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ABS!l’RACT 
A theory of probabilistic databases is outlined. This 

theory is one component of an integrated approach to 
data-modelling that accomodates both probabilistic and 
relational data. In fact, many of the results presented 
here were developed in the context of a framework for 
structural modelling of systems. Much that is funda- 
mental to relational database theory was also developed 
in this context, and previous to the introduction by 
Codd of the relational model of data. 

Probabilistic databases can store types of information 
that cannot be represented using the relational model. 
Probabilistic databases may also be viewed as generali- 
sations of relational databases; any relational database 
can be represented without loss of information by a pro- 
babilistic database. A number of relational database 
concepts are shown to have probabilistic counterparts. 
In many cases, it is preferable to deal with the proba- 
bilistic formulation of a concept even when applying it 
to a relational database. For example, we define a new 
project-join mapping for relational databases that is 
based on transf orming a relational to a probabilistic 
database. This mapping is shown to have more fmed 
points than the standard one. 

INTItODUC!l’ION 
The initial presentation of ideas which led to the 

development of the relational database model is gen- 
erally accepted to have been made by Codd [1970]. In 
the sense that some consideration is given to questions 
of model-utilisation in the design of actual databases, 
this attribution seems to be justified. It is interesting 
that a major advantage of the relational approach stems 
from its generality and data-modelling power; in fact, it 
is only since the presentation of the relational model 
that a general agreement has evolved on distinguishing 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the VLDB copyright notice and the 
title of the publication and its date appear, and notice is given that 
copying is by permission of the Very Large Data Base Endow- 
ment. To copy otherwise, or to republish, requires a fee and/or spc- 
cial permission from the Endowment. 

Proceedings of the 13th VLDB Conference, Brighton 1987 

between data-modclling aud actual database manage- 
ment systems, whereby data models are seen as provid- 
ing the “conceptual basis for thinking about da& 
intensive applications’ [Brodie, 19841. But, in the sense 
that this conceptual basis is important, relation theory 
[Wiener, 1914; Bourbaki, 19543 and the relational 
approach to data-modelling, including a large number of 
specific concerns that have proven directly relevant to 
the theory of relational databases [Ashby, 1956, 19651, 
significantly predate Codd. 

Since the main orientation of this paper is not histori- 
cal, we only mention the priority of Ashby’s system- 
theoretic consideration of concepts such as the lossless 
join and project-join mapping [Ashby, 1965; Maier, 
1983, pp. 1461481, functional dependencies [Ashby, 
1956; Madden and Ashby, 19721, and the study of injec- 
tive properties of decomposition maps [Madden and 
Ashby, 1972; Maier, 19833 and also note the existence of 
other developments in the system-theoretic context that 
have reappeared in the context of relational database 
theory (e.g., a certain class of system referred to and 
studied as “r-structures” [Cavallo and Klir, 1979a] has 
recently been introduced by Fagin [1983] as a database 
scheme which is “7-acyclic’). 

The foregoing is not intended to imply that there is 
no difference between data-modelling concepts and their 
development in the context of database theory, but 
rather to motivate the development in what follows of a 
more general approach to data-modelling that abo haa 
roots in the work of Ashby. An integrated development 
of some of the fundamental ideas of this approach - 
which, in particular, incorporates consideration of the 
importance of information theoretic ideas - was given 
by Cavallo and Klir (1979a, 19811. Use of these general 
modelling concepts to develop the data-modelling 
aspects of database theory will serve to extend the 
applicability of database theory beyond the relatively 
simplistic data-processing type of applications that are 
predominant. It should especially allow database 
theoretic contribution to the study of classical problems 
of science and engineering that involve experimentation 
and other forms of data collection (e.g., process monitor- 
ing, decision analysis, remote sensing, etc.). 

Databases store information. The form of stored 
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information has traditionally been considered to be aim- 
ple facts such as “Supplier X supplies part Y’. From 
the point of view of datsmodelling, many situations 
require more complex forms of information that can be 
wed to answer such queries aa 

“How reliable is part Y when supplied by sup- 
plier X’ 

“Is the probability that a person of type X will 
purchase product Y greater if that person has 
also purchased product Z’ 

‘If X is known, how much additional information 
about Y is provided by knowledge of Z’. 

Some aspects of the type of information referred to here 
have been dealt with in the study of sMalled statistical 
databases (Denning, 1982, ch. 61 where the objective is 
to allow queries of a statistical nature to be made 
regarding a relational database. 

Our objective is to provide a framework that general- 
ises the relational database model and extends all the 
concepts that have been developed to deal with collec- 
tions of yes/no facts to apply also to facts about which 
one is uncertain (probabilistic databases) or about 
which one has vague or ‘f’ussy’ information (fussy data- 
bases). The three main aspects on which this generali- 
ration are based are: 

1) by considering a relational database to be 
primarily a set of mappings from logically pas- 
sible tuples to the set {true,false} (i.e., to be a 
set of predicates) the extension to probabilistic 
and furry databases is immediate aa a generali- 
ration of the mappings; 
2) the importance in the relational database 
model of the concept of information and infor- 
mation preservation; while the concept of com- 
binatorial information [Kohnogorov, 19651 is 
relevant to relational databases, there are 
well-developed theories of information that can 
be applied to probability or fussy measures 
and thus to probabilistic or fussy databases 
(these are a little less well-developed in the 
case of fussy measures - we primarily discuss 
probabilistic databases in this paper); 
3) all the work done on relational database 
schemes as oppoeed to relational databases is 
immediately and directly applicable to schemes 
for probabilistic and fussy databases, requiring 
only that the appropriate information-theoretic 
concepts be correctly adapted. 

