
MOBY: An Architecture for Distributed Expert Database Systems

Jonathan Bein
Roger King

Computer Science Department
University of Colorado

Boulder, Colorado 80309

Nabil Kamel

Computer Science Department
Michigan State University

East Lansing, Michigan 48824

ABSTRACT

In thii paper, we consider MOBY. a distributed architecture to sup-
port the development of expert database systems in a rule based
language. It combines standard indexing and horizontal data parti-
tioning techniques with a rule based interpreter to achieve the rea-
sonable performance. The major difficulty in developing this archi-
tecture is to maintain a high effective parallelism as the number of
processors increases. Analytic results suggest that when data is ma-
sonably well balanced across a local area network, MOBY has a
high effective parallelism. Simulation results support this claim by
showing that the effective parallelism is proportional to 40% of the
number of processors. A discussion of some crucial issues in our
current network based implementation is also given.

1. Introduction
Recent interest in expert database systems has stimulated research
that combines techniques from artificial intelligence and dambase
management systems&e lKERSCH851). One branch of this
research attempts to address the issue of handling large amounts of
data in a rule based system ([BROD85, MOTO81,ZARRI84]). The
problem is that traditional dambase query languages are restricted in
the range of expression n=f=7 for intelligent
reasoning[HELD87]. Rule based systems, on the other hand, have
historically been limited to handling small amounts of data because
of their core memory orientation.
While there are many high level language issues concerning rule
based systems. our approach in this paper is to assume that they are a
close approximation to the type of language needed for writing an
expert database system i.

Permission to copy without fee all or part of this
material is granted provided that the copies are not made
or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication
and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment.
To copy otherwise. or to republish, requires a fee and/or
special permission from the Endowment.

‘hii WC& was mppoed by ONR under contract nlmiber NOOO14-86-K-4.

’ sniclly cmsidc~ Pmlog ia I logic pmgmmming language however it may
also bc viewed as a Nle hacd language or ptrduction system.

Proceedings of the 13th VLDB Conference, Brighton 1987

This assumption is based on the combined power of the pattern
matching primitives for database operations and the conttol con-
structs necemary for problem solving. Another assumption is that
therequisitespeedinarulebgsedsystemwillnotcomefromeither
the standard linear speedy obtained every few years in uniproces-
sors nor will a specialixed unipmcemor suffice[QUIIW]. A 6nal
assumption is that associative men&es are not yet cost effective to
allow large systems.
Given these assumptions, our objective is twofold. Fiit, we seek to
apply standard dambase techniques to the management of large
volumes of data in an expert database system. Second, we seek to
map a rule based system and its data onto a local area
network(LAN) architecture. The mapping we choose places a copy
of the rule base on each proces&g element (PE) of the netwak.
Execution pmceeds concurrently on each PE. Intermediate results
from execution are kept on PE.s according to a horizontal pardtion-
ing scheme(see lSACC85. CERI831). ‘Ibis mapping is a form of
data parallelism[OZKAR86] where data is partitioned across proces-
sors. In functional parallelism [SHAW851. procedures or rules are
partitioned across processes. Functiatal parallelism addresses high
rules to data ratios. In cornrast. data parallelism addresses high data
to rules ratios.
MOBY is derived from OPS5lFORGY791 which has been the
implementation language for several notable expert systems(e.g.
lMCDM80 and KOWA831) as well as the basis for study in parallel-
izing production systems[GUPT83, SHAW851. Its efficiency, rela-
tive to other production systems, is derived Born two sources. Fm.
onlyasnall~~ofthedatabaseisupdatedwhenarulefires.
thus the system can reduce much of the overhead in database lookup
by remembering the state from one rule thing to the next. Second,
queries in the diffetent rules ate frequently similar. hence, tech-
niques analogous to multiple query pmcessing[JARKE841 may be
applied at rule compilation time to reduce the cost of redundant
queries. The net effect of this technique is to save the results of pre
vious joins. When a new tuple is inserted in a relation, as the result
of a rule firing, any joins previously performed with this relation are
incrementally updated. Until recently, these techniques have only
been applied to databases operating in memory using linear search
oi hashing.
Notice that in the process of performing one incremental join, each
newly joined tuple may be incrementally joined with the results from
other previous incremental joins. Thus, several joins may be per-
formed simultaneously at different parts of the LAN. Much work
has been devoted to optimizing the execution of joins in a distributed
envhonment(see [OZKAR86].) Our primary task is to exploit the
potential for concurrency in a rule based context. Analytic results
suggest large performance gains occur when indexing techniques
and horizontal partitioning are combined with an incremental join

13

strategy. The main result of this paper is derived from a simulation
of MOBY which shows that an incremental approach may be used
effectively in join intensive rule based applications. when data is
reasonably well balanced across the network, the rate of effective
parallelism is proportional to 40% of the number of processors.
The next section includes background on the compilation of rules
into a Rete network. This &tallow network reduces the overhead of
database lookup and minimizes the cost of redundant queries. Sec-
tion III provides an in depth coverage of an algorithm which drives
the data parallel architecture of MOBY. Section IV covers a formal
analysis and simulation results. Section V covers related work in
dambase and expert system research. The last section looks at some
additional research issues and conclusions of this study. An appen-
dix with background on production systems is also provided.

