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ABSTRACT 

In thii paper, we consider MOBY. a distributed architecture to sup- 
port the development of expert database systems in a rule based 
language. It combines standard indexing and horizontal data parti- 
tioning techniques with a rule based interpreter to achieve the rea- 
sonable performance. The major difficulty in developing this archi- 
tecture is to maintain a high effective parallelism as the number of 
processors increases. Analytic results suggest that when data is ma- 
sonably well balanced across a local area network, MOBY has a 
high effective parallelism. Simulation results support this claim by 
showing that the effective parallelism is proportional to 40% of the 
number of processors. A discussion of some crucial issues in our 
current network based implementation is also given. 

1. Introduction 
Recent interest in expert database systems has stimulated research 
that combines techniques from artificial intelligence and dambase 
management systems&e lKERSCH851). One branch of this 
research attempts to address the issue of handling large amounts of 
data in a rule based system ([BROD85, MOTO81,ZARRI84]). The 
problem is that traditional dambase query languages are restricted in 
the range of expression n=f=7 for intelligent 
reasoning[HELD87]. Rule based systems, on the other hand, have 
historically been limited to handling small amounts of data because 
of their core memory orientation. 
While there are many high level language issues concerning rule 
based systems. our approach in this paper is to assume that they are a 
close approximation to the type of language needed for writing an 
expert database system i. 
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To copy otherwise. or to republish, requires a fee and/or 
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This assumption is based on the combined power of the pattern 
matching primitives for database operations and the conttol con- 
structs necemary for problem solving. Another assumption is that 
therequisitespeedinarulebgsedsystemwillnotcomefromeither 
the standard linear speedy obtained every few years in uniproces- 
sors nor will a specialixed unipmcemor suffice[QUIIW]. A 6nal 
assumption is that associative men&es are not yet cost effective to 
allow large systems. 
Given these assumptions, our objective is twofold. Fiit, we seek to 
apply standard dambase techniques to the management of large 
volumes of data in an expert database system. Second, we seek to 
map a rule based system and its data onto a local area 
network(LAN) architecture. The mapping we choose places a copy 
of the rule base on each proces&g element (PE) of the netwak. 
Execution pmceeds concurrently on each PE. Intermediate results 
from execution are kept on PE.s according to a horizontal pardtion- 
ing scheme(see lSACC85. CERI831). ‘Ibis mapping is a form of 
data parallelism[OZKAR86] where data is partitioned across proces- 
sors. In functional parallelism [SHAW851. procedures or rules are 
partitioned across processes. Functiatal parallelism addresses high 
rules to data ratios. In cornrast. data parallelism addresses high data 
to rules ratios. 
MOBY is derived from OPS5lFORGY791 which has been the 
implementation language for several notable expert systems(e.g. 
lMCDM80 and KOWA831) as well as the basis for study in parallel- 
izing production systems[GUPT83, SHAW851. Its efficiency, rela- 
tive to other production systems, is derived Born two sources. Fm. 
onlyasnall~~ofthedatabaseisupdatedwhenarulefires. 
thus the system can reduce much of the overhead in database lookup 
by remembering the state from one rule thing to the next. Second, 
queries in the diffetent rules ate frequently similar. hence, tech- 
niques analogous to multiple query pmcessing[JARKE841 may be 
applied at rule compilation time to reduce the cost of redundant 
queries. The net effect of this technique is to save the results of pre 
vious joins. When a new tuple is inserted in a relation, as the result 
of a rule firing, any joins previously performed with this relation are 
incrementally updated. Until recently, these techniques have only 
been applied to databases operating in memory using linear search 
oi hashing. 
Notice that in the process of performing one incremental join, each 
newly joined tuple may be incrementally joined with the results from 
other previous incremental joins. Thus, several joins may be per- 
formed simultaneously at different parts of the LAN. Much work 
has been devoted to optimizing the execution of joins in a distributed 
envhonment(see [OZKAR86].) Our primary task is to exploit the 
potential for concurrency in a rule based context. Analytic results 
suggest large performance gains occur when indexing techniques 
and horizontal partitioning are combined with an incremental join 
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strategy. The main result of this paper is derived from a simulation 
of MOBY which shows that an incremental approach may be used 
effectively in join intensive rule based applications. when data is 
reasonably well balanced across the network, the rate of effective 
parallelism is proportional to 40% of the number of processors. 
The next section includes background on the compilation of rules 
into a Rete network. This &tallow network reduces the overhead of 
database lookup and minimizes the cost of redundant queries. Sec- 
tion III provides an in depth coverage of an algorithm which drives 
the data parallel architecture of MOBY. Section IV covers a formal 
analysis and simulation results. Section V covers related work in 
dambase and expert system research. The last section looks at some 
additional research issues and conclusions of this study. An appen- 
dix with background on production systems is also provided. 