Aa we have stated, a number of the main ideas associ- 
ated with a unified view of modelling relational, proba- 
bilistic, and fussy systems have already been worked out 
and we incorporate this work into our development here 
of probabilistic database theory. 

1. RELATIONAL AND PROBABDJSTIC DATA- 
BASES 

Usually a rclutional database (RDB) is defined an a 
finite collection of relations where each relation is 2 aub- 
set of the Cartesian product of sets referred LO as 
domains. Each domain ie considered to be associated 
with an attribute symbol which haa some eigniticauce iu 
the context of the particular database application. For 
any relation, the set of attributes associated with the 
domains of that relation is called a r&tin scheme and 
the set of relation schemes is called a (relational) drtu- 
base scheme. 

Formally, we define a relational database to be a set 
RD={B l,...,B,} where each element of RD is a rela- 
tionul system, B=( Vi,Ai,domi,ri) where 

l Vi is a non-empty set of distinct symbols called 
attributes; 

l Ai is a non-empty set of sets of values called 
domains; 

l domi:V+Ai ia a function that associates a 
domain with each attribute; (The set of all 
possible tuplea of Bi, X domi(v), is referred 

vry 
to aa Ti; the tuples in Ti are often considered 
to be functions from the set of attributes to 
the union of the domains to avoid the need to 
order the components of a tuple. For our pur- 
poses we assume an ordering of the domains 
and assume that where relevant all uses of a 
tuple conform to this ordering.) 

l ri:T++{Oll} is a characteristic function that 
identifies a subset of Ti. This subset is a rela- 
tion and we will often refer to this relation 
rather than to the full relational system. 

Thus, each relational system Bi has an associated rela- 
tion scheme Vi and the set {VI,..., V,,} is the datubaae 
scheme on which RD is defined. 

A probabilistic system, like a relational system, is a 
four-tuple P=(V,A,dom,p) but with its fourth com- 
ponent p a function of type T-+[O,l] with the restriction 
that Cp(t)=l. We refer to p aa a distribution (over V) 

trT 
and use the term interchangeably with probabilistic sys- 
tern. A probabilistic d&abase (PDB) is a set PD of pro- 
babilistic systems. Probabilistic databases provide a 
means of representing types of information that cannot 
be captured by a relational databacle, and in such a way 
that all of the data-modelling concepts and mechanisms 
of relational database theory are applicable to these 
m&e complex modelling situations. 

It is also the case that probabilistic databases general- 
ise relational databases in the sense that any RDB can 
be represented by a PDB in such a way that important 
properties are preserved. A result of this is that useful 
concepts derived in the context of probability distribu- 
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tions may be applied in relational database theory. For 
example, by using probabilistic information theory with 
relational databases that have been transformed to pro- 
babilistic databases, cumbersome proofs of a number of 
significant results in relational database theory are sim- 
plified (see Section 3; Malvestuto, 1983). 

2. INFORlkfM!ION AND CONS!l!RAlNT 

2.1 lNFORMA!CION CONTENT. An important idea 
associated with relations when used in databases is that 
of information. Any relation, insofar as it is not the full 
cartesian product of its domains, exhibits constraint 
[Ashby, 19851; it is in terms of this constraint that the 
information content of a relation is defined. Similarly, a 
distribution function exhibits constraint to the extent 
that it diverges from the uniform distribution over the 
set of tuples T. 

Let II be the (Shannon) entropy of a discrete proba- 
bility distribution, 

wd = - $$a) log q(t) 

(by convention, 0 log 0 is 0, obviously, HZO). Given a 
set of tuples T, H reaches its maximum value at u, 
where u is the uniform distribution over T, i.e., 
u(t)=l/ITI for all tET. 

DeSnition: Given a set of tuples T associated with a 
probabilistic system, the information content of a distri- 
bution p over T is given by H(u)-H(p). 

If p is a distribution associated with probabilistic sys- 
tem P=(V,A,dom,p) we often write H(V) instead of 
H(P)- SPAY, ( see section 3.2), given distributions, pi 
and pi owx schemes Vi and Vi, we write H(Vi 1 Vi) for 
the conditional entropy of Vi given Vi, defmed as the 
average of the entropy of Vi for each tuple of 
,Fvdom,(v), weighted by pi(t) [see Rhinchin, 1957, 

p.3151. 
Operations that are commonly performed on data- 

bases (e.g, project-join) may result in the replacement of 
a distribution p by a distribution q. To develop the 
idea of approximate satisfaction of join dependencies 
(database decompositions) we use a measure of the 
information lost by such a replacement. On the other 
hand we also want a measure of how accurately a PDB 
determines a distribution over some set of attributes (e. 
g., UVi) when such a distribution is not represented in a 
single probabilistic system in the database. Before 
describing this measure we describe the two operations 
on databases and distributions that we use in this 
paper: projection and (probabilistic) join. 

