
Page 1 of 8. 

Choosing a View Update Translator 
by Dialog at View Deflnition Time 

Arthur M. Keller 
University of Texas at Austin 

ABSTRACT. We consider the problem of updating data- 
bases through views composed of selections, projections, 
and joins of a series of Boyce-Codd Normal Form re- 
lations. This involves translating updates expressed 
against the view to updates expressed against the data- 
base. Previously, we enumerated all translations of view 
updates into database updates that satisfy five criteria. 
This enumeration shows that the problem of translat- 
ing view updates to database updates is inherently am- 
biguous. We give examples of structurally similar views 
that should have different translations because of the 
real world semantics. We propose that these semantics 
be obtained at view definition time. We show how this 
can be done through a structured dialog with the data- 
base administrator to choose a view update translator 
at view definition time. The questions asked during 
this dialog are based on the view definition, database 
structural schema information, and the answers to ear- 
lier questions in the dialog. Based on these questions a 
specific translator is chosen. Using this translator, user- 
specified view updates can be translated into database 

This work was started while the author was at the Computer 
Science Department of Stanford University. This work was sup 
ported in part by contract NSQ-84-C-0211 (the Knowledge Base 
Management Systems Project, Prof. Gio Wiederhold, PI) from 
the Defense Advanced Research Projects Agency and by contract 
AFOSR-80-0212 (Universal Relations, Prof. Jeff Ullman, PI) from 
the Air Force OWce of Scientillc Research, both of the United 
States Department of Defense, and by the Computer Sciences 
Research and Development Fund of The University of Texas at 
Austin. The views and conclusions contained in this document 
are those of the authors and should not be interpreted as repre- 
sentative of the oflicial policies of DARPA, the US Government, 
or the State of Texas. 

Author’s address: The University of Texas at Austin, Department 
of Computer Sciences, Austin, TX 78712-1188. 

updates without the need for any disambiguating dia- 
log. However, dialog with the user may be desired to 
con6rm that the (view) side effects resulting from the 
user’s view update request are acceptable. 

KEYWORDS. Relational databases, database theory, 
view update. 

1 Introduction 

We know how to answer queries expressed against views, 
but we do not completely understand how to handle 
updates expressed against views. These queries are 
translated to queries against the underlying database 
through query modification [Stonebraker 751. However, 
because view updates can be ambiguous, updates must 
currently be specified against the underlying database 
rather than against the view. Many researchers have 
considered the problem of translating updates expressed 
against views into updates expressed against the under- 
lying database [Bancilhon 81, Brosda 85, Carlson 79, 
Clemons 78, Cosmadakis 84, Davidson 83, Dayal 82, 
Furtado 79, 85, Hegner 84, Kaplan 81, Keller 82, 84, 
85a, 85b, 86, Masunaga 83, Medeiros 85, Rowe 79, Sal- 
veter 84, Sevcik 78, Tuchermann 831. 

Since in the common model of relational databases 
[ANSI 821, the view is only an uninstantiated window 
onto the database, any updates specified against the 
database view must be translated into updates against 
the underlying database. The updated database state 
then induces a new view state, and it is desirable that 
the new view state correspond to performing the user- 
specified update directly on the original view as far as 
possible. This is described by the following diagram. 

u 
V(DB) - 

I iI 

U(V(DB)) c V(DB’) 

V 
T 

I 
V 

WJ) 
DB -T(U)(DB)= DB' 

The user specifies update U against the view of the 
database, V(DB). The view update translator T sup 
plies the database update T(U), which results in DB' 
when applied to the database. The new view state is 
V(DB’). This translation has no side effects in the 
view if V(DB’) = U(V(DB)), that is, if the view has 

Permission to copy wilhout fee all or part o thrs molerial is granted provided that the copies are not made or distributed for direct commercial 
aduanlage, Ihe VLDB copyright notice an cl ‘. the We o(fhe publicalion and its date appear, and nolice is given lhal copyin is by permission of 
the Very Large Data Base EndowmenC To co 

7 
otherwise, or LO republish, requires a fee and/or special permission from L f e Endowment 

Proceedings of the Twelfth International Con erence on Very large Data Bases Kyoto, August, 1986 

-467- 



Page 2 of 8. 

changed precisely in accordance with the user’s request. 
No side effects are necessary to translate updates ex- 
pressed against select and project views. In some cases, 
updates expressed against views that involve joins can- 
not be translated unless some side effects are permitted. 

