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Abstract 

The design of the POSTGRES data model 
is described. The data model is a relational 
model that has been extended with abstract 
data types including user-defined operators and 
procedures, relation attributes of type pro- 
cedure, and attribute and procedure inheri- 
tance. These mechanism can be used to simu- 
late a wide variety of semantic and object- 
oriented data modeling constructs including 
aggregation and generalization, complex 
objects with shared subobjects, and attributes 
that reference tuples in other relations. 

1. Introduction 
This paper describes the data model for 

POSTGRES, a next-generation extensible data- 
base management system being developed at 
the University of California [23: The data 
model is based on the idea of extending the 
relational model developed by Codd [51 with 
general mechanisms that can be used to simu- 
late a variety of semantic data modeling con- 
structs. The mechanisms include: 1) abstract 
data types (ADT’s), 2) data of type procedure, 
and 3) rules. These mechanisms can be used to 
support complex objects or to implement a 
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shared object hierarchy for an object-oriented 
programming language [17]. Most of these 
ideas have appeared elsewhere [21,22,24,25]. 

We have discovered that some semantic 
constructs that were not directly supported can 
be easily added to the system. Consequently, 
we have made several changes to the data 
model and the syntax of the query language 
that are documented here. These changes 
include providing support for primary keys, 
inheritance of data and procedures, and attri- 
butes that reference tuples in other relations. 

The major contribution of this paper is to 
show that inheritance can be added to a rela- 
tional data model with only a modest number 
of changes to the model and the implementa- 
tion of the system. The conclusion that we 
draw from this result is that the major con- 
cepts provided in an object-oriented data model 
(e.g., structured attribute types, inheritance, 
union type attributes, and support for shared 
subobjects) can be cleanly and efficiently sup- 
ported in an extensible relational database 
management system. The features used to sup- 
port these mechanisms are abstract data types 
and attributes of type procedure. 

The remainder of the paper describes the 
POSTGRES data model and is organized as fol- 
lows. Section 2 presents the data model. Sec- 
tion 3 describes the attribute type system. Sec- 
tion 4 describes how the query language can be 
extended with user-defined procedures. Section 
5 compares the model with other data models 
and section 6 summarizes the paper. 

2. Data Model 
A database is composed of a collection of 

relations that contain tuples which represent 
real-world entities (e.g., documents and people) 
or relationships (e.g., authorship). A relation 
has attributes of fixed types that represent pro- 
perties of the entities and relationships (e.g., 
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the title of a document) and a primary key. 
Attribute types can be atomic (e.g., integer, 
Boating point, or boolean) or structured (e.g., 
array or procedure). The primary key is a 
sequence of attributes of the relation, when 
taken together, uniquely identify each tuple. 

A simple university database will be used 
to illustrate the model. The following com- 
mand defines a relation that represents people: 

create PERSON ( Name = char[251, 
Birthdate = date, Height = intl, 
Weight = int4, StreetAddress = char[251, 
City = charf251, State = Chad211 

This command defines a relation and creates a 
structure for storing the tuples. 

The definition of a relation may option- 
ally specify a primary key and other relations 
from which to inherit attributes. A primary 
key. is a combination of attributes that 
uniquely identify each tuple. The key is 
specified with a key-clause as follows: 

create PERSON ( . . .) 
key (Name) 

Tuples must have a value for all key attri- 
butes. The specification of a key may option- 
ally include the name of an operator that is to 
be used when comparing two tuples. For 
example, suppose a relation had a key whose 
type was a user-defined ADT. If an attribute of 
type box was part of the primary key, the com- 
parison operator must be specified since 
different box operators could be used to distin- 
guish the entries (e.g., area equals or box 
equality). The following example shows the 
definition of a relation with a key attribute of 
type box that uses the area equals operator 
(AE) to determine key value equality: 

create PICTURE(Title = charf251, Item = box) 
key (Item using AE) 

Data inheritance is specified with an 
inherits-clause, Suppose, for example, that 
people in the university database are employ- 
ees and/or students and that different attri- 
butes are to be defined for each category. The 
relation for each category includes the PER- 
SON attributes and the attributes that are 
specific to the category. These relations can be 
defined by replicating the PERSON attributes 
in each relation definition or by inheriting 
them for the definition of PERSON. Figure 1 
shows the relations and an inheritance 

hierarchy that could be used to share the 
definition of the attributes. The commands 
that define the relations other than the PER- 
SON relation defined above are: 

create EMPLOYEE (Dept = char[251, 
Status = int2, Mgr = char[251, 
JobTitle = char[25], Salary = money) 

inherits (PERSON) 

create STUDENT (Sno = charP21, 
Status = int2, Level = char[201) 

inherits (PERSON) 

create STUDEMP (IsWorkStudy = bool) 
inherits (STUDENT, EMPLOYEE) 

A relation inherits all attributes from its 
parent(s) unless an attribute is overriden in 
the definition. For example, the EMPLOYEE 
relation inherits the PERSON I. attributes 
Name, Birthdate, Height, Weight, StreetAd- 
dress, City, and State. Key specifications are 
also inherited so Name is also the key for 
EMPLOYEE. 

