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ABSTRACT 

A Datalog program can be translated into a 
system of fixpoint equations of relational 
algebra; this paper studies how such a system 
can be solved and optimized for a particular 
query. The paper presents a structured approach 
to optimization, by identifying several 
optimization steps and by studying solution 
methods for each step. 

.I.- INTRODUCTION 

The optimization of Datalog programs is gaining 
increasing interest in several recent papers 
[Ban 86a, Ban 86b, HeN 84, KiL 86, Gar 861. In 
particular, one approach to optimization is 
based on the equivalence between Datalog 
programs and fixpoint equations of relational 
algebra CAhU 79, DeA 86, CGL 86, KiL 861. In 
CCGL 861 it has been shown how a 
syntax-directed translation can be applied to 
Data log clauses to generate corresponding 
algebraic equations. Such equations have the 
following features: 

a. They are of the genera 1 form 
Xi=Ei(X,..Xn,C,..Cm), where 

'i 
are 

relational variables and Ci are constant 

relations from an extensional database EDB. 
We denote such eauations as "simple" 
(because the left hand side is a relatibnal 
variable) and "recursive" (because Xi can 
occur within Ei). 

b. Expressions E. contain the following 
relational oper&tions: selection Cd), 
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projection (TT), Cartesian product(x), 
union(U). These operations correspond to 
positive relationel algebra (RAG); all 
wons in RA+ are monotone.- 

Datalog queries are, without loss of 
generality, translated into selections over one 
relational variable Xi; the evaluation of a 
query corresponds to producing all the tuples 
of X. that satisfy the selection condition and 
can de deduced from the Datalog program and the 
EDB. The optimization of a query evaluation 
consists of determining an efficient strategy j 
for evaluating those tuples; efficiency is 
measured in terms of the required interaction 
with the underlying EDB. 

In this paper, we present a structured approach 
to the optimization of queries for a given 
system of si.mpte, recursive, algebraic 
equations. In Section 2 we introduce our 
terminology; in Section 3 we present our 
approach as a set of independent optimization 
steps; in Section 4 we compare our approach to 
previous work. 

2. TERMINOLOGY 

A system S is a set of n equations Xi = 
Ei(X,..Xn,C,..Cm); Xi are variables, C. are 

I 
constants. Let 
variables of S. xS 

denote the set of all 
A query on S is a selection 

qo; we denote Xo, the variable involved in 
I~ 

the query, as principal variable of the system. 
We restrict the query predicate p to be the 
conjunction of simple-predicates (i.e., column 
equal value), with at most one simple predicate 
for each column of X ; this is the algebraic 
translation of Data108 queries, where some of 
the places of the query clause are bound to 
constant values. 

The syntax-directed translation from Datalog 
clauses to fixpoint algebraic equations CCGL 
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863 produces equations of the following form: 

xi = EiCX,..Xn,C,..Cm) = U. T 
l=l..ni ij 

with T 

L 
ij 

is a list of column numbers; P 
ij 

is the 

conjunction of simple predicates corresponding 
to selection and join conditions; each CP.. is 
a Cartesian product involving variable&' or 
constants. 

We associate to each system S a directed 
dependency grqph GCS)=<N,R> CCCL 863, defined 
as follows: 

- N = Xs 

-E= CtXi,Xj> C=> Xj occurs in Eil 

In many examples, we wi 11 make use for brevity 
of the composition operation: obtained by 
projecting out the join columns from the join 
of two relations. For two binary relations R 
and S: 

RoS=‘rr 1,4R9=1 s 

Example 1. Throughout this paper we consider 
the syste-m: 

x1 = Cl u (X1 0 X3) u x* 

x2 
= (X1 0 X3) u c3 

x3 
= (X3 0 C2) u c4 

This system is obtained as the syntax-directed 
translation CCGL 863 of the Datalog program: 

Xl (Y,Z) :- Cl (Y,Z). 
Xl (Y,Z) :- XlCY,T),X3CT,Z). 
Xl (Y,Z) :- XZCY,Z). 
X2CY,Z) :- Xl(Y,T),X3CT,Z). 
XZCY,Z) :- C3CY,Z). 
X3CY,Z) :- X3CY,T),CZCT,Z). 
X3CY,Z) :- C4CY,Z). 

We will always assume binary relations for our 
examples. 

19 STRUCTURED APPROACH TO SYSTEM OPTIMIZATION -- 

In this section we propose a structured 
approach to system optimization, based on 
several progressive optimization steps. 