Given a view definition, the question of choosing 
a view update translator arises. This requires under- 
standing the ways in which individual view update re- 
quests may be satisfied by database updates. Any par- 
ticular view update request may result in a view state 
that does not correspond to any database state. Such a 
view update request may not be translated without re- 
laxing the constraint precluding view side effects. Oth- 
erwise, the update request is rejected by the view up- 
date translator. If we are lucky, there will be precisely 
one way to perform the database update that results in 
the desired view update. Since the view is many-to-one, 
the new view state may correspond to many database 
states. Of these database states, we would like to choose 
one that is ‘as close as possible” under some measure 
to the original database state. That is, we would like to 
minimise the effect of the view update on the database. 

For a large class of select, project, join views, there 
is an enumeration of all translations of view updates 
into database updates [Keller 85a]. This enumeration 
shows that the problem of translating view update to 
database updates is inherently ambiguous. In Section 3, 
we illustrate this with two views that are structurally 
similar but whose semantics require different transla- 
tions of view updates. We propose that semantics be 
obtained at view definition time to choose a translator 
that selects a translation for each view update request 
(or, alternatively, rejects the update request). We show 
how these semantics can be obtained and this transla- 
tor chosen at view definition time through a dialog with 
the database administrator based on the view definition 
and structural schema information about the database. 

2 View Update Translation 

We need to define a few terms to explain the process 
of translation of view updates into database updates 
[Ullman 82, Maier 831. A domain is a (finite) set. A re- 
lation schema is an ordered (or tagged) set of domains 
and a set of constraints that tuples in the relation must 
satisfy. A functional dependency or key dependency is 
an example of such a constraint. A tuple is an ordered 
(or tagged) set of values, each one from its respective 
domain. The extension of a relation is the set of tuples 
in the relation. A database schema is an set of relation 
schemata indexed by relation name. A database exten- 
sion is a set of relation extensions, one for each relation 
in the database schema. 

A database view definition is a mapping whose do- 
main is the set of all relation extensions for a given 
database schema. The range of a database view defi- 
nition is also a set of relation extensions for a schema 
specific to the view definition. The mapping from the 
domain database to each relation in the range of the 
view is defined by a type of database query. The view 
extension is the extension of the database which is the 
range of the view for a particular extension of the data- 
base which is the domain of the view. 

The operations on databases and views are dele- 
tion, insertion, and replacement. A deletion is the re- 
moval of a single tuple from a relation. An insertion is 
the addition of a single tuple into a relation. A replace- 
ment is the combination of a deletion and an insertion 
into the same relation into a single atomic action that 
does not require an intermediate consistent state be- 
tween the deletion and insertion steps. An update is a 
deletion, an insertion, or a replacement. 

A database update may be directly applied against 
the database, provided it satisfies the constraints on the 
database. A view update is merely an update that is 
described against the view, but it must be translated 
into a sequence of database updates in order for it to 
be executed. There may be several candidate sequences 
of database updates corresponding to one view update. 
We call these sequences of database updates the transla- 
tions of the view update request. We say that a transla- 
tion is valid if it performs the view update as requested. 
For updates through select and project views, we will 
require that the new view extension be precisely the re- 
sult of performing the view update on the old view ex- 
tension, were the view to be an ordinary relation. For 
updates through views that include joins, it may not be 
possible to perform the view update without additional 
changes to the view [Keller 821. These view side effects 
are as a result of functional dependencies that require 
that changes in the view tuples requested are consistent 
with the remainder of the database. The correspond- 
ing underlying tuples to a view tuple are the database 
tuples with keys matching those appearing in the view 
tuple. The side effects occur as a result of view tuples 
sharing corresponding underlying tuples that undergo 
updates. 

Requiring that a translation be valid is not suffi- 
cient for our purposes-it is only a first step. We have 
defined 5 additional criteria we require the translations 
to satisfy [Keller 85a]. Th ese criteria proscribe database 
side effects, multiple changes to the same database tu- 
ple, unnecessary database changes, replacements that 
can be simplified, and delete-insert pairs on the same 
relation. We use the criteria to obtain only the simplest 

-468- 



Page 3 of 8. 

(or minimal) view update translations. 
Because of space limitations, most background ma- 

terial has been omitted from this paper. Explanations 
of the need for and use of semantics can be found in 
[Keller 861, and more details on the criteria and on the 
space of algorithms can be found in [Keller 85a]. 