Relations may inherit attributes from 
more than one parent. For example, STU- 
DEMP inherits attributes from STUDENT and 
EMPLOYEE. An inheritance conflict occurs 
when the same attribute name is inherited 
from more than one parent (e.g., STUDEMP 
inherits Status from EMPLOYEE and STU- 
DENT). If the inherited attributes have the 
same type, an attribute with the type is 

Figure 1: Relation hierarchy. 
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included in the relation that is being defined. 
Otherwise, the declaration is disallowed.’ 

The POSTGRES query language is a gen- 
eralized version of QUEL [131, called POST- 
QUEL. QUEL was extended in several direc- 
tions. First, POSTQUEL has a from-clause to 
define tuple-variables rather than a range 
command. Second, arbitrary relation-valued 
expressions may appear any place that a rela- 
tion name could appear in QUEL. Third, tran- 
sitive closure and execute commands have 
been added to the language [14]. And lastly, 
POSTGRES maintains historical data so POST- 
QUEL allows queries to be run on past data- 
base states or on any data that was in the 
database at any time. These extensions are 
described in the remainder of this section. 

The from-clause was added to the 
language so that tuple-variable definitions for 
a query could be easily determined at compile- 
time. This capability was needed because 
POSTGRES will, at the user’s request, compile 
queries and save them in the system catalogs. 
The from-clause is illustrated in the following 
query that lists all work-study students who 
are sophomores: 

retrieve (SE.name) 
from SE in STUDEMP 
where SEIsWorkStudy 

and SEStatus = “sophomore” 

The from-clause specifies the set of tuples over 
which a tuple-variable will range. In this 
example, the tuple-variable SE ranges over the 
set of student employees. 

A default tuple-variable with the same 
name is defined for each relation referenced in 
the target-list or where-clause of a query. For 
example, the query above could have been 
written: 

’ Most attribute inheritance models have a 
conflict resolution rule that selects one of the 
conflicting attributes. We chose to disallow inheri- 
tance because we could not discover an example 
where it made sense, except when the types were 
identical. On the other hand, procedure inheritance 
(discussed below) does use a conflict resolution rule 
because many examples exist in which one pro- 
cedure is prefered. 

retrieve (STUDEMP.name) 
where STUDEMP.IsWorkStudy 

and STUDEMP.Status = “sophomore” 

Notice that the attribute ZsWorkStudy is a 
boolean-valued attribute so it does not require 

explicit value test 
~TUDEMPJs WorkStudy = “true”). 

(e.g., 

The set of tuples that a tuple-variable 
may range over can be a named relation or a 
relation-expression. For example, suppose the 
user wanted to retrieve all students in the 
database who live in Berkeley regardless of 
whether they are students or student employ- 
ees. This query can be written as follows: 

retrieve (Sname) 
from S in STUDENT* 
where Scity = “Berkeley” 

The C’*,, operator specifies the relation formed 
by taking the union of the named relation (i.e., 
STUDENT) and all relations that inherit attri- 
butes from it (i.e., STUDEMP). If the “*” 
operator was not used, the query retrieves only 
tuples in the student relation (i.e., students 
who are not student employees). In most data 
models that support inheritance the relation 
name defaults to the union of relations over 
the inheritance hierarchy (i.e., the data 
described by STUDENT* above). We chose a 
different default because queries that involve 
unions will be slower than queries on a single 
relation. By forcing the user to request the 
union explicitly with the ‘**” operator, he will 
be aware of this cost. 

Relation expressions may include other 
set operators: union (Uj, intersection !fi), 
and difference ( - 1. For example, the following 
query retrieves the names of people who are 
students or employees but not student employ- 
ees: 

retrieve (S.name) 
from S in (STUDENT U EMPLOYEE) 

Suppose a tuple does not have an attribute 
referenced elsewhere in the query. If the refer- 
ence is in the target-list, the return tuple will 
not contain the attribute.’ If the reference is in 

’ The application program interface to 
POSTGRES allows the stream of tuples passed back 
to the program to have dynamically varying columns 
and types. 
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the qualification, the clause containing the 
qualification is “false”. 

POSTQUEL also provides set comparison 
operators and a relation-constructor that can 
be used to specify some difficult queries more 
easily than in a conventional query language. 
For example, suppose that students could have 
several majors. The natural representation for 
this data is to define a separate relation: 

create MAJORS(Sname = char[251, 
Mname = char[25]) 

where Sname is the student’s name and 
Mnume is the major. With this representation, 
the following query retrieves the names of stu- 
dents with the same majors as Smith: 

retrieve (MlSname) 
from Ml in MAJORS 
where {(x.Mname) from x in MAJORS 

where x.Sname = Ml.Sname} 
C {(x.Mname) from x in MAJORS 

where x.Sname =“Smith”} 

The expressions enclosed in set symbols (“{...)“I 
are relation-constructors. 