3.1 Reduction To Union-Join Normal Form -- ----- 

Let n. > 1 in E.; then, for each subterm T.. we 
introduce a new'variable N.. and we rewritA'the 
equation E. as follows: " 

xi =U.' N J=l..ni ij 

N * . =T 

Thu:; 

ij =r,.. C$. CP.., V j=l..ni 
'3 

we reduce %ur g'mations to either of the 
two following types: 

a. Union (U) Equations, which are fully 
charactezted by a tuple: <X.,U.>, where X. 
is the left side variable, IJ: iA the set 04 
variables which appear in the union. 

b. Join CJ) Equations, which are fully 
characterized by a quadruple: 
<X.,L.,P:,J.>, where X. is the left side 
variaate, L1 is a projelction list, P. is a 
predicate, &nd J, is the set of var'iables 
and constants apbearing in the right side 
Cartesian product. 

The resulting system S is in Union-Join Normal 
Form CUJNF)., 

Example 2. The UJNF of the system of Example 1 
r . 

x1 
x2 

= Cl U N1 U X2 

x3 

= N, U C3 

N1 

= N2 U C4 

N2 

= x1 0 x3 
= x3 0 c2 

The corresponding dependency graph is shown in 

-- 
Fig.1 

3.2. Determination Of Common Subexpressions -- -- 

Determining common subexpressions allows 
reducing the computation by factoring 
operations [Fin 823; common subexpressions can 
be searched on the two sets of U and J 
equations separately. 

a. A common subexpression of two U-equations 
for X. and X. corresponds to any subset U 
of b&h Ui 'and U.. We replace CCXi,lJi>: 

CXj,Uj>l with c:x.,u.-u >, <x.,u.-u >, 

<Xc,Uc>), where Xc ib a'ne\ variable: TEis 

construction can be iterated until it 
cannot be further applied; it generates the 

same final set of U-equations, where 
equality is intended after a renaming of 
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variables. 

b. A common subexpression of two J-equations 
for X. and X. corresponds to any subset J 
of both Ji hd Jj; however, we are real19 

interested to isolate common subexpressions 
if relations of J 
conditions both inCE. 

have the same join 
and E . this makes 

the search for comm&n sube&ressions of 
J-equations much more difficult. 
Consider two join equations <Xi,Li,Pi,Ji> 

and CXj,Lj,Pj,Jj>. Let Ji=CJ. ,..Jim) 
11 

and 

Jj=CJ. ,.. 
11 

Jjn> be such that J. lkzJjk for 

k 5 r 5 minCm,n); let Pi=pi,Api2~..piu and 

P.=p. np. 
3 11 12 

~..p jv be such that pih=pjh for h 

5 s .s minCm,n). Then, the common 
subexpression is: 

d Pil""Pih 
LIi,~..~Jik). 

We introduce a new equation for X and 
modify equations for X. and X.F the 
construction is rather c:mbersome 'and is 
omitted. 

The problem of finding common subexpressions 
among n 02) J-equations is quite complex, and 
the iteration of this construction does not 
necessarily generate a unique final set of 
J-equations. 

Example 3. Consider the system S2: 

x1 
x2 

= c, u c2 u x3 

x3 

= c2 u x3 u c3 

x4 

= x, 0 x2 0 x4 
= c4 0 x, 0 x2 

After the determination of common expressions, 
we have: 

x1 
x2 

= c, u x5 

x3 

= x5 u c3 
=x ox 

x4 
= c6 0 x4 

x5 
= c4 u x6 

'6 
= x; 0 x; 

3.3. Query Subsetting -- - 

This step depends on the variable upon which 
the query is applied, but does not depend on 
the particular query predicate. Consider a 
query Q over X p, the principal variable of S. 

We derive the set D(Xp) 5 XS as follows: 

1. Xp belongs to DCXp). 

2. If CXi,Xj> belongs to ECGCS)) and Xi 

belongs to DCXp), then also Xj belongs to 

DCXp). 

Let Sp .C S be the system of equations for the 

variables DCX 1; 
evaluated on !i 

then the query Q can be 

P' 
By construction, the graph 

GCSp) is connected. Each strong component of 

GCSp) corresponds to a subsystem of mutually 

recursive equations. Let SCi and SC. be two 
3 

strong components of G(S) connected by some 
edges from SCi to SC. (but not viceversa, 

J 
otheruise SCi and SC. 

I 
would not be strong 

components); then, the strong component SCj 

should be solved before SC i. This rule defines 

a partial order among strong components: 

scj < sci <=> 

(tXi,Xj> GECGCS))) h (Xi eSCi) AtXj E.SCj)) 

By construction, the last strong component 
according to this partial order includes the 
variable X 

P' 

The reason for introducing this ordering in the 
system resolution is that, after solving SC., 
the variables of SC. can be considered 4s 
constants for SC.. ' In particular, it is 
possible to reduci them in the context of 
subsystem SC. with the method that will be 
defined in Se'ction 3.6. 