2. The Rete Network
The objective in this section is to provide background on the opera-
tion of the Rete network as presented in [FORGY79]. The tenninol-
ogy has been recast from production system terms into dambase
terms where possible. Readers unfamiliar with the use of production
systems and OF55 may turn to the appendix, although a broader dls-

. . cussion of production systems is ln [BROWIWI. The focus here is
on the compilation of production rules. Before considering the com-
pilation strategy, it is important to note that these strategies were
designed for in memory databases. From an artificial intelligence
standpoint, “database” refers to a collection of facts, not a method of
storage management
The Rete network is the result of compiling a set of productions
similar to the parse trees generated in dambase queries. Informally,
we wilI see tha& any condition element implies a relational selection.
A join is expressed by using the same variable in more than one con-
dition element.
In the recognize-act cycle, the recognize part dominates the process-
ing time. In a naive scheme far pattern matching, on each cycle, all
instances are matched against each condition element in each rule.
The naive scheme is clearly prohibitive for large databases. The
Rete algorithm was designed for efficient matching of a production
by taking advantage of two characteristics of the database:

(1)

(2)

temporuf redundancy - A large percentage (more than 90%) of
the database remains unchanged from one cycle to the next.
hence query efforts can be saved. Most conventional data-
bases have this characteristic too: e.g. an employee’s salary
will not change frequently 2.
puttern sftrdbity - Condition elements from different rules
have a large amount of overlap. hence the matching of these
can be performed simultaneously.

Figure 2 contains an annotated abstraction of the Rete network
resulting from the compilation of our sample productions. It has two
parts:

(1) A selection network which selects instances from the database
according to a condition element and stores the result.

(2) A join network which joins the outputs from the selection net-
work such that variable bindings am consistent The results of
the join are stored.

Even though the rules contain a total of four condition elements,
they result in two main branches in the selection network: one for
each data type. Because the Srst condition element from each rule is

1 Cawersely, for data that is changing in real time, 1(considucd in [BElN841.
thii technique will not suffice.

(p sUggeJt~Xaluntant~raise
(g~oBI~r~sc~ar~PERSoN<n>STATUSnellve)
. scket a" acuve goal instance for raising a salary

((cmploycc NAME a> SALARY (.salory> / eahrys < 27000)
; sekct a” anpt0yr.e instance wha3e c1lll~ lcsr lh~ll S27000

DEPARTMENT accounting); who ia an accountant
-->
(write @If) Acmontant ena needs a raise.))

(P =i3S-t-~gln--~i=
@ai OBJECI’ raimdwy PERSON at> flATUS active)
; Select an active goal Instance for raising I salary

(employee NAME cn> SALARY (e&17> 1 .cuIar7> = 35000}
; Select aa enpioyee instance who e8rm S35OW
DEPARTMENT engineering) ; who ia an engineer

->
(write (em) l!agineer am need9 a r&e.))

Flpre I- Example dPmdodiaa Rukr

I I I I

F@tre2.TbtR&Network

similar (m fact identical) the matching in the selection network may
be shared. At the bottom of the selection network are a-mem nodes
far storing tuples that have met die selection criteria. The a-mem
nodes are the tirst place in the join network where the system takes
advantage of temporal redtmdancy. Once an instance matches, it
remains in an a-mem node until it is removed or altered.
In the join network, tuples whose variable bindings combine suc-
cessfully with other tuples are stored. The nodes in this part of the
network have two inputs: a left input and a right input When a tuple
arrives at either side. an attempt is made to join it with the triples on
the opposite side. Tuples that have been joined in this fashion are
stored in b-mem no&s and may be combined with other a-mem
nodes. This method of storing data in the b-mem nodes is the other
way to take advantage of temporal redundancy: previously per-
formed joins do not need to be recomputed. In Figure 2 there arc
two b-mem nodes in the join network When the output from these

14 Proceedings of the 13th VLDB Conference, Brighton 1987

nodes arrives at the bottom of the network, a production is instan-
tiated.

actions in OPSS. 3 The algorithm for the act part of the rezognize-set
cycle is illustrated in Figure 3.

In summary, a production system has a fact database. The a-mem
nodes stores selections performed on the database. The b-mem
nodes stores joins. From herein. the term database will refer to data
stored on disk.

3.3. Processing Element Operation
The main task for each PE is to incrementally join an instance sent
in a message from the CU. The execution consists of mapping the
logicalnodecontainedindremessagetoanectualnodeonthe
machine. Oncethemappinghasoccurred,acallismadetojointhe
instance with existing hutances on the node.

3. Architecture and Algorithm
In this section we describe an algorithm to execute selections and
joins in MOBY. The hardware configuration is described, followed
by various parts of the algorithm expressed in pseudo-code.

3.1. Configuration
MOBY uses a LAN which consists of a control unit (CU) connected
to a set of processing elementa(PEs). The CU is responsible for the
control of the recognize-act cycle, including synchronizing and han-
dling commuuication between the PEs. Each PE has a local pri-
mary and secondary memory. The primary memory of each PE is
initiahred with a copy of the Rete network which encodes the
rulebase. Portions of the dambase are placed in the memory
nodes(a-mem and b-mem) of each PE. Also. each PE has a buffer to
receive command messages from the CU.
This high level description has one very important requitemenr the.
CU must be sufficiently powerful and the network sufficiently East to
guarantee that a PE rarely waits for a message. While precise
requirementa for other hardware components arc still being deter-
mined, we do not anticipate the need for specialized hardware.
Conlidence in this estimate stems Born a simulation on a powerful,
but conventional workstation. A network of similarly configured sys-
terns should suffice. Also, the I/O requirements are moderate. For
example, the formal analysis@elow) is geared towards a disk with a
total seek time of 10 msec.
To facilitate discussion, we make a distinction between a logical
node in the network and an actual node in the network: conceptually,
a logical node contains a whole relation. whereas an actual node
contains a horizontal fmgment of that relation. llms, for each logi-
cal node. the number of actual nodes is the same as the number of
PEs. The algorithm to perform distributed queries uses a horizontal
data partitioning scheme. It attempts to store data with similar key
valuesonthesameactualnode. Theobjectiveinpamtioningisto
balance the processing load. It is possible, though, that an actual
node has no data either because their is not much data in the logical
node or because the horizontal partitioning did not work well-

