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ABSTRACT

In this paper, we consider MOBY, a distributed architecture to sup-
port the development of expert database systems in a rule based
language. It combines standard indexing and horizontal data parti-
tioning techniques with a rule based interpreter to achieve the rea-
sonable performance. The major difficulty in developing this archi-
tecture is to maintain a high effective parallelism as the number of
processors increases. Analytic results suggest that when data is rea-
sonably well balanced across a local arca network, MOBY has a
high effective parallelism. Simulation results support this claim by
showing that the effective parallelism is proportional to 40% of the
number of processors. A discussion of some crucial issues in our
current network based implementation is also given.

1. Introduction

Recent interest in expert database systems has stimulated research
that combines techniques from artificial intelligence and database
management systems(sce [KERSCHB8S]). One branch of this
research attempts to address the issue of handling large amounts of
data in a rule based system ([BROD8S5, MOTOS81, ZARRI84]). The
problem is that traditional database query languages are restricted in
the range of expression necessary for intelligent
reasoning[HELD87]. Rule based systems, on the other hand, have
historically been limited to handling small amounts of data because
of their core memory orientation.

While there are many high level language issues concerning rule
based systems, our approach in this paper is to assume that they are a
close approximation to the type of language needed for writing an

expert database system !,
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This assumption is based on the combined power of the pattern
matching primitives for database operations and the coatrol con-
structs necessary for problem solving. Another assumption is that
the requisite speed in a rule based system will not come from either
the standard linear speedup obtained every few years in uniproces-
sors nor will a specialized uniprocessor suffice(QUINSS]. A final
assumption is that associative memories are not yet cost effective to
allow large systems.

Given these assumptions, our objective is twofold. First, we seek to
apply standard database techniques to the management of large
volumes of data in an expert database system. Second, we seek to
map a rule based system and its data onto a local area
network(LAN) architecture. The mapping we choose places a copy
of the rule base on each processing element (PE) of the network.
Execution proceeds concurrently on each PE. Intermediate results
from execution are kept on PEs according to a horizontal partition-
ing scheme(see [SACC85, CERI83]). This mapping is a form of
data parallelism[OZKAR86] where data is partitioned across proces-
sors. In functional paraliclism [SHAWSS5], procedures or rules are
partitioned across processors. Functional parallelism addresses high
rules to data ratios. In contrast, data parallelism addresses high data
to rules ratios. '

MORBY is derived from OPSS[FORGY79] which has been the
implementation language for several notable expert systems(e.g.
[MCDMB80 and KOWAS83]) as well as the basis for study in parallel-
izing production systems[GUPT83, SHAWSS]. Its efficiency, rela-
tive to other production systems, is derived from two sources. First,
only a small fraction of the database is updated when a rule fires,
thus the system can reduce much of the overhead in database lookup
by remembering the state from one rule firing to the next. Second,
queries in the different rules are frequently similar; hence, tech-
niques analogous to multiple query processing[JARKE84] may be
applied at rule compilation time to reduce the cost of redundant
queries. The net effect of this technique is to save the results of pre-
vious joins. When a new tuple is inserted in a relation, as the result
of a rule firing, any joins previously performed with this relation are
incrementally updated. Until recently, these techniques have only
been applied to databases operating in memory using linear search
or hashing,

Notice that in the process of performing one incremental join, each
newly joined tuple may be incrementally joined with the results from
other previous incremental joins. Thus, several joins may be per-
formed simultaneously at different parts of the LAN. Much work
has been devoted to optimizing the execution of joins in a distributed
environment(see [OZKARS86].) Our primary task is to exploit the
potential for concurrency in a rule based context. Analytic results
suggest large performance gains occur when indexing techniques
and horizontal partitioning are combined with an incremental join
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strategy. The main result of this paper is derived from a simulation
of MOBY which shows that an incremental approach may be used
effectively in join intensive rule based applications. When data is
reasonably well balanced across the network, the rate of effective
parallelism is proportional to 40% of the number of processors.

The next section includes background on the compilation of rules
into a Rete network. This dataflow network reduces the overhead of
database lookup and minimizes the cost of redundant queries. Sec-
tion III provides an in depth coverage of an algorithm which drives
the data parallel architecture of MOBY. Section IV covers a formal
analysis and simulation results. Section V covers related work in
database and expert system research. The last section looks at some
additional research issues and conclusions of this study. An appen-
dix with background on production systems is also provided.