3 Dialog at View Deflnition Time 

We propose that the semantics necessary for disam- 
biguating view update translation be obtained at view 
definition time. The semantics are used to choose a 
view update translator. Once a translator is chosen, 
users may specify updates through the view, which the 
translator converts into database updates without any 
disambiguating dialog. 

In the discussion that follows, we will assume that 
the view is defined by a database administrator (DBA) 
who will also provide the necessary semantics to choose 
a translator. While this is the simplest case for the use 
of a view definition facility, it is clear that this system 
could be used by any user with the wherewithal to de- 
fine a view, either for the user’s own use or for the use 
of other, perhaps less knowledgeable users. We regard 
the effort of collecting the semantics at view definition 
time to be amortized by utilizing them for many view 
updates. 

The candidate translators can be organized into a 
tree, where each node of the tree represents a decision 
to be made. The semantics are merely the sequence 
of decisions made by the DBA in a walk of this tree 
guided by the view definition facility. The view defini- 
tion facility presents questions to the DBA, each time 
supplying several options, based on the view definition, 
the database schema, and the answers to the previous 
questions. Note that the tree of translators is different 
from the query graph representing the view. Further- 
more, the tree of translators is merely a pedagogical 
device; it does not actually exist within the view defi- 
nition facility. 

Choosing a translator does not use any information 
about the transactions that will be performed against 
the view. This is because the translator chosen will take 
as input individual view tuple updates and translate 
them into sets of database updates.’ Any information 
that would be contained in the nature of the transac- 
tions performed that is useful for determining how to 
translate the update is captured at the view definition 
dialog. Since the set of transactions is not necessar- 
ily available at view definition time, does not contain 
all the information needed for choosing a view update 
translator, and at best provides information that is al- 
ready provided by the dialog, we have chosen to use the 

dialog instead. The dialog is described in subsequent 
subsections. 

S-l Theoretical Comments 

For the class of views we handle, we have previously 
enumerated all possible translations of single view tuple 
updates into sequences of database updates that satisfy 
our five criteria [Keller 85a]. By selecting a translation 
for each specific view update request, we obtain a trans- 
lator of view updates. The set of possible translations 
for each update request characterizes the set of possible 
translators. 

Not all translators in this set are reasonable. We 
immediately reject those that make varying decisions 
based on extraneous information, such as the phase of 
the moon. It is acceptable to choose between different 
translators depending on such extraneous information, 
but each translator should make decisions solely based 
on the state of the database and the particular view 
update requested. 

Other translators may make choices among the pos- 
sible translations by treating particular domain values 
specially even though the view definition does not re- 
quire it. For example, a translator may choose one 
translation for updates involving employees whose last 
name begins with ‘A’ through ‘L’ and another for em- 
ployees whose last name begins with ‘M’ through ‘Z’. 
Such translators are allowable but implausible. 

We would like to define a basis set of translators 
from which all possible translations can be generated us- 
ing transformation rules. The first transformation rule 
allows combination of two translators: Given transla- 
tors 2’1 and Tz and predicate p dependent solely on 
the database state and view update request, there is 
a translator Ts such that Ts = if p then Tl else Ta. 
The second transformation rule acknowledges the fact 
that it is acceptable to reject a view update request. 
One formulation of this rule is: Given translator TX 
and predicate p dependent solely on the database state 
and view update request, there is a translator Ts such 
that Ts = if p then Tl else reject request. An alterna- 
tive formulation of this rule is: There exists a translator 
TO that rejects all view update requests. Both alterna- 
tive formulations of the second rule are equivalent when 
we adopt the first rule. 

For the purpose of this discussion, we consider the 
positive decision to reject a view update request to be 
a translation. This is required by the second transfor- 
mation rule above. However, the user or program that 
made the view update request must be notified that 
the request haz been rejected, as would be required if 
an ordinary database update request were rejected. 