3.2. Control Unit Operation
During the act portion of the recognire-act cycle, the CU has the role
of ensuring proper synchronization between actions and determin-
ing how to partition relations across the PEs. The partitioning
uccurs when messages are sent to the CU containing a recently
joined (or selected), but not yet stored instance. The CU uses hor-
izontal partitioning techniques to determine which PEs should get a
copy of the instance and then sends a message to those PEs. Mes-
sages in this algorithm consist of a sender, receiver, node-number.
and instance. The node-numbex is the logical node where this
instanceistobestoted. BecausetheCUdoesnotrequireanack-
nowledgement from the receiver of the message, execution may con-
tinue after it sends the message. In the ptocees of executing One
message from the buffer, other messages may be written to the end
of the CU buffer. The next action may not occur until all PEs are
finished sending messages. ‘Ihis is determined by a timeout from
each PE indicating that it has no more messages to send or process.
This constraint is imposed to guarantee the correct serialization of

A PE must wait until each incremental join has completed before
startinganthenextmessage.Indreory,thisconstraintcoutdbe
relaxed and we could alIow a mult@gramming or multiprncesshrg
appro&zh. Under the multiprogramming wh, the execution of
incremental joins would be scheduled by the PE to maxim& the
consistent and frequent output of newly joined tuples. In turn. these
tuples are fed to other PEs executing an incremental join. The exact
putentialofthistacticasitapplieshereisundetermined.

3.4. Storage Node Operation
Each storage node is implemented with a separate b-tree to contain
the instances. An incremental join is invoked by executing a mes-
sagethatfirststoresanewinstanceintheb-treef~thenode. Then
the new instance is joined with instances from the opposite node.

procedure aemkecuon~cu, et3lons)
centrol.uY cu;

aecmte(e rudcm(CU.Ph));
l k!xeate t&2 euka 00 em erbltmray dtoea I%*/
wblkcu.bLdfudo
l konUmte meaqe pemlttg aolll UK buffer II aaptlr

bcgh
a- := pop(CU.buffer);
*/remove ate e-at aaap lo tbe bumcrr
recdven := barhntd~pmtUiw(mewge~
l /detemdme wbkh madha WIN store the &taP
for redva h ra!&eredo aenqmemgc+ redvu~
l /smd~wrrptobeaecatedbyea~recdverP

‘end
end

Elgure 3 - centrd uolt Algorithm

proccdurc-=t-cmpr(PE)
procaur-ekamt PE;

aoll
wtdkPE.mwsqa&

wa
memege := pop(F+E.bnffer);
l /renove tbe 8~4 m-e bt tbe buffup
btaena? := nemge.lmteace(mmsege);
l /extrect the lnetmce from tbet maag$L
aode := kglcel-to-ectuel-node(meaege)deo;
*/get the ectul oode farrapoadlngtotbelogkelnodJ+
I-W-Jobt(~ node);
l /uentte tile loeremmtel jaw
ad

md
-4. PmmeorFkmentAlgorltbm

Proceedings of the 13th VLDB Conference, Brighton 1987 15

Each old instance that successfully joins with the new instance is
sent immediately to the CU to determine its appropriate location.
Clearly, it is possible to include more than one new instance with
each message to be sent to the CU. We chose this minimal packet
size to simplify the study.
htances in this algcrithm are indexed according to the variables
that are being joined. In our example from Figure 2. the data from
one side is indexed on the PERSON attribute; data from the other
side is indexed according to the NAME attribute. Notice that this
choice of key values for indexing in a node is detlned by the rule,
not by key fields of the relation type. The key fields for a given type
as defined by the administrator may or may not overlap with their
useinrules.nKdataisstoredineachactualnodeasaseparateb-
tree. Ibis storage is optimized to permit efficient retrieval of multi-
ple instances per key value since that is the normal case.

3.5. Subtleties in the Algorithm
‘Ibe quality of the horixontal pattitioning is extremely important in
this algorithm. In situations where the distribution is uneven, perfor-
mance will suffer. Also, the horizontal partitioning stramgy should
maximize lhe lMihood that the output of an incremental join will
notbebestoredonthePEwhereitwasderived.whenthiscanbe
achieved, a greater degree of concurrency actoss the PEs will result
because a receiving PE can process this new instance while the
cumsponding sending PE fmishes its curreut work. This pipelining
effect is a crucial poperty of the algorithm. The ultimate success of
the horizontal partitioning function is data dependent, as such, the
objective of masonable balance cannot always be met. As men-
tioned above, this pipeline requires a sufhciently fast CU and net-
work to guarantee that PEs do not wait long.
Programmer oversight or carelessness is another situation the parti-
tioning must handle. For example, in the production below(Figure
6). although each condition element has one variable, it is not a com-
mon variable. This amo~ts to a join with xero variables, i.e. the
cross product. This circumstance may be detected at compile time.
The system responds to this situation by copying each instance to
seveaal actual nodes instead of one. The actual nodes are chosen to