2.2 PROJECTION. Let P be a system with distribu- 
tion p and scheme V and let ZEV. The projection of p 
onto Z results in the distribution 

where 

aud 

124P):~~44 + IO,11 

ls(P)(b)=~l+4 

=v$,+44 > b~~~~cv~om(v) if (4 = (b,), 

VEZ 
(Cavallo and Rlir, 1979al. We also refer to the result of 
the projection operation, Is(p), as a projection. The 
defmition is just&d by observing that any b can be 
viewed as an event equivalent to the union of mutually 
exclusive and exhaustive subevents a. (When dealing 
with a relational system and characteristic function r, 
the definition is the same as for probabilistic systems 
except that the operator c is replaced by max. &(r) 
corresponds to the notation in the relational database 
literature Kg(r), where, in the latter expression, r is the 
set of tuples represented by the characteristic function.) 
The system (Z,A,domlZ,l,(p)) will be referred to as a 
subsystem of P, and Z a subscheme of V (domlZ is the 
restriction of dom to Z). The projection of a distribu- 
tion p onto a database scheme X={Vr,...,Vk} is the set 
of subdistributions (the database instance) 
{l”,(P)Av,(P)). 
Ezample: The projection of the distribution 

Vl v3 b PC) 
0 0 0 0.0 
0 0 1 0.3 
0 1 0 0.15 
0 1 1 0.15 
1 0 0 0.2 
1 0 1 0.1 
1 1 0 0.05 
1 1 1 0.05 

onto the database scheme {(vI,v~,{v~vs}} is the data- 
base instance 

VI va Pd.) va va Pa(.) 
0 0 0.3 0 0 0.2 
0 1 0.3 0 1 0.4 
1 0 0.3 1 0 0.2 
1 1 0.1 1 1 0.2 

~&m==oO), for example, is obtained as 
p~(~~~~oO)=p(v~v~v~ooO)+p(v~v~v~oO~), etc. 

2.1 RECONSTRUCTION FAMILY AND JOIN. Let 
pn..,ps be distributions with schemes Vr,..,V,, and let 
X={V,..,V,}. 

Definition: The reconetruction family of database 
scheme X relative to distributions pb..,p*, denoted Rx, 
is the set of distributions over UVi whose projections 
onto the schemes Vr,..,Vn equal pl,..,p,, [Cavallo and 
Klir, 19811. 
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Any reconstruction family is the set of solutions p of a 
set of linear equations (which imply the equation 
Cp(.)=l), subject t o ~20, and is therefore a bounded 
polyhedral set. For the database instance above, its 
reconstruction family, R{{,l,,l,{,,,ll, is the set of all 
distributions satisfying the set of equations (subject to 
Pa): 

when transformed to a probability distribution, gives 
the maximum entropy among all the (transformed) rela- 
tions that project onto the given set of relations. 

p (ulu$+loo)+p (V~U$+K+O.3 

p (~lups=olo)+p (v~u&==oll)=o.3 

2.4 DATABASE TRANSFOB.MATION. A relational 
system is converted to a probabilistic system, and con- 
versely, by means of two mappings, trans and trans-‘, 
defined as 

where 

trans:[T+{O,l}] 4 [T+[O,l]] 

. . . 

Deflnltion: The operation probabdiatic join applied to 
{pi} results in the maximum entropy distribution from 
among the members of the reconstruction family. 

tr-(r)(t) = r(t)/ ~;(a~ 

(it is assumed that for some ST, r(a) > 0; i.e., the rela- 
tion is not empty) and 

We denote the result of the join operation by *{pi}, and 
refer to it alao as a join. Thus, 

H(*{PiI)=mdH(P) IP in over UVi and ly(p)=pi}. 

(Note that for relational systems the definition of 
(natural) join is the same as that for probabilistic sys- 
tems except that maximum entropy is replaced by max- 
imum cardmality; any other member of the reconstruc- 
tion family is a subset of the join [Ashby, 19651.) When 
*{pi) exists, it is unique, and its existence implies that 
lq,,v, (pi)=lqn& (ph) for all j, k. Procedures for calcu- 
lating *{pi} have been developed and studied in a 
number of contexts [Brown, 1959; Lewis, 1959; Bishop et 
al, 19753. J.u the Appendix we use the computational 
definition to prove certain equivalences between rela- 
tional and probabilistic data dependencies. 
Ezample: The maximum entropy element of the recon- 
struction family in our running example is the distribu- 
tion 

Vl va V8 P(.) 
0 0 0 0.1 
0 0 1 0.2 
0 1 0 0.15 
0 1 1 0.15 
1 0 0 0.1 
1 0 1 0.2 
1 1 0 0.05 
1 1 1 0.05 

where 

trans-‘:[T+[O,l]]+[T-)(o,l}] 

tr=W (t)= Ip(t) 1 . 

It is easily proved that trans-l(trans(r))=r, i.e., that 
trans-’ is a left inverse of trans. Demonstrations that 
the probabilistic characterisation of a relational system 
preserves important properties are found in section 3 
and in the appendix. Here we use trans to define a new 
relational project-join mapping that haa more fixed 
points than the standard one. 

2.6 PROJECT-JOIN. It is convenient to separately 
define the project-join mapping for both probabilistic 
and relational systems. 

Definition: Let X be a database scheme. The project- 
join mapping defined by X, applied to p, is 
PPJ(X,p) = ;J~v(P)). 

and is easily calculated using techniques described in 
[Cavallo and Klir, 1981]. 

There are a number of information-theoretic argu- 
ments that can be made for choosing,‘as the result of 
the join, the maximum entropy distribution from among 
the set of distributions that project onto the Vi [see 
Jaynes, 1979; Cavallo and Klir, 1984. In addition to 
these, if the conversion to probabilities, as described 
below, is made, the natural join of a set of relations, 

We abbreviate the result of project-join as p* when X is 
clear from the context. Liiewise, for a relational system, 
RPJ(X,r)=Fd{lv(p)}, abbreviated r! 

