
The POSTGRES Data Model?

Lawrence A Rowe
Mxhael R. Stonebraker

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

The design of the POSTGRES data model
is described. The data model is a relational
model that has been extended with abstract
data types including user-defined operators and
procedures, relation attributes of type pro-
cedure, and attribute and procedure inheri-
tance. These mechanism can be used to simu-
late a wide variety of semantic and object-
oriented data modeling constructs including
aggregation and generalization, complex
objects with shared subobjects, and attributes
that reference tuples in other relations.

1. Introduction
This paper describes the data model for

POSTGRES, a next-generation extensible data-
base management system being developed at
the University of California [23: The data
model is based on the idea of extending the
relational model developed by Codd [51 with
general mechanisms that can be used to simu-
late a variety of semantic data modeling con-
structs. The mechanisms include: 1) abstract
data types (ADT’s), 2) data of type procedure,
and 3) rules. These mechanisms can be used to
support complex objects or to implement a

t This research was supported by the National
Science Foundation under Grant DCR-8507256 and
the Defense Advanced Research Projects Agency
(DOD), Arpa Order No. 4871, monitored by Space
and Naval Warfare Systems Command under Con-
tract N00039-84-C-0089.

Pumission lo copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage. the
VLDB copyright notice and the tide of Ihe publication
and its date appear. and notice is given that copying is

by permission of he Very Large Dam Base Endowment.
To copy otherwe. or to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 13th VLDB Conference, Brighton 1987

shared object hierarchy for an object-oriented
programming language [17]. Most of these
ideas have appeared elsewhere [21,22,24,25].

We have discovered that some semantic
constructs that were not directly supported can
be easily added to the system. Consequently,
we have made several changes to the data
model and the syntax of the query language
that are documented here. These changes
include providing support for primary keys,
inheritance of data and procedures, and attri-
butes that reference tuples in other relations.

The major contribution of this paper is to
show that inheritance can be added to a rela-
tional data model with only a modest number
of changes to the model and the implementa-
tion of the system. The conclusion that we
draw from this result is that the major con-
cepts provided in an object-oriented data model
(e.g., structured attribute types, inheritance,
union type attributes, and support for shared
subobjects) can be cleanly and efficiently sup-
ported in an extensible relational database
management system. The features used to sup-
port these mechanisms are abstract data types
and attributes of type procedure.

The remainder of the paper describes the
POSTGRES data model and is organized as fol-
lows. Section 2 presents the data model. Sec-
tion 3 describes the attribute type system. Sec-
tion 4 describes how the query language can be
extended with user-defined procedures. Section
5 compares the model with other data models
and section 6 summarizes the paper.

2. Data Model
A database is composed of a collection of

relations that contain tuples which represent
real-world entities (e.g., documents and people)
or relationships (e.g., authorship). A relation
has attributes of fixed types that represent pro-
perties of the entities and relationships (e.g.,

83

the title of a document) and a primary key.
Attribute types can be atomic (e.g., integer,
Boating point, or boolean) or structured (e.g.,
array or procedure). The primary key is a
sequence of attributes of the relation, when
taken together, uniquely identify each tuple.

A simple university database will be used
to illustrate the model. The following com-
mand defines a relation that represents people:

create PERSON (Name = char[251,
Birthdate = date, Height = intl,
Weight = int4, StreetAddress = char[251,
City = charf251, State = Chad211

This command defines a relation and creates a
structure for storing the tuples.

The definition of a relation may option-
ally specify a primary key and other relations
from which to inherit attributes. A primary
key. is a combination of attributes that
uniquely identify each tuple. The key is
specified with a key-clause as follows:

create PERSON (. . .)
key (Name)

Tuples must have a value for all key attri-
butes. The specification of a key may option-
ally include the name of an operator that is to
be used when comparing two tuples. For
example, suppose a relation had a key whose
type was a user-defined ADT. If an attribute of
type box was part of the primary key, the com-
parison operator must be specified since
different box operators could be used to distin-
guish the entries (e.g., area equals or box
equality). The following example shows the
definition of a relation with a key attribute of
type box that uses the area equals operator
(AE) to determine key value equality:

create PICTURE(Title = charf251, Item = box)
key (Item using AE)

Data inheritance is specified with an
inherits-clause, Suppose, for example, that
people in the university database are employ-
ees and/or students and that different attri-
butes are to be defined for each category. The
relation for each category includes the PER-
SON attributes and the attributes that are
specific to the category. These relations can be
defined by replicating the PERSON attributes
in each relation definition or by inheriting
them for the definition of PERSON. Figure 1
shows the relations and an inheritance

hierarchy that could be used to share the
definition of the attributes. The commands
that define the relations other than the PER-
SON relation defined above are:

create EMPLOYEE (Dept = char[251,
Status = int2, Mgr = char[251,
JobTitle = char[25], Salary = money)

inherits (PERSON)

create STUDENT (Sno = charP21,
Status = int2, Level = char[201)

inherits (PERSON)

create STUDEMP (IsWorkStudy = bool)
inherits (STUDENT, EMPLOYEE)

A relation inherits all attributes from its
parent(s) unless an attribute is overriden in
the definition. For example, the EMPLOYEE
relation inherits the PERSON I. attributes
Name, Birthdate, Height, Weight, StreetAd-
dress, City, and State. Key specifications are
also inherited so Name is also the key for
EMPLOYEE.

Relations may inherit attributes from
more than one parent. For example, STU-
DEMP inherits attributes from STUDENT and
EMPLOYEE. An inheritance conflict occurs
when the same attribute name is inherited
from more than one parent (e.g., STUDEMP
inherits Status from EMPLOYEE and STU-
DENT). If the inherited attributes have the
same type, an attribute with the type is

Figure 1: Relation hierarchy.