l hn8ert tbe new bUlla Into tbe b-tree for tbls no&P
key := key(nednd8nce);
ekl-lMt8aws :=
kolrup(le~, ohwdk-wdc(node));
l /fiwmtbeeppaitclter8gened~
get dl the Indanced tb8t Jdn titb the keyP

for dd4n~ In dd-lmncee m~d&in(bMmce, dd-lnd8nce), Cv);
l /cemblne facb old-lnet8nce with tbe 8ew-inst8nce
m 8 meange to tbc centrd unit/*

end
Flpre 5 - tncremeatd Join

@aor-Pd=t
(type=1 -KIT-1 .mr-lx.)
;dcct~~d~lMdfonarbindlngf~ttkeBrsl~bute
(type-2 ̂ ATr.2 .mr-b)
; select lnstancee d typcl and form a blmdh# for the second attnibute

->
Flgure6-ACrossFhdud

guarantee that each instance horn both relations will combine
exactly once. The efficiency of this operation is discussed in the
next section.

4. Aaalysls and Simulation Results
In this section we consider a formal analysis of MOBY. ‘lbe formal
analysis covers a best, average, worst, and probable worst case
scenario. ‘l’tese scenarios are classifid by their performance on the
incremental join, but analyzed for the rate of effective parallelism.
Following the analysis, simulation results for an entire system are
presented. These results are mapped onto the more granularpredic-
tions from the formal analysis and reviewed far discrepancies.
Interpetation of this data suggests that the architecture we have
developed needs a sufficiently high number of joins to exploit poten-
tial concurrerlcy.

4.1. Formal Analysis
The analysis of a data flow network is diflicult because it is highly
data dependent. Also, the analysis of distributed systems is difficult
when the level Of SynchnizatiOn is low. In this section we make
some simplifying assumpticms to permit analysis. While much data-
base research may overemphasize worst case analyses[CHRISTZ34],
this analysis may be faulted for focusing too much on the average
case. In defense, there are adaptive components to the algorithm
which do tend towards the average case. First, we present the
analysis and then give an example of the expected performance.
The analysis is oriented to reflect the quantity of tuples that success-
fully join in any actual node. Within that dimension, the objective is
tooptimixeproces&gatanactualnode. lhecostofprocessingat
that node is measured mostly by disk access time, although the
amount of communication is quantiEed. The parameters for our
analysis ale described below:

R - The cost of retrieving a tuple from the disk. Even though
the tuple may already be in memory as a result of cacheing,
for the analysis we assume it is on disk.
hfi - The number of instances at a logical node i,
PtQj - The number of instances at actual node i on processor j.
k-Thesixeofanindexnodeinab-tree.
c-Thesixeofandatablockinab-tree.
Hi - The number of instances resulting from a join or the
number of “hits” at logical node i.
hij - The number of instances resulting from a join or the
number of “hits” at the actual node cxmeqonding to logical
nodeionprocessorj.
Di - The number of possible values of a domain for the attri-
bute being joined at logical node i.
n-TbenumberofPEsintheLAN.

The time to lookup a set of instances tbat have a given key value is
based on the standard b-tree lookup analysis HlLLMANg2]. Using
the parameters from above, the time is proportional to (loa
(mj/e))*R. Brcattse additional hIstanCeS are Stored CUl&lOUSlY in
our b-tree implementation, the time is given by (loa (mj/e) +
hj/e)*R. The cost of the incremental join will be reflected indirectly
by Hsubi. Hi does not measure the time spent at one actual node,
rathex, it mcasums how much work this node creates for the rest of
the system. Given these parameters there ate four cases to analyze.

4.1.1. Case 1 - Best C&se
‘Ibebestcasetimefortbisalgoritluniswhenh=0. ‘Ibentbecostis
only pmportional to the lookup time and nothing else. However, this
results in low pmessor utilization and therefore zero effective
parallelism.

16
hocee&ngs of the 13th VLDB Conference, Brighton 1987

4.1.2. Case 2 - Probable Worst Case

Informally, one can see that when h is large, system performance
may suffer. Spec&ally, when h = m each instance from one rela-
tion joins with every instance from the other. This occurs when, as
discussed above, lack of a common variable in condition elements
results in a cross product. However, MOBY recognizes this and par-
titions data so that each node contains an amount of data propor-
tional to G. ‘Ihis is the probable worst case because it arises in
practice for intentional or unintentional reasons.

4.13. Case 3 - Worst Case

Other cases occur where a rule does not appear to result in a cross
product The condition elements have a common variable in this
situation, but, coincidentally each instance from one relation joins
with all instances in the other relation. Under this circumstance
where h = m, one machine would end up performing the entire join
for a given relation instead of distributing the work across the
machines in the network. This situation cannot be detected at com-
pile time. Degradation will result in performan~ proportional to
execution in a uniprocessor environment. Intuitively, it seems
unlikely that a large set of instances would all have the same key
value. Hence, the previous case is considered the probable worst
CaSe.