-469- 



There are many alternative basis sets that generate 
the set of all possible translators. We will choose one 
that most closely matches the decisions made by the 
update algorithms. We will not attempt to formally 
define this particular notion. We call the basis set we 
define To. In addition, where it is convenient, we ask 
certain questions that result in additional translators 
that can be obtained using the second transformation 
rule (first formulation). These additional questions are 
marked I*’ in the algorithms in the following sections. 
These additional translators, while not in the basis set, 
are useful in practice when the user has only limited 
authorization for updates. Thus, the set of translators 
actually obtained by our dialogs belong to a set, Tr, that 
properly contains To. Note also that 71 is also a basis 
set for the set of all possible translators that satisfy our 
five criteria, although not a minimal one. On the other 
hand To is minimal in the sense that any proper subset 
is no longer a basis set. 

4 Dialog at View Definition: Deletion 

Using the query graph [Finkelstein 821 that defines the 
view, we consider the selections and projections applied 
to the root relation. This is because deleting from a 
select, project, and join view can be accomplished by 
deleting from the select and project view corresponding 
to the root relation [Keller 85a]. If there is no selection 
on the root relation, there is no alternative to deleting 
the projection of the view tuple from the underlying 
relation (i.e., the tuple with the same key as the view 
tuple). If there is a selection on the root relation, we 
may alternatively replace the corresponding underlying 
tuple in the root relation by changing a selecting at- 
tribute to an excluding value. 

ALGORITHM DBA-D: 
Ask: Are view tuple deletions permitted? * 
If not, exit 
If there is no selection on the root relation, or all 

selecting attributes of the root relation are part of 
the key 
Then deletion of a view tuple is done by deleting 

the corresponding root database tuple; exit 
Ask: Should deletion of a view tuple result in deletion 

of the corresponding root database tuple (as in 
New York manager example) or its replacement 
(as in baseball team manager example)? 

If deletion, then deletion of a view tuple is done by 
deleting the corresponding root database tuple; 
exit 

Ask: Which of the selecting attributes in the root 
relation that are not part of the key (supply the 

Page 4 of 8. 

list of them) is to be replaced? 
If that attribute has more than one excluding value 

Then ask: Which excluding value (supply list) 
should be used for that attribute? 

Deletion of a view tuple is done by replacing the 
corresponding root database tuple changing 
the specified selecting attribute to the specified 
excluding value 

The attributes that have only one excluding value 
can be highlighted, since they are more likely to be de- 
sired. The view update translation chosen does not have 
any side effects in the view and only affects one data- 
base tuple. 

6 Dialog at View Definition: Insertion 

Inserting into a selection, project, and join (SPJ) view 
involves ensuring that the projections of the view tu- 
ple appear in each of the relations so that they may be 
joined together to form the view tuple. The SPJ view 
can be decomposed into a join view of a series of select 
and project (SP) views formed by taking the selections 
and projections of the query graph using them to de- 
fine a view on each relation [Keller 85a]. The following 
algorithm decomposes a SPJ view tuple insertion into 
a series of operations on these SP views [Keller 85a]. 

INSERT INTO SP J VIEW: Take the projections of the 
join view to the attributes listed in each SP view. On 
each projection (or SP view) there are three cases: 

CASE 1: The projection exists in the SP view in 
the exact projected form. If this is the root SP view, 
reject the view update as it violates an FD in the view. 
Otherwise, we need do nothing with this SP view. 

CASE 2: The projection does not match the key of 
any tuple in the SP view. Perform an SP view insertion 
using the projection of the new join view tuple. 

CASE 3: There is already a tuple in the SP view 
with a key matching that of the projection, but the 
other values do not match. Replace (in the SP view) 
the existing SP view tuple by the projection of the new 
join view tuple. We may reject the update request if we 
do not wish to perform a replacement in the SP view. 

If any of the SP view operations fail, the entire 
view update request fails and is undone. 

ALGORITHM DBA-I: 
Ask: Are view tuple insertions permitted? * 
If not, exit 
For each relation in the view (using a pre-order traversal 

of query graph) 
Ask: Are modifications permitted to this relation? * 

-470- 



If not, continue loop with next relation (When view 
insertions require changes to this relation, they 
will be rejected.) 

Ask: Can a new tuple be inserted into this rela- 
tion? * 

If not, view insertions that require insertion of a 
tuple into this relation are rejected 

For each attribute in this relation that does not 
appear in the view 
If it is not a selecting attribute 

Then ask: Which domain value should be 
used for this attribute? 

Else if there is only one selecting value 
for this attribute 
Then use that one 
Else ask: Which selecting value 

should be used for this attribute 
(When inserting a tuple into the database, we take 

the projection of the view tuple to this relation 
and extend it with these values chosen.) 