84 Proceedings of the 13th VLDB Conference, Brighton 1987

included in the relation that is being defined.
Otherwise, the declaration is disallowed.’

The POSTGRES query language is a gen-
eralized version of QUEL [131, called POST-
QUEL. QUEL was extended in several direc-
tions. First, POSTQUEL has a from-clause to
define tuple-variables rather than a range
command. Second, arbitrary relation-valued
expressions may appear any place that a rela-
tion name could appear in QUEL. Third, tran-
sitive closure and execute commands have
been added to the language [14]. And lastly,
POSTGRES maintains historical data so POST-
QUEL allows queries to be run on past data-
base states or on any data that was in the
database at any time. These extensions are
described in the remainder of this section.

The from-clause was added to the
language so that tuple-variable definitions for
a query could be easily determined at compile-
time. This capability was needed because
POSTGRES will, at the user’s request, compile
queries and save them in the system catalogs.
The from-clause is illustrated in the following
query that lists all work-study students who
are sophomores:

retrieve (SE.name)
from SE in STUDEMP
where SEIsWorkStudy

and SEStatus = “sophomore”

The from-clause specifies the set of tuples over
which a tuple-variable will range. In this
example, the tuple-variable SE ranges over the
set of student employees.

A default tuple-variable with the same
name is defined for each relation referenced in
the target-list or where-clause of a query. For
example, the query above could have been
written:

’ Most attribute inheritance models have a
conflict resolution rule that selects one of the
conflicting attributes. We chose to disallow inheri-
tance because we could not discover an example
where it made sense, except when the types were
identical. On the other hand, procedure inheritance
(discussed below) does use a conflict resolution rule
because many examples exist in which one pro-
cedure is prefered.

retrieve (STUDEMP.name)
where STUDEMP.IsWorkStudy

and STUDEMP.Status = “sophomore”

Notice that the attribute ZsWorkStudy is a
boolean-valued attribute so it does not require

explicit value test
~TUDEMPJs WorkStudy = “true”).

(e.g.,

The set of tuples that a tuple-variable
may range over can be a named relation or a
relation-expression. For example, suppose the
user wanted to retrieve all students in the
database who live in Berkeley regardless of
whether they are students or student employ-
ees. This query can be written as follows:

retrieve (Sname)
from S in STUDENT*
where Scity = “Berkeley”

The C’*,, operator specifies the relation formed
by taking the union of the named relation (i.e.,
STUDENT) and all relations that inherit attri-
butes from it (i.e., STUDEMP). If the “*”
operator was not used, the query retrieves only
tuples in the student relation (i.e., students
who are not student employees). In most data
models that support inheritance the relation
name defaults to the union of relations over
the inheritance hierarchy (i.e., the data
described by STUDENT* above). We chose a
different default because queries that involve
unions will be slower than queries on a single
relation. By forcing the user to request the
union explicitly with the ‘**” operator, he will
be aware of this cost.

Relation expressions may include other
set operators: union (Uj, intersection !fi),
and difference (- 1. For example, the following
query retrieves the names of people who are
students or employees but not student employ-
ees:

retrieve (S.name)
from S in (STUDENT U EMPLOYEE)

Suppose a tuple does not have an attribute
referenced elsewhere in the query. If the refer-
ence is in the target-list, the return tuple will
not contain the attribute.’ If the reference is in

’ The application program interface to
POSTGRES allows the stream of tuples passed back
to the program to have dynamically varying columns
and types.

Proceedings of the 13th VLDB Conference, Brighton 1987 85

the qualification, the clause containing the
qualification is “false”.

POSTQUEL also provides set comparison
operators and a relation-constructor that can
be used to specify some difficult queries more
easily than in a conventional query language.
For example, suppose that students could have
several majors. The natural representation for
this data is to define a separate relation:

create MAJORS(Sname = char[251,
Mname = char[25])

where Sname is the student’s name and
Mnume is the major. With this representation,
the following query retrieves the names of stu-
dents with the same majors as Smith:

retrieve (MlSname)
from Ml in MAJORS
where {(x.Mname) from x in MAJORS

where x.Sname = Ml.Sname}
C {(x.Mname) from x in MAJORS

where x.Sname =“Smith”}

The expressions enclosed in set symbols (“{...)“I
are relation-constructors.

The general form of a relation-
constructor3 is

{(target-list) from from-clause
where where-clause)

which specifies the same relation as the query
retrieve (target-list)
from from-clause
where where-clause

Note that a tuple-variable defined in the outer
query (e.g., Ml in the query above) can be used
within a relation-constructor but that a tuple-
variable defined in the relation-constructor
cannot be used in the outer query.
Redefinition of a tuple-variable in a relation
constructor creates a distinct variable as in a
block-structured programming language (e.g.,
PASCAL). Relation-valued expressions
(including attributes of type procedure
described in the next section) can be used any
place in a query that a named relation can be

9 Relation constructors are really aggregate
functions. We have designed a mechanism to sup
port extensible aggregate functions, but have not yet
worked out the query language syntax and seman-
tics.

86 . - hoceedines of the 13th VLDB Conference. Brighton 1987

used.

Database updates are specified with con-
ventional update commands as shown in the
following examples:

I* Add a new employee to the database. *I
append to EMPLOYEE(name = oalue,

age = ualue, . ..)

I* Change state codes using
MAP(OldCode, NewCode). *I

replace P(State = MAP.NewCode)
from P in PERSON*
where PState = MAP.OldCode

I* Delete students born before today. */
delete STUDENT
where STUDENT.Birthdate C “today”

Deferred update semantics are used for all
updates commands.