4.1.4. Case 4 - Improbable Average Case

The value of h we use for the average case is hs for simplistic h. For
GUI arbitrary node i. hij = mii/(n * Di). This value for h assumes an
even distribution of the values of a domain across the instances. For
each additional field that is joined, hsii is divided by a number simi-
lar to Di . This case is improbable because domain values may not
be uniformly distributed and partitioning may not be even. Thii
case is included to provide a sense about performance under the
maximum effective parallelism.
As with many synchronized distributed algorithms, time is ptopor-
tional to the slowest element. In our algorithm, the unit of synchron-
ization is an action (as opposed to the recognize-act cycle). There-
fore, the time to execute an update is also proportional to the speed
of the slowest PE. When data is appropriately balanced the distribu-
tion for the domain of each attribute is uniform, each PE has a nearly
uniform execution time so that the overall speed is proportional to
the number of PEs. Table 1 summarizes the analytic results for a
possible configuration. The configuration varies the number of PEs
while using the following constants: R = 1Omse~. A4i = 100.000. k =
127,e=lO, HSi =2.500.
As the number of processors increases, the initial descent during
lookup starts to dominate the cost of the join. In effect, the cost of
looking up multiple instances is spread across the PEs. COIN+
quendy, the number of processors should be adjusted so that lookup
time does not dominate retrieval and so that the total time to join is
less than some requisite constant These numbers are indicative of
very high performance and would permit the use of much larger
expert database systems than currently exist.

I’& Lookup Re.trleval To&l

1 15 2500 2515
5 15 500 515

10 15 250 265
loo 15 25 35

Tabk 1 - Predicted Times

Contrary to expectation. the approach used in MOBY does not
necessarily tradeoff performance for storage space.. Au approach
which uses pointers on disk may be. combined with a lazy evahration
scheme. Under this approach, unique identifiers are assigned to each
working memory element. The output of selections and joins stores
only the unique identifiers of these working memory elements.
When patticuku attribute values are needed, the actual working
memory element is dereferenced. This scheme is currently under
implementation.

4.2. Simulation

The logical simulation we implemented was conducted to determine
the effective parallelism of the distributed incremental merge. It
involved a modified OPS5 interpreter with 3000 lines of Lisp source
code for the simulation. No attempt was made to de&mine com-
municatiou costs. Work was performed on a SymboIics 3640, using
a Winchester 167.5 megabyte disk drive, with 4 megabytes of main
memory. Processes on the machine were minii to prevent
undue interaction with the paging system. For realism. garbage col-
lection was turned on during our simulation although it is less
efficient. Finally, only insertions were used instead of deletions or
update.s.
We developed an implementation of a b-tree algorithm on the Sym-
bolics to demonstrate efficient retrieval, however, it was not incor-
porated into the simulation. As such. the simulation reflects sequen-
tial search in performing joins.

43.1. Simulation of Case 3 - Probable Worst Case

The lirst set of experiments used a rule(Figure 7) that resulted in the
probahIe worst case. The salient feature of this example is that the
condition elements have no common variable. Also, the action is
guaranteed to create new instances that join with existing instances.
In the experiment, most data was generated by a program. This rule
results in a large amount of incremental joins. The times in msec
ohtained for one, four. and nine 7 wexe 225, 139, and 81
respectively. The effective paraIlelism for four processors was 404.
For nine procemors, the effective parallelism was .303. We use this
pmbabIe worst case to show that a masonably high effective paral-
lelism can be obtained when there is sufficient join potential. Fcr a
given set of data, there is definitely a point beyond which additional
~m~e3re not useful. The decrease in effective paraIlelism fiotn

proaxsm reflects that trend.

4.2.2. Simulation of Case 4 - Improbable Average Case

The second set of experiments used software to generate all rules
and data. The parameters to the system allowed us to configure dif-
ferent rule bases. They varied by the number of rules. the graiu sixe
of each rule. the amount of data, and the probable number of hits.

@RI
(type-l -Al-l’1 war-lr -Al-l2 oar-22)
; Select lnstmeea of type-l sod farm Mndiaga for tke 1st and 2nd attribute.
(type-2 -ATT1 cru-3> -A-l-l’2 cvar-6 -A-l-l3 9)
; Select lnstaneea of type-2 and hnn bInding far the ls4 md 2nd attribute
; Tbe tblrd 8Mbute must be 9.
-->

(make type-l *ATT1 (compute 1 + cvar-1~) ^AlT2 czar-2s)
; Insert a NW type-1 Instance
(make type-2 *Al?‘1 cwr-2> *ATI’ (compute 1+ <vu-l>) *ATI’ 9))
; Inart 8 new type.2 bl~nee

Figure 7. Ruk for Probabk Worst Case Seenarlo

Proceedings of the 13th VLDB Co?ference, Brighton 1987 17

The distribution of domain values for various attributes and the vari-
ation of data were nearly uniform. In contrast, the rules were not
generated to be as homogeneous. The cm@umtions that were used
varied between Xl-150 rules. 5-8 relation types, and 500-SC00
instances. The number of instances was kept small because of the
high cost of simulation. Most of the simulations ran for exactly 500
Nle liriug cycles.
Table 2 summarizes the results we obtained. The times and effec-
tive parallelism wez shown for one, four, and nine 7. The
major conclusion to draw is that the a requisite join potential is a
necessary condition for obtaining reasonable effective parallelism.
The last three examples support this claim: there were very few hits
aud there was v&ally no spezdup. Under the right circumstances,
this algorithm can obtain an effective parallelism proportional to A
of the number of pmcessors. This speedup does appear to data
dependent.