2. The Rete Network

The objective in this section is to provide background on the opera-
tion of the Rete network as presented in [FORGY79)]. The terminol-
ogy has been recast from production system terms into database
terms where possible. Readers unfamiliar with the use of production
systems and OPSS may turn to the appendix, although a broader dis-
cussion of production systems is in [BROWNSS). The focus here is
on the compilation of production rules. Before considering the com-
pilation strategy, it is important to note that these strategies were
designed for in memory databases. From an artificial intelligence
standpoint, "database" refers to a collection of facts, not a method of
storage management.

The Rete network is the result of compiling a set of productions
similar to the parse trees generated in database queries. Informally,
we will see that, any condition element implies a relational selection.
A join is expressed by using the same variable in more than one con-
dition element.

In the recognize-act cycle, the recognize part dominates the process-

ing time. In a naive scheme for pattern matching, on each cycle, all

instances are matched against each condition element in each rule.

The naive scheme is clearly prohibitive for large databases. The

Rete algorithm was designed for efficient matching of a production

by taking advantage of two characteristics of the database:

(1) temporal redundancy - A large percentage (more than 90%) of
the database remains unchanged from one cycle to the next,
hence query efforts can be saved. Most conventional data-
bases have this characteristic too; e.g. an employee’s salary
will not change frequently 2.

(2) pattern similarity - Condition elements from different rules
have a large amount of overlap, hence the matching of these
can be performed simulitaneousty.

Figure 2 contains an annotated abstraction of the Rete network
resulting from the compilation of our sample productions. It has two

parts:

(1) A selection network which selects instances from the database
according to a condition element and stores the result.

(2) A join network which joins the outputs from the selection net-
work such that variable bindings are consistent. The results of
the join are stored.

Even though the rules contain a total of four condition elements,
they result in two main branches in the selection network: one for
each data type. Because the first condition element from each rule is

2 Conversely, for data that is changing in real time, as considered in [BEIN84],
this technique will not suffice.
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(p suggest_accountant_raise
(goal OBJECT raise-salary PERSON <n> STATUS active)
; Select an active goal instance for raising a salary
(employee NAME <n> SALARY {<salary> | <salary> < 27000}
; Select an employee instance whose earns less than $27000
DEPARTMENT accounting) ; who is an accountant
-l

(write (crif) Accountant <n> needs a raise.))

(p suggest_engineer_raise

(goal OBJECT raise-salary PERSON «<n> STATUS active)
3 Select an active goal instance for raising a salary

(employee NAME <n> SALARY {<salary> | <salary> = 35000}
; Select an employee instance who earns $35000
DEPARTMENT engineering) ; who is an engineer

>

(write (crif) Engineer <n> needs a raise.))

Figure 1 - Example of Production Rules
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Figure 2 - The Rete Network

similar (in fact identical) the matching in the selection network may
be shared. At the bottom of the selection network are a-mem nodes
for storing tuples that have met the selection criteria. The a-mem
nodes are the first place in the join network where the system takes
advantage of temporal redundancy. Once an instance matches, it
remains in an a-mem node until it is removed or altered.

In the join network, tuples whose variable bindings combine suc-
cessfully with other tuples are stored. The nodes in this part of the
network have two inputs: a left input and a right input. When a tple
arrives at either side, an attempt is made to join it with the tples on
the opposite side. Tuples that have been joined in this fashion are
stored in b-mem nodes and may be combined with other a-mem
nodes. This method of storing data in the b-mem nodes is the other
way to take advantage of temporal redundancy: previously per-
formed joins do not need to be recomputed. In Figure 2 there arc
two b-mem nodes in the join network. When the output from these
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nodes arrives at the bottom of the network, a production is instan-
tiated.

In summary, a production system has a fact database. The a-mem
nodes stores selections performed on the database. The b-mem
nodes stores joins. From herein, the term database will refer to data
stored on disk.

3. Architecture and Algorithm

In this section we describe an algorithm to execute selections and
joins in MOBY. The hardware configuration is described, followed
by various parts of the algorithm expressed in pseudo-code.

3.1. Configuration

MOBY uses a LAN which consists of a control unit (CU) connected
to a set of processing elements(PEs). The CU is responsible for the
control of the recognize-act cycle, including synchronizing and han-
dling communication between the PEs. Each PE has a local pri-
mary and secondary memory. The primary memory of each PE is
initialized with a copy of the Rete network which encodes the
rulebase. Portions of the database are placed in the memory
nodes(a-mem and b-mem) of each PE. Also, each PE has a buffer to
receive command messages from the CU.