POSTQUEL &pports the transitive clo-
sure commands developed in QUEL* [141. A
‘?*” command continues to execute until no
tuples are retrieved (e.g., retrieve*) or updated
(e.g., append*, delete*, or replace*). For
example, the following query creates a relation
that contains all employees who work for
Smith:

retrieve* into SUBORD(E.Name, E.Mgr)
from E in EMPLOYEE. S in SUBORD
where E.Name = “Smith”

or E.Mgr = S.Name

This command continues to execute the
retrieve-into command until there are no
changes made to the SUBORD relation.

Lastly, POSTGRES saves data deleted
from or modified in a relation so that queries
can be executed on historical data. For exam-
ple, the following query looks for students who
lived in Berkeley on August 1,198O:

retrieve (S.Name)
from S in STUDENT[“August 1,198O”l
where S-City = “Berkeley”

The date specified in the brackets following the
relation name specifies the relation at the
designated time. The date can be specified in
many different formats and optionally may
include a time of day. The query above only
examines students who are not student employ-
ees. To search the set of all students, the
from-clause would be

. ..from S in STUDENT*[“August 1,198O”l

Queries can also be executed on all data
that is currently in the relation or was in it at
some time in the past (i.e., all data). The fol-
lowing query retrieves all students who ever
lived in Berkeley:

retrieve (S.Name)
from S in STUDENTII
where S.City = “Berkeley”

The notation “[I” can be appended to any rela-
tion name.

Queries can also be specified on data that
was in the relation during a given time period.
The time period is specified by giving a start-
and end-time as shown in the following query
that retrieves students who lived in Berkeley
at any time in August 1980:

retrieve (S.Name)
from S in STUDENT*[“August 1, 1980”,

“August 31, 198O”l
where S.City = “Berkeley”

Shorthand notations are supported for all
tuples in a relation up to some date (e.g.,
STUDENT*[,“August 1, 1980’1) or from some
date to the present (e.g., STUDENT*C”August
1, 2980”,]).

The POSTGRES default is to save all
data unless the user explicitly requests that
data be purged. Data can be purged before a
specific data (e.g., before January 1, 1987) or
before some time period (e.g., before six months
ago). The user may also request that all his-
torical data be purged so that only the current
data in the relation is stored.

POSTGRES also supports versions of rela-
tions. A version of a relation can be created
from a relation or a snapshot. A version is
created by specifying the base relation as
shown in the command

create version MYPEOPLE from PERSON

that creates a version, named MYPEOPLE,
derived from the PERSON relation. Data can
be retrieved from and updated in a version just
like a relation. Updates to the version do not
modify the base relation. However, updates to
the base relation are propagated to the version
unless the value has been modified. For exam-
ple, if George’s birthdate is changed in
MYPEOPLE, a replace command that changes
his birthdate in PERSON will not be pro-
pagated to MYPEOPLE.

If the user does not want updates to the
base relation to propagate to the version, he
can create a version of a snapshot. A snapshot
is a copy of the current contents of a relation
[l]. A version of a snapshot is created by the
following command:

create version YOURPEOPLE
from PERSON[“now”l

The snapshot version can be updated directly
by issuing update commands on the version.
But, updates to the base relation are not pro-
pagated to the version.

A merge command is provided to merge
changes made to a version back into the base
relation. An example of this command is

merge YOURPEOPLE into PERSON

that will merge the changes made to YOUR-
PEOPLE back into PERSON. The merge com-
mand uses a semi-automatic procedure to
resolve updates to the underlying relation and
the version that conflict [lo].

This section described most of the data
definition and data manipulation commands in
POSTQUEL. The commands that were not
described are the commands for defining rules,
utility commands that only affect the perfor-
mance of the system (e.g., define index and
modify), and other miscellaneous utility com-
mands (e.g., destroy and copy). The next sec-
tion describes the type system for relation
attributes.

3. Data Types
POSTGRES provides a collection of

atomic and structured types. The predefined
atomic types include: int2, int4, float4, float8,
bool, char, and date. The standard arithmetic
and comparison operators are provided for the
numeric and date data types and the standard
string and comparison operators for character
arrays. Users can extend the system by adding
new atomic types using an abstract data type
(ADT) definition facility.

All atomic data types are defined to the
system as ADT’s. An ADT is defined by speci-
fying the type name, the length of the internal
representation in bytes, procedures for convert-
ing from an external to internal representation
for a value and from an internal to external
representation, and a default value. The com-
mand

Proceedings of the 13th VLDB Conference, Brighton 1987 87

88

define type int4 is (InternalLength = 4, define type box is (InternalLength = 16,
InputProc = CharToInt4, InputProc = CharToBox,
OutputProc = Int4ToChar, Default = “0”)

defines the type int4 which is predefined in the
system. CharToZnt4 and Znt4ToChar are pro-
cedures that are coded in a conventional pro-
gramming language (e.g., C) and defined to
the system using the commands described in
section 4.

OutputProc = BoxToChar, Default = ““1

The external representation of a box is a char-
acter string that contains two points that
represent the upper-left and lower-right
corners of the box. With this representation,
the constant

“20,50:10,70”
Operators on ADT’s are defined by speci-

fying the the number and type of operands, the
return type, the precedence and associativity of
the operator, and the procedure that imple-
ments it. For example, the command

define operator ” +“(int4, intl) returns int4
is (Proc = Plus, Precedence = 5,

Associativity = “left”)

describes a box whose upper-left corner is at
(20, 50) and lower-right corner is at (10, 70).
CharToBox takes a character string like this
one and returns a 16 byte representation of a
box (e.g., 4 bytes per x- or y-coordinate value).
BoxToChar is the inverse of CharToBor

defines the plus operator. Precedence is
specified by a number. Larger numbers imply
higher precedence. The predefined operators
have the precedences shown in figure 2. These
precedences can be changed by changing the
operator definitions. Associativity is either left
or right depending on the semantics desired.
This example defined an operator denoted by a
symbol (i.e., ” +“I. Operators can also be
denoted by identifiers as shown below.