We may define another project-join mapping for a 
relational system as trans-‘(PPJ(X,trans(r))). It is 
sometimes the case that, although r ;Irrw , i.e., 
r Z+Z RPJ(X,r), r does equal trana-‘(PPJ(X,trans(r))). 
Thus, the transformation described above allows lossless 
decompositions of relational databases over a larger set 
of database schemes. 
Ezample: For the system represented by the table 

Vl va V8 P(.) 
000 0 
0011 
010 1 
011 1 
100 1 
101 1 
110 1 
1110 
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if X = ~~v~,v2),~v1;vs),~v~,vs~~, RPJ(X,r) * r, but 
r = trans-‘(PPJ(X,trans(r))). In fact, since X is the 
least refined element in the lattice of database schemes 
Y over V={vI,v~vs} such that Y # {V} (see section 
3.1), there is no nontrivial lossless decomposition of r, if 
we are restricted to the standard relational project-join 
mapping (this follows immediately from results in 
[Ashby, 19651; see also [Cavallo, ISSO]). However, r is a 
fixed point of the project-join mapping defmed as the 
composition of the mappings trans, PPJ, and trans-‘. 

This situation cannot arise when X is a r-structure (is 
not ~-acyclic) [Cavallo and Klir, 1979a; Fagin, 19831. 
When X is a y-structure, 

RPJ(X,r) = tran&(PPJ(X,trans(r))), 

that is, the diagram below commutes: 

RPJ 

trans(r).. 
PPJ 

The proof follows easily from the computational defini- 
tion of p* for y-structures. 

2.6 INFORMATION LOSS. When replacing one dis- 
tribution with another, as for example by using PPJ, 
the resulting information loss can be measured by the 
directed divergence from p to q [Knllback, 1959; Acsel 
and Darocsy, 19751, 

tcT 

In the case that q is the uniform distribution u, then 
d(p,u) is easily shown to be equal to H(u)-H(p), (i.e., 
the directed divergence from p to u in fact measures the 
information content of p). We also have the result that, 
denoting PPJ(X,p) by p*, d(p,p*)=H(p*)-H(p) 
[Higashi, 19841. The difference in the amount of infor- 
mation contained in p and that contained iu p* is 
(H(u)-H(p))-(H(u)-H(p*)) = H(p*)-H(p). Thus we 
have: 

Fact 1: Given a probabilistic system P with distribu- 
tion p and a database scheme X, the difference in infor- 
mation content when P is replaced by the database with 
scheme X and distributions the appropriate projections 
of p, is equal to the directed divergence from p to 
PPJ(X,p), i.e., H(PPJ(X,p))-H(p). 

In addition to this, for a large class of database schemes, 
if p* results from applying a project-join mapping to p, 
the quantity H(p*) can be calculated and the strength 
of the join dependency (see section 3.1) evaluated, 
without determining p* (that is, without performing the 

relatively expensive probabilistic join for a PDB or 
natural join for an RDB, if the transformation described 
above is carried out). For the most simple of such dats 
base schemes, for example, (denote XUY by XY) when 
XnY=XnZ=YnZ=0, if q is the join of XY and XZ 
then H(q)=H(XY)+H(XZ)-H(X). 

1. PEOBABILISTIC DATA DEPENDENCIES 
In standard simple relational database applications, 

data dependencies can often be inferred from the mean- 
ing of the attributes, as determiued by the application. 
In complex situations associated with scientific data- 
bases, it is often the case that dependencies are not 
known beforehand, and an important analogue of data- 
base design is the determination of which dependencies 
exist or of the relative strength of various dependencies 
when they do not exist in an absolute sense. Three of 
the most commonly dealt with are: join, functional, and 
multivalued dependencies. Here we define corresponding 
data dependencies for probabilistic databases. They 
generalise the relational concepts in two senses: 

1) they apply to relational databases, as well as to 
probabilistic databases (if the simple transforma- 
tion described in section 2 is carried out) 
2) it is straightforward, by application of results 
from information theory, to speak of approximate 
satisfaction of probabilistic dependencies. 

Both relational and probabilistic dependencies, in 
their exact or approximate forms, may be viewed as con- 
straints that restrict the set of allowable functions r or p 
of systems in a database. Since information can be 
identified with constraint, the concepts of (probabilistic) 
information theory are fundamental to a theory of (pro- 
babilistic) data dependencies. As will be seen, they also 
provide a natural way to characterize and reason about 
relational dependencies. 

1.1 JOIN DEPENDENCIES. A join dependency 
holds when a relational or probabiitic system can be 
decomposed into a collection of (sub)systems such that 
the system is equal to the join of its subsystems. 

DeSnition: A probabilistic system P=(V,A,dom,p) 
SatiStb the join dependency *[Vr,...,V,,] iff 
p=*{ly(p)}. If X={V, ,..., V,}, then *(VI ,..., V,] may 
be abbreviated *(Xl. 

For any particular database instance over a scheme 
X, the join dependency ‘[Xl is satisfii only by the 
maximum entropy element of the reconstruction family 
Rx. For any other element, p, of Rx, some error will 
result when it is replaced by the maximum entropy ele- 
ment, PPJ(X,p). The maximum error (information 
loss) that could result by applying the project-join map- 
ping to any pcRx we call the information radius of Rx, 
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ir(R,) = mm db,p*). 
pERx 

This maximum is achieved for a vertex of Rx, and 
therefore is easily calculated (see appendix). For the 
example of section 2, ir(Rx)=0.400. 