2. The Rete Network 
The objective in this section is to provide background on the opera- 
tion of the Rete network as presented in [FORGY79]. The tenninol- 
ogy has been recast from production system terms into dambase 
terms where possible. Readers unfamiliar with the use of production 
systems and OF55 may turn to the appendix, although a broader dls- 

. . cussion of production systems is ln [BROWIWI. The focus here is 
on the compilation of production rules. Before considering the com- 
pilation strategy, it is important to note that these strategies were 
designed for in memory databases. From an artificial intelligence 
standpoint, “database” refers to a collection of facts, not a method of 
storage management 
The Rete network is the result of compiling a set of productions 
similar to the parse trees generated in dambase queries. Informally, 
we wilI see tha& any condition element implies a relational selection. 
A join is expressed by using the same variable in more than one con- 
dition element. 
In the recognize-act cycle, the recognize part dominates the process- 
ing time. In a naive scheme far pattern matching, on each cycle, all 
instances are matched against each condition element in each rule. 
The naive scheme is clearly prohibitive for large databases. The 
Rete algorithm was designed for efficient matching of a production 
by taking advantage of two characteristics of the database: 

(1) 

(2) 

temporuf redundancy - A large percentage (more than 90%) of 
the database remains unchanged from one cycle to the next. 
hence query efforts can be saved. Most conventional data- 
bases have this characteristic too: e.g. an employee’s salary 
will not change frequently 2. 
puttern sftrdbity - Condition elements from different rules 
have a large amount of overlap. hence the matching of these 
can be performed simultaneously. 

Figure 2 contains an annotated abstraction of the Rete network 
resulting from the compilation of our sample productions. It has two 
parts: 

(1) A selection network which selects instances from the database 
according to a condition element and stores the result. 

(2) A join network which joins the outputs from the selection net- 
work such that variable bindings am consistent The results of 
the join are stored. 

Even though the rules contain a total of four condition elements, 
they result in two main branches in the selection network: one for 
each data type. Because the Srst condition element from each rule is 

1 Cawersely, for data that is changing in real time, 1( considucd in [BElN841. 
thii technique will not suffice. 

(p sUggeJt~Xaluntant~raise 
(g~oBI~r~sc~ar~PERSoN<n>STATUSnellve) 
. scket a" acuve goal instance for raising a salary 

((cmploycc NAME a> SALARY (.salory> / eahrys < 27000) 
; sekct a” anpt0yr.e instance wha3e c1lll~ lcsr lh~ll S27000 

DEPARTMENT accounting); who ia an accountant 
--> 
(write @If) Acmontant ena needs a raise.)) 

(P =i3S-t-~gln--~i= 
@ai OBJECI’ raimdwy PERSON at> flATUS active) 
; Select an active goal Instance for raising I salary 

(employee NAME cn> SALARY (e&17> 1 .cuIar7> = 35000} 
; Select aa enpioyee instance who e8rm S35OW 
DEPARTMENT engineering) ; who ia an engineer 

-> 
(write (em) l!agineer am need9 a r&e.)) 

Flpre I- Example dPmdodiaa Rukr 

I I I I 

F@tre2.TbtR&Network 

similar (m fact identical) the matching in the selection network may 
be shared. At the bottom of the selection network are a-mem nodes 
far storing tuples that have met die selection criteria. The a-mem 
nodes are the tirst place in the join network where the system takes 
advantage of temporal redtmdancy. Once an instance matches, it 
remains in an a-mem node until it is removed or altered. 
In the join network, tuples whose variable bindings combine suc- 
cessfully with other tuples are stored. The nodes in this part of the 
network have two inputs: a left input and a right input When a tuple 
arrives at either side. an attempt is made to join it with the triples on 
the opposite side. Tuples that have been joined in this fashion are 
stored in b-mem no&s and may be combined with other a-mem 
nodes. This method of storing data in the b-mem nodes is the other 
way to take advantage of temporal redundancy: previously per- 
formed joins do not need to be recomputed. In Figure 2 there arc 
two b-mem nodes in the join network When the output from these 
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nodes arrives at the bottom of the network, a production is instan- 
tiated. 

actions in OPSS. 3 The algorithm for the act part of the rezognize-set 
cycle is illustrated in Figure 3. 

In summary, a production system has a fact database. The a-mem 
nodes stores selections performed on the database. The b-mem 
nodes stores joins. From herein. the term database will refer to data 
stored on disk. 

3.3. Processing Element Operation 
The main task for each PE is to incrementally join an instance sent 
in a message from the CU. The execution consists of mapping the 
logicalnodecontainedindremessagetoanectualnodeonthe 
machine. Oncethemappinghasoccurred,acallismadetojointhe 
instance with existing hutances on the node. 

3. Architecture and Algorithm 
In this section we describe an algorithm to execute selections and 
joins in MOBY. The hardware configuration is described, followed 
by various parts of the algorithm expressed in pseudo-code. 