The general form of a relation- 
constructor3 is 

{(target-list) from from-clause 
where where-clause) 

which specifies the same relation as the query 
retrieve (target-list) 
from from-clause 
where where-clause 

Note that a tuple-variable defined in the outer 
query (e.g., Ml in the query above) can be used 
within a relation-constructor but that a tuple- 
variable defined in the relation-constructor 
cannot be used in the outer query. 
Redefinition of a tuple-variable in a relation 
constructor creates a distinct variable as in a 
block-structured programming language (e.g., 
PASCAL). Relation-valued expressions 
(including attributes of type procedure 
described in the next section) can be used any 
place in a query that a named relation can be 

9 Relation constructors are really aggregate 
functions. We have designed a mechanism to sup 
port extensible aggregate functions, but have not yet 
worked out the query language syntax and seman- 
tics. 
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used. 

Database updates are specified with con- 
ventional update commands as shown in the 
following examples: 

I* Add a new employee to the database. *I 
append to EMPLOYEE(name = oalue, 

age = ualue, . ..) 

I* Change state codes using 
MAP(OldCode, NewCode). *I 

replace P(State = MAP.NewCode) 
from P in PERSON* 
where PState = MAP.OldCode 

I* Delete students born before today. */ 
delete STUDENT 
where STUDENT.Birthdate C “today” 

Deferred update semantics are used for all 
updates commands. 

POSTQUEL &pports the transitive clo- 
sure commands developed in QUEL* [141. A 
‘?*” command continues to execute until no 
tuples are retrieved (e.g., retrieve*) or updated 
(e.g., append*, delete*, or replace*). For 
example, the following query creates a relation 
that contains all employees who work for 
Smith: 

retrieve* into SUBORD(E.Name, E.Mgr) 
from E in EMPLOYEE. S in SUBORD 
where E.Name = “Smith” 

or E.Mgr = S.Name 

This command continues to execute the 
retrieve-into command until there are no 
changes made to the SUBORD relation. 

Lastly, POSTGRES saves data deleted 
from or modified in a relation so that queries 
can be executed on historical data. For exam- 
ple, the following query looks for students who 
lived in Berkeley on August 1,198O: 

retrieve (S.Name) 
from S in STUDENT[“August 1,198O”l 
where S-City = “Berkeley” 

The date specified in the brackets following the 
relation name specifies the relation at the 
designated time. The date can be specified in 
many different formats and optionally may 
include a time of day. The query above only 
examines students who are not student employ- 
ees. To search the set of all students, the 
from-clause would be 

. ..from S in STUDENT*[“August 1,198O”l 



Queries can also be executed on all data 
that is currently in the relation or was in it at 
some time in the past (i.e., all data). The fol- 
lowing query retrieves all students who ever 
lived in Berkeley: 

retrieve (S.Name) 
from S in STUDENTII 
where S.City = “Berkeley” 

The notation “[I” can be appended to any rela- 
tion name. 

Queries can also be specified on data that 
was in the relation during a given time period. 
The time period is specified by giving a start- 
and end-time as shown in the following query 
that retrieves students who lived in Berkeley 
at any time in August 1980: 

retrieve (S.Name) 
from S in STUDENT*[“August 1, 1980”, 

“August 31, 198O”l 
where S.City = “Berkeley” 

Shorthand notations are supported for all 
tuples in a relation up to some date (e.g., 
STUDENT*[,“August 1, 1980’1) or from some 
date to the present (e.g., STUDENT*C”August 
1, 2980”,]). 

The POSTGRES default is to save all 
data unless the user explicitly requests that 
data be purged. Data can be purged before a 
specific data (e.g., before January 1, 1987) or 
before some time period (e.g., before six months 
ago). The user may also request that all his- 
torical data be purged so that only the current 
data in the relation is stored. 

POSTGRES also supports versions of rela- 
tions. A version of a relation can be created 
from a relation or a snapshot. A version is 
created by specifying the base relation as 
shown in the command 

create version MYPEOPLE from PERSON 

that creates a version, named MYPEOPLE, 
derived from the PERSON relation. Data can 
be retrieved from and updated in a version just 
like a relation. Updates to the version do not 
modify the base relation. However, updates to 
the base relation are propagated to the version 
unless the value has been modified. For exam- 
ple, if George’s birthdate is changed in 
MYPEOPLE, a replace command that changes 
his birthdate in PERSON will not be pro- 
pagated to MYPEOPLE. 

If the user does not want updates to the 
base relation to propagate to the version, he 
can create a version of a snapshot. A snapshot 
is a copy of the current contents of a relation 
[l]. A version of a snapshot is created by the 
following command: 

create version YOURPEOPLE 
from PERSON[“now”l 

The snapshot version can be updated directly 
by issuing update commands on the version. 
But, updates to the base relation are not pro- 
pagated to the version. 

A merge command is provided to merge 
changes made to a version back into the base 
relation. An example of this command is 

merge YOURPEOPLE into PERSON 

that will merge the changes made to YOUR- 
PEOPLE back into PERSON. The merge com- 
mand uses a semi-automatic procedure to 
resolve updates to the underlying relation and 
the version that conflict [lo]. 

This section described most of the data 
definition and data manipulation commands in 
POSTQUEL. The commands that were not 
described are the commands for defining rules, 
utility commands that only affect the perfor- 
mance of the system (e.g., define index and 
modify), and other miscellaneous utility com- 
mands (e.g., destroy and copy). The next sec- 
tion describes the type system for relation 
attributes. 