For any database application, accuracy of the facts 
that are represented is important. The problem of meas- 
urement error is obviously more severe for probabilistic 
data than it is for relational data. The statement “tuple 
t ia sometimes observed’ ia more trustworthy, by virtue 
of itr being lees informative, than the statement “the 
probability of observing tuple t ia x”. If, as ia the case 
when values p(t) are determined by sampling, p ia an 
approximation to the probabilities of gccllrrence of 
tuples, a dependency may hold among the attributee of 
the system (if one accepts that the notion of ‘true’ pro- 
babilities makea any sense), and yet the defimition as 
given above will not be satisfied. Regardless, it ia often 
meaningful and useful to speak of a dependency holding 
approximately. (A notion of approximate satisfaction of 
dependency con&aintr could alao be developed for 
(&ictly) relational databasee, although this seems not 
to have been done; for example, a join ia considered to 
be either ‘loo&~” or *loo&. What ia being lo& via a 
lossy join ia comkraint, i.e., the information that certain 
tuplea cannot be observed.) With probabilistic data- 
bases, the amount of information lost can be quantified 
in terms of entropy. 

Information-theoretic definitions of join dependencies 
and approximate join dependencies follow. 

De&Mom p satkfirecl *[V1,...,V,,] iff d(p,p*)=O (recall 
that we use p* for l {lE(p)} when the context makes 
clear what the distributiona are, and d ia the measure of 
information loos introduced in 8ection 2). 

De&Mom Database tuheme X={Vi,...,Vj} is a refine- 
ment of scheme Y=(Vc,...,V,}, denoted XSY, iff for 
each V&X there exists a V&Y ruch that V&V, 
[Cavallo and Klir, 1979a). 

Ezample: {{ul,u~,{ uauau3} in a refinement of 
~~u~uau~~,~u~ulu3,~u~~~~~~~ 

In the following we restrict our attention to database 
schemea X={V l,...,Vm} which satisfy the following two 
properties: (i) UVi=V; (ii) i * j impli~ Vi is not a sub- 
set of Vi. The second property ensurea that no infor- 
mation is included that can be obtained by a single 
application of the project operation. Such schemes are 
known aa reduced hypergrapha and have been studied 
by Cavallo and Klir [1979a] and Fagin [MS]. The 
refinement relation on database schemes defines a lattice 
with the universal scheme {V) aa universal upper bound 
and the most refined scheme {{v~,...,{v,}} aa universal 
lower bound. 

Fact 2: X<Y 3 d(p, v~Md))2db, &,&(P))). 

In words, if X is a refinement of Y (i.e., X is more 
“decomposed” than Y), the information loss when a dis- 
tribution p ia projected onto scheme X and the resulting 
systems are joined ia greater than or equal to that pro- 
duced by the project-join onto scheme Y (this obviously 
implies that, if p satisfies the join dependency *[Xl, then 
p satisfies *[Y]). The proof of Fact 2 follows immediately 
from: 

1) Iv(p) represents a set of linear equalities and ine- 
qualities; 
2) Rx represents the eet of all solutions to the linear 
system determined by the projection onto X; 
3) if X<Y, then each equation determined by the pr+ 
jection of p onto X ia a linear combination of equa- 
tions in the system determined by the projection of p 
onto Y; thus, all solutions to the latter system are 
also solutions to the fmt, i.e., R&Rx, and the max- 
imum entropy member of Rx must have entropy at 
least as large aa the maximum entropy member of 
Ry. 

Analogously, we note for relational mtems, 

Pact 3~ XIY 3 RPJ(Y&RPJ(X,r). 

Let M denote the meet refined scheme over V. It fol- 
lows from Fact 2 that d(p,G&{lv(p)}) reachtr itr max- 

imum when X=M, and ikorn Fact 3 that 
RPJ(M,r)>RPJ(X,r), where X &iclfics UVi=V. 

Definition: 

JD(p,x) = + 
1 , otherwise. 

JD(P,X) ia a normal&d measure of approximate join 
dependency satisfaction for a probabilistic system P. 
The value of JD(P,X) is the proportion of the informa- 
tion content of P preserved by the project-join mapping 
of p onto X. JD(P,X)=l iff p ratiefiei~ *[Xl. We ray 
that P satiafk the join dependency ‘[X] to degree 6 if 
JD(P,X)26. The value of JD(P,X) indicates the degree 
to which P may be viewed aa decomposable into Mheme 
x. clearly, XIY implies JD(P,X)IJD(P,Y). 

Fact 1: XIY =+ ir(R&ir(R,). (Proof in appendix.) 

Given ir(R,) and H(p*), pn& JD(p,X) is easily calcu- 

lated. Of course, ~~y JD(p,X) = 1, for any Rp 

The ability to detect the most refined Mheme for 
which a join dependency or approximate join depen- 
dency of acceptable strength wdsta ia of obvious value to 
the scientific user of a database interested in performing 
an ‘exploratory’ analysis to detect relationshipa among 
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attributes that might auggest scientific hypotheses 
[Good, 19831. This capability would also be useful in 
database design when faced with a large and/or unfami- 
liar set of attributes. A join dependency detected 
empirically, for a particular database instance, might 
hold for all instances; and the database designer, once 
the dependency is discovered, might be able to deduce 
that it holds [see Fagin et al, 19821. On the other hand, 
the ability to mechanically detect the presence of depen- 
dencies can also be used tb detect their absence, provid- 
ing a check against erroneous assumptions that they 
exist. 

Algorithms for detecting such dependencies in both 
relational and probabilistic data have been developed in 
context of a framework for structural modelling of sya- 
tema [Cavallo and Klir, 1979a, 19811. 

g.2 FUNCTIONAL DEPENDENCIES. Functional 
dependencies are also extremely easily dealt with in the 
probabilistic context [see aJso Nambiar, 1980; Malve-s- 
tuto, 19831. For relational databasea , a set of attributes 
Y b functionally dependent on a set of attributes X, 
denoted X-+Y, i.E it ia the case that if tuples agree on 
attributea X, then they also agree on attributes Y. 