Ask: Can a view tuple insertion result in a change 
to a database tuple that does not satisfy the 
selection condition (as arises in the baseball 
team manager example)? * 

If not, we reject view insertions that would require 
it 

If so, we change the corresponding database tuple 
(key matches values in view tuple) so that its 
values match those of the inserted view tuple. 
If there are selecting attributes in this relation 

that do not appear in the view, we will 
have to change every excluding value in 
the corresponding database tuple to a 
selecting value. 
If we have obtained a list of values above 

Then use those here too 
Else ask: Choose a selecting value to 

use for each selecting attribute 
in this relation that has more 
than one selecting value and 
that does not appear in the view 

(Here we do not need values for non-selecting 
attributes that do not appear in the view, as 
they remain unchanged.) 

Ask: Can a view tuple insertion result in a change 
to a database tuple that does satisfy the 
selection condition? * 

If not, view insertions requiring this are rejected 
If so, the translation includes changing the database 

tuple so that it matches the projection of the 
view tuple to that relation. Such a change 
results in a side effect when the database 

Page 5 of 8. 

tuple changed is one of the corresponding 
underlying tuples for some other view tuple. 
Then the change requested will affect those 
other view tuples that share this corresponding 
underlying tuple. 

The implementor of a view update facility may of- 
fer the option of allowing the DBA to indicate that 
a view update is to be rejected if a particular non- 
appearing selecting attribute does not already have a se- 
lecting value in lieu of giving a selecting value to change 
it to; this is only meaningful when there are multiple se- 
lecting attributes, at least one of which does not appear 
in the view. 

Note that most of the questions in this part of the 
dialog are starred (‘). The only ones necessary for To 
are those that define values for attributes that do not 
appear in the view that are not otherwise constrained. 

6 Dialog at View Definition: Replacement 

Replacing in a SP J view can be decomposed into a series 
of replacements and insertions in select, project views 
on the underlying relations. The following algorithm 
describes this process [Keller 85a]. 

REPLACE INTO SP J VIEW: Perform pre-order traver- 
sal on query graph tree. We are initially in State R at 
root relation. 

STATE R (replacing): Compare projection (to this 
SP view) of old join view tuple with new join view tuple. 

CASE R-l: Projections match exactly. Move to 
next relation down. Go to State R. 

CASE R-2: Projections differ but keys match. 
Perform SP view replacement if allowed. Move to next 
relation down. Go to State I. 

CASE R-3: Projections differ and keys differ. This 
can only happen in root. Perform SP view replacement 
if allowed. Move to next relation down. Go to State I. 

STATE I (inserting): Compare projection (to this 
SP view) of old view tuple with new view tuple. 

CASE I- 1: Keys match. Go to State R (staying in 
this relation). 

CASE I-2: Keys differ, new key not in SP view. 
SP view insert tuple. Move to next relation down. Go 
to State I. 

CASE I-3: Keys differ, new projection in SP view. 
Move to next relation down. Go to State I. 

CASE I-4: Keys differ, new key in SP view but 
conflicting data. SP view replace if desired, else reject 
request. Move to next relation down. Go to State I. 

Cases R-l, I-l, and I-3 require no action. Case I-2 
can use the same algorithm as Case 2 from the previous 

-471- 



Page 6 of 8. 

Delete replaced 

One replacement 

Old tuple 
New tuple 

Insert into DB 
replacement 
view tuple 

Replace (in database) 
replaced view tuple 

Scenario 3 
Replace old view tuple 
Insert new view tuple 

Replace in DB Scenario 2 Scenario 4 
the replacement Delete old view tuple Replace both old and 
view tuple Replace new view tuple new view tuples 

Scenarios for changing key of view tuple in replacement 

section. Cases R-2 and I-4 can use the same algorithm 
as Case 3 from the previous section. 

Case R-3 is more complicated. There are two al- 
ternative ways to remove the old database tuple based 
on the two alternatives for deleting a view tuple (delete 
and replace). There are two alternative ways to insert 
the new database tuple, depending on whether there is 
already a conllicting database tuple there. In the case 
where the old database tuple is to be deleted and the 
new one is inserted, a replacement is performed instead. 

ALGORITHM DBA-R: 
Ask: Are view tuple replacements permitted? * 
If not, exit 
Ask: Can the key of a view tuple be changed? * 
If so, and there is a selecting attribute in the root 

relation not part of the key, ask: Which of the 
following four scenarios is permissible? 