Example 5. Consider the system of Example 2. If 
the query is applied on variables X1, X , or 

N1t then query subsetting is uneffective (2 i.e., 

S=S 1. However, the system can be separed into 
two'strongly connected subsystems: 

Sl : x, 

x2 

= C, U N, U X2 

N1 

= N, U C3 
= x, 0 x3 

s2 : x 
N3 

= N2 U C4 

2 = x3 0 c2 

with S2 < Sl (see Fig.1). If the query 
applied on X 
effective and i 

or N2, query subsetting 
he original system S reduces 

s2. 

is 
is 
to 

3.4. -- Marking 

Marking and the subsequent optimizations depend 
on the predicate p of the query but do not 

depend on the particular values used in the 
selection predicate; in other words, they apply 
to initial Datalog queries with the same 
"adornment" CU 11 853. 

Markings of relations denote the propagation of 

Proceedings of the 13th VLDB Conference, Brighton 1987 33 



the query predicate to the various equations, 
according to marking rules: 

1. Propagation for g-equations: Let X. be 
marked (Xi:m),and consider the equetion 

<Xi,Ui>; then, give mark m to all variables 

X and constants C of Ui. 

2. Propagation for J-equations: Let X. be 
marked (Xi:m),Tand consider the equation 

<Xi, Li, P., Ji>; using L., transform m 
1 1 

into the corresponding column(s) n of 
variable(s) Xl or constant(s) Cl in E., and 
mark them with n (Xl:n or C1:n). Fu?ther, 
if that column is involved in equi-joins 
with column(s) q of different variable(s) 
X2 or constant(s) C2, then mark them uith q 
(X2:q or C2:q). 

Marking rules are motivated by the general 
equation: 

dpXi=$,Ei. 

Their correctness comes from distributivity of 
select ions to unions, commutativity of 
selections with selections and projections, and 
distributivity of selections to Cartesian 
products. 

The Marking algorithm operates on the system S 
of n equations and generates a new system S'. 
Let ap be the arity of Xp; let the query 

predicate be an equality predicate over the 
column i of x 

P P' 
1 < ip s ap. 

a. Initially, mark variable X with ' 
(denoted Xp:ip). P 'P 

b. Use recursively the marking rules to mark 
all possible variables of S; consider the 
marked variables as new variables of S'. 

c. Include recursively in S' all equations 
X.=E. of S such that Xi is mentioned in 
s;me' of the equations of S' previos ly 
generated. 

Example 2. 

a. Let Ql:dlza X2 on the system S = Sl U S2 of 

Example 4. We obtain: 

(X,:1) 
(X2:1) 

= (Cl:') U (N,:l) U (X2:1) 

(N,:l) 
= (N,:l) u (c3:l) 

N UC 
= (X :I) 0 x3 

x3 : ,2 o c4 
N2 3 2 

1 .e., marking is propagated to all 
variables of Sl. 

b. Let Q2:d2=a X3 on the system S2 of Ex. 4. 

We obtain: 

(X3:2) = (N2:2) U (C4:2) 

(N2:2) = x3 0 K2:2) 

x3 
= N2 U C4 

N2 = x3 0 c2 

c. Consider the query b,,,Xl on the system: 

x1 
x2 

= x2 0 c, 

<X 
= x3 u c2 

3 = Cl 0 x2 

The marking algorithm yields: 

(X :I) 
(X1:1) 

= (X2:1) 0 c, 

(X$:1) 
= (X3:1) U(C2:l) 

x2 
= x3 

= (C,:l) 0 x2 

x3 

u c2 
= c, 0 x2 

I 
3.5. Push of Selection Conditions: Reduced , -- 
TaFiables 

Let us compare the systems S and S' as obtained 
after executing the marking. Given that the 
initial system S is connected, each variable X 
of S appears at least once in S', either marked 
or unmarked; it is also possible that S' 
contains several different markings for the 
same variable X. In fact, each variable X of S 
can correspond in S' to either: 

1. One unmarked variable, and no marked 
variable; 

2. One or more marked variables, and no 
unmarked variable; 

3. One or more marked variables and one 
unmarked variable. 

We denote those variables for uhich condition 
(2) holds as reduced variables. 

After executing the marking algorithm, ue face 
two alternatives: either we consider the 
original system S, or the transformed system 
S'. Examples 5a and b indicate two extreme 
cases where it is rather clear how to behave: 

a. In Example Sa, ISl=lS'l. Since 3 variables 
of S' are reduced, S' is more efficient 
than S. Notice that efficiency comes from 
the propagation of selections to constant 
relations appearing in the equations of the 
reduced variables. 

u_x.mp.le 5a (continued). The system of 
Example?% reduces, uith a renaming of 
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variables, to: 

v, = 
v2 = 

;3 1 
N3 = 

2 

and our query to: Q=V2 

b. In Example 5b there are no reduced 
variables, i.e. all variables of S are also 
unmarked variables of S'. Hence S C S', and 
S is more efficient than S' (there is no 
advantage in adding equations to S). 