Definition: For a probabilistic system P=(V,A,dom,p), 
with X,YsV, and with the distributions over X and Y 
the appropriate projections of p, 

X*,Y iff H(YIX)=O 
where H(YIX) ia the conditional entropy of Y, given X 
(see section 2.1), which may also be defined as 
H(YIX)=H(YuX)-H(X). 

(In the following, let YX denote YUX.) Intuitively, 
H(Y]X)=O means that once the tuple values for attri- 
butw X are known, there i no uncertainty regarding 
pooaible tuple valuee for attributes Y: if a net of tuples 
Ac.&,dom(v) agree on attributes X, then for at most 

one tEA h J&p)(t) > 0. 

Ezomple: {1,2,4}-+,{1,3} in the system represented by 
the table 

h va va v4 PI.) 
0 0 0 0 0.0 
. . . . . 
0 1 1 1 0.0 
1 0 0 0 0.0 
1 0 0 1 0.25 
1 0 1 0 0.10 
1 0 1 1 0.0 
1 1 0 0 0.0 
1 1 0 1 0.35 
1 1 1 0 0.30 
1 1 1 1 0.0 

The value of H(YJX) can be used to defme approxi- 

mate functional dependencb. The farther H(YlX) 4 
from sero, the weaker the dependency. The maximnm 
value attainable by H(Y]X) ia H(Y), when X givea no 
information about attributes Y. Hence, a rewnable 
measure, relative to a given system P, in 

De&&ion: 

FD (p&y) = 
1, if H(Y)=0 
H(Y)-H(y 1 x) 

H(Y) 
, otherwise. 

If a relation ie represented M a probability d&r&u- 
tion (Section 2.4), the probabiitic definition of func- 
tional dependency applies (see Appendix for proof). 
Furthermore, any of the commonly encountered infer- 
ence rulea for functional dependenciee, laoeely referred 
to aa Armstrong’s Axioms, can emily be proven sound, 
if formulated probabiitically, &g the algebra of 
entropy [Malveatuto, 19831. AII an example, conaider 
the augmentation rule: X+Y implies XZ+Y. The 
proof is simple: Suppose X+,,Y. Then H(Y]X)=O. 
Since H(YIX)2B(YIXZ) [Khmchin, 1957, pp. 37-391, 
H(YIXZ)=O, i.e., XZ-+,Y. 

1.: M-ULTIVALUED DEPENDENCIES. Advantagea 
of the probabilistic view of databasea M preeented here 
are especially apparent when &wing multiualusd 
depcndencicr. Conaider two textbook definitiona for 
relational databw: 

Let R be a relation scheme, let X and Y be dinjoint 
subsets of R, and let Z=R-(XUY). A relation r(R) 
satisfii the multivalued dependency (MVD) 
X-+-Y if, for any two tuplea tl and t2 in r with 
tl(X)=tdX), there exi&r a tupla t3 in r with 
ta(X)=t,(X), ts(Y)=hW and t&l=W) 
[Maier,1983, p. 124). 

Suppose we are given a relation acheme R and X 
and Y are sub&r of R. Intuitively, we ray that 
X+dY, read “X multideterminea Y’ . . . if given 
values for the attributea of X there ia a set of sero 
or more associated vabm for the attributea of Y, 
and this set of Y-values is not connected in any 
way to values of the attributea in R-X-Y (sic) [Ull- 
man, 1982, p. 2431. 

After meditating for a while, one realiser that what ia 
meant is that X-++Y if knowledge of R-(Y-X) giver 
us no more information about Y than does knowledge of 
X alone. In terms of entropy, the rtatement ia rimple: 

X++,Y iff H(Y(X)=H(YIR-(Y-X)). 

(Aa shown in the appendix, the relational and prober 
bilistic formulations are equivalent.) 
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It ia alao possible to define multivalued dependencies 
in tenna of join dependencies: 

X++,Y iff ‘[R-(Y-X),XY); 

i.e., X*-*pY iff the decomposition into the two com- 
ponentr R-(Y-X) and XY, which are ‘coupled’ by the 
ret of attributen X, L looaks. In the paper that intro- 
duced multivalued dependencies, Fagin presented thb 
alternate definition and proved it for dkjoint X and Y 
[Fagiu, 1977, p. 2661. For probabilistic databases, the 
general case ia easily proved. If p is a distribution over 
any acheme R and X and Y are subsets of R with associ- 
ated distributions lx(p) and lu(p) then 

H(R)=H(R-(Y-X))+H(Y-X 1 R-(Y-X)) 

=H(R-(Y-X))+H(Y 1 R-(Y-X)). 

In case p over R ratiafk *[R-(Y-X),XY], then 

H(R)=H(R-(Y-X))+H(Y 1 X) 

So, H(YIX)=H(YIR-(Y-X)), i.e., X+-tpY. 
(The converse ia proved rimilarly.) 

k with inference rulea for functional dependencies, 
soundneae of probabilktic veraions of MVD inference 
rule8 is easily proved. For example, the complementa- 
tion ale states that X++Y and Z=R-X-Y imply 
x+-z. 

Pact 6: X+-t,Y a X++,Z where Z=R-X-Y. 

Proof: Suppose X++,Y. Then H(YIX)=H(YIXZ). 
Therefore, since H(XYZ)=H(XZ)+H(Y I XZ) 

and H(Y 1 X)=H(XY)-H(X), 

then H(XY)-H(X)=H(Y I XZ)=H(XYZ)-H(XZ) 

=H(XY)+H(Z 1 XY)-H(XZ). 