Comparison operators can be defined on
ADT’s that can be used in access methods or
optimized in queries. For example, the
definition

Another example of an ADT definition is
the following command that defines an ADT
that represents boxes:

define operator AE(box, box) returns boo1
is (Proc = BoxAE, Precedence = 3,

Associativity = “left”, Sort = BoxArea,
Hashes, Restrict = AERSelect,
Join = AEJSelect, Negator = BoxAreaNE)

defines an operator “area equals” on boxes. In
addition to the semantic information about the
operator itself, this specification includes infor-
mation used by POSTGRES to build indexes
and to optimize queries using the operator.
For example, suppose the PICTURE relation
was defined by

Precedence Operators
80 t
70 not - (unary)

20 and
10 Or

Figure 2: Predefined operators precedence.

create PICTURE(Title = char[], Item = box)

and the query
retrieve (PICTURE .a111
where PICTUREItem AE “50,100:100,50”

was executed. The Sort property of the AE
operator specifies the procedure to be used to
sort the relation if a merge-sort join strategy
was selected to implement the query. It also
specifies the procedure to use when building an
ordered index (e.g., B-Tree) on an attribute of
type box. The Hashes property indicates that
this operator can be used to build a hash index
on a box attribute. Note that either type of
index can be used to optimize the query above.
The Restrict and Join properties specify the
procedure that is to be called by the query
optimizer to compute the restrict and join selec-
tivities, respectively, of a clause involving the
operator. These selectivity properties specify
procedures that will return a floating point

Proceedings of the 13th VLDB Conference. Brkhton 1987

value between 0.0 and 1.0 that indicate the
attribute selectivity given the operator. Lastly,
the Negator property specifies the procedure
that is to be used to compare two values when
a query predicate requires the operator to be
negated as in

retrieve (PICTURE.all)
where not (PICTURE.Item

AE “50,100:100,50”)

The define operator command also may
specify a procedure that can be used if the
query predicate includes an operator that is not
commutative. For example, the commutator
procedure for “area less than” (ALT) is the pro-
cedure that implements “area greater than or
equal” (AGE). More details on the use of these
properties is given elsewhere [25].

Type-constructors are provided to define
structured types (e.g., arrays and procedures)
that can be used to represent complex data.
An array type-constructor can be used to define
a variable- or fixed-size array. A fixed-size
array is declared by specifying the element
type and upper bound of the array as illus-
trated by

create PERSON(Name = char12511

which defines an array of twenty-five charac-
ters. The elements of the array are referenced
by indexing the attribute by an integer
between 1 and 25 ie.g., “PERSON.NameC4I”
references the fourth character in the person’s
name).

A variable-size array is specified by omit-
ting the upper bound in the type constructor.
For example, a variable-sized array of charac-
ters is specified by “char[l.” Variable-size
arrays are referenced by indexing the attribute
by an integer between 1 and the current upper
bound of the array. The predefined function
size returns the current upper bound.
POSTGRES does not impose a limit on the size
of a variable-size array. Built-in functions are
provided to append arrays and to fetch array
slices. For example, two character arrays can
be appended using the concatenate operator
(“+“) and an array slice containing characters
2 through 15 in an attribute named x can be
fetched by the expression “x[2:15].”

The second type-constructor allows values
of type procedure to be stored in an attribute.
Procedure values are represented by a sequence

of POSTQUEL commands. The value of an
attribute of type procedure is a relation
because that is what a retrieve command
returns. Moreover, the value may include
tuples from different relations (i.e., of different
types) because a procedure composed of two
retrieve commands returns the union of both
commands. We call a relation with different
tuple types a multirelation. The POSTGRES
programming language interface provides a
cursor-like mechanism, called a portal, to fetch
values from multirelations [231. However, they
are not stored by the system (i.e., only rela-
tions are stored).

The system provides two kinds of pro-
cedure type-constructors: variable and
parameterixed. A variable procedure-type
allows a different POSTQUEL procedure to be
stored in each tuple while parameterized
procedure-types store the same procedure in
each tuple but with different parameters. We
will illustrate the use of a variable procedure-
type by showing another way to represent stu-
dent majors. Suppose a DEPARTMENT rela-
tion was defined with the following command:

create DEPARTMENT(Name = charl251,
Chair = charL251, . ..I

A student’s major(s) can then be represented by
a procedure in the STUDENT relation that
retrieves the appropriate DEPARTMENT
tuple(s). The Majors attribute would be
declared as follows:

create STUDENTC Majors = postquel, . ..)

Data type postquel represents a procedure-type.
The value in Majors will be a query that
fetches the department relation tuples that
represent the student’s minors. The following
command appends a student to the database
who has a double major in mathematics and
computer science:

append STUDENT(Name = “Smith”,
Majors =

“retrieve (D.all)
from D in DEPARTMENT
where D.Name = “Math”

or D.Name = CS”“)

A query that references the Majors attri-
bute returns the string that contains the
POSTQUEL commands. However, two nota-
tions are provided that will execute the query
and return the result rather than’ the
definition. First, nested-dot notation implicitly

Proceedings of the 13th VLDB Conference, Brighton 1987 89

executes the query as illustrated by
retrieve @Name, S.Majors.Name)
from S in STUDENT

which prints a list of names and majors of stu-
dents. The result of the query in Majors is
implicitly joined with the tuple specified by the
rest of the target-list. In other words, if a stu-
dent has two majors, this query will return two
tuples with the Name attribute repeated. The
implicit join is performed to guarantee that a
relation is returned.