(If there is no selecting attribute in the root relation not 
part of the key, the only possibility is scenario 1.) 
(1) Changing the key of the corresponding root 

database tuple 
(2) Deleting the old root tuple and replacing a 

root tuple that has the new key so that it 
does appear in the view 

(3) Replacing the old root tuple so that it does not 
appear in the view and inserting a new root 
tuple 

(4) Replacing the old root tuple so that it does not 
appear in the view and replacing a root tuple 
that has the new key so that it does appear 
in the view 

(Scenarios 1 and 3 are mutually exclusive as are 2 
and 4.) 

For scenarios 2 and 4, for each selecting attribute 
in the root relation not appearing in the view 
that has more than one selecting value 
Ask: Which selecting value should be used if 

the tuple does not already have a selecting 
value for this attribute? (Note that this 
question need not be asked if the answer 

is already available from the insertion 
algorithm dialog.) 

For each non-key attribute appearing in the view, 
ask: Can this attribute be changed? * 

For scenarios 3 and 4, ask the last two questions 
of the deletion dialog if not already done or 
the answers are not assumed to be the same 

For each relation in the view other than the root (using 
a pre-order traversal of query graph) 
Ask: Are modifications permitted to this relation? * 
If not, continue loop with next relation (When 

view replacements require changes to this 
relation, they will be rejected.) 

For each non-key attribute appearing in the view, 
ask: Can this attribute be changed? * 

Ask: Can a new tuple be inserted into this rela- 
tion? * 

If not, view replacements that require insertion of 
a tuple into this relation are rejected 

(The following loop need only be performed when 
not asked during the insertion dialog, or if 
the answers to the questions asked are not 
assumed to be the same.) 

For each attribute in this relation that does not 
appear in the view 
If it is not a selecting attribute 

Then ask: Which domain value should be 
used for this attribute? 

Else if there is only one selecting value 
for this attribute 
Then use that one 
Else ask: Which selecting value 

should be used for this attribute 
(When inserting a tuple into the database, we 

take the projection of the new view tuple to 
this relation and extend it with these values 
chosen.) 

Ask: Can a view tuple replacement result in a 
change to a database tuple that does not 
satisfy the selection condition (as arises in the 
baseball team manager example)? * 

-472- 



Page 7 of 8. 

If not, we reject view replacements that would 
require it 

If so, we change the corresponding database tuple 
(key matches values in new view tuple) so 
that its values match those of the inserted 
view tuple. 
(The following questions need only be asked 

when not asked during the insertion 
dialog, or if the answers are not assumed 
to be the same.) 

If there are selecting attributes in this relation 
that do not appear in the view, we will 
have to change every excluding value in 
the corresponding database tuple to a 
selecting value. 
If we have obtained a list of values before 

Then use those here too 
Else ask: Choose a selecting value to 

use for each selecting attribute 
in this relation that has more 
than one selecting value and 
that does not appear in the view 

Ask: Can a view tuple replacement result in a 
change to a database tuple that does satisfy 
the selection condition? * 

If not, view insertions requiring this are rejected 
If so, the translation includes changing the database 

tuple so that it matches the projection of the 
view tuple to that relation. Such a change 
results in a side effect when the database 
tuple changed is one of the corresponding 
underlying tuples for some other view tuple. 
Then the change requested will affect those 
other view tuples that share this corresponding 
underlying tuple. 

The dialog for replacement requests can assume the 
answers to some questions asked during the deletion 
and insertion dialogs. Specific to replacement requests 
is the handling in the root relation when the view tuple 
replacement request includes a change to the key of the 
view tuple (and correspondingly, the root relation). In 
addition, it may be desirable to ask whether specific 
attributes may be changed, as we have shown in the 
dialog above. 

7 Conclusion 

We have described a method that can make updating 
relational databases through views reliable and conve- 
nient. The database administrator (DBA) (or any other 
sufficiently knowledgeable user) defines the view and an- 
swers a sequence of questions to choose a valid view up- 

date translator for a large class of select, project, and 
join views. The definition of the translator is stored 
along with the view definition. The class of translators 
we choose from are based on the algorithm templates 
that generate all possible translations that satisfy five 
criteria for view update translation [Keller 85a]. Af- 
ter the view and translator are defined, users may re- 
quest insertions, deletions, and replacements through 
the view, and these will be translated by the chosen 
translator into database updates without any disam- 
biguating dialog. Side effects may result from some 
insertions and replacements only for join views when 
translation is not otherwise possible and if permitted 
by the DBA; it may be desirable to have the user con- 
firm such side effects, especially for insertions. 