However, Example 5c is more critical: X, is a 
reduced variable, but the number of equations 
of S' is larger than that of S. Here, deciding 
whether to use S or S' leads to a difficult 
trade-off. For making this choice, we propose a 
simple heuristic criterion: 

CRITERION: The transformation of a system S 
into S' produced by the marking algorithm is 
convenient if there is at least one reduced 
variable in S'. 

--- 

The rationale of the above criterion is that, 
by evaluating system S', we omit computing at 
least one "large" unmarked variable relation, 
to the price of computing (possibly) several 
"small" marked variable relations. Further, we 
can in general rewrite S and St, by using 
equivalence transformations of relational 
algebra, so that the advantage of the 
transformation of S to S' becomes evident. 

3.6. Push of Selection Conditions: Reduced -- 
To&tants 

We now consider constants which are marked in a 
system S and belong to the equations of 
unredwced variables. This situation can occur 
both if selection to variables succeeds or 
fails. Our aim is to reduce the size of the 
constant relation before solving the system, by 
using the information that the constant is 
marked, i.e. somehow related to the selection 
condition of the query Q. This reduction, 
though rather complex to achieve, has a benefit 
over multiple iterations required by the 
solution methods of systems. The reduction 
succeeds in some cases and fails in some other 
cases; if the reduction succeeds, the constant 
is said to be reducible; else, it is 
irreducible. 

Let constant C occur in the equation of 
variable X in S, and let C be marked (possibly 
by multiplg markings) in S'. We initially build 
the reduced dependency graph CCC), as the 
subgrmGG(S) which represents all equations 
involved in the reduction of C. We then give an 

algorithm for traversing CCC); if the algorithm 
succeeds, then we build an equation EC' for a 

new variable Vc' such that C and possibly other 

constant relations appear in EC'. We then show 

that Vc' can be evaluated independently of S, 

yielding a result relation C' contained in C 
(I). Finally, we consider the system S' 
obtained by substituting C' to C in S and we 
show that S and S' are equivalent (i.e. they 
produce the same answer) w.r.t. the query Q. 

3.6.1. Definitions 

The C-dependency set X(C) 2 Xs is built as 
follous: 

a. Xc belongs to X(C). 

b. If CXi,Xj> belongs to ECGCS)) and X. 

belongs to X(C), then also Xi belongs ti 
X(C). 

The C-dependency raph G(C) is the projection 
of F(S) over X C). By T--- construction. the 
dependency graph includes-Xp and all paths from 
xp to xc. 

For each variable X, of X(C), let M, be the 
marking set of X. obtained by collec'ting all 
marks ofrdeterdined by the marking algorithm 
of Sectiod 3.4. By construction, the marking 
set of variable Xc is not empty, and at least 

one mark is propagated to C. After this 
construction, the remainder of this algorithm 
uses just the graph G(C). 

A C-dependency for the variable X of X(C) is a 
paTr <h,k>, where h is a column of C and k is a 
column of X. It indicates that the k-th column 
of x is "influenced" by the h-th column of C, 
i.e., that some of the values in the k-th 
column of X are evaluated from some of the 
values of the h-th column of C. 

3.6.2. Reduction algorithm 

INPUT: A marked constant C in the equation of 

Cl) It is also possible that two or more 
mutually recursive equations define the 
reduction of two or more constant 
relations; this happens if EeCt includes 

the expression of a reduced constant CZ and 
the expression ElC2 for the reduction of C2 

includes the expression of the reduced 
constant Cl. This case is covered by 
solving the system for Vlc., Vlc2 and 

obtaining the reduced relations Cl' and 
CZ'. 
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an unreduced variable; the corresponding graph 
G(C) and C-dependencies. 

OUTPUT: Either "C is irreducible" or "C is 
reducible", with a new equation VC'=EC' for 
evaluating the reduced constant Cl. 

The reduction algorithm is based on the 
traversal of the graph G(C), which in turn is 
based on a basic step. The algorithm requires 
the use of timestamps associated to the events 
at which nodes are examined; we assume that 
timestamps are unique and progressive. A neu 
timestamp is produced 
"newtime". 