3.1. Configuration 
MOBY uses a LAN which consists of a control unit (CU) connected 
to a set of processing elementa(PEs). The CU is responsible for the 
control of the recognize-act cycle, including synchronizing and han- 
dling commuuication between the PEs. Each PE has a local pri- 
mary and secondary memory. The primary memory of each PE is 
initiahred with a copy of the Rete network which encodes the 
rulebase. Portions of the dambase are placed in the memory 
nodes(a-mem and b-mem) of each PE. Also. each PE has a buffer to 
receive command messages from the CU. 
This high level description has one very important requitemenr the. 
CU must be sufficiently powerful and the network sufficiently East to 
guarantee that a PE rarely waits for a message. While precise 
requirementa for other hardware components arc still being deter- 
mined, we do not anticipate the need for specialized hardware. 
Conlidence in this estimate stems Born a simulation on a powerful, 
but conventional workstation. A network of similarly configured sys- 
terns should suffice. Also, the I/O requirements are moderate. For 
example, the formal analysis@elow) is geared towards a disk with a 
total seek time of 10 msec. 
To facilitate discussion, we make a distinction between a logical 
node in the network and an actual node in the network: conceptually, 
a logical node contains a whole relation. whereas an actual node 
contains a horizontal fmgment of that relation. llms, for each logi- 
cal node. the number of actual nodes is the same as the number of 
PEs. The algorithm to perform distributed queries uses a horizontal 
data partitioning scheme. It attempts to store data with similar key 
valuesonthesameactualnode. Theobjectiveinpamtioningisto 
balance the processing load. It is possible, though, that an actual 
node has no data either because their is not much data in the logical 
node or because the horizontal partitioning did not work well- 

3.2. Control Unit Operation 
During the act portion of the recognire-act cycle, the CU has the role 
of ensuring proper synchronization between actions and determin- 
ing how to partition relations across the PEs. The partitioning 
uccurs when messages are sent to the CU containing a recently 
joined (or selected), but not yet stored instance. The CU uses hor- 
izontal partitioning techniques to determine which PEs should get a 
copy of the instance and then sends a message to those PEs. Mes- 
sages in this algorithm consist of a sender, receiver, node-number. 
and instance. The node-numbex is the logical node where this 
instanceistobestoted. BecausetheCUdoesnotrequireanack- 
nowledgement from the receiver of the message, execution may con- 
tinue after it sends the message. In the ptocees of executing One 
message from the buffer, other messages may be written to the end 
of the CU buffer. The next action may not occur until all PEs are 
finished sending messages. ‘Ihis is determined by a timeout from 
each PE indicating that it has no more messages to send or process. 
This constraint is imposed to guarantee the correct serialization of 

A PE must wait until each incremental join has completed before 
startinganthenextmessage.Indreory,thisconstraintcoutdbe 
relaxed and we could alIow a mult@gramming or multiprncesshrg 
appro&zh. Under the multiprogramming wh, the execution of 
incremental joins would be scheduled by the PE to maxim& the 
consistent and frequent output of newly joined tuples. In turn. these 
tuples are fed to other PEs executing an incremental join. The exact 
putentialofthistacticasitapplieshereisundetermined. 

3.4. Storage Node Operation 
Each storage node is implemented with a separate b-tree to contain 
the instances. An incremental join is invoked by executing a mes- 
sagethatfirststoresanewinstanceintheb-treef~thenode. Then 
the new instance is joined with instances from the opposite node. 

procedure aemkecuon~cu, et3lons) 
centrol.uY cu; 

aecmte(e rudcm(CU.Ph)); 
l k!xeate t&2 euka 00 em erbltmray dtoea I%*/ 
wblkcu.bLdfudo 
l konUmte meaqe pemlttg aolll UK buffer II aaptlr 

bcgh 
a- := pop(CU.buffer); 
*/remove ate e-at aaap lo tbe bumcrr 
recdven := barhntd~pmtUiw(mewge~ 
l /detemdme wbkh madha WIN store the &taP 
for redva h ra!&eredo aenqmemgc+ redvu~ 
l /smd~wrrptobeaecatedbyea~recdverP 

‘end 
end 

Elgure 3 - centrd uolt Algorithm 

proccdurc-=t-cmpr(PE) 
procaur-ekamt PE; 

aoll 
wtdkPE.mwsqa& 

wa 
memege := pop(F+E.bnffer); 
l /renove tbe 8~4 m-e bt tbe buffup 
btaena? := nemge.lmteace(mmsege); 
l /extrect the lnetmce from tbet maag$L 
aode := kglcel-to-ectuel-node(meaege)deo; 
*/get the ectul oode farrapoadlngtotbelogkelnodJ+ 
I-W-Jobt(~ node); 
l /uentte tile loeremmtel jaw 
ad 

md 
-4. PmmeorFkmentAlgorltbm 
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Each old instance that successfully joins with the new instance is 
sent immediately to the CU to determine its appropriate location. 
Clearly, it is possible to include more than one new instance with 
each message to be sent to the CU. We chose this minimal packet 
size to simplify the study. 
htances in this algcrithm are indexed according to the variables 
that are being joined. In our example from Figure 2. the data from 
one side is indexed on the PERSON attribute; data from the other 
side is indexed according to the NAME attribute. Notice that this 
choice of key values for indexing in a node is detlned by the rule, 
not by key fields of the relation type. The key fields for a given type 
as defined by the administrator may or may not overlap with their 
useinrules.nKdataisstoredineachactualnodeasaseparateb- 
tree. Ibis storage is optimized to permit efficient retrieval of multi- 
ple instances per key value since that is the normal case. 