3. Data Types 
POSTGRES provides a collection of 

atomic and structured types. The predefined 
atomic types include: int2, int4, float4, float8, 
bool, char, and date. The standard arithmetic 
and comparison operators are provided for the 
numeric and date data types and the standard 
string and comparison operators for character 
arrays. Users can extend the system by adding 
new atomic types using an abstract data type 
(ADT) definition facility. 

All atomic data types are defined to the 
system as ADT’s. An ADT is defined by speci- 
fying the type name, the length of the internal 
representation in bytes, procedures for convert- 
ing from an external to internal representation 
for a value and from an internal to external 
representation, and a default value. The com- 
mand 
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define type int4 is (InternalLength = 4, define type box is (InternalLength = 16, 
InputProc = CharToInt4, InputProc = CharToBox, 
OutputProc = Int4ToChar, Default = “0”) 

defines the type int4 which is predefined in the 
system. CharToZnt4 and Znt4ToChar are pro- 
cedures that are coded in a conventional pro- 
gramming language (e.g., C) and defined to 
the system using the commands described in 
section 4. 

OutputProc = BoxToChar, Default = ““1 

The external representation of a box is a char- 
acter string that contains two points that 
represent the upper-left and lower-right 
corners of the box. With this representation, 
the constant 

“20,50:10,70” 
Operators on ADT’s are defined by speci- 

fying the the number and type of operands, the 
return type, the precedence and associativity of 
the operator, and the procedure that imple- 
ments it. For example, the command 

define operator ” +“(int4, intl) returns int4 
is (Proc = Plus, Precedence = 5, 

Associativity = “left”) 

describes a box whose upper-left corner is at 
(20, 50) and lower-right corner is at (10, 70). 
CharToBox takes a character string like this 
one and returns a 16 byte representation of a 
box (e.g., 4 bytes per x- or y-coordinate value). 
BoxToChar is the inverse of CharToBor 

defines the plus operator. Precedence is 
specified by a number. Larger numbers imply 
higher precedence. The predefined operators 
have the precedences shown in figure 2. These 
precedences can be changed by changing the 
operator definitions. Associativity is either left 
or right depending on the semantics desired. 
This example defined an operator denoted by a 
symbol (i.e., ” +“I. Operators can also be 
denoted by identifiers as shown below. 

Comparison operators can be defined on 
ADT’s that can be used in access methods or 
optimized in queries. For example, the 
definition 

Another example of an ADT definition is 
the following command that defines an ADT 
that represents boxes: 

define operator AE(box, box) returns boo1 
is (Proc = BoxAE, Precedence = 3, 

Associativity = “left”, Sort = BoxArea, 
Hashes, Restrict = AERSelect, 
Join = AEJSelect, Negator = BoxAreaNE) 

defines an operator “area equals” on boxes. In 
addition to the semantic information about the 
operator itself, this specification includes infor- 
mation used by POSTGRES to build indexes 
and to optimize queries using the operator. 
For example, suppose the PICTURE relation 
was defined by 

Precedence Operators 
80 t 
70 not - (unary) 

20 and 
10 Or 

Figure 2: Predefined operators precedence. 

create PICTURE(Title = char[], Item = box) 

and the query 
retrieve (PICTURE .a111 
where PICTUREItem AE “50,100:100,50” 

was executed. The Sort property of the AE 
operator specifies the procedure to be used to 
sort the relation if a merge-sort join strategy 
was selected to implement the query. It also 
specifies the procedure to use when building an 
ordered index (e.g., B-Tree) on an attribute of 
type box. The Hashes property indicates that 
this operator can be used to build a hash index 
on a box attribute. Note that either type of 
index can be used to optimize the query above. 
The Restrict and Join properties specify the 
procedure that is to be called by the query 
optimizer to compute the restrict and join selec- 
tivities, respectively, of a clause involving the 
operator. These selectivity properties specify 
procedures that will return a floating point 
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value between 0.0 and 1.0 that indicate the 
attribute selectivity given the operator. Lastly, 
the Negator property specifies the procedure 
that is to be used to compare two values when 
a query predicate requires the operator to be 
negated as in 

retrieve (PICTURE.all) 
where not (PICTURE.Item 

AE “50,100:100,50”) 

The define operator command also may 
specify a procedure that can be used if the 
query predicate includes an operator that is not 
commutative. For example, the commutator 
procedure for “area less than” (ALT) is the pro- 
cedure that implements “area greater than or 
equal” (AGE). More details on the use of these 
properties is given elsewhere [25]. 

Type-constructors are provided to define 
structured types (e.g., arrays and procedures) 
that can be used to represent complex data. 
An array type-constructor can be used to define 
a variable- or fixed-size array. A fixed-size 
array is declared by specifying the element 
type and upper bound of the array as illus- 
trated by 

create PERSON(Name = char12511 

which defines an array of twenty-five charac- 
ters. The elements of the array are referenced 
by indexing the attribute by an integer 
between 1 and 25 ie.g., “PERSON.NameC4I” 
references the fourth character in the person’s 
name). 

