Editors, University of Glasgow, 1985.

[BanciIhon and Khoshafian 19861 “A Calculus for Complex
Objects”, F. Bancilhon and S. Khoshafian, ACM Int.
Symp. on PODS, March 1986.

[Boral and Redfield 19851 “Database Morphology”, H. Boral
and S. Redfield, Int. Conf. on VLDB, Stockholm, Sweden,
August 1985.

[Codd 19701 “A Relational Model of Data for Large Shared
Data Banks, ” E.F. Codd, CACM, Vol. 13, No. 6, June
1970.

[Furtado and Kerschberg 19771 “An Algebra of Quotient Rela-
tions,” A. L. Furtado and L. Kerschberg, ACM SIGMOD
Int. Conf., Toronto, Ontario, June 1977.

[Goldberg and Robson 19831 Smalltalk-80: The Language and
Its Implementation, A. Goldberg and D. Robson, Addison-
Wesley Publishing Co., Reading, MA, 1983.

[Harper, MacQueen, and MiIner 19861 “Standard ML”, R.
Harper, D. MacQueen, and R. Milner, ECS-LFCS-86-2,
Department of Computer Science, University of Edinburgh,
March 1986.

[HUB and Yap 19841 “The Format Model: A Theory of Data-
base Organization,” R. Hull and Chee K. Yap, In JACM,
Vol. 31, No. 3, July 1984.

[Jacobs 19821 “On Database Logic”, Barry E. Jacobs, JACM,
Vol. 29, No. 2, April 1982.

(Jaeschke and Schek 19821 “Remarks on the Algebra of Non
First Normal Form Relations,” G. Jaeschke and H. Schek,
ACM Int. Symp. on PODS, Los Angeles, 1982, 124-138.

[Kent 19781 Data and Reality, W. Kent, North-Holland Pub-
lishing Co, New York, 1978.

[Khoshafian and Copeland 19861 “Object Identity”, S.
Khoshafian and G. Copeland, Proc. of 1st Int. Conf. on
OOPSLA, Portland, Oregon, October 1986.

[Kulkami and Atkinson 19861 “EFDM: Extended Functional
Data Model”, K. G. Kuikarni and M. P. Atkinson, The
Computer Journal, Vol. 29, No. 1, 1986.

[Kuper and Vardi 19841 “A New Approach to Database
Logic”, Gabriel M. Kuper and Moshe Y. Vardi, ACM Int.
Symp. on PODS, Waterloo (April 1984).

[Kuper and Vardi 19851 “On The Expressive Power Of The
Logic Data Model,” G. M. Kuper and M. Y. Vardi, SIG-
MOD 1985, Austin, Texas, 180-187.

[Maier et. al. 19861 “Development of an Object-Oriented
DBMS,” D. Maier, J. Stein, A. Otis, A. Purdy, Proc. of 1st
Int. Conf. on OOPSLA, Portland (Oregon), October 1986.

[Maier and Stein 19861 “Indexing in an Object-oriented
DBMS”, D. Maier and J. Stein, in [OODBW 19861.

[OODBW 19861 Int. Workshop on Object Oriented Database
Systems, Pacific Grove, CA, September 1986.

[Ong et al. 19841 “Implementation of Data Abstraction in the
Relational Database System INGRES”, J. Ong, D. Fogg,
M. Stonebraker, ACM Sigmod Record, Vol. 14, No. 1,
1984.

[Osborn and Heaven 19861 “The Design of a Relational Sys-
tem with Abstract Data Types of Domains”, Sylvia L. Os-
born and T.E. Heaven, TODS Volume 11, Number 3, Sep-
tember 1986.

[Ozsoyoglu and Yuan 19851 “A Normal Form for Nested Rela-
tions, ” M.Z. Ozsoyoglu and L.Y. Yuan, In Proc. Fourth
Annual ACM Symposium on Principles of Database Sys-
tems, ACM, Portland, OR, 1985, pages 251-260.

[O.zsoyogIu and OzsoyogIu 19831 “An Extension of Relational
Algebra for Summary Tables, ” M. Z. OzsoyogIu and G. Oz-
soyoglu, Proceedings of the 2nd International (LBL) Con-
ference on Statistical Database Management, Los Angeles,
1983, 202-211.

[Pingali and Kathail 841 “An Introduction to Lambda Calcu-
lus”, K. Pingali and V. Kathail, Laboratory for Computer
Sciences, MIT, July 1984.

[Roth et al 19841 “Theory of Non-First-Normal-Form Rela-
tional Databases, ” M. Roth, H. Korth, and A. SiI-
berschatz, TR-84-36, Department of Computer Science,
University of Texas at Austin, 1984.

[Schek and Scholl 19861 “The Relational Model with Rela-
tional Valued Attributes”, H. J. Schek and M. H. Scholl,
Information Systems, Volume 11, No. 2, 1986.

[Shipman 19811 “The Functional Data Model and the Data
Language DAPLEX”, ACM TODS, Vol. 6, No. 1, 1981.

[Thomas 19821 “A Non-First-Normal-Form Relational Data-
base Model,” S. Thomas, PhD Dissertation, Vanderbilt
University, 1983.

[Tsur and Zaniolo 19861 “LDL: a Logic Based Data Lan-
guage”, S. Tsur and C. Zaniolo, Int. Conf. on VLDB,
Kyoto, August 1986.

[Zaniolo 19851 “The Representation and Deductive Retrieval
of Complex Objects”, Int. Conf. on VLDB, Stockholm,
Sweden, August 1985.

Proceedings of the 13th VLDB Conference, Brighton 1987 105