3.5. Subtleties in the Algorithm 
‘Ibe quality of the horixontal pattitioning is extremely important in 
this algorithm. In situations where the distribution is uneven, perfor- 
mance will suffer. Also, the horizontal partitioning stramgy should 
maximize lhe lMihood that the output of an incremental join will 
notbebestoredonthePEwhereitwasderived.whenthiscanbe 
achieved, a greater degree of concurrency actoss the PEs will result 
because a receiving PE can process this new instance while the 
cumsponding sending PE fmishes its curreut work. This pipelining 
effect is a crucial poperty of the algorithm. The ultimate success of 
the horizontal partitioning function is data dependent, as such, the 
objective of masonable balance cannot always be met. As men- 
tioned above, this pipeline requires a sufhciently fast CU and net- 
work to guarantee that PEs do not wait long. 
Programmer oversight or carelessness is another situation the parti- 
tioning must handle. For example, in the production below(Figure 
6). although each condition element has one variable, it is not a com- 
mon variable. This amo~ts to a join with xero variables, i.e. the 
cross product. This circumstance may be detected at compile time. 
The system responds to this situation by copying each instance to 
seveaal actual nodes instead of one. The actual nodes are chosen to 

l hn8ert tbe new bUlla Into tbe b-tree for tbls no&P 
key := key(nednd8nce); 
ekl-lMt8aws := 
kolrup(le~, ohwdk-wdc(node)); 
l /fiwmtbeeppaitclter8gened~ 
get dl the Indanced tb8t Jdn titb the keyP 

for dd4n~ In dd-lmncee m~d&in(bMmce, dd-lnd8nce), Cv); 
l /cemblne facb old-lnet8nce with tbe 8ew-inst8nce 
m 8 meange to tbc centrd unit/* 

end 
Flpre 5 - tncremeatd Join 

@aor-Pd=t 
(type=1 -KIT-1 .mr-lx.) 
;dcct~~d~lMdfonarbindlngf~ttkeBrsl~bute 
(type-2 ̂ ATr.2 .mr-b) 
; select lnstancee d typcl and form a blmdh# for the second attnibute 

-> 
Flgure6-ACrossFhdud 

guarantee that each instance horn both relations will combine 
exactly once. The efficiency of this operation is discussed in the 
next section. 

4. Aaalysls and Simulation Results 
In this section we consider a formal analysis of MOBY. ‘lbe formal 
analysis covers a best, average, worst, and probable worst case 
scenario. ‘l’tese scenarios are classifid by their performance on the 
incremental join, but analyzed for the rate of effective parallelism. 
Following the analysis, simulation results for an entire system are 
presented. These results are mapped onto the more granularpredic- 
tions from the formal analysis and reviewed far discrepancies. 
Interpetation of this data suggests that the architecture we have 
developed needs a sufficiently high number of joins to exploit poten- 
tial concurrerlcy. 

4.1. Formal Analysis 
The analysis of a data flow network is diflicult because it is highly 
data dependent. Also, the analysis of distributed systems is difficult 
when the level Of SynchnizatiOn is low. In this section we make 
some simplifying assumpticms to permit analysis. While much data- 
base research may overemphasize worst case analyses[CHRISTZ34], 
this analysis may be faulted for focusing too much on the average 
case. In defense, there are adaptive components to the algorithm 
which do tend towards the average case. First, we present the 
analysis and then give an example of the expected performance. 
The analysis is oriented to reflect the quantity of tuples that success- 
fully join in any actual node. Within that dimension, the objective is 
tooptimixeproces&gatanactualnode. lhecostofprocessingat 
that node is measured mostly by disk access time, although the 
amount of communication is quantiEed. The parameters for our 
analysis ale described below: 

R - The cost of retrieving a tuple from the disk. Even though 
the tuple may already be in memory as a result of cacheing, 
for the analysis we assume it is on disk. 
hfi - The number of instances at a logical node i, 
PtQj - The number of instances at actual node i on processor j. 
k-Thesixeofanindexnodeinab-tree. 
c-Thesixeofandatablockinab-tree. 
Hi - The number of instances resulting from a join or the 
number of “hits” at logical node i. 
hij - The number of instances resulting from a join or the 
number of “hits” at the actual node cxmeqonding to logical 
nodeionprocessorj. 
Di - The number of possible values of a domain for the attri- 
bute being joined at logical node i. 
n-TbenumberofPEsintheLAN. 