So, -H(X)=H(Z I XY)-H(XZ) 

=3 H(XZ)-H(X)=H(Z I XY) 

3 H(Z I X)=H(Z I XY), 
i.e., X+-+,Z. 

The degree of strength of an approximate MVD is 
reflected by the diierence H(Y(X)-H(YIXZ), which is 
sero when X++,Y. Thii t actually the information 
loru when the original distribution p ie replaced by the 
diitribution p*=(lm(p)) * (l=(p)): 

d(p,p*)=H(XZ)+H(Y I X)-H(XYZ)[Lewis,1959] 

=H(Y IX)-(H(XYZ)-H(XZ)) 

=H(Y I X)-H(Y I XZ). 

This is what one would expect, given Fagin’s theorem. 
A reasonable normalised measure of approximate MVD 
satisfaction follows. 

Definition: 

MVD (p;x,y) = 
I 

1, if H(Y I X)=0 H(y 1 XZ) 
W I XI 

, otherwise. 

I.4 PROBABILISTIC DATA DEPENDENCIES AS 
CONSTRAINTS. Usually, data dependencies are 
viewed as pre-existing constrainta reetricting admhuible 
database instancea to those satisfying the dependenck. 
Our main emphasis here haa been on the discovery that 
dependencies do or do not exist for a particular 
instance, or of the degree to which they hold for an 
instance. However, if a dependency doea not hold to au 
acceptable degree for a particular instance, it cannot 
hold to that degree for all possible instances; and, if a 
dependency ie found to hold for a particular instance, it 
may be poeeible to demonstrate (on other grounds) that 
it holds for all instances. 

This, of course+ is not to say that approximate, probe 
biitic dependencies (APD) cannot be used, e.g., as 
integrity constraints. As shown, a fullatrength APD ia 
equivalent to its corresponding relational dependency. 
Further, an APD of less than full strength may also be 
useful as a constraint. 

For example, it may be standard practice for a partic- 
ular application to maintain a level of JD raMaction of 
at least 0.85. This could arise in a setting in which a 
distributed monitoring scheme is in place for a et of 
attributea V (e.g., hardware monitoring, variour typea of 
surveillance, etc.) all of which it is not feasible to 
observe simultaneously for long perk& of time, but for 
which obavvation over a scheme X in feasible. At the 
same time, aa reflected by the JD constraint, it irr 
desired to limit the rerrulting information loss to an 
acceptable amount. Periodii observation over the entire 
set V, and application of the project-join mapping 
PPJ(Xg) to the sampled dbtribution p, may be necm 
sary to determine whether the JD con&a& L satlafied 
by the current scheme. If not, an alternate scheme 
satkfying the JD conrrtraint (but alao rat-g the 
additional feasibiity constraintr) could be found using 
the data-modelliug techniquee referred to previously. 

CONCLUSION 
Some aspects of a theory of probabilistic databases, 

applicable alao to relational data, have been outlined. 
This theory b part of a unitled approach to data model- 
ling that integrates relational database theory, system 
theory, and multivariate statistical modelling tech- 
niques. 

Two areas for further investigation are: the use of pro- 
babilistic dependencies as constrainta, and the way in 
which they interact; and the concept of the degree to 
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which a distribution or relation is identifiible from a 
given database instance (to which the notion of the 
“information radius” of a reconstruction family is 
relevant). Developmentr in the latter area would be 
particularly useful for problems of inference and 
decision-making from the information contained in a 
database. 

APPENDIX 
AO. In this appendix, if X and Y are sets, [X+Y] 

denotes the set of all functions from X to Y. Also, if a 
tuple t is an element of ,&,dom(v) we may denote it 

by xy where x represent8 elements of .X,aom(v) and y 

those of ,..dom(v). Note that X and Y need not be dis- 

joint. For example, if X={vl,vl) and Y={vavs}, then 
for a tuple t’.$“-lom(v), t=(t&&)=~, where 

x=(t,tl) and y=(t,tg). 
Al. If p satisfks Xd,Y, then trans-‘(p) eatiafiea 

XdY. 
Proof: Suppose p satisfies Xd,Y. Then 

O=H(YJX) 

=> (PGWW)=O or (PWWY)=C (~lW(xy), for d w. 
I 

This implien that for every set of tuples AG.&dom(v) 

that agree on attributes X, at most one tEA is such 
that lm(p)(t)>O. Since trane-‘(p)(t)=0 iff p(t)=O, it 
followa that ~~(trans”(p))(t)>O for at mo& one &A, 
where iz(r)(t)=max r(t). Therefore, tram?(p) ratisfiea 

X+Y. 
a>t 

(The proof that r satisfies X+Y implies trans(r) aatis- 
fm X+,Y ia similar.) 

A2. In section 2.3, for clarity, we defimed the prob;c 
bilistic join in terma of its essential property: it maxim- 
kea entropy among the set of distributiona that project 
onto the joined distributionr. Alternatively, we could 
have given a computational definition of p* and proved 
that it WM the maximum entropy distribution [Brown, 
1959; Leti, 19591. Iu the computational definition, pr+ 
babilitiea of the join are de&mined by multiplying pro- 
babilities or conditional probabilities associated with 
tuplen of the operand distributions. A basic fact that 
can be derived from this ia that if ig(p)(b)=O, then for 
any database scheme X where ZEX, PPJ(X,p)(t)=O, for 
any t>b. The converse of this statement in not true in 
general, but does hold, e.g., when 1x1 = 2. The proof of 

the statement in A3 takes advantage of the compatt 
tional definition, since the maximum entropy member of 
the reconstruction family &I unique, regardlena of the 
way it is determined. 