A variable-size array is specified by omit- 
ting the upper bound in the type constructor. 
For example, a variable-sized array of charac- 
ters is specified by “char[l.” Variable-size 
arrays are referenced by indexing the attribute 
by an integer between 1 and the current upper 
bound of the array. The predefined function 
size returns the current upper bound. 
POSTGRES does not impose a limit on the size 
of a variable-size array. Built-in functions are 
provided to append arrays and to fetch array 
slices. For example, two character arrays can 
be appended using the concatenate operator 
(“+“) and an array slice containing characters 
2 through 15 in an attribute named x can be 
fetched by the expression “x[2:15].” 

The second type-constructor allows values 
of type procedure to be stored in an attribute. 
Procedure values are represented by a sequence 

of POSTQUEL commands. The value of an 
attribute of type procedure is a relation 
because that is what a retrieve command 
returns. Moreover, the value may include 
tuples from different relations (i.e., of different 
types) because a procedure composed of two 
retrieve commands returns the union of both 
commands. We call a relation with different 
tuple types a multirelation. The POSTGRES 
programming language interface provides a 
cursor-like mechanism, called a portal, to fetch 
values from multirelations [231. However, they 
are not stored by the system (i.e., only rela- 
tions are stored). 

The system provides two kinds of pro- 
cedure type-constructors: variable and 
parameterixed. A variable procedure-type 
allows a different POSTQUEL procedure to be 
stored in each tuple while parameterized 
procedure-types store the same procedure in 
each tuple but with different parameters. We 
will illustrate the use of a variable procedure- 
type by showing another way to represent stu- 
dent majors. Suppose a DEPARTMENT rela- 
tion was defined with the following command: 

create DEPARTMENT(Name = charl251, 
Chair = charL251, . ..I 

A student’s major(s) can then be represented by 
a procedure in the STUDENT relation that 
retrieves the appropriate DEPARTMENT 
tuple(s). The Majors attribute would be 
declared as follows: 

create STUDENTC . . . . Majors = postquel, . ..) 

Data type postquel represents a procedure-type. 
The value in Majors will be a query that 
fetches the department relation tuples that 
represent the student’s minors. The following 
command appends a student to the database 
who has a double major in mathematics and 
computer science: 

append STUDENT( Name = “Smith”, . . . . 
Majors = 

“retrieve (D.all) 
from D in DEPARTMENT 
where D.Name = “Math” 

or D.Name = CS”“) 

A query that references the Majors attri- 
bute returns the string that contains the 
POSTQUEL commands. However, two nota- 
tions are provided that will execute the query 
and return the result rather than’ the 
definition. First, nested-dot notation implicitly 
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executes the query as illustrated by 
retrieve @Name, S.Majors.Name) 
from S in STUDENT 

which prints a list of names and majors of stu- 
dents. The result of the query in Majors is 
implicitly joined with the tuple specified by the 
rest of the target-list. In other words, if a stu- 
dent has two majors, this query will return two 
tuples with the Name attribute repeated. The 
implicit join is performed to guarantee that a 
relation is returned. 

The second way to execute the query is to 
use the execute command. For example, the 
4uery 

execute (S.Majors) 
from S in STUDENT 
where S.Name = “Smith” 

returns a relation that contains DEPART- 
MENT tuples for all of Smith’s majors. 

Parameterized procedure-types are used 
when the query to be stored in an attribute is 
nearly the same for every tuple. The query 
parameters can be taken from other attributes 
in the tuple or they may be explicitly specified. 
For example, suppose an attribute in STU- 
DENT was to represent the student’s current 
class list. Given the following definition for 
enrollments: 

create ENROLLMENT(Student = char[251, 
Class = char[25]) 

Bill’s class list can be retrieved by the query 
retrieve (ClassName = E.Class) 
from E in ENROLLMENT 
where E.Student = “Bill” 

This query will be the same for every student 
except for the constant that specifies the 
student’s name. 

A parameterized procedure-type could be 
defined to represent this query as follows: 

define type classes is 
retrieve (ClassName = E.Class) 
from E in ENROLLMENT 
where E.Student = $.Name 

end 

The dollar-sign symbol (“$“) refers to the tuple 
in which the query is stored (i.e., the current 
tuple). The parameter for each instance of this 
type (i.e., a query) is the Name attribute in the 
tuple in which the instance is stored. This 
type is then used in the create command as 

follows 
create STUDENT(Name = char[25], . . . . 

ClassList = classes) 

to define an attribute that represents the 
student’s current class list. This attribute can 
be used in a query to return a list of students 
and the classes they are taking: 

retrieve (S.Name, S.ClassList.ClassName) 

Notice that for a particular STUDENT tuple, 
the expression “$.Name” in the query refers to 
the name of that student. The symbol Y$” can 
be thought of as a tuple-variable bound to the 
current tuple. 