The time to lookup a set of instances tbat have a given key value is 
based on the standard b-tree lookup analysis HlLLMANg2]. Using 
the parameters from above, the time is proportional to (loa 
(mj/e))*R. Brcattse additional hIstanCeS are Stored CUl&lOUSlY in 
our b-tree implementation, the time is given by (loa (mj/e) + 
hj/e)*R. The cost of the incremental join will be reflected indirectly 
by Hsubi. Hi does not measure the time spent at one actual node, 
rathex, it mcasums how much work this node creates for the rest of 
the system. Given these parameters there ate four cases to analyze. 

4.1.1. Case 1 - Best C&se 
‘Ibebestcasetimefortbisalgoritluniswhenh=0. ‘Ibentbecostis 
only pmportional to the lookup time and nothing else. However, this 
results in low pmessor utilization and therefore zero effective 
parallelism. 

16 
hocee&ngs of the 13th VLDB Conference, Brighton 1987 



4.1.2. Case 2 - Probable Worst Case 

Informally, one can see that when h is large, system performance 
may suffer. Spec&ally, when h = m each instance from one rela- 
tion joins with every instance from the other. This occurs when, as 
discussed above, lack of a common variable in condition elements 
results in a cross product. However, MOBY recognizes this and par- 
titions data so that each node contains an amount of data propor- 
tional to G. ‘Ihis is the probable worst case because it arises in 
practice for intentional or unintentional reasons. 

4.13. Case 3 - Worst Case 

Other cases occur where a rule does not appear to result in a cross 
product The condition elements have a common variable in this 
situation, but, coincidentally each instance from one relation joins 
with all instances in the other relation. Under this circumstance 
where h = m, one machine would end up performing the entire join 
for a given relation instead of distributing the work across the 
machines in the network. This situation cannot be detected at com- 
pile time. Degradation will result in performan~ proportional to 
execution in a uniprocessor environment. Intuitively, it seems 
unlikely that a large set of instances would all have the same key 
value. Hence, the previous case is considered the probable worst 
CaSe. 

4.1.4. Case 4 - Improbable Average Case 

The value of h we use for the average case is hs for simplistic h. For 
GUI arbitrary node i. hij = mii/(n * Di). This value for h assumes an 
even distribution of the values of a domain across the instances. For 
each additional field that is joined, hsii is divided by a number simi- 
lar to Di . This case is improbable because domain values may not 
be uniformly distributed and partitioning may not be even. Thii 
case is included to provide a sense about performance under the 
maximum effective parallelism. 
As with many synchronized distributed algorithms, time is ptopor- 
tional to the slowest element. In our algorithm, the unit of synchron- 
ization is an action (as opposed to the recognize-act cycle). There- 
fore, the time to execute an update is also proportional to the speed 
of the slowest PE. When data is appropriately balanced the distribu- 
tion for the domain of each attribute is uniform, each PE has a nearly 
uniform execution time so that the overall speed is proportional to 
the number of PEs. Table 1 summarizes the analytic results for a 
possible configuration. The configuration varies the number of PEs 
while using the following constants: R = 1Omse~. A4i = 100.000. k = 
127,e=lO, HSi =2.500. 
As the number of processors increases, the initial descent during 
lookup starts to dominate the cost of the join. In effect, the cost of 
looking up multiple instances is spread across the PEs. COIN+ 
quendy, the number of processors should be adjusted so that lookup 
time does not dominate retrieval and so that the total time to join is 
less than some requisite constant These numbers are indicative of 
very high performance and would permit the use of much larger 
expert database systems than currently exist. 

I’& Lookup Re.trleval To&l 

1 15 2500 2515 
5 15 500 515 

10 15 250 265 
loo 15 25 35 

Tabk 1 - Predicted Times 

Contrary to expectation. the approach used in MOBY does not 
necessarily tradeoff performance for storage space.. Au approach 
which uses pointers on disk may be. combined with a lazy evahration 
scheme. Under this approach, unique identifiers are assigned to each 
working memory element. The output of selections and joins stores 
only the unique identifiers of these working memory elements. 
When patticuku attribute values are needed, the actual working 
memory element is dereferenced. This scheme is currently under 
implementation. 

4.2. Simulation 

The logical simulation we implemented was conducted to determine 
the effective parallelism of the distributed incremental merge. It 
involved a modified OPS5 interpreter with 3000 lines of Lisp source 
code for the simulation. No attempt was made to de&mine com- 
municatiou costs. Work was performed on a SymboIics 3640, using 
a Winchester 167.5 megabyte disk drive, with 4 megabytes of main 
memory. Processes on the machine were minii to prevent 
undue interaction with the paging system. For realism. garbage col- 
lection was turned on during our simulation although it is less 
efficient. Finally, only insertions were used instead of deletions or 
update.s. 
We developed an implementation of a b-tree algorithm on the Sym- 
bolics to demonstrate efficient retrieval, however, it was not incor- 
porated into the simulation. As such. the simulation reflects sequen- 
tial search in performing joins. 