This high level description has one very important requirement: the
CU must be sufficiently powerful and the network sufficiently fast to
guarantec that a PE rarely waits for a message. While precise
requirements for other hardware components are still being deter-
mined, we do not anticipate the need for specialized hardware.
Confidence in this estimate stems from a simulation on a powerful,
but conventional workstation. A network of similarly configured sys-
tems should suffice. Also, the I/O requirements are moderate. For
example, the formal analysis(below) is geared towards a disk with a
total seck time of 10 msec.

To facilitate discussion, we make a distinction between a logical
node in the network and an actual node in the network: conceptually,
a logical node contains a whole relation, whereas an actual node
contains a horizontal fragment of that relation. Thus, for each logi-
cal node, the number of actual nodes is the same as the number of
PEs. The algorithm to perform distributed queries uses a horizontal
data partitioning scheme. It attempts to store data with similar key
values on the same actual node. The objective in partitioning is to
balance the processing load. It is possible, though, that an actual
node has no data either because their is not much data in the logical
node or because the horizontal partitioning did not work well.

3.2. Control Unit Operation

During the act portion of the recognize-act cycle, the CU has the role
of ensuring proper synchronization between actions and determin-
ing how to partition relations across the PEs. The partitioning
occurs when messages are sent to the CU containing a recently
joined (or selected), but not yet stored instance. The CU uses hor-
izontal partitioning techniques to determine which PEs should get a
copy of the instance and then sends a message to those PEs. Mes-
sages in this algorithm consist of a sender, receiver, node-number,
and instance, The node-number is the logical node where this
instance is to be stored. Because the CU does not require an ack-
nowledgement from the receiver of the message, execution may con-
tinue after it sends the message. In the process of executing one
message from the buffer, other messages may be written to the end
of the CU buffer. The next action may not occur until all PEs are
finished sending messages. This is determined by a timeout from
each PE indicating that it has no more messages to send or process.
This constraint is imposed to guarantee the correct serialization of
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actions in OPSS5. 3 The algorithm for the act part of the recognize-act
cycle is illustrated in Figure 3.

3.3. Processing Element Operation

The main task for each PE is to incrementally join an instance sent
in a message from the CU. The execution consists of mapping the
logical node contained in the message to an actual node on the
machine. Once the mapping has occurred, a call is made to join the
instance with existing instances on the node.

A PE must wait until each incremental join has completed before
starting on the next message. In theory, this constraint could be
relaxed and we could allow a multiprogramming or multiprocessing
approach. Under the multiprogramming approach, the execution of .
incremental joins would be scheduled by the PE to maximize the
consistent and frequent output of newly joined tuples. In turn, these
tuples are fed to other PEs executing an incremental join. The exact
potential of this tactic as it applies here is undetermined.

3.4. Storage Node Operation

Each storage node is implemented with a separate b-tree to contain
the instances. An incremental join is invoked by executing a mes-
sage that first stores a new instance in the b-tree for the node. Then
the new instance is joined with instances from the opposite node.

procedure execute-actions(CU, actions)
control-unit CU;
list of action actions;
while actions do
begin
execute(action, random(CU.PEs));
*/execute the action on an arbitrarily chosen PE®/
while CUbuffer do
*/continue message passing until the buffer is empty/*
begin
message := pop(CU.buffer);
*/remove the first message in the buffer/*
receivers := horizontal-partiion(message);
*/determine which machines will store the data/*
for receiver in recelvers do send(message, receiver);
*/send a message to be executed by each recelver/*
‘end
end
Figure 3 - Contral Unit Algorithm

procedure execute-messages(PE)
processor-element PE;
begin
while PE.messages do
begin
message := pop(PE.buffer);
*/remove the first inessage in the buffer/*
instance := message.instance(message);
*/extract the instance from that message/*
node := logical-to-actual-node(message);
*/get the actual node corresponding to the logical node/*
incremental-join(instance, node);
*/execute the incremental join/*
end
end
Figure 4 - Processor Element Algorithm

3 Actually, if a set of actions contains only insertions, then they may all be exe-
cuted at once.
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Each old instance that successfully joins with the new instance is
sent immediately to the CU to determine its appropriate location.
Clearly, it is possible to include more than one new instance with
each message to be sent to the CU. We chose this minimal packet
size to simplify the study.