3.6.3. t3asic step of the 

Let tXi,Xj> e E(G(C)); 

operation from X. to Xi. 
3 

by the function 

traversal algorithm 

consider a traversal 

Let IN. 
It 

be a set of 

dependencies associated to X., called incoming 
dependencies; t is the curred timestamp (to be 
defined later). The basic step consists of 
rules which dictate how to build the set of 
C-dependencies OUTit, ca 1 led outcoming 

dependencies, and the term A.. 
l]t' 

which 

contributes to the equation VC'=EC', while 

traversing the edge from X. to Xi. 
I 

The basic step can fail, in which case the 
entire constant reduction fails, and C is 
irreducible. Rules of the basic step are as 
follows: 

1. Fi 2 a U-equation: -- 

a. OUTit = IN. . 

b. Aiit =I. 
It 

2. E. is > J-equation Cuith at least one join 
-Y&z l"o3; set initially A.. 

11t 
= # and 

OUTit =@. Several cases are possible: 

a. The traversal fails if there exists one , 
occurrence of-n E, such that, for 
all 

1. 

<h,k> e INit', ' 

The k-th position of X. is not 
joined with a constant 'relation, 
and 

2. 

b. The 

k is not in the marking set of X.. 
3 

traversal succeeds if for all 
occurrences of X. in E i there exists 

3 
<h,k> c INit such that either: 

1. The k-th position of X. is joined 
with a constant relatioA, or: 

2. k is in the marking set of X.. 
J 

The two subcases above are kept 

separated: 

1. Consider one occurrence X. in Ei. 
J 

Let SJ.. 
'3 

=C<hS,ks> s=l..ns> C INit - 

be the set of dependencies such 
that the occurrence of X. is joined 
on column k with the cdlumn ws of 
some constar% C s. Then: 

A 
ijt 

:= A 
ijt 

u (..(C M 
h,=w, 

C,) M 

I. 
M hn =w 'ns J. 

OUT:, 
“S 

is no? modified. We say that 
theiL propagation of IN. ’ 
arrested. 

Jt " 

If any of the C. is a marked 
constant and is als’o reducible for 
a different application of this 
algorithm, then it is possible to 
substitute C. with the variable V. 
introduced fdr reducing Ci to Cgi.' 

2. For all occurrences X. such that 
3 

the above case (I) does not hold, 
A 

ijt 
is not modified, while OUT. 

1t 
is modified as follows: let <h,k>e 

38 and w be a column of X. which 
esponds, through the projection 

list L., to the column k of the 
considelred occurrence of X. in E * 
then, enter <h,u> in OUTit! We s& 

that dependencies of INjt are 
passed to OUTit. 

3. Ei &a "Projection J-equation" (i.e. a 

J-equation without join operations but with 
just one projection): 

a. OUTit is derived as in case 2.b.2. 

3.6.4. Traversal algorithm 

Let aC be the arity of C. The initial step of 
the traversal algorithm is as follows: 

a. If EC is a U-equation, then 

OUTCO 
=C<1,1>,<2,2>,...<aC,aC>). 

b. If EC is a J-equation, set initially OUT 
= . 

@ 
Let k be a position of Xc whi% 

corresponds, through the projection list 

LC’ to a position h of C; then, include 

<k,h> into OUTCO. Iterate this costruction 

for all positions of Xc. 

c. Let Mc=Ci,,.. in3 be the marking set of C; 

initialize EC' to the expression: 

36 
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EC' = U d. c= 
j=l ..n I .="c" 

= 6; ="C"l".~" j =ocIIc 
1 n 

where “c” is the query constant. 

The dependency graph traversal algorithm is as 
follous: 

1. Perform the initial step; set D *=# for all 
variables X. of G(C). Assume 'XC as the 
current node: 

2. visit the nodes of the graph in 
breadth-first order. Let Xj be the current 

node in the search. The node analysis 
consists of the following ste= 

a. Generate a new timestamp t: t=newtime. 

b. Evaluate the set IN. ,as: 

IN. 
It 

" ?UT 
=bq<u<t ju 

- IN. 
39 

where q is the timestamp of the latest 
traversal operation at which node X. 
was analyzed. In practice, IN.' 

It 
accumulates all dependencies which have 
been produced for node X. since its 
last visit. 3 

C. Perform the termination test: 
IN it C Di. 

d. If the condit;on is not true, then, 
set: 

D. 
J 

:= Dj U IN. . 
Jt 

and for each edge CXi,Xj> perform the 

basic step defined in the previous -- 

subsection; evaluate terms OUTit and 

A 
ijt 

; accumulate terms A.. 
1Jt 

into E C 
': 

EC' := EC' U Aijt. 

e. The breadth-first traversal is 
continued unti 1 one of the two 
following conditions occur: 

1. At all nodes of G(C), the 

termination condition holds. Then, 
the algorithm outputs "reducible" 
and the equation EC'. 