43.1. Simulation of Case 3 - Probable Worst Case 

The lirst set of experiments used a rule(Figure 7) that resulted in the 
probahIe worst case. The salient feature of this example is that the 
condition elements have no common variable. Also, the action is 
guaranteed to create new instances that join with existing instances. 
In the experiment, most data was generated by a program. This rule 
results in a large amount of incremental joins. The times in msec 
ohtained for one, four. and nine 7 wexe 225, 139, and 81 
respectively. The effective paraIlelism for four processors was 404. 
For nine procemors, the effective parallelism was .303. We use this 
pmbabIe worst case to show that a masonably high effective paral- 
lelism can be obtained when there is sufficient join potential. Fcr a 
given set of data, there is definitely a point beyond which additional 
~m~e3re not useful. The decrease in effective paraIlelism fiotn 

proaxsm reflects that trend. 

4.2.2. Simulation of Case 4 - Improbable Average Case 

The second set of experiments used software to generate all rules 
and data. The parameters to the system allowed us to configure dif- 
ferent rule bases. They varied by the number of rules. the graiu sixe 
of each rule. the amount of data, and the probable number of hits. 

@RI 
(type-l -Al-l’1 war-lr -Al-l2 oar-22) 
; Select lnstmeea of type-l sod farm Mndiaga for tke 1st and 2nd attribute. 
(type-2 -ATT1 cru-3> -A-l-l’2 cvar-6 -A-l-l3 9) 
; Select lnstaneea of type-2 and hnn bInding far the ls4 md 2nd attribute 
; Tbe tblrd 8Mbute must be 9. 
--> 

(make type-l *ATT1 (compute 1 + cvar-1~) ^AlT2 czar-2s) 
; Insert a NW type-1 Instance 
(make type-2 *Al?‘1 cwr-2> *ATI’ (compute 1+ <vu-l>) *ATI’ 9)) 
; Inart 8 new type.2 bl~nee 

Figure 7. Ruk for Probabk Worst Case Seenarlo 
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The distribution of domain values for various attributes and the vari- 
ation of data were nearly uniform. In contrast, the rules were not 
generated to be as homogeneous. The cm@umtions that were used 
varied between Xl-150 rules. 5-8 relation types, and 500-SC00 
instances. The number of instances was kept small because of the 
high cost of simulation. Most of the simulations ran for exactly 500 
Nle liriug cycles. 
Table 2 summarizes the results we obtained. The times and effec- 
tive parallelism wez shown for one, four, and nine 7. The 
major conclusion to draw is that the a requisite join potential is a 
necessary condition for obtaining reasonable effective parallelism. 
The last three examples support this claim: there were very few hits 
aud there was v&ally no spezdup. Under the right circumstances, 
this algorithm can obtain an effective parallelism proportional to A 
of the number of pmcessors. This speedup does appear to data 
dependent. 

4.23. Optimism and Pessimism in the Method 
In this subsection, a critique of the experimental method is given. 
‘Ibe critique covers aspects of the method which will make the simu- 
lation results look more optimistic as well as pessimistic. 
communication overhead - Certainly, in a system implemented on a 
LAN, communication is an issue. However, in the data that we have 
obseava only 40.000 messages were sent in the worst case over a 
one-hour period. Further, the size of the messages is the size of an 
instanceasopposedtothesizeofalargefile.Inthefuture,packets 
larger than an instance may be sent over the network, correspond- 
ingly, the number of packets will deuease. This is perhaps the 
weakest iii of the study. 
data quantity - The largest quantity of data used in this study was 
5CHXl instances. Yet, the stated objectives of this study are to work 
with a much larger database. Moving to a full implementation an 
the network will allow more realiitic databases. 
unrealistic data - For this study, it is not clear what realistic data is. 
As yet, nobody has built an expert database system in OPS5. The 
most notable examples of OPS5 usage have a large number of rules 
and a small amount of data, so they do not provide a suitable testbed. 
The data was generated to exemplify reasonable variation and distri- 
bution according to adjustable parameters. 
simulation - Although the simulation provided useful data, the level 
of granularity does not permit observation of some important 
interactions that will shed more positive light on the study. For 
example. the effects of pipelining during the incremental merge are 
not faithfully simulated. So. in fact, the effective parallelism may in 
some cases be higher than what was reported. 