Parameterized procedure-types are 
extremely useful types, but sometimes it is 
inconvenient to store the parameters explicitly 
as attributes in the relation. Consequently, a 
notation is provided that allows the parameters 
to be stored in the procedure-type value. This 
mechanism can be used to simulate attribute 
types that reference tuples in other relations. 
For example, suppose you wanted a type that 
referenced a tuple in the DEPARTMENT rela- 
tion defined above. This type can be defined as 
follows: 

define type DEPARTMENTtint is 
retrieve (DEPARTMENT.all) 
where DEPARTMENT.oid = $1 

end 

The relation name can be used for the type 
name because relations, types, and procedures 
have separate name spaces. The query in type 
DEPARTMENT will retrieve a specific depart- 
ment tuple given a unique object identifier 
(aid) of the tuple. Each relation has an impli- 
citly defined attribute named oid that contains 
the tuple’s unique identifier. The oid attribute 
can be accessed but not updated by user 
queries. Oid values are created and main- 
tained by the POSTGRES storage system [261. 
The formal argument to this procedure-type is 
the type of an object identifier. The parameter 
is referenced inside the definition by “$n” 
where n is the parameter number. 

An actual argument is supplied when a 
vaJue is assigned to an attribute of type 
DEPARTMENT. For example, a COURSE 
relation can be defined that represents infor- 
mation about a specific course including the 
department that offers it. The create com- 
mand is: 
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create COURSE(Title = char[25], 
Dept = DEPARTMENT, . ..) 

The attribute Dept represents the department 
that offers the course. The following query 
adds a course to the database: 

append COURSE( 
Title = “Introductory Programming”, 
Dept = DEPARTMENT(D.oid)) 

from D in DEPARTMENT 
where D.Name = “computer science” 

The procedure DEPARTMENT called in the 
target-list is implicitly defined by the “define 
type” command. It constructs a value of the 
specified type given actual arguments that are 
type compatible with the formal arguments, in 
this case an int4. 

Parameterized procedure-types that 
represent references to tuples in a specific rela- 
tion are so commonly used that we plan to pro- 
vide automatic support for them. First, every 
relation created will have a type that 
represents a reference to a tuple implicitly 
defined similar to the DEPARTMENT type 
above. And second, it will be possible to assign 
a tuple-variable directly to a tuple reference 
attribute. In other words, the assignment to 
the attribute Dept that is written in the query 
above as 

. . . Dept = DEPARTMENT(D.oid) . . . 

can be written as 
. . . Dept = D . . . 

Parameterized procedure-types can also 
be used to implement a type that references a 
tuple in an arbitrary relation. The type 
definition is: 

define type tuple(char[l, int4) is 
retrieve ($l.all) 
where $l.oid = $2 

end 

The first argument is the name of the relation 
and the second argument is the oid of the 
desired tuple in the relation. In effect, this 
type defines a reference to an arbitrary tuple in 
the database. 

The procedure-type tuple can be used to 
create a relation that represents people who 
help with fund raising: 

create VOLUNTEER(Person = tuple, 
TimeAvailable = integer, . ..I 

Because volunteers may be students, 

employees, or people who are neither students 
nor employees, the attribute Person must con- 
tain a reference to a tuple in an arbitrary rela- 
tion. The following command appends all stu- 
dents to VOLUNTEER: 

append VOLUNTEERS 
Person = tuple(relation(S), Soid)) 

from S in STUDENT* 

The predefined function relation returns the 
name of the relation to which the tuple- 
variable S is bound. 

The type tuple will also be special-cased 
to make it more convenient. Tuple will be a 
predefined type and it will be possible to assign 
tuple-variables directly to attributes of the 
type. Consequently, the assignment to Person 
written above as 

. . . Person = tuple(relation(S), S.oid) . . . 

can be written 
. . . Person = S . . . 

We expect that as we get more experience with 
POSTGRES applications that more types may 
be special-cased. 

4. User-Defined Procedures 
This section describes language constructs 

for adding user-defined procedures to POST- 
QUEL. User-defined procedures are written in 
a conventional programming language and are 
used to implement ADT operators or to move a 
computation from a front-end application pro- 
cess to the back-end DBMS process. 

Moving a computation to the back-end 
opens up possibilities for the DBMS to precom- 
pute a query that includes the computation. 
For example, suppose that a front-end applica- 
tion needed to fetch the definition of a form 
from a database and to construct a main- 
memory data structure that the run-time forms 
system used to display the form on the termi- 
nal screen for data entry or display. A conven- 
tional relation database design would store the 
form components (e.g., titles and field 
definitions for different types of fields such as 
scalar fields, table fields, and graphics fields) in 
many different relations. An example database 
design is: 
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create FORM(FormName, . ..) 

create FIELDS(FormName, FieldName, 
Origin, Height, Width, 
FieldKind, . ..I 

create SCALARFIELD(FormName, 
FieldName, DataType, 
DisplayFormat, . ..) 

create TABLEFIELD(FormName, 
FieldName, NumberOfRows, . ..I 

create TABLECOLUMNS(FormName, 
FieldName, ColumnName, Height, 
Width, FieldKind, . ..) 

The query that fetches the form from the data- 
base must execute at least one query per table 
and sort through the return tuples to construct 
the main-memory data structure. This opera- 
tion must take less than two seconds for an 
interactive application. Conventional rela- 
tional DBMS’s cannot satisfy this time con- 
straint. 

Our approach to solving this problem is to 
move the computation that constructs the 
main-memory data structure to the database 
process. Suppose the procedure MakeForm 
built the data structure given the name of a 
form. Using the parameterized procedure-type 
mechanism defined above an attribute can be 
added to the FORM relation that stores the 
form representation computed by this pro- 
cedure. The commands 

define type formrep is 
reirieve (rep = MakeForm($.FormName)) 

end 
addattribute (FormName, . . . . 