4.23. Optimism and Pessimism in the Method
In this subsection, a critique of the experimental method is given.
‘Ibe critique covers aspects of the method which will make the simu-
lation results look more optimistic as well as pessimistic.
communication overhead - Certainly, in a system implemented on a
LAN, communication is an issue. However, in the data that we have
obseava only 40.000 messages were sent in the worst case over a
one-hour period. Further, the size of the messages is the size of an
instanceasopposedtothesizeofalargefile.Inthefuture,packets
larger than an instance may be sent over the network, correspond-
ingly, the number of packets will deuease. This is perhaps the
weakest iii of the study.
data quantity - The largest quantity of data used in this study was
5CHXl instances. Yet, the stated objectives of this study are to work
with a much larger database. Moving to a full implementation an
the network will allow more realiitic databases.
unrealistic data - For this study, it is not clear what realistic data is.
As yet, nobody has built an expert database system in OPS5. The
most notable examples of OPS5 usage have a large number of rules
and a small amount of data, so they do not provide a suitable testbed.
The data was generated to exemplify reasonable variation and distri-
bution according to adjustable parameters.
simulation - Although the simulation provided useful data, the level
of granularity does not permit observation of some important
interactions that will shed more positive light on the study. For
example. the effects of pipelining during the incremental merge are
not faithfully simulated. So. in fact, the effective parallelism may in
some cases be higher than what was reported.

Case Rulea Data

1 75 1690 6194

2 loo 2655 4150
3 75 2454 9717

4 150 3781 2%?4

5 150 2773 22613

6 150 3546 32sS2

7 100 3151 6976

8 75 3510 3554

9 50 1975 uta
10 75 3352 5013

Altli 1PE

367ln
2mll
2l2sn
3995n
2376/l
2743ll
306/l
107/l
530
11Wl

4PR

27w333
l3ml.45
12aI.41
3oal.32
1552US
lSO3/3S
209l.366
11410
50/o
11410

Table 2. Simulation Rslulta

18

9PE

1327/307
1067Lx
904l.245
179lY211
644l.437
149Y304
ll?z./.1S
w.l3
52/o
12W0

join quantity - An assumption is that the join quantity needs to be
high enough to justify the use of this architecture. In all of the
experiments. the actual hit ratio was still fairly low, approximately
15 per rule iiring. Even in the probable worst case study, the
number of hits was on the order of dozens per rule tiring. rather than
thousands. In real databases, a higher hit ratio will yield higher
effective parallelism.

5. Related Work
The= are two main strands of research related to our work. The first
area is the development and use of expert system tools which
mostly address language issues. ‘zhe second area is the study of
parallel architectures for production systems which mostly address
implementation and performance issues. These are described
immediately below.

5.1. Expert System Development Tools
?he axdemic research in knowledge based systems of the 1970’s
placed much emphasis on finding the “right” rule based interpreter.
Those systems typically employed one control strategy. one search
direction, one inference mechanism, and one representation formal-
ism. Early 1980’s efforts to create hybrid systems employed multi-
ple control strategies and representation formalisms (see
DOBR831.) The consensus was that no single approach was
sufficient, therefore an integrated appmach is best. Examples of
these tools include AltlJNFER841. Kee[INTELL86], and
Knowledge-Craft[CGI851.
These languages are much better suited to building expert database
systems than OF’S5 bemuse of their diversity. Although these tools
tend to have the right language primitives for building an expert
dambase system, they m not engineered to permit very huge dara-
bases. Admittedly, both Kee and KnowledgeCraft allow queries to
be submitted to a database. yet the basic operation of these tools is
still oriented towards management of a small number of objects.
Our work investigates a much tighter coupling.

5.2. Parallel Architectures for Rule Based Systems
Attempts to parallelize rule based systems have assumed that the
ratio of rules to data is high. As such, they have concentrated on
permitting large numbers of rules to run efficiently. In this section
we discuss production parallelism. Under this approach. processors
in a massively parallel system are allocated around pmductions. The
beat known work in this area is from Columbia University
([SHAW85 and STOLFO841). where there have been several dif-
ferent formulations and implementations of pnzxluction parallelism
on NON-VON and Dada. These implementations all have several
features in common:
(1) lXe system configuration is a MIMD based tree structured

machine consisting of many small PEs.
(2) The PEs use associative memories to support the join opera-

tion.
(3) The allocation of processors is based on rules rather than data.

This may mean allocating one node in the Rete network to a
FE. allocating one rule to a PE, or allocating several rules to a
PE. ‘Ihis is the distinguishing characteristic of production
parallelism as compared to data parallelism.

The different implementations were analyzed for performance on
six well known expert systems[GUPIX3]. The beat performance
achieved about 900 firings per second This approach of distributing
productions to processors, however, has a limited potential for
impNving perfoNulnce even in systems that are knowledge inten-
sive. This point was shown by Oflaxer in [OFLA841, who attributes

Proceedinns of the 13th VLDB Conference, Brighton 1987

it to the fact that in most production systems a production, when
fued, may only affect a small number of other productions (about 35
on the average).
For expert database systems. there are two problems with architec-
tures with the properties just described. First, at most 35 fairly sim-
ple processors may simultaneously process any one memory ele-
ment. In MOBY, as few as one production may be affected, yet a
large number of PEs are active in response: Second. the use of asso-
ciative memories is not feasible mainly because of size. Real sys-
tems may have lOO,CKlO instances stored at one memory node.
Hence, traditional database methods are necessary in thii situation.