Instances in this algorithm are indexed according to the variables
that are being joined. In our example from Figure 2, the data from
one side is indexed on the PERSON attribute; data from the other
side is indexed according to the NAME attribute. Notice that this
choice of key values for indexing in a node is defined by the rule,
not by key fields of the relation type. The key fields for a given type
as defined by the administrator may or may not overlap with their
use in rules. The data is stored in each actual node as a separate b-
tree. This storage is optimized to permit efficient retrieval of multi-
ple instances per key value since that is the normal case.

3.5. Subtleties in the Algorithm

The quality of the horizontal partitioning is extremely important in
this algorithm. In situations where the distribution is uneven, perfor-
mance will suffer. Also, the horizontal partitioning strategy should
maximize the likelihood that the output of an incremental join will
not be be stored on the PE where it was derived. When this can be
achieved, a greater degree of concurrency across the PEs will result
because a receiving PE can process this new instance while the
corresponding sending PE finishes its current work. This pipelining
effect is a crucial property of the algorithm. The ultimate success of
the horizontal partitioning function is data dependent, as such, the
objective of reasonable balance cannot always be met. As men-
tioned above, this pipeline requires a sufficiently fast CU and net-
work to guarantee that PEs do not wait long.

Programmer oversight or carelessness is another situation the parti-
tioning must handle. For example, in the production below(Figure
6), although each condition element has one variable, it is not a com-
mon variable. This amounts to a join with zero variables, i.e. the
cross product. This circumstance may be detected at compile time,
The system responds to this situation by copying each instance to
several actual nodes instead of one. The actual nodes are chosen to

procedure incremental-Join (new-instance, node)
storage-node node;
begin
store-instance(new-jnstance, node);
instance new-instance;
memory-node node;
*/insert the new instance into the b-tree for this node/*
key := key(new-instance);
old-instances :=

lookup(key, opposite-node(node));

%/from the opposite storage node,

get all the instances that join with the key/*

for old-instance in old-instances send(join(instance, old-instance), CU);

*/combine each old-Instance with the new-instance

23 a message to the control unit/*
end

Figure 5 - Incremental Join

(p cross-product
(type-1 "ATT-1 <var-1>)
; select instances of type-1 and form a binding for the first attribute
(type-2 "ATT-2 <var-2>)
; select instances of type-2 and form a binding for the second attribute
>
Figure 6 - A Cross Product
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guarantee that each instance from both relations will combine
exactly once. The efficiency of this operation is discussed in the
next section.

4. Analysis and Simulation Results

In this section we consider a formal analysis of MOBY. The formal
analysis covers a best, average, worst, and probable worst case
scenario. These scenarios are classified by their performance on the
incremental join, but analyzed for the rate of effective parallelism.
Following the analysis, simulation results for an entire system are
presented. These results are mapped onto the more granular predic-
tions from the formal analysis and reviewed for discrepancies.
Interpetation of this data suggests that the architecture we have
developed needs a sufficiently high number of joins to exploit poten-
tial concurrency.

4.1, Formal Analysis

The analysis of a data flow network is difficult because it is highly
data dependent. Also, the analysis of distributed systems is difficult
when the level of synchronization is low. In this section we make
some simplifying assumptions to permit analysis. While much data-
base research may overemphasize worst case analyses|CHRIST84],
this analysis may be faulted for focusing too much on the average
case. In defense, there are adaptive components to the algorithm
which do tend towards the average case. First, we present the
analysis and then give an example of the expected performance.

The analysis is oriented to reflect the quantity of tuples that success-
fully join in any actual node. Within that dimension, the objective is
to optimize processing at an actnal node. The cost of processing at
that node is measured mostly by disk access time, although the
amount of communication is quantified. The parameters for our
analysis are described below:

R - The cost of retrieving a tuple from the disk. Even though
the tuple may already be in memory as a result of cacheing,
for the analysis we assume it is on disk.

M; - The number of instances at a logical node i,

m;; - The number of instances at actual node i on processor j.
k - The size of an index node in a b-tree.

¢ - The size of an data block in a b-tree,

H; - The number of instances resulting from a join or the
number of "hits" at logical node i.

h;j - The number of instances resulting from a join or the
number of "hits" at the actual node corresponding to logical
node i on processor j.

D; - The number of possible values of a domain for the attri-
bute being joined at logical node i.

n - The number of PEs in the LAN.