The second way to execute the query is to
use the execute command. For example, the
4uery

execute (S.Majors)
from S in STUDENT
where S.Name = “Smith”

returns a relation that contains DEPART-
MENT tuples for all of Smith’s majors.

Parameterized procedure-types are used
when the query to be stored in an attribute is
nearly the same for every tuple. The query
parameters can be taken from other attributes
in the tuple or they may be explicitly specified.
For example, suppose an attribute in STU-
DENT was to represent the student’s current
class list. Given the following definition for
enrollments:

create ENROLLMENT(Student = char[251,
Class = char[25])

Bill’s class list can be retrieved by the query
retrieve (ClassName = E.Class)
from E in ENROLLMENT
where E.Student = “Bill”

This query will be the same for every student
except for the constant that specifies the
student’s name.

A parameterized procedure-type could be
defined to represent this query as follows:

define type classes is
retrieve (ClassName = E.Class)
from E in ENROLLMENT
where E.Student = $.Name

end

The dollar-sign symbol (“$“) refers to the tuple
in which the query is stored (i.e., the current
tuple). The parameter for each instance of this
type (i.e., a query) is the Name attribute in the
tuple in which the instance is stored. This
type is then used in the create command as

follows
create STUDENT(Name = char[25],

ClassList = classes)

to define an attribute that represents the
student’s current class list. This attribute can
be used in a query to return a list of students
and the classes they are taking:

retrieve (S.Name, S.ClassList.ClassName)

Notice that for a particular STUDENT tuple,
the expression “$.Name” in the query refers to
the name of that student. The symbol Y$” can
be thought of as a tuple-variable bound to the
current tuple.

Parameterized procedure-types are
extremely useful types, but sometimes it is
inconvenient to store the parameters explicitly
as attributes in the relation. Consequently, a
notation is provided that allows the parameters
to be stored in the procedure-type value. This
mechanism can be used to simulate attribute
types that reference tuples in other relations.
For example, suppose you wanted a type that
referenced a tuple in the DEPARTMENT rela-
tion defined above. This type can be defined as
follows:

define type DEPARTMENTtint is
retrieve (DEPARTMENT.all)
where DEPARTMENT.oid = $1

end

The relation name can be used for the type
name because relations, types, and procedures
have separate name spaces. The query in type
DEPARTMENT will retrieve a specific depart-
ment tuple given a unique object identifier
(aid) of the tuple. Each relation has an impli-
citly defined attribute named oid that contains
the tuple’s unique identifier. The oid attribute
can be accessed but not updated by user
queries. Oid values are created and main-
tained by the POSTGRES storage system [261.
The formal argument to this procedure-type is
the type of an object identifier. The parameter
is referenced inside the definition by “$n”
where n is the parameter number.

An actual argument is supplied when a
vaJue is assigned to an attribute of type
DEPARTMENT. For example, a COURSE
relation can be defined that represents infor-
mation about a specific course including the
department that offers it. The create com-
mand is:

90 Proceedings of the 13th VLDB Conference, Brighton 1987

create COURSE(Title = char[25],
Dept = DEPARTMENT, . ..)

The attribute Dept represents the department
that offers the course. The following query
adds a course to the database:

append COURSE(
Title = “Introductory Programming”,
Dept = DEPARTMENT(D.oid))

from D in DEPARTMENT
where D.Name = “computer science”

The procedure DEPARTMENT called in the
target-list is implicitly defined by the “define
type” command. It constructs a value of the
specified type given actual arguments that are
type compatible with the formal arguments, in
this case an int4.

Parameterized procedure-types that
represent references to tuples in a specific rela-
tion are so commonly used that we plan to pro-
vide automatic support for them. First, every
relation created will have a type that
represents a reference to a tuple implicitly
defined similar to the DEPARTMENT type
above. And second, it will be possible to assign
a tuple-variable directly to a tuple reference
attribute. In other words, the assignment to
the attribute Dept that is written in the query
above as

. . . Dept = DEPARTMENT(D.oid) . . .

can be written as
. . . Dept = D . . .

Parameterized procedure-types can also
be used to implement a type that references a
tuple in an arbitrary relation. The type
definition is:

define type tuple(char[l, int4) is
retrieve ($l.all)
where $l.oid = $2

end

The first argument is the name of the relation
and the second argument is the oid of the
desired tuple in the relation. In effect, this
type defines a reference to an arbitrary tuple in
the database.

The procedure-type tuple can be used to
create a relation that represents people who
help with fund raising:

create VOLUNTEER(Person = tuple,
TimeAvailable = integer, . ..I

Because volunteers may be students,

employees, or people who are neither students
nor employees, the attribute Person must con-
tain a reference to a tuple in an arbitrary rela-
tion. The following command appends all stu-
dents to VOLUNTEER:

append VOLUNTEERS
Person = tuple(relation(S), Soid))

from S in STUDENT*

The predefined function relation returns the
name of the relation to which the tuple-
variable S is bound.

The type tuple will also be special-cased
to make it more convenient. Tuple will be a
predefined type and it will be possible to assign
tuple-variables directly to attributes of the
type. Consequently, the assignment to Person
written above as

. . . Person = tuple(relation(S), S.oid) . . .

can be written
. . . Person = S . . .