6. Future Directions and Conclusion
There are several areas that we have not covered in our research that
are related to achieving bettez performance.
The algorithm for MOBY relies on a reasonably well balanced parti-
tioning. Although the algorithm attempts to prevent the storage of
an instance on the machine where it was derived, them is no adap-
tive approach for re-arranging data within a logical node that is
imbalanced. This type of adaptation may prevent degradation result-
ing from inappropriate partitioning.
Standard query optimization techniques for multiple joins attempt to
perform them in an order that involves the least amount of data first.
In the Rete network. the order of performing joins is based on the
clause ordering by the user. Already, MOBY detects the cross pro-
duct at compile time. The execution of the cross product may be
delayed or prevented if the system reotders the clauses. Aside from
this simple optimization, reconliguration of the network to reorder
joins is expensive. In short, the advantage of storing the results of
joins has a tradeoff if the quantity of data does not match expecta-
tions.
Conflict resolution is one of the defining components of a rule based
interpreter. The intent is to “resolve conflicts”. Unfortunately, in an
expert database system them may be many instantiations and thus
many conflicts. Large conflict sets may be difficult to manage and
incorrect behavior may result, In future research, we hope to find
some way of streamlining the conflict resolution process when it
becomes large.
Another area of future research combines functional and data paral-
lelism into one architecture. One problem with functional parallel-
ism is that all processor allocation is performed at compile time, i.e.,
it is static. Conversely, data parallelism mostly addresses runtime
characteristics of the system, i.e. it is dynamic. Based on work in
[GUPT84], a large percentage of condition elements in a system
cluster around a small percentage (< 30%) of relation types. Such
information can be obtained at compile time. There is other infor-
mation relating to intelligent allocation of processors that is available
at compile time.
We are currently implementing MOBY on a LAN consisting of nine
Symbolics workstations. Moving from simulation to the actual sys-
tem will provide a much better experimental environment. For
example, the high level requirements of the horizontal partitioning
scheme have been established, but a true evaluation will be easier
with a complete implementation.
We have seen that expert database systems have different charac-
teristics from dambase and expert systems. The computational
de.mands necessary to support intelligent database systems suggest
that a unipmcessor will not provide adequate performance. Further,
the inherent parallelism can not be exploited on a large mainframe.
The compilation methods for rule base systems may work very well
for join intensive systems. Combining these techniques into MOBY
has three main results:

Proceedings of the 13th VLDB Conference, Brighton 1987

(1)

(59

(3)

a communication overhead proportional to the numb of
instances that join.
a data throughput which permits the use of OPS5 style pmduc-
tion systems to operate on dat&ses which are far larger than
those previously built.
a speedup proportional to 40% of the number of processors for
reasonably balanced data.

Acknowledgements

We wish to thank Brigham Bell for discussing some ideas per-
taining to efficiency. Thanks also to Tom Rebman for work
on the b-tree implementation. Finally, thanks to Hal Eden for
providing a supportive computing enviromnent

IWNW

[BOBR83]

[BRODSS]

[CER183]

wxw

[FoRGY79]

[BROWN851

IcHRIST

[QUINSSI

[GwTI331

[GWIW

[HELD871

References

Bein, J. et al. FIES: Au Expert System for Handling
SpaceeraftHardwaN Failures. proceedings. Confer-
ence on Intelligent Systems and Machines, Roches-
ter, Michigan. 1984.
Bobrow. D.G.. and Steflk. ML.. The Loops Manual,
Xerox PARC, 1983.
Brcxlie, ML.. and Jarke, M. “On integrating logic
programming and databases” Pmceedings, Confer-
ence on Expert Database Systems. Columbia, S.C.,
1985.
Cm-i. S.. Navathe. S.. and Wiederhokl, G.. Distribu-
tion design of logical database schemas. IEEE Trau-
sactions of Software Engineering 9.4 (July 1983).
pp. 487-503.
Carnegie Group Incorporated, ICnowledge-Craft
Reference Manual, Carnegie Group Incorporated.
Pittsburgh, PA.. 1986
Forgy, CL. “On the Eflicient Implementation of
Production Systems”, Department of Computer Sci-
ence. CarnegieMellon University, Ph.d Thesis.
February 1979.
Brownston. L.. et al, Programming Expert Systems
in OPS5: An Introduction to Rule Based Program-
ming, Addison Wesley, 1985.
Christodoulakis, S., Implications of certain assump-
tions in database performance. ACM Transactions
on Ihtabas Systems 9.2 (June 1984). 163-186.
Quinlan. J., “A Comparative Analysis of Computer
Architectures far Production System Machines”.
Department of Computer and Electrical Engineer-
ing, Carnegie-Mellon University, internal report
CMU-CS-85-178. May 1985.
Gupta, A., and Forgy, C.. “Measurements on Pro-
duction Systems”, Department of Computer Science,
Camegle-Mellon University. internal report CMU-
CS-83-167. December 1983.
Gupta, A., “Implementing OPSS Production Sys-
tems on DADO”. Department of Computer Science,
Carnegie-Mellon University, internal report CMU-
CS-84-115, March 1984.
Held, J.P.. and Carlis, J.V., MATCH - A new high-
level relational operator for pattern matching, ACM
Communications 30.1 (January 1987). 62-74.