The time to lookup a set of instances that have a given key value is
based on the standard b-tree lookup analysis [ULLMANS2]. Using
the parameters from above, the time is proportional to (log:
(mij/e))*R. Because additional instances are stored contiguously in
our b-tree implementation, the time is given by (log: (mij/e) +
hijfey*R. The cost of the incremental join will be reflected indirectly
by Hsubi. H; does not measure the time spent at one actual node,
rather, it measures how much work this node creates for the rest of
the system. Given these parameters there are four cases to analyze.

4.1.1. Case 1 - Best Case

The best case time for this algorithm is when h = 0. Then the cost is
only proportional to the lookup time and nothing else. However, this
results in low processor utilization and therefore zero effective

parallelism.
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4.1.2, Case 2 - Probable Worst Case

Informally, one can see that when h is large, system performance
may suffer. Specifically, when h = m each instance from one rela-
tion joins with every instance from the other. This occurs when, as
discussed above, lack of a common variable in condition elements
results in a cross product. However, MOBY recognizes this and par-
titions data so that each node contains an amount of data propor-
tional to Vn . This is the probable worst case because it arises in
practice for intentional or unintentional reasons.

4.1.3. Case 3 - Worst Case

Other cases occur where a rule does not appear to result in a cross
product. The condition elements have a common variable in this
situation, but, coincidentally each instance from one relation joins
with all instances in the other relation. Under this circumstance
where h = m, one machine would end up performing the entire join
for a given relation instead of distributing the work across the
machines in the network. This situation cannot be detected at com-
pile time. Degradation will result in performance proportional to
execution in a uniprocessor environment. Intuitively, it seems
unlikely that a large set of instances would all have the same key
value. Hence, the previous case is considered the probable worst
case.

4.14. Case 4 - Improbable Average Case

The value of h we use for the average case is hs for simplistic h. For
an arbitrary node i, As;; = m;; /(n * D;). This value for h assumes an
even distribution of the values of a domain across the instances. For
each additional field that is joined, hs;; is divided by a number simi-
lar to D;. This case is improbable because domain values may not
be uniformly distributed and partitioning may not be even. This
case is included to provide a sense about performance under the
maximum effective parallelism.

As with many synchronized distributed algorithms, time is propor-
tional to the slowest element. In our algorithm, the unit of synchron-
ization is an action (as opposed to the recognize-act cycle). There-
fore, the time to execute an update is also proportional to the speed
of the slowest PE. When data is appropriately balanced the distribu-
tion for the domain of each attribute is uniform, each PE has a nearly
uniform execution time so that the overall speed is proportional to
the number of PEs. Table 1 summarizes the analytic results for a
possible configuration. The configuration varies the number of PEs
while using the following constants; R = 10msec, M; = 100,000,k =
127, e = 10, HS; = 2,500.

As the number of processors increases, the initial descent during
lookup starts to dominate the cost of the join. In effect, the cost of
looking up multiple instances is spread across the PEs. Conse-
quently, the number of processors should be adjusted so that lookup
time does not dominate retrieval and so that the total time to join is
less than some requisite constant. These numbers are indicative of
very high performance and would permit the use of much larger
expert database systems than currently exist.

PEs Lookup Retrieval Total
1 15 2500 2515

5 15 500 515
10 15 250 265
100 15 25 35

Table 1 - Predicted Times
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Contrary to expectation, the approach used in MOBY does not
necessarily tradeoff performance for storage space. An approach
which uses pointers on disk may be combined with a lazy evaluation
scheme, Under this approach, unique identifiers are assigned to each
working memory element. The output of selections and joins stores
only the unique identifiers of these working memory elements.
When particular attribute values are needed, the actual working
memory element is dereferenced. This scheme is currently under
implementation.

4.2. Simulation

The logical simulation we implemented was conducted to determine
the effective parallelism of the distributed incremental merge. It
involved a modified OPSS interpreter with 3000 lines of Lisp source
code for the simulation. No attempt was made to determine com-
munication costs. Work was performed on a Symbolics 3640, using
a Winchester 167.5 megabyte disk drive, with 4 megabytes of main
memory. Processes on the machine were minimized to prevent
undue interaction with the paging system. For realism, garbage col-
lection was tumed on during our simulation although it is less
efficient. Finally, only insertions were used instead of deletions or
updates.