Not all possible translators are subject to being 
chosen by our questions. The set of candidate view 
update translators is quite large; we have character- 
ized this set by enumerating the set of all view update 
translations in earlier work [Keller 85aj. Some of the 
translators chosen here will translate all updates that 
have translations satisfying our criteria; others will re- 
ject some updates because they were proscribed by the 
answers by the DBA to the questions asked by the view 
definition facility. The translators that accept all up 
dates form a basis set for the set of all possible transla- 
tom under two transformations. Some translators that 
reject some updates on a systematic basis are included 
to give the DBA more flexibility in defining a view up 
date translator; thii can be used as part of an effective 
security system. The translators obtained by the dia- 
log are completely characterized by the answers to the 
questions in the dialog. 

The process of defining a view and choosing a trans- 
lator has been described here as being performed by 
the DBA. While this is the simplest case for the use 
of such a system, it is clear that this system could be 
used by any user with the wherewithal to define a view. 
The distinction to make is that such a dialog would 
be most effective for static views that are defined once 
and used repeatedly. For dynamic views, defined by 
natural language dialog or universal relation interfaces, 
the overhead of answering the questions would not be 
amortized over performing many view updates. Heuris- 
tics and user profiles could be used to determine the 
answers we need to choose a translator [Davidson 831. 

Querying and updating through a view reduces the 
security and protection problem, but does not eliminate 
it. Clearly, a view circumscribes the collection of data 
a user is permitted to access. The question of how to 
give each manager access to the data for that depart- 
ment can be addressed either by a parameteriring the 

-473- 



Page 8 of 8. 

view to only show that department’s data or by pa- 
rameterized protection scheme that allows access only 
to tuples containing data for that department. Using 
both may seem redundant but need not be. A parame- 
terized view will make fewer demands on the database 
and the security system. A security system could have a 
large loophole if it gave special consideration to queries 
and updates specified through views. Of course, an ef- 
fective security system is needed when a view definition 
facility and an ad hoc query facility is made available 
to users. 

With views and queries described non-procedurally, 
relational databases are an effective tool for productiv- 
ity [Codd 821. We h ave shown how to describe view 
update translators non-procedurally by answering a se- 
quence of questions based on the view definition and 
the database structure. This has the potential to dra- 
matically increase the productivity of views, and con- 
sequently, relational databases. 

8 Acknowledgements 

Gio Wiederhold and Jeff Ullman provided support, ad- 
vice, and encouragement. Moon Ho Chung and Nazir 
Alimohammad programmed the algorithms presented 
here. The implementation effort was continued by Lau- 
rel Harvey, who also implemented a prototype view up- 
dater that executes the view update translator chosen 
by the algorithms presented in this paper. This paper is 
dedicated to the memory of Joey Suasman, who taught 
me about professionalism in computer programming. 

8 Bibliography 

[Banciihon 811 F. Banciihon and N. Spyratos, “Update 
Semantics and Relational Views,” ACM Trans. on 
Datablure Systems, 6:4, December 1981. 

[ANSI 821 “Final Report of the ANSI/XJ/SPARC DBS-SG 
Relational Database Task Group,” in SIGMOD Record, 
134, July 1982. 

[Broada 861 Volkert Brosda and Gottfried Voasen, “Updating 
a Rilational Database through a Universal Schema 
Interface,” 4th PODS, March 1986. 

[Carison ‘IS] C. Robert Carlson and Adarsh K. Arora, “The 
Updatability of Relational Viewr Based on Functional 
Dependencies,” Third International Computer Software 
and Applications Conference, IEEE Computer Society, 
Chicago, IL, November 1979. 

[Clemens 781 E. K. Clemens, “An External Schema Facility to 
Support Data Base Updates,” in Databases: Improving 
Usability and Responsiveness, Academic Press, 1978. 

[Codd 821 E. F. Codd, “Relational Database: A Practical 
Foundation for Productivity,” Comm. ACM, 262, 
February 1982. 