We expect that as we get more experience with
POSTGRES applications that more types may
be special-cased.

4. User-Defined Procedures
This section describes language constructs

for adding user-defined procedures to POST-
QUEL. User-defined procedures are written in
a conventional programming language and are
used to implement ADT operators or to move a
computation from a front-end application pro-
cess to the back-end DBMS process.

Moving a computation to the back-end
opens up possibilities for the DBMS to precom-
pute a query that includes the computation.
For example, suppose that a front-end applica-
tion needed to fetch the definition of a form
from a database and to construct a main-
memory data structure that the run-time forms
system used to display the form on the termi-
nal screen for data entry or display. A conven-
tional relation database design would store the
form components (e.g., titles and field
definitions for different types of fields such as
scalar fields, table fields, and graphics fields) in
many different relations. An example database
design is:

Proceedings of the 13th VLDB Conference, Brighton 1987 91

create FORM(FormName, . ..)

create FIELDS(FormName, FieldName,
Origin, Height, Width,
FieldKind, . ..I

create SCALARFIELD(FormName,
FieldName, DataType,
DisplayFormat, . ..)

create TABLEFIELD(FormName,
FieldName, NumberOfRows, . ..I

create TABLECOLUMNS(FormName,
FieldName, ColumnName, Height,
Width, FieldKind, . ..)

The query that fetches the form from the data-
base must execute at least one query per table
and sort through the return tuples to construct
the main-memory data structure. This opera-
tion must take less than two seconds for an
interactive application. Conventional rela-
tional DBMS’s cannot satisfy this time con-
straint.

Our approach to solving this problem is to
move the computation that constructs the
main-memory data structure to the database
process. Suppose the procedure MakeForm
built the data structure given the name of a
form. Using the parameterized procedure-type
mechanism defined above an attribute can be
added to the FORM relation that stores the
form representation computed by this pro-
cedure. The commands

define type formrep is
reirieve (rep = MakeForm($.FormName))

end
addattribute (FormName,

FormDataStructure = formrep)
to FORM

define the procedure type and add an attribute
to the FORM relation.

The advantage of this representation is
that POSTGRES can precompute the answer to
a procedure-type attribute and store it in the
tuple. By precomputing the main-memory data
structure representation, the form can be
fetched from the database by a single-tuple
retrieve:

retrieve (x = FORM.FormDataStructure)
where FORM.FormName = “foe”

The real-time constraint to fetch and display a
form can be easily met if all the program must
do is a single-tuple retrieve to fetch the data
structure and call the library procedure to

92

display it. This example illustrates the advan-
tage of moving a computation (i.e., constructing
a main-memory data structure) from the appli-
cation process to the DBMS process.

A procedure is defined to the system by
specifying the names and types of the argu-
ments, the return type, the language it is writ-
ten in, and where the source and object code is
stored. For example, the definition

define procedure AgeInYears(date) returns int4
is (language = “C”, filename = “AgeInYears”)

defines a procedure AgeZnYears that takes a
date value and returns the age of the person.
The argument and return types are specified
using POSTGRES types. When the procedure
is called, it is passed the arguments in the
POSTGRES internal representation for the
type. We plan to allow procedures to be writ-
ten in several different languages including C
and Lisp which are the two languages being
used to implement the system.

POSTGRES stores the information about
a procedure in the system catalogs and dynam-
ically loads the object code when it is called in
a query. The following query uses the
AgeZnYears procedure to retrieve the names
and ages of all people in the example database:

retrieve (P.Name,
Age = AgeInYears(P.Birthdate))

from P in PERSON*

User-defined procedures can also take
tuple-variable arguments. For example, the
following command defines a procedure, called
Comp, that takes an EMPLOYEE tuple and
computes the person’s compensation according
to some formula that involves several attri-
butes in the tuple (e.g., the employee’s status,
job title, and salary):

define procedure Comp(EMPLOYEE)
returns int4 is (language = “C”,
filename = “Compl”)

Recall that a parameterized procedure-type is
defined for each relation automatically so the
type EMPLOYEE represents a reference to a
tuple in the EMPLOYEE relation. This pro-
cedure is called in the following query:

retrieve (E.Name, Compensation = Camp(E))
from E in EMPLOYEE

The C function that implements this procedure
is passed a data structure that contains the
names, types, and values of the attributes in

Proceedings of the 13th VLDB Conference, Brighton 1987

the tuple.

User-defined procedures can be passed
tuples in other relations that inherit the attri-
butes in the relation declared as the argument
to the procedure. For example, the Comp pro-
cedure defined for the EMPLOYEE relation
can be passed a STUDEMP tuple as in

retrieve (SE.Name,
Compensation = Comp@E))

from SE in STUDEMP

because STUDEMP inherits data attributes
from EMPLOYEE.

The arguments to procedures that take
relation tuples as arguments must be passed in
a self-describing data structure because the
procedure can be passed tuples from different
relations. Attributes inherited from other rela-
tions may be in different positions in the rela-
tions. Moreover, the values passed for the
same attribute name may be different types
(e.g., the definition of an inherited attribute
may be overridden with a different type). The
self-describing data structure is a list of argu-
ments, one per attribute in the tuple to be
passed, with the following structure

(A&Name, AttrType, A&Value)

The procedure code will have to search the list
to find the desired attribute. A library of rou-
tines is provided that will hide this structure
from the programmer. The library will include
routines to get the type and value of an attri-
bute given the name of the attribute. For
example, the following code fetches the value of
the Birth&e attribute:

GetValue(“Birthdote”J

The problem of variable argument lists arises
in all object-oriented programming languages
and similar solutions are used.