FormDataStructure = formrep) 
to FORM 

define the procedure type and add an attribute 
to the FORM relation. 

The advantage of this representation is 
that POSTGRES can precompute the answer to 
a procedure-type attribute and store it in the 
tuple. By precomputing the main-memory data 
structure representation, the form can be 
fetched from the database by a single-tuple 
retrieve: 

retrieve (x = FORM.FormDataStructure) 
where FORM.FormName = “foe” 

The real-time constraint to fetch and display a 
form can be easily met if all the program must 
do is a single-tuple retrieve to fetch the data 
structure and call the library procedure to 
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display it. This example illustrates the advan- 
tage of moving a computation (i.e., constructing 
a main-memory data structure) from the appli- 
cation process to the DBMS process. 

A procedure is defined to the system by 
specifying the names and types of the argu- 
ments, the return type, the language it is writ- 
ten in, and where the source and object code is 
stored. For example, the definition 

define procedure AgeInYears(date) returns int4 
is (language = “C”, filename = “AgeInYears”) 

defines a procedure AgeZnYears that takes a 
date value and returns the age of the person. 
The argument and return types are specified 
using POSTGRES types. When the procedure 
is called, it is passed the arguments in the 
POSTGRES internal representation for the 
type. We plan to allow procedures to be writ- 
ten in several different languages including C 
and Lisp which are the two languages being 
used to implement the system. 

POSTGRES stores the information about 
a procedure in the system catalogs and dynam- 
ically loads the object code when it is called in 
a query. The following query uses the 
AgeZnYears procedure to retrieve the names 
and ages of all people in the example database: 

retrieve (P.Name, 
Age = AgeInYears(P.Birthdate)) 

from P in PERSON* 

User-defined procedures can also take 
tuple-variable arguments. For example, the 
following command defines a procedure, called 
Comp, that takes an EMPLOYEE tuple and 
computes the person’s compensation according 
to some formula that involves several attri- 
butes in the tuple (e.g., the employee’s status, 
job title, and salary): 

define procedure Comp(EMPLOYEE) 
returns int4 is (language = “C”, 
filename = “Compl”) 

Recall that a parameterized procedure-type is 
defined for each relation automatically so the 
type EMPLOYEE represents a reference to a 
tuple in the EMPLOYEE relation. This pro- 
cedure is called in the following query: 

retrieve (E.Name, Compensation = Camp(E)) 
from E in EMPLOYEE 

The C function that implements this procedure 
is passed a data structure that contains the 
names, types, and values of the attributes in 
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the tuple. 

User-defined procedures can be passed 
tuples in other relations that inherit the attri- 
butes in the relation declared as the argument 
to the procedure. For example, the Comp pro- 
cedure defined for the EMPLOYEE relation 
can be passed a STUDEMP tuple as in 

retrieve (SE.Name, 
Compensation = Comp@E)) 

from SE in STUDEMP 

because STUDEMP inherits data attributes 
from EMPLOYEE. 

The arguments to procedures that take 
relation tuples as arguments must be passed in 
a self-describing data structure because the 
procedure can be passed tuples from different 
relations. Attributes inherited from other rela- 
tions may be in different positions in the rela- 
tions. Moreover, the values passed for the 
same attribute name may be different types 
(e.g., the definition of an inherited attribute 
may be overridden with a different type). The 
self-describing data structure is a list of argu- 
ments, one per attribute in the tuple to be 
passed, with the following structure 

(A&Name, AttrType, A&Value) 

The procedure code will have to search the list 
to find the desired attribute. A library of rou- 
tines is provided that will hide this structure 
from the programmer. The library will include 
routines to get the type and value of an attri- 
bute given the name of the attribute. For 
example, the following code fetches the value of 
the Birth&e attribute: 

GetValue(“Birthdote”J 

The problem of variable argument lists arises 
in all object-oriented programming languages 
and similar solutions are used. 

The model for procedure inheritance is 
nearly identical to method inheritance in 
object-oriented programming languages [201. 
Procedure inheritance uses the data inheri- 
tance hierarchy and similar inheritance rules 
except that a rule is provided to select a pro- 
cedure when an inheritance conflict arises. For 
example, suppose that a Comp procedure was 
defined for STUDENT as well as for 
EMPLOYEE. The definition of the second pro- 
cedure might be: 
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define procedure Comp(STUDENT) 
returns int4 is (language = “C”, 
filename = “Comp2”) 

A conflict arises when the query on STUDEMP 
above is executed because the system does not 
know which Comp procedure to call (i.e., the 
one for EMPLOYEE or the one for STU- 
DENT). The procedure called is selected from 
among the procedures that take a tuple from 
the relation specified by the actual argument 
STUDEMP or any relation from which attri- 
butes in the actual argument are inherited 
(e.g., PERSON, EMPLOYEE, and STUDENT). 