Case Rulea Data 

1 75 1690 6194 

2 loo 2655 4150 
3 75 2454 9717 

4 150 3781 2%?4 

5 150 2773 22613 

6 150 3546 32sS2 

7 100 3151 6976 

8 75 3510 3554 

9 50 1975 uta 
10 75 3352 5013 

Altli 1PE 

367ln 
2mll 
2l2sn 
3995n 
2376/l 
2743ll 
306/l 
107/l 
530 
11Wl 

4PR 

27w333 
l3ml.45 
12aI.41 
3oal.32 
1552US 
lSO3/3S 
209l.366 
11410 
50/o 
11410 

Table 2. Simulation Rslulta 
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9PE 

1327/307 
1067Lx 
904l.245 
179lY211 
644l.437 
149Y304 
ll?z./.1S 
w.l3 
52/o 
12W0 

join quantity - An assumption is that the join quantity needs to be 
high enough to justify the use of this architecture. In all of the 
experiments. the actual hit ratio was still fairly low, approximately 
15 per rule iiring. Even in the probable worst case study, the 
number of hits was on the order of dozens per rule tiring. rather than 
thousands. In real databases, a higher hit ratio will yield higher 
effective parallelism. 

5. Related Work 
The= are two main strands of research related to our work. The first 
area is the development and use of expert system tools which 
mostly address language issues. ‘zhe second area is the study of 
parallel architectures for production systems which mostly address 
implementation and performance issues. These are described 
immediately below. 

5.1. Expert System Development Tools 
?he axdemic research in knowledge based systems of the 1970’s 
placed much emphasis on finding the “right” rule based interpreter. 
Those systems typically employed one control strategy. one search 
direction, one inference mechanism, and one representation formal- 
ism. Early 1980’s efforts to create hybrid systems employed multi- 
ple control strategies and representation formalisms (see 
DOBR831.) The consensus was that no single approach was 
sufficient, therefore an integrated appmach is best. Examples of 
these tools include AltlJNFER841. Kee[INTELL86], and 
Knowledge-Craft[CGI851. 
These languages are much better suited to building expert database 
systems than OF’S5 bemuse of their diversity. Although these tools 
tend to have the right language primitives for building an expert 
dambase system, they m not engineered to permit very huge dara- 
bases. Admittedly, both Kee and KnowledgeCraft allow queries to 
be submitted to a database. yet the basic operation of these tools is 
still oriented towards management of a small number of objects. 
Our work investigates a much tighter coupling. 

5.2. Parallel Architectures for Rule Based Systems 
Attempts to parallelize rule based systems have assumed that the 
ratio of rules to data is high. As such, they have concentrated on 
permitting large numbers of rules to run efficiently. In this section 
we discuss production parallelism. Under this approach. processors 
in a massively parallel system are allocated around pmductions. The 
beat known work in this area is from Columbia University 
([SHAW85 and STOLFO841). where there have been several dif- 
ferent formulations and implementations of pnzxluction parallelism 
on NON-VON and Dada. These implementations all have several 
features in common: 
(1) lXe system configuration is a MIMD based tree structured 

machine consisting of many small PEs. 
(2) The PEs use associative memories to support the join opera- 

tion. 
(3) The allocation of processors is based on rules rather than data. 

This may mean allocating one node in the Rete network to a 
FE. allocating one rule to a PE, or allocating several rules to a 
PE. ‘Ihis is the distinguishing characteristic of production 
parallelism as compared to data parallelism. 

The different implementations were analyzed for performance on 
six well known expert systems[GUPIX3]. The beat performance 
achieved about 900 firings per second This approach of distributing 
productions to processors, however, has a limited potential for 
impNving perfoNulnce even in systems that are knowledge inten- 
sive. This point was shown by Oflaxer in [OFLA841, who attributes 
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it to the fact that in most production systems a production, when 
fued, may only affect a small number of other productions (about 35 
on the average). 
For expert database systems. there are two problems with architec- 
tures with the properties just described. First, at most 35 fairly sim- 
ple processors may simultaneously process any one memory ele- 
ment. In MOBY, as few as one production may be affected, yet a 
large number of PEs are active in response: Second. the use of asso- 
ciative memories is not feasible mainly because of size. Real sys- 
tems may have lOO,CKlO instances stored at one memory node. 
Hence, traditional database methods are necessary in thii situation. 