The model for procedure inheritance is
nearly identical to method inheritance in
object-oriented programming languages [201.
Procedure inheritance uses the data inheri-
tance hierarchy and similar inheritance rules
except that a rule is provided to select a pro-
cedure when an inheritance conflict arises. For
example, suppose that a Comp procedure was
defined for STUDENT as well as for
EMPLOYEE. The definition of the second pro-
cedure might be:

Proceedings of the 13th VLDB Conference, Brighton 1987

define procedure Comp(STUDENT)
returns int4 is (language = “C”,
filename = “Comp2”)

A conflict arises when the query on STUDEMP
above is executed because the system does not
know which Comp procedure to call (i.e., the
one for EMPLOYEE or the one for STU-
DENT). The procedure called is selected from
among the procedures that take a tuple from
the relation specified by the actual argument
STUDEMP or any relation from which attri-
butes in the actual argument are inherited
(e.g., PERSON, EMPLOYEE, and STUDENT).

Each relation has an inheritance pre-
cedence list (IPL) that is used to resolve the
conflict. The list is constructed by starting
with the relation itself and doing a depth-first
search up the inheritance hierarchy starting
with the first relation specified in the
inherits-clause. For example, the inherits-
clause for STUDEMP is

.** inherits (STUDENT, EMPLOYEE)

and its IPL is
(STUDEMP, STUDENT,
EMPLOYEE, PERSON)

PERSON appears after EMPLOYEE rather
than after STUDENT where it would appear
in a depth-first search because both STUDENT
and EMPLOYEE inherit attributes from PER-
SON (see figure 1 I. In other words, all but the
last occurrence of a relation in the depth-first
ordering of the hierarchy is deleted.’

When a procedure is called and passed a
tuple as the first argument, the actual pro-
cedure invoked is the first definition found with
the same name when the procedures that take
arguments from the relations in the ILP of the
argument are searched in order. In the exam-
ple above, the Comp procedure defined for
STUDENT is called because there is no pro-
cedure named Comp defined for STUDEMP
and STUDENT is the next relation in the IPL.

4 We are using a rule that is similar to the rule
for the new Common Lisp object model 141. It is ac-
tually slightly more complicated than described here
in order to eliminate some nasty cases that arise
when there are cycles in the inheritance hierarchy.

93

The implementation of this procedure
selection rule is relatively easy. Assume that
two system catalogs are defined:

PROCDEF(ProcName, ArgName, ProcId)
IPL(RelationName, IPLEntry, SeqNo)

where PROCDEF has an entry for each pro-
cedure defined and IPL maintains the pre-
cedence lists for all relations. The attributes in
PROCDEF represent the procedure name, the
argument type name, and the unique identifier
for the procedure code stored in another cata-
log. The attributes in IPL represent the rela-
tion, an IPL entry for the relation, and the
sequence number for that entry in the IPL of
the relation. With these two catalogs, the
query to find the correct procedure for the call

Comp(STUDEMP)

is5
retrieve (P.ProcId)
from P in PROCDEF, I in IPL
where P.ProcName = Y!omp”

and I.RelationName = “STUDEMP”
and I.IPLEntry = P.ArgName
and ISeqNo = MIN(I.SeqNo

by I.RelationName
where I.IPLEntry = P.ArgName

and P.ProcName = “Camp”
and LRelationName = “STUDEMP”)

This query can be precomputed to speed up pro-
cedure selection.

In summary, the major changes required
to support procedure inheritance is 1) allow
tuples as arguments to procedures, 2) define a
representation for variable argument lists, and
31 implement a procedure selection mechanism.
This extension to the relational model is rela-
tively straightforward and only requires a
small number of changes to the DBMS imple-
mentation.

5. Other Data Models
This section compares the POSTGRES

data model to semantic, functional, and object-
oriented data models.

Semantic and functional data models
[8,11,16,18,19,27] do not provide the flexibility

5 This query usea a QUEL-style aggregate func-
tion.

provided by the model described here. They
cannot easily represent data with uncertain
structure (e.g., objects with shared subobjects
that have different types).

Modeling ideas oriented toward complex
objects [12,15] cannot deal with objects that
have a variety of shared subobjects.
POSTGRES uses procedures to represent
shared subobjects which does not have limita-
tion on the types of subobjects that are shared.
Moreover, the nested-dot notation allows con-
venient access to selected subobjects, a feature
not present in these systems.

Several proposals have been made to sup-
port data models that contain non-first normal
form relations [3,7,91. The POSTGRES data
model can be used to support non-first normal
form relations with procedure-types. Conse-
quently, POSTGRES seems to contain a super-
set of the capabilities of these proposals.

Object-oriented data models [2,6] have
modeling constructs to deal with uncertain
structure. For example, Gemstone supports
union types which can be used to represent
subobjects that have different types [61. Shar-
ing of subobjects is represented by storing the
subobjects as separate records and connecting
them to a parent object with pointer-chains.
Precomputed procedure values will, in our
opinion, make POSTGRES performance com-
petitive with pointer-chain proposals. The pre-
formance problem with pointer-chains will be
most obvious when an object is composed of a
large number of subobjects. POSTGRES will
avoid this problem because the pointer-chain is
represented as a relation and the system can
use all of the query processing and storage
structure techniques available in the system to
represent it. Consequently, POSTGRES uses a
different approach that supports the same
modeling capabilities and an implementation
that may have better performance.

Finally, the POSTGRES data model could
claim to be object-oriented, though we prefer
not to use this word because few people agree
on exactly what it means. The data model pro-
vides the same capabilities as an object-
oriented model, but it does so without discard-
ing the relational model and without having to
introduce a new confusing terminology.