AS. p satisfies X+dpY implies tram?(p) rati&a 
X+4Y. 
Proof: Suppose p eatisfii X+*,,Y. Then p rat& 
l [R-(Y-X),XY] (section 3.3); i.e., 
P=P*=~R+v)(P)*~xY(P), whiih me- that 
p*(t)=p(t), for all tuplea t. 
Case I: p(t)=O. Then p*(t)=0 and, as disc4 in 
reference to the computational definition of a two com- 
ponent probabilistic join, thb implk that for come act, 
where a~ 

e&X) 
dombh 1R-(Y-X)b)(+O m f= 

some b<t, where bE.gom(v), lxu(p)(b)=O; then 

( since lz (r) (4 = y$r (t) ) and 

p(t)=0 => tran&(p)(t)=O), we mu& have 
lR-(y-X)(trane-‘(p))(a)=O m h(tr~“(p))(b)=O, 
since C n=O => max{ [nl }=O, if O<n<l for all nES. 

aES 
But tirimpliea that rW(t)=O, where r% lR-(Y-X)(r) W 
lxY(r). 
Case IL p(t)sO. p(t)>0 => p*(t)>0 => for all act and 
b<t, JR- Y-X)b)tabo and lxu(p)(b)>O. ret 
r=trans-‘(p . \ lR-(Y-X)b)tabo and lxdp) WO 
imply that 1R-(Y-X)(r)(a)=l and lm(r)(b)=l, which 
imply that rDq(t)=l=r(t). 

So, from (I) and (II), p*=p => tranC1(p)w=tranr-‘(p); 
i.e., if p eatisfk *(R-(Y-X),XY], then tran&(p) ratk- 
free DQR-(Y-X),XY]. By Fagin’a theorem (Mction 
3.3), this is equivalent to: p ratisfiea Xd+,Y implies 
trane-l( p) satisfii X+-Y. 
(r aatiafies Xd+Y implies trans(r) satisfies X+-*,Y ir 
easily proved.) 

Al. r satisfies DgX] implies trans(r) ratisfk *[Xl. 
Proof: Suppoee r sati&~ YX]. Then r = rq iu particu- 
lar, r(t)=0 => rM(t)=O. But this me- that scrod are 
preserved by the project-join mapping on trans(r), i.e., 
trans(r)(t)=O => tr-(r)*(t)=O. By definition, 
trans(r)* ia the distribution with maximum entropy 
among the set D of diatributione whoee projectionr onto 
sets of attributes in X equal thaw of trans(r). Let 
W={plp ia a distribution over T and 
trane(r)(t)=O => p(t)=O}. Then 
H(trans(r)) = max{H(p)(pEW}. This follow0 from the 
fact that all non-sero component8 of trans(r) are equal 
to each other, for any r, and the following three proper- 
ties of entropy: 
1) the ordering of the components of a probability dis- 
tribution dour not affect itr entropy 
2) the entropy of an n+l-component distribution, q, 
whose n+lth component is rero ia equal to that of an 

Proceedings of the 13th VLDB Conference, Brighton 1987 79 



ncomponent distribution whose components are equal 
to components l,...,n of q 
3) the distribution with maximum entropy among the 
set of aII n-component distributions is the distribution 
whcee components are aU equal to l/n [Acre1 and 
Darocsy, 19751. 
Since trans(r)*EW, H(trans(r)*)III(trans(r)). But, 
rince trans(r)ED, H(trans(r))IH(trans(r)*). Therefore, 
H(trans(r))=H(trans(r)*). But this impIies that 
trans(r)=trans(r)*, since trans(r)ED and the maximum 
entropy eIement of D is unique. 
It foRowu immediately from this that 

r=r w = > trans-‘(trans(r)*)=rW. 

As we observed in section 2.5, it is not in general true 
that p satisfies *[Xl imphes trans-‘(p) satisfies W [Xl. 

AS. Definition: The information radius of a recon- 
struction family Rx, ir(Rx), is 

where d is diited divergence and px* is the maximum 
entropy element of Rx; i.e., px*=PPJ(X,p), for any 
*Rx. 
Pact: :a: d(p,px*) is achieved when p is a vertex of 

RX- 
Pro& For fixed q, d(p,q) is a convex function of p, 
over the set P” [Kumar et aI, 19861. Therefore, since 
RxcP”, d(p,px*) is a convex function of p over R,v. 
The maximum v&e of any convex function defined on 
a bounded polyhedral eet is achiived for one or more 
vertices of the set. 

Fact: RxcRy imp&s ir(Rx)Sir(Ry). 
Roof! Assume R,&Rr. Let vx and vy denote, 
respectively, the maximising distributions p for 
db,px*) and 4p,py*)- Since RxGRY, 
H(py*)>H(px*). For any reconstruction family R,, 
d(p,pz*)=H(pz*)-H(p) [Hi&ii 19841. Therefore, 

d(vy,py*)ld(vx,pu*) [v,ER,; def. v y) 

=WPY*)-H(VX) Ivx~RYI 

1H(~x*)-H(vx) MPY*~H(PX*)I 

=d(vx,px*). 

so, d(vy,py*)l d(vx,px*); i.e., i(Rx)<ir(Rr). 

z XIY impI.+ ir(Rx)lir(RY). 
XIY ~mphes RycRx, which impIies 

DEWY). 
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