2. One of the basic steps fails. Then, 
the algorithm outputs 
"irreducible". 

3.6.5. Termination 

The different C-dependencies that can be 
possibly added to D. at each node X. are a 

3 3 
finite number. At each traversal, the 

C-dependencies of 

the traversal 

C-dependencies of 

and these are 

IN. 
Jt 

are accumulated in D.; 
3 

takes place iff some 

IN. 
Jt 

are not present in D., 

accumulated in D.. Tie 
3 

termination condition imposes that, when all 

the possible dependencies of IN. 
Jt 

have been 

included in D., 
I 

node Xj will not be the source 

of additional traversal operations. This 
ensures the termination of the algorithm in a 
finite number of steps. 

3.6.6. Application and correctness 

Assume that the algorithm terminates 
successfully. We have now an equation Vc' = 

which by construction includes C, other 
Ztant relations possibly V ' itself, and 
possibly other vakable relatigns introduced 
for reducing other constants. We then evaluate 
the minimal fixpoint Cl of the equation VcO = 

EC' 
(possibly, by solving a system of 

equations; see Section 3.8). By construction, 
C' c c. Consider the system S' obtained by 
substituting Cl to C in S; the following, 
fundamental result holds. 

Theorem 1. S and S' are equivalent with 
respect to-the query Q, i.e. they produce the 
same answer. 

The proof of Theorem 1 is omitted, and can be 
found in CCeT 861. 

3.6.7. Computational complexity 

The complexity of the method depends on the 
following factors: 

a. Complexity of the basic step. 

b. Number of basic steps. 

We use the following parameters: 

a. NC = number of columns of C; 

b. N. = number of columns of X.. 
3 I 

C. N 
ij 

= number of occurrences of Xj in E.. 
1 

a. The number of C-dependencies in D. is 
3 

O(Nc*Nj); each IN. 
Jt 

or OUT. 
Jt 

is bound by 

D . . 
3 

b. The complexity of each basic step from X. 
to x. is proportional to the number N.. o? 
diffJrent occurrences of X. in E., a:d to 
the number of C-dependenkies, 'hence is 

O(Nc*Nj*NijL 
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c. The maximum number of traversals is bound 
by the maximum Dj times the number of nodes 

in G(C), hence is OCNc*Nj*IXCI). 

The uorst-case complexity of the reduction 
algorithm is given by the product of 
complexities Cb) and Cc). 

3.6.8. Queries with multiple selection 
constants 

We can apply the push mechanism for variables 
and constants to the case in which the 
selection is done over tuo positions of the 
principal variable. The marking and reduction 
algorithms are in this case applied tuice; 
possibly, the same variables or constants may 
be reduced tuice by effect of tuo applications 
of the methods. The final result is independent 
of the order of application of algorithms. 

3.7. Examples -- 

Though the algorithm in Section 3.6 appears 
very difficult, this is due to the intrinsic 
difficulty of the problem in its most general 
formulation; but the algorithm is easily 
applied to many simple cases which correspond 
to "reasonable" Datalog programs. This 
subsection shows the results produced by the 
algorithm on some examples of progressive 
difficulty; Examples abc correspond to 
uellknown problems (ancestor, same generation 
cousin, unstable same generation cousin; see 
CBan 86al). 

Example 6.a. -- 

We nou use reduced constants to optimize the 
system from example S.b, where no optimization 
was possible with reduced variables. 

Let Q2:fj2=a X3 on system S2. The marked system 
is: 

(X3:2) 
(N2:2) = x 2. 

= (N :2) U CC4:2) 

N Uf 
x3 : x2 o C4 

CC2:2) 

N2 3 2 

We can reduce constants C4 ad C2: 

"C4 
=$za C4 u C4 w2=1 "c2 

“C2= g2=a ‘2 ’ ‘2 w(2=1 “C2 
.Examole A.& 

Consider the system: 

x1 
x2 

=LoX20R 
=x,u c 

and the query Q: d 2=a x ,producing the 
2 
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marking: 

(X2:2) = (X,:2) u CC:21 

(X,:2) = L o X2 o CR:21 

X,=LoX20R 

x2 
= x, u c 

The reduction of variables fails, but the 
reduction of constants is successful, yielding: 

"R = ')2=a R u R M2=, "R 

"C = $a c u (CC M2=, VR) y2 L) 

The reduction of R corresponds to the "cone" of 
the Magic Set method (CBan861>. 