6. Future Directions and Conclusion 
There are several areas that we have not covered in our research that 
are related to achieving bettez performance. 
The algorithm for MOBY relies on a reasonably well balanced parti- 
tioning. Although the algorithm attempts to prevent the storage of 
an instance on the machine where it was derived, them is no adap- 
tive approach for re-arranging data within a logical node that is 
imbalanced. This type of adaptation may prevent degradation result- 
ing from inappropriate partitioning. 
Standard query optimization techniques for multiple joins attempt to 
perform them in an order that involves the least amount of data first. 
In the Rete network. the order of performing joins is based on the 
clause ordering by the user. Already, MOBY detects the cross pro- 
duct at compile time. The execution of the cross product may be 
delayed or prevented if the system reotders the clauses. Aside from 
this simple optimization, reconliguration of the network to reorder 
joins is expensive. In short, the advantage of storing the results of 
joins has a tradeoff if the quantity of data does not match expecta- 
tions. 
Conflict resolution is one of the defining components of a rule based 
interpreter. The intent is to “resolve conflicts”. Unfortunately, in an 
expert database system them may be many instantiations and thus 
many conflicts. Large conflict sets may be difficult to manage and 
incorrect behavior may result, In future research, we hope to find 
some way of streamlining the conflict resolution process when it 
becomes large. 
Another area of future research combines functional and data paral- 
lelism into one architecture. One problem with functional parallel- 
ism is that all processor allocation is performed at compile time, i.e., 
it is static. Conversely, data parallelism mostly addresses runtime 
characteristics of the system, i.e. it is dynamic. Based on work in 
[GUPT84], a large percentage of condition elements in a system 
cluster around a small percentage (< 30%) of relation types. Such 
information can be obtained at compile time. There is other infor- 
mation relating to intelligent allocation of processors that is available 
at compile time. 
We are currently implementing MOBY on a LAN consisting of nine 
Symbolics workstations. Moving from simulation to the actual sys- 
tem will provide a much better experimental environment. For 
example, the high level requirements of the horizontal partitioning 
scheme have been established, but a true evaluation will be easier 
with a complete implementation. 
We have seen that expert database systems have different charac- 
teristics from dambase and expert systems. The computational 
de.mands necessary to support intelligent database systems suggest 
that a unipmcessor will not provide adequate performance. Further, 
the inherent parallelism can not be exploited on a large mainframe. 
The compilation methods for rule base systems may work very well 
for join intensive systems. Combining these techniques into MOBY 
has three main results: 
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(1) 

(59 

(3) 

a communication overhead proportional to the numb of 
instances that join. 
a data throughput which permits the use of OPS5 style pmduc- 
tion systems to operate on dat&ses which are far larger than 
those previously built. 
a speedup proportional to 40% of the number of processors for 
reasonably balanced data. 
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Appendix - OPS5, Productiuus Systems 
The objective in this appendix is to introduce definitions and nota- 
tion pertaining to production systems, in general, and OPS5. 
specifically. OPS5 is a production system, which is a programming 
language consisting of three parts: 

1. A working memory which is a global database of facts 
called working memory elements. 

2. A production memory containing production rules that 
encode expert knowledge. 

3. An interpreter that applies the rules to working memory 
in solving a problem. 

A rule in production memory has a name, an if portion (also called 
the condition), and a then portion (also cakd the action.) The con- 
dition portion has condition elements which match or query the 

wm.1 = (employee NAME Joe Jones DEPT accounting SALARY 26500) 
t-m13 = (employae NAME Fred Btee DEPT accounting SALARY 25500) 
wm.5 = (department NAME eccoonting BUDGET 500100) 
wm.6 = (dep8rtment NAME qteratioaw BUDGET 23000) 
wm.7 = (BoaI OBJJXT raise-salary PERSON Joe Jones STATUS active) 
mat.8 = (goal OBJECT r&e-salary PERSON Fred Blee STATUS active) 

Figure 8 - The Database 

employee: NAME DEPARTMENT SALARY 
department: NAME BUDGET 
goal: OBJRCl’ PERSON STATUS 

Figure 9 - Data Delinitions 

dambase. A condition element may contain variables or constants 
as shown in both rules in Figure 1. Variables are surrounded by “c” 
and “>” to distinguish them from constants. 
The rules from Figure 1 might be used to suggest raises for employ- 
ees in the accoming and engineering departments. Rule 
suggest_accountant_raise determines employees in the accounting 
department who are eligible for a raise. and also earn less than 
$27000. It will report the names of such employees on the terminal. 
We illustrate the matching of rule suggest_accountan_raise to the 
dambase from Figure 8. The 6rst condition element is a selection of 
any goal data type whose object is raise-salary and whose status is 
active, thus it matches Wm.7 and wm.8 The second condition ele- 
ment selects any ~untant whose salary is less than $27ooO, thus it 
matches wm.1 and wm.2. To instantiate the rule, the data which 
matches each condition element must meet the criteria necessary for 
a join: the variable a~ must be the same. We call this a consistent 
binding. In our small example, Wm.1 and Wm.7 form consistent 
bindings, as well as wm.2 and wm.8. Other algebraic constraints 
may be placed between bindings, such as <, >, c=, etc. 
The interpreter applies these rules in a three step phase, collectively 
called the recognize-m cycle. The tirst part of the cycle matches 
the rules to the dambase and finds consistent bindings. Each set of 
instancea that match and bind consistently to a condition is called an 
instantiation of that rule. The conflict set is the set of instantiations 
output from the match cycle. Next, the confict resolution phase 
chooses one rule l?om the conflict set. Finally the act phase, applies 
the action of the chosen rule. Each part of the action may modify, 
remove, or add new working memory elements. 
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