We developed an implementation of a b-tree algorithm on the Sym-
bolics to demonstrate efficient retrieval, however, it was not incor-
porated into the simulation. As such, the simulation reflects sequen-
tial search in performing joins. ’

4.2.1. Simulation of Case 3 - Probable Worst Case

The first set of experiments used a rule(Figure 7) that resulted in the
probable worst case. The salient feature of this example is that the
condition elements have no common variable. Also, the action is
guaranteed to create new instances that join with existing instances.
In the experiment, most data was generated by a program. This rule
results in a large amount of incremental joins. The times in msec
obtained for one, four, and nine processors were 225, 139, and 81
respectively. The effective parallelism for four processors was 404,
For nine processors, the effective parallelism was .303. We use this
probable worst case to show that a reasonably high effective paral-
lelism can be obtained when there is sufficient join potential. For a
given set of data, there is definitely a point beyond which additional
processors are not useful. The decrease in effective parallelism from
four to nine processors reflects that trend.

4.2.2. Simulation of Case 4 - Improbable Average Case

The second set of experiments used software to generate all rules
and data. The parameters to the system allowed us to configure dif-
ferent rule bases. They varied by the number of rules, the grain size
of each rule, the amount of data, and the probable number of hits.

(@RI
(type-1 “ATT1 <var-1> "ATT2 <var-2>)
; Select instances of type-1 and form bindings for the Ist and 2nd attribute.
(type-2 "ATTI1 <var-3> "ATT2 <var-&> "ATT3 9)
; Select instances of type-2 and form bindings for the 1st and 2nd attribute.
; The third attribute must be 9.
->

(make type-1 “ATT1 (compute 1 + <var-1>) "ATT2 <var-2>)
; insert a new type-1 instance
(make type-2 “"ATT1 <var-2> “ATT2 (compute 1 + <var-1>) "ATT3 9))
; insert a new type-2 instance
Figure 7 - Rule for Probable Worst Case Scenario
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The distribution of domain values for various attributes and the vari-
ation of data were nearly uniform. In contrast, the rules were not
generated to be as homogeneous. The configurations that were used
varied between 50-150 rules, 5-8 relation types, and 500-5000
instances. The number of instances was kept small because of the
high cost of simulation. Most of the simulations ran for exactly 500
rule firing cycles.

Table 2 summarizes the results we obtained. The times and effec-
tive parallelism were shown for one, four, and nine processors. The
major conclusion to draw is that the a requisite join potential is a
necessary condition for obtaining reasonable effective parallelism.
The last three examples support this claim: there were very few hits
and there was virtually no speedup. Under the right circumstances,
this algorithm can obtain an effective parallelism proportional to 4
of the number of processors. This speedup does appear to data
dependent.

4.2.3. Optimism and Pessimism in the Method

In this subsection, a critique of the experimental method is given.
The critique covers aspects of the method which will make the simu-
lation results look more optimistic as well as pessimistic.

communication overhead - Certainly, in a system implemented on a
LAN, communication is an issue. However, in the data that we have
observed, only 40,000 messages were sent in the worst case over a
one-hour period. Further, the size of the messages is the size of an
instance as opposed to the size of a large file. In the future, packets
larger than an instance may be sent over the network, correspond-
ingly, the number of packets will decrease. This is perhaps the
weakest link of the study.

data quantity - The largest quantity of data used in this study was
5000 instances. Yet, the stated objectives of this study are to work
with a much larger database. Moving to a full implementation on
the network will allow more realistic databases.

unrealistic data - For this study, it is not clear what realistic data is.
As yet, nobody has built an expert database system in OPS5. The
most notable examples of OPSS usage have a large number of rules
and a small amount of data, so they do not provide a suitable testbed.
The data was generated to exemplify reasonable variation and distri-
bution according to adjustable parameters.

simulation - Although the simulation provided useful data, the level
of granularity does not permit observation of some important
interactions that will shed more positive light on the study. For
example, the effects of pipelining during the incremental merge are
not faithfully simulated. So, in fact, the effective parallelism may in
some cases be higher than what was reported.