Example 6.c -- 

Consider the system: 

x1 
=LoX20R 

x2 =Tr2, x3 

x3 
= x, u c 

and the query Q: d2=a X3, producing the 
marking: 

The reduction of variables fails, but the 
reduction of constants is successful, yielding: 

"R = *2=a R U R “2=2 L 

"C = e(2=a c u (CC M,=,VR) w2=2 L) 

Example 6.d -- 

Consider: 

x1 
x2 

= N, U X2 

N1 

=N2UK 

N2 

=X20R 
= x, 0 c 

and the query: Q=4=aX,, producing the marking: 
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N1 
N2 

=X2oR 
= x, 0 c 

Here the reduction of variables is not possible 
either; ue obtain the reduced constants: 

vK =dZzaK u K M24VR u K ~2=,‘5 

‘C = d2zaC ’ C5& ’ ’ $,‘C 
‘JR = d2=aR U RM2=,VC 

3.8. Iterative Solution Methods -- 

After going through all transformations of 
sections 3.1 to 3.7, we obtain a final system S 
of equations which has to be solved. We can use 
different iterative approaches; they apply to a 
vector V of variables Xi, initially all set to 

6 .Termination occurs at iteration f such that 

Vf,Vf+'. termination is 
finiten;ss of 

ensured by the 
the ED8 and monotonicity of 

equations in RA+. 

a. The Jacobi method iterates the evaluation 
of XJ, using: 

X j = EiCX{-'..Xnj-'1. 

b. The Gauss-Seidel method is similar to the 
Jacobi Met-however it uses in the 

course of the evaluation of Xi the values 

already produced for Xi, k<i: 

. 

The Gauss-Seidel method has in general 
better convergence than the Jacobi method. 

c. The Chaotic method is typically used for 
parallel computation and consists in 
evaluating equations in any order; subcases 
of chaotic methods are the "lazy" or the 
"data flow" evaluation, where each variable 
is evaluated respectively at the latest or 
at the earliest convenience. 

3.9. Efficient Evaluation of Linear Equations. -- -- 

Efficient algorithms for evaluating single 
linear equations, reviewed in CCGL 861, can 
also be applied to systems of equations. We 
consider the case of one equation E which is 
linear uith respect to its own variab e XL; the '1 
result is trivially extended to an arbitrary 
number of linear equations within the same 
system, and to equations of any fixed degree 
(along the direction shown in CCGL 863 for a 
single equation). 

ELCX,,.,X'L U X"I...Xn) = 

EL(X,,.,X'L...Xn) U EICX,,.,X"I.. 

Then the classical Jacobi algorithm: 

ALGORITHM Al - 

FOR i:=l TO n DO Xi+; 
REPEAT 

cond := true; 
FOR i:=l TO n DO Si:=Xi; 
FOR i:=l TO n DO 

BEGIN 
Xi:=EiCSl ,..... Sn); 
IF Xi # Si THEN cond := false; 
END; 

UNTIL cond; 
FOR i:=l TO n DO OUTPUT( 

can be substituted by: 

ALGORITHM A2 - 

FOR i:=l TO n DO Xi=& 
DC=& 

REPEAT 
cond := true; 
FOR i:=l TO n DO Si:=Xi; 
FOR i:=l TO n DO 
BEGIN 

IF i=l THEN 
BEGIN 
Dl:=EL(Sl..,Dl,..Sn)-St; 
XL:=Dl U SL; 
IF DL # #THEN cond := false; 
END 

ELSE 
BEGIN 
Xi:=EiCSl ,.....Sn); 
IF Xi # Si THEN cond := false; 
END; 

END; 
UNTIL cond; 
FOR i:=l TO n DO OUTPUT( 

Theorem 2. If equation X =EL is 
respect tZ XL, then algor thms \ Al 
equivalent. 

The theorem is proved in CCeT 861. 

.x,1 

linear with 
and A2 are 

The advantage of algorithm A2 with respect to 
Al is that the term Dl represents just the 
"difference" tuples evaluated at each 
iteration, while Sl represent the 
"accumulation" of all tuples of the previous 
iterations; given that 1011 <C bll, the 
evaluation at each iteration is more efficient. 

Suppose that the equation x =E is linear with 
1 1 

respect to its own variable: This final step has completed our structured 
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approach. Prior to the evaluation, we determine 
common subexpressions and isolate the portion 
of the system related to the query; then we 
attempt reducing variables or constants as 
effect of the propagation of selections; then 
we order equations according to a partial order 
between strong components; then we apply a 
solution method (Jacobi, Gauss-Seidel, Chaotic) 
to solve the system; we can improve solution 
methods when the degree of some equations is 
known. 

4. COMPARISON WITH OTHER WORK --- 

This paper is logically the follow-up of CCGL 
863; we borrow from it the syntax-directed 
translation from Datalog clauses to algebraic 
equations. 