19

[INFER841

[INTELL

[JARKE84]

[KERSCH851

[KOWA83]

lMCDM80]

[MCDM82]

lMOTO81]

[OFLA84]

[OzKAFt861

[SACC851

[MAW851

[sToLFo84]

IUILMAN821

[zARRI841

Inference Corporation, ART Reference Manual,
Inference Corporation, Los Angeles, CA. 1985.
Intellicorp, KEE 3.0 Reference Manual, Intellicorp,
Mountain View, CA., 1986
Jarke, M. and Koch, J.. “Query Optimization in
Database Systems”, ACM Computing Surveys, June
1984.
Kerschberg, L., Second Conference on Expert Data-
base Systems, Charleston, South Carolina.
Kowalski, T. and Thomas, D., “The VLSI Design
Automation Assistant: Prototype System”, in:
Proceedings of the 20th Design Automation Confer-
ence, ACM and IEEE, (June 1983).
McDermott, J., “Rl: A Rule Based Configurer of
Computer Systems”, Department of Computer Sci-
ence, Carnegie-Mellon University, internal report
CMU-cs-80-I 19,198o.
McDermott. J.. “XSEL: A Computer Salesperson’s
Assistant”, In J.E. Hayes, D. Michie, and Y.H. Pao,
Machine Intelligence, Horwood. 1982.
Moto-oka, T., Fifth Generation Computer Systems,
North HollandPress, 1981.
Oflazer, R., Partitioning in Parallel Processing of
Production Systems, IEEE Proceedings, 1984.
Ozkaham, E.. Database Machines and Database
Management, Prentice-Hall Press, 1986.
Sacca, D. and Wiederhold, G., Database partitioning
in a cluster of processors ACM Transactions on
Database Systems 10,l (March 1985), pp. 29-56.
Shaw, DE. NON-VON’s Applicability to ‘Ibree AI
Task Areas. Proceedings of the IJCAI. 1985. pp.
61-72.
Stolfo. J.. Miranker, D., and Shaw, D. “DADG. A
Parallel Processor for Expert Systems”, in: Proceed-
ings of the 1984 International ConJerence on Paral-
lel Processing, IEEE and ACM. pp. 74-82,1984.
Ullman, J.D., Principles of Database Systems, Com-
puter Science Press, 1982.
Zarri, G.P., Constructing and utilizing large fact
databases utilizing artificial intelligence techniques,
proceedings of the Fit Intemation Workshop on
Expert Dambase Systems, Columbia. S.C.. 1984.

Appendix - OPS5, Productiuus Systems
The objective in this appendix is to introduce definitions and nota-
tion pertaining to production systems, in general, and OPS5.
specifically. OPS5 is a production system, which is a programming
language consisting of three parts:

1. A working memory which is a global database of facts
called working memory elements.

2. A production memory containing production rules that
encode expert knowledge.

3. An interpreter that applies the rules to working memory
in solving a problem.

A rule in production memory has a name, an if portion (also called
the condition), and a then portion (also cakd the action.) The con-
dition portion has condition elements which match or query the

wm.1 = (employee NAME Joe Jones DEPT accounting SALARY 26500)
t-m13 = (employae NAME Fred Btee DEPT accounting SALARY 25500)
wm.5 = (department NAME eccoonting BUDGET 500100)
wm.6 = (dep8rtment NAME qteratioaw BUDGET 23000)
wm.7 = (BoaI OBJJXT raise-salary PERSON Joe Jones STATUS active)
mat.8 = (goal OBJECT r&e-salary PERSON Fred Blee STATUS active)

Figure 8 - The Database

employee: NAME DEPARTMENT SALARY
department: NAME BUDGET
goal: OBJRCl’ PERSON STATUS

Figure 9 - Data Delinitions

dambase. A condition element may contain variables or constants
as shown in both rules in Figure 1. Variables are surrounded by “c”
and “>” to distinguish them from constants.
The rules from Figure 1 might be used to suggest raises for employ-
ees in the accoming and engineering departments. Rule
suggest_accountant_raise determines employees in the accounting
department who are eligible for a raise. and also earn less than
$27000. It will report the names of such employees on the terminal.
We illustrate the matching of rule suggest_accountan_raise to the
dambase from Figure 8. The 6rst condition element is a selection of
any goal data type whose object is raise-salary and whose status is
active, thus it matches Wm.7 and wm.8 The second condition ele-
ment selects any ~untant whose salary is less than $27ooO, thus it
matches wm.1 and wm.2. To instantiate the rule, the data which
matches each condition element must meet the criteria necessary for
a join: the variable a~ must be the same. We call this a consistent
binding. In our small example, Wm.1 and Wm.7 form consistent
bindings, as well as wm.2 and wm.8. Other algebraic constraints
may be placed between bindings, such as <, >, c=, etc.
The interpreter applies these rules in a three step phase, collectively
called the recognize-m cycle. The tirst part of the cycle matches
the rules to the dambase and finds consistent bindings. Each set of
instancea that match and bind consistently to a condition is called an
instantiation of that rule. The conflict set is the set of instantiations
output from the match cycle. Next, the confict resolution phase
chooses one rule l?om the conflict set. Finally the act phase, applies
the action of the chosen rule. Each part of the action may modify,
remove, or add new working memory elements.

20
Promdings of the 13th VLDB Conference, Brighton 1987