94 Proceedings of the 13th VLDB Conference, Brighton 1987

6. Summary
The POSTGRES data model uses the

ideas of abstract data types, data of type pro-
cedure, and inheritance to extend the rela-
tional model. These ideas can be used to simu-
late a variety of semantic data modeling con-
cepts (e.g., aggregation and generalization). In
addition, the same ideas can be used to support
complex objects that have unpredicatable com-
position and shared subobjects.

Systems, Feb. 1985.

U. Deppisch and et.al., “A Storage System
for Complex Objects”, PFOC. Int. Wkshp on
Object-Oriented Database Systems,
Asilomar, CA, Sep. 1986.

H. Garcia-Molina and et.al., “DataPatch:
Integrating Inconsistent Copies of a
Database after a Partition”, Tech. Rep.
Tech. Rep.# 304, Dept. Elec. Eng. and
Comp. Sci., Princeton, NJ, 1984.

M. Hammer and D. McLeod, “Database
Description with SDM”, ACM-Trans.
Database Systems, Sep. 1981.

R. Haskins and R. Lorie, “On ‘Extending
the Functions of a Relational Database
System”, PFOC. 1982 ACM-SIGMOD
Conference on Management of Data,
Orlando, FL, JUNE 1982.

G. Held, M. R. Stonebraker and E. Wong;
“INGRES -- A Relational Data Base
System”, PFOC. AFIPS NCC, 1975, 409-
416.

R. Kung and et.al., “Heuristic Search in
Database Systems”, PFOC. 1st

International Workshop on Expert Data
Bases, Kiowah, SC, Oct. 1984.

R. Lorie and W. Plouffee, “Complex
Objects and Their Use in Design
Transactions”, Proc. Engineering Design
Applications Stream of ACM-IEEE Data
Base Week, San Jose, CA, May 1983.

J. Myloupoulis and et.al., “A Language
Facility for Designing Database Intensive
Applications”, ACM-Trans. Database
Systems, JUNE 1980.

L. A. Rowe, “A Shared Object Hierarchy”,
PFOC. Int. Wkshp on Object-Oriented
Database Systems, Asilomar, CA, Sep.
1986.

D. Shipman, “The Functional Model and
the Data Language Daplex”, ACM-Trans.
Database Systems, Mar. 1981.

J. Smith and D. Smith, “Database
Abstractions: Aggregation and
Generalization”, ACM Trans. Database
Systems, JUNE 1977.

M. Stefik and D. G. Bobrow, “Object-
Oriented Programming: Themes and
Variations”, The AI Magazine 6, 4

References

1. M. E. Adiba and B. G. Lindsay, “Database
Snapshots”, PFOC. 6th Znt. Conf. on Very
Large Databases, Montreal, Canada, Oct.
1980, 86-91.

2. T. Anderson and et. al., “PROTEUS:
Objectifying the DBMS User Interface”,
PFOC. Znt. Wkshp on Object-Oriented
Database Systems, Asilomar, CA, Sep.
1986.

3. D. Batory and et.al., “GENESIS: A
Reconfigurable Database Management
System”, Tech. Rep. 86-07, Dept. of Comp.
Sci., Univ. of Texas at Austin, 1986.

4. D. B. Bobrow and et.al.,
“COMMONLOOPS: Merging Lisp and
Object-Oriented Programming”, PFOC.
1986 ACM OOPSLA Conf., Portland, OR,
Sep. 1986, 17-29.

5. E. F. Codd, “A Relational Model of Data
for Large Shared Data Bases”, Comm. of
the ACM, JUNE 1970.

6. G. Copeland and D. Maier, “Making
Smalltalk a Database System”, PFOC. 2984
ACM-SIGMOD Int. Conf. on the Mgt. of
Data, June 1984.

7. P. Dadam and et.al., “A DBMS Prototype
to Support Extended NF2 Relations: An
Integrated View on Flat Tables and
Hierarchies”, PFOC. ACM-SIGMOD Conf.
on Mgt. of Data, Washington, DC, May
1986.

8. U. Dayal and et.al., “A Knowledge-
Oriented Database Management System”,
PFOC. Islamorada Conference on Large
Scale Knowledge Base and Reasoning

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Proceedings of the 13th VLDB Conference, Brighton 1987 95

(Winter 19861, 40-62.

21. M. R. Stonebraker and et. al., “QUEL as
a Data Type”, Proc. 1984 ACM-SIGMOD
Conf. on the Mgt. of Data, May 1984.

22. M. R. Stonebraker, “Triggers and
Inference in Data Base Systems”, Proc.
Islamorada Conference on Large Scale
Knowledge Base and Reasoning Systems,
Feb. 1985.

23. M. R. Stonebraker and L. A. Rowe, “The
Design of POSTGRES”, Proc. 1986 ACM-
SIGMOD Znt. Conf. on the Mgt. of Data,
June 1986.

24. M. R. Stonebraker, “Object Management
in POSTGRES Using Procedures”, Proc.
Int. Wkshp on Object-Oriented Database
Systems, Asilomar, CA, Sep. 1986.

25. M. R. Stonebraker, “Inclusion of New
Types in Relational Data Base Systems”,
Proc. Second Znt. Conf. on Data Base
Eng., Los Angeles, CA, Feb. 1986.

26. M. R. Stonebraker, “POSTGRES Storage
System”, Submitted for publication, 1987.

27. C. Zaniola, “The Database Language
GEM”, Proc. 1983 ACM-SIGMOD
Conference on Management of Data, San
Jose, CA., May 1983.

96 Proceedings of the 13th VLDB Conference, Brighton 1987