Our push of selections to variables is in fact 
an extension of the method of Aho and Ullman 
CAhU 791 for a single equation. In our 
approach, we push selection conditions to any 
relational variable, and not just to the 
"principal variable". Further, in CAhU 791, the 
optimization was not possible for equations 
having the variable X. appearing more than once 
in E.; we do not have'such restriction. 

1 

The "static filtering" method by Kifer and 
Lozinskii CKiL 861 achieves an analogous 
simplification as our push of selections to 
variables. In their method, the systems of 
equations get translated into a unique 
equation, which is sometimes cumbersome. Most 
important, the static filtering method creates 
a selection predicate which is "looser" than 
the initial one, and applies it to the 
principal variable; our method reaches the same 
result by creating different equations for the 
same variable marked in different ways. This 
can be considered an improvement on Kifer and 
Lozinskii's method if equations are evaluated 
in parallel; awwfp our form is easily 
reducibie to theirs: whenever S' contains two 
equations for Xi as follows: 

CXi:m)=EiCCX,:m,)....CXn:mn)) 

CXi:k)=EiCCX,:k,)...'(Xn:kn)) 

it is possible to substitute them with: 

CXi:m or k)=EiCCX,:m, or k,)....CXn:mn or k,)). 

As an example, consider the following 
non-linear Datalog rules, that are also 
proposed in CKiL 861: 

RCx,y,z):-BCx,y,z). 
RCx,y,z):-ACx,u,v),RCu,y,z,),RCv,z,y). 

with the query QCx,y) = RCx,y,a). The above 
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rules are translated into: 
R=BUn , ej 6((At-&)W6=2 5-3R) 

, I I - 

with the query Q=c&a R. Our push of selections 

to variables succeeds, producing: 

CR:Zv3>=CB:Zv3) U 

which amounts to taking the selection of R over 
the second or the third column. 

It can be noticed that the reduction of 
variables and constants includes some cases 
which are also considered by the Magic Sets 
method of [Ban 86al. This happens, for 
instance, in the two cases of linear ancestor 
query. In fact, in the case of binding of one 
of the variables of the ANCESTOR relation, the 
Magic Set method achieves a simplification that 
is equivalent to the reduction of variables; in 
case of binding on the other variable, the 
Magic Set method reaches a reduction of the 
constant relation PARENT to its relevant part, 
which is the "cone" of the query constant, in 
the same way as we do with the reduction of 
constants (Example 6.a). However, in more 
difficult cases the comparison between these 
two methods is not so immediate. It is very 
important to notice that our algorithms include 
tests for deciding whether to accept or reject 
simplifications; wh-ile the magic set approach 
is applied "syntactically", without being able 
to evaluate on its convenience. 

Terms generated by iterative methods for a 
single fixpoint equation can be efficiently 
evaluated either by factoring techniques or by 
parallelization CCoK 861; these techniques are 
algebraic in nature and can be conveniently 
extended to systems of equations. 

Courcelle, Kahn and Vuillemin have studied 
systems of simple recursive equations in the 
context of the fixpoint semantics of 
programming languages CCou 741. They study 
equations of the general form X = T, where a 
term T is recursively defined as either a 
constant, or a variable, or a function F of a 
given arity n, applied to n terms Tj. Thus, 
X=FCX,GCY,Z)) is a valid equation. They 
introduce a notion of uniform equation Can 
eauation without nested functions), and they 
show a construction C for transforming H 
generic system S into an equivalent uniform 
system S'. The uniform representation is the 
basis for deciding whether two systems of 
equations are equivalent, or whether any two 
terms are equivalent; both problems are 
decidable in polynomial time. 
We could use the same formalism as in CCou 741 

by interpreting every union or join expression 
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as a distinct function. The major limitation of 
such interpretation is that ue cannot use the 
semantics of join or union expressions, in 
particular for deriving common subexpressions 
and simplifying terms of equations. Thus, their 
notion of equivalence is correct but weaker 
than one that uses all the available knowledge 
on the meaning of algebraic operations. On the 
other hand, the latter is more difficult and 
constitutes currently an open problem. 

5. CONCLUSION 

In the debate about whether optimization of 
Datalog programs is better achieved at a high 
(source programs) or low (algebraic machine) 
level, this paper supports the latter thesis. 
In fact, all our algorithms are systematic and 
can be programmed into an algebraic machine. 
Our approach makes extensive usage of classical 
algebraic equivalence properties and of 
algebraic optimization transformations. 
Further, our algorithms produce solutions which 
are subject to quantitative evaluation; each 
step of our approach includes a trade-off 
analysis. Thus, we can either accept or reject 
the simplifications which are proposed at each 
step. 

Ongoing work in this area includes the 
experimentation of the techniques discussed in 
this paper through the development of a 
prototype of the algebraic machine. 
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