Each relation has an inheritance pre- 
cedence list (IPL) that is used to resolve the 
conflict. The list is constructed by starting 
with the relation itself and doing a depth-first 
search up the inheritance hierarchy starting 
with the first relation specified in the 
inherits-clause. For example, the inherits- 
clause for STUDEMP is 

.** inherits (STUDENT, EMPLOYEE) 

and its IPL is 
(STUDEMP, STUDENT, 
EMPLOYEE, PERSON) 

PERSON appears after EMPLOYEE rather 
than after STUDENT where it would appear 
in a depth-first search because both STUDENT 
and EMPLOYEE inherit attributes from PER- 
SON (see figure 1 I. In other words, all but the 
last occurrence of a relation in the depth-first 
ordering of the hierarchy is deleted.’ 

When a procedure is called and passed a 
tuple as the first argument, the actual pro- 
cedure invoked is the first definition found with 
the same name when the procedures that take 
arguments from the relations in the ILP of the 
argument are searched in order. In the exam- 
ple above, the Comp procedure defined for 
STUDENT is called because there is no pro- 
cedure named Comp defined for STUDEMP 
and STUDENT is the next relation in the IPL. 

4 We are using a rule that is similar to the rule 
for the new Common Lisp object model 141. It is ac- 
tually slightly more complicated than described here 
in order to eliminate some nasty cases that arise 
when there are cycles in the inheritance hierarchy. 
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The implementation of this procedure 
selection rule is relatively easy. Assume that 
two system catalogs are defined: 

PROCDEF(ProcName, ArgName, ProcId) 
IPL(RelationName, IPLEntry, SeqNo) 

where PROCDEF has an entry for each pro- 
cedure defined and IPL maintains the pre- 
cedence lists for all relations. The attributes in 
PROCDEF represent the procedure name, the 
argument type name, and the unique identifier 
for the procedure code stored in another cata- 
log. The attributes in IPL represent the rela- 
tion, an IPL entry for the relation, and the 
sequence number for that entry in the IPL of 
the relation. With these two catalogs, the 
query to find the correct procedure for the call 

Comp(STUDEMP) 

is5 
retrieve (P.ProcId) 
from P in PROCDEF, I in IPL 
where P.ProcName = Y!omp” 

and I.RelationName = “STUDEMP” 
and I.IPLEntry = P.ArgName 
and ISeqNo = MIN(I.SeqNo 

by I.RelationName 
where I.IPLEntry = P.ArgName 

and P.ProcName = “Camp” 
and LRelationName = “STUDEMP”) 

This query can be precomputed to speed up pro- 
cedure selection. 

In summary, the major changes required 
to support procedure inheritance is 1) allow 
tuples as arguments to procedures, 2) define a 
representation for variable argument lists, and 
31 implement a procedure selection mechanism. 
This extension to the relational model is rela- 
tively straightforward and only requires a 
small number of changes to the DBMS imple- 
mentation. 

5. Other Data Models 
This section compares the POSTGRES 

data model to semantic, functional, and object- 
oriented data models. 

Semantic and functional data models 
[8,11,16,18,19,27] do not provide the flexibility 

5 This query usea a QUEL-style aggregate func- 
tion. 

provided by the model described here. They 
cannot easily represent data with uncertain 
structure (e.g., objects with shared subobjects 
that have different types). 

Modeling ideas oriented toward complex 
objects [12,15] cannot deal with objects that 
have a variety of shared subobjects. 
POSTGRES uses procedures to represent 
shared subobjects which does not have limita- 
tion on the types of subobjects that are shared. 
Moreover, the nested-dot notation allows con- 
venient access to selected subobjects, a feature 
not present in these systems. 

Several proposals have been made to sup- 
port data models that contain non-first normal 
form relations [3,7,91. The POSTGRES data 
model can be used to support non-first normal 
form relations with procedure-types. Conse- 
quently, POSTGRES seems to contain a super- 
set of the capabilities of these proposals. 

Object-oriented data models [2,6] have 
modeling constructs to deal with uncertain 
structure. For example, Gemstone supports 
union types which can be used to represent 
subobjects that have different types [61. Shar- 
ing of subobjects is represented by storing the 
subobjects as separate records and connecting 
them to a parent object with pointer-chains. 
Precomputed procedure values will, in our 
opinion, make POSTGRES performance com- 
petitive with pointer-chain proposals. The pre- 
formance problem with pointer-chains will be 
most obvious when an object is composed of a 
large number of subobjects. POSTGRES will 
avoid this problem because the pointer-chain is 
represented as a relation and the system can 
use all of the query processing and storage 
structure techniques available in the system to 
represent it. Consequently, POSTGRES uses a 
different approach that supports the same 
modeling capabilities and an implementation 
that may have better performance. 

Finally, the POSTGRES data model could 
claim to be object-oriented, though we prefer 
not to use this word because few people agree 
on exactly what it means. The data model pro- 
vides the same capabilities as an object- 
oriented model, but it does so without discard- 
ing the relational model and without having to 
introduce a new confusing terminology. 
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6. Summary 
The POSTGRES data model uses the 

ideas of abstract data types, data of type pro- 
cedure, and inheritance to extend the rela- 
tional model. These ideas can be used to simu- 
late a variety of semantic data modeling con- 
cepts (e.g., aggregation and generalization). In 
addition, the same ideas can be used to support 
complex objects that have unpredicatable com- 
position and shared subobjects. 
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