[Cosmadakis 841 Stavros S. Cosmadakis and Christos H. 
Paoadimitriou. “Uudatea of Relational Views.” in Journal 
bf ;he Assoc. Cornput. Mach., 31:4, October 1984. 

/Davidson 831 J.E. Davidson, “Interpreting Natural Language 
Databas’e Updates,” Stanford University, Computer 
Science Dept., Ph.D. diaaertation, December 1983. 

[Dayal 821 U. Dayal and P. A. Bernstein, “On the Correct 
Translation of Update Operationa on Relational Views,” 
ACM Trans. on Database Systems, 7:3, September 1982. 

[Finkeletein 821 Sheldon Finkelstein, “Common Expreaaion 
Analysis in Database Applications,” Proc. Int. Conf. on 
Management of Data, ACM SIGMOD, June 1982. 

[Furtado 791 A. L. Furtado, K. C. Sevcik, and C. S. doa 
santoa, “Permitting Updates Through Views of Data 
Bases,” Inform. Systems, 4:4, 1979. 

[Furtado 861 A. L. Furtado and M. A. Casanova, “Updating 
Relational Views,” in Query Processing in Database 
Systems, W. Kim, D. S. Reiner, and D. S. Batory, eds., 
Springer-Verlag, 1985. 

[Hegner 841 Stephen J. Hegner, “Canonical View Update 
Support through Boolean Algebras of Components,” .?rd 
PODS, ACM, April 1984. 

[Kaplan 811 S. Jerrold Kaplan and Jim Davidson, “Interpreting 
Natural Language Database IJpdates,” Proc. 19th Annual 
Meeting of the Association for Computational Linguistics, 
Stanford, California, June 1981. 

[Keller 821 Arthur M. Keller, “Updates to Relational Databases 
Through Views Involving Joins,” in Improving Database 
Usability and Responsiveness, Peter Scheuermann, ed., 
Academic Press, New York, 1982. 

[Keller 841 Arthur M. Keller and Jeffrey D. Ullmsn, “On 
Complementary and Independent Mappings on Databases,” 
1984 ACM SIGMOD Int. Conf. on Management of Data, 
Boston, June 1984. 

[Keller 86al Arthur M. Keller. “Alaorithms for Translating 
View Updatea to Database Updates for Views Involving 
Selectiona. Projections, and Joina.” 4th PODS, ACM, 
March 1986. - 

[Keller 86b] Arthur M. Keller, “Updating Relational Databases 
Through Views,” Ph.D. dissertation, Stanford University, 
Computer Science Dept., February 1986. 

[Keller 861 Arthur M. Keller, “The Role of Semantics 
in Translating View Updates,” IEEE Computer, 19:1, 
January 1986, pp. 63-73. 

IM aier 831 D. Maier, Theory of Relational Databclsecr, 
Computer Science Presr, Rockville, MD, 1983. 

[Maeunaga 831 Y. Masunaga, “A Relational Database View 
Update Translation Mechanism,” IBM, San Jose Reserach 
Laboratory, Report RJ3742, 1983. 

[Medeiros 861 C.M.B. Medeiros, “A Validation Tool for 
Designing DSatabaee Views that Permit Updates,” Ph.D. 
dissertation, Data Structuring Group, Dept. of Computer 
Science, University of Waterloo, November 1986. 

[Rowe 791 L. Rowe and K. A. Schoens, “Data Abstractions, 
Views, and Updates in RIGEL,” Proc. ACM SIGMOD 
Int. Conf. on Management of Data, May 1979. 

[Salveter 841 Sharon Salveter, “A Transportable Natural 
Language Database Update System,” Srd PODS, ACM, 
April 1984. 

[Sevcik 781 K. C. Sevcik and A. L. Furtado, “Complete and 
Compatible Sets of Update Operators,” Proc. Int. Conf. 
on Management of Data, ACM, June 1978. 

(Stonebraker 761 Michael Stonebraker, “Implementation of 
Integrity Constraints and Views by Query ModiRcation,” 
Proc. 1976 SIGMOD Conf., ACM SIGMOD, June 1976. 

[Tuchermann 831 L. Tuchermann, A. L. Furtado, M. A. 
Casanova, “A Pragmatic Approach to Structured Database 
Design.” Proc. 9th VLDB Conference, October 1983. 

[Ullman 82] Jeffrey D. Ullman, Principles of Database 
Systems, Computer Science Press, Potomac, MD, second 
edition, 1982. 

-474- 