Case Rules Data Hits 1PE 4PE 9PE
1 75 1690 6194 36711 2756/333 1327/307
2 100 2655 4150 2512/1 1387/45 1067/26
3 75 2454 9717 21251 1268/41 904/.26
4 150 3781 25584  3995/1 3042/32 1790/211
5 150 2773 22613 23761 1552/38 644/.437
6 150 3546 32582 274311 1803/38 1491/204
7 100 3151 6976  306/1 209/.366 182/.18
8 75 3510 3554 1071 1140 86.13
9 50 1975 2418 531 50/0 52/0

10 75 3352 5013 11011 1140 120/0

Table 2 - Simulation Results
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Jjoin quantity - An assumption is that the join quantity needs to be
high enough to justify the use of this architecture. In all of the
experiments, the actual hit ratio was still fairly low, approximately
15 per rule firing. Even in the probable worst case study, the
number of hits was on the order of dozens per rule firing, rather than
thousands. In real databases, a higher hit ratio will yield higher
effective parallelism.

5. Related Work

There are two main strands of research related to our work. The first
area is the development and use of expert system tools which
mostly address language issues. The second area is the study of
parallel architectures for production systems which mostly address
implementation and performance issues. These are described
immediately below.

5.1, Expert System Development Tools

The academic research in knowledge based systems of the 1970’s
placed much emphasis on finding the "right" rule based interpreter.
Those systems typically employed one control strategy, one search
direction, one inference mechanism, and one representation formal-
ism. Early 1980°s efforts to create hybrid systems employed multi-
ple control strategies and representation formalisms (see
[BOBR83].) The consensus was that no single approach was
sufficient, therefore an integrated approach is best. Examples of
these tools include Art{INFER84], Kee[INTELL86], and
Knowledge-Craft[CGI8S5).

These languages are much better suited to building expert database
systems than OPSS because of their diversity. Although these tools
tend to have the right language primitives for building an expert
database system, they are not engineered to permit very large data-
bases. Admittedly, both Kee and Knowledge-Craft allow queries to
be submitted to a database, yet the basic operation of these tools is
still oriented towards management of a small number of objects.
Our work investigates a much tighter coupling.

5.2. Parallel Architectures for Rule Based Systems

Attempts to parallelize rule based systems have assumed that the
ratio of rules to data is high. As such, they have concentrated on
permitting large numbers of rules to run efficiently. In this section
we discuss production parallelism. Under this approach, processors
in a massively parallel system are allocated around productions. The
best known work in this area is from Columbia University
([SHAWS85 and STOLFO84]), where there have been several dif-
ferent formulations and implementations of production parallelism
on NON-VON and Dado. These implementations all have several
features in common:

(1) The system configuration is a MIMD based tree structured
machine consisting of many small PEs.

(2) ‘The PEs use associative memories to support the join opera-
tion.

(3) The allocation of processors is based on rules rather than data,

This may mean allocating one node in the Rete network to a
PE, allocating one rule to a PE, or allocating several rules (o a
PE. This is the distinguishing characteristic of production
parallelism as compared to data parallelism.
The different implementations were analyzed for performance on
six well known expert systems[GUPT83]. The best performance
achieved about 900 firings per second. This approach of distributing
productions to processors, however, has a limited potential for
improving performance even in systems that are knowledge inten-
sive. This point was shown by Oflazer in [OFLA84], who attributes
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it to the fact that in most production systems a production, when
fired, may only affect a small number of other productions (about 35
on the average).

For expert database systems, there are two problems with architec-
tures with the properties just described. First, at most 35 fairly sim-
ple processors may simultaneously process any one memory ele-
ment. In MOBY, as few as one production may be affected, yet a
large number of PEs are active in response. Second, the use of asso-
ciative memories is not feasible mainly because of size. Real sys-
tems may have 100,000 instances stored at one memory node.
Hence, traditional database methods are necessary in this situation.

6. Future Directions and Conclusion

There are several areas that we have not covered in our research that
are related to achieving better performance,

The algorithm for MOBY relies on a reasonably well balanced parti-
tioning. Although the algorithm attempts to prevent the storage of
an instance on the machine where it was derived, there is no adap-
tive approach for re-arranging data within a logical node that is
imbalanced. This type of adaptation may prevent degradation result-
ing from inappropriate partitioning,

Standard query optimization techniques for multiple joins attempt to
perform them in an order that involves the least amount of data first.
In the Rete network, the order of performing joins is based on the
clause ordering by the user. Already, MOBY detects the cross pro-
duct at compile time. The execution of the cross product may be
delayed or prevented if the system reorders the clauses. Aside from
this simple optimization, reconfiguration of the network to reorder
joins is expensive. In short, the advantage of storing the results of
joins has a tradeoff if the quantity of data does not match expecta-
tions.

Conflict resolution is one of the defining components of a rule based
interpreter. The intent is to "resolve conflicts”. Unfortunately, in an
expert database system there may be many instantiations and thus
many conflicts. Large conflict sets may be difficult to manage and
incorrect behavior may result. In future research, we hope to find
some way of streamlining the conflict resolution process when it
becomes large.

Another area of future research combines functional and data paral-
lelism into one architecture. One problem with functional parallel-
ism is that all processor allocation is performed at compile time, i.e.,
it is static. Conversely, data parallelism mostly addresses runtime
characteristics of the system, i.e. it is dynamic. Based on work in
[GUPT84], a large percentage of condition elements in a system
cluster around a small percentage (< 30%) of relation types. Such
information can be obtained at compile time, There is other infor-
mation relating to intelligent allocation of processors that is available
at compile time.

We are currently implementing MOBY on a LAN consisting of nine
Symbolics workstations. Moving from simulation to the actual sys-
tem will provide a much better experimental environment. For
example, the high level requirements of the horizontal partitioning
scheme have been established, but a true evaluation will be easier
with a complete implementation.

We have seen that expert database systems have different charac-
teristics from database and expert systems. The computational
demands necessary to support intelligent database systems suggest
that a uniprocessor will not provide adequate performance. Further,
the inherent parallelism can not be exploited on a large mainframe.
The compilation methods for rule base systems may work very well
for join intensive systems. Combining these techniques into MOBY
has three main results:
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(1) a communication overhead proportional to the number of
instances that join.

(2)  adata throughput which permits the use of OPSS5 style produc-
tion systems to operate on databases which are far larger than
those previously built.

(3) a speedup proportional to 40% of the number of processors for
reasonably balanced data.
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Appendix - OPS5, Productions Systems

The objective in this appendix is to introduce definitions and nota-
tion pertaining to production systems, in general, and OPSS,
specifically. OPSS is a production system, which is a programming
language consisting of three parts:

1. A working memory which is a global database of facts
called working memory elements.

2. A production memory containing production rules that
encode expert knowledge.

3. An interpreter that applies the rules to working memory
in solving a problem.

A rule in production memory has a name, an if portion (also called
the condition), and a then portion (also called the action.) The con-
dition portion has condition elements which match or query the
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wm.1 = (employee NAME Joe Jones DEPT accounting SALARY 26500)

wm.2 = (employee NAME Fred Blee DEPT accounting SALARY 25500)

wim.5 = (department NAME accounting BUDGET 500100)

wm.6 = (department NAME operations BUDGET 250000)

wm.7 = (goal OBJECT raise-salary PERSON Joe Jones STATUS active)
wim.8 = (goal OBJECT raise-salary PERSON Fred Blee STATUS active)

Figure 8 - The Database

employee: NAME DEPARTMENT SALARY
department: NAME BUDGET
goal: OBJECT PERSON STATUS

Figure 9 - Data Definitions

database. A condition element may contain variables or constants
as shown in both rules in Figure 1. Variables are surrounded by "<"
and ">" to distinguish them from constants.

The rules from Figure 1 might be used to suggest raises for employ-
ees in the accounting and engineering departments. Rule
suggest_accountant_raise determines employees in the accounting
department who are eligible for a raise, and also eam less than
$27000. It will report the names of such employees on the terminal.

We illustrate the matching of rule suggest_accountant_raise to the
database from Figure 8. The first condition element is a selection of
any goal data type whose object is raise-salary and whose status is
active, thus it matches wm.7 and wm.8 The second condition ele-
ment selects any accountant whose salary is less than $27000; thus it
matches wm.1 and wm.2. To instantiate the rule, the data which
matches each condition element must meet the criteria necessary for
a join: the variable <n> must be the same. We call this a consistent
binding. In our small example, wm.1 and wm.7 form consistent
bindings, as well as wm.2 and wm.8. Other algebraic constraints
may be placed between bindings, such as <, >, <=, etc.

The interpreter applies these rules in a three step phase, collectively
called the recognize-act cycle. The first part of the cycle matches
the rules to the database and finds consistent bindings. Each set of
instances that match and bind consistently to a condition is called an
instantiation of that rule. The conflict set is the set of instantiations
output from the match cycle. Next, the conflict resolution phasc
chooses one rule from the conflict set. Finally the act phase, applies
the action of the chosen rule. Each part of the action may modify,
remove, or add new working memory elements.
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