
ON THE PROPERTIES OF EXTENDED INCLUSION DEPENDENCIES

Hiroshi ARISAWA

Yokohama National

University

Tokiwadai, Hodogaya-ku

Yokohama, Japan

abstract
In this paper, we propose new classes of
Inclusion Dependencies as an extension of
“Generalization” based on the Entity-Association
model. Various kinds of extensions are
discussed, and four classes (IND, IXC, UXG and
co-EXD) are evaluated from the viewpoint of
database design. We present the complete
inference axioms for each class and the
polynomial complexity of inference problems.

1. BACKGROUND

One of the most important issues in database
design is certainly the specification of
integrity constraints. Since databases must be
kept consistent, and some external checking
mechanisms must be provided. The constraints
detected at database design should be embedded in
the database schemes by some way such as “normal”
forms so that the consistency is preserved.
Those constraints could be also used for query
optimization.

A typical example is found in the relational
database theory. That theory [23] has been
considerably developed, with the help of
functional dependency or join dependency which
have been much discussed by many investigators.
However, the theory is heavily based on the
mathematical properties of the dependencies and
it is doubtful for database designers to
construct their databases in accordance with the
theory, since those properties are neither
intuitive nor easily understandable.

Originally information model is considered
to allow us to capture “real world”, and the
design methodology based on the model must be
intuitive enough to reflect the world, powerful
to describe this world and easy to construct on
it information structure. In this sense,
database designers must start their work with the
initial image and they are encouraged to capture
the information structure. Naturally, designing
database means structuring information. More
precisely, designing databases consists. of two
phases [4]; information modelling to construct
information structure and data modelling to
change the information structure into the ones
adaptable for computer processing. Entity
Relationship (E-R) model [lo], Entity Association
(E-A) model [181 and Navathe-Schkolnick model
[17] are well-known information models. As data

Takao MIURA

Mitui Engineering &

Shipbuilding

Tsukiji, Chuo-ku,

Tokyo, Japan

models, relational model, network model or
hierarchical model are the examples. We believe
that both modellings should be closely related so
that no concept translation is required.

Despite of these proposals, the enumeration
of design problems still comes to us [14]. For
example, in the first stage of database design,
both of predicates (or schemes) and constraints
among attributes should be simultaniously
detected, but the design methodology to reflect
them is not fully developed [24].

In this paper, we will pay. attention on the
structures among sets (or “types”) of entities,
because they are sometimes regarded as design
primitives, or sometimes as constraints. Some
investigators also discussed this problem;
Generalization c221 concerns inclusion
relationship among entity sets. Cl 01 proposes
the notion of existency dependency which
considers generalizations as constraints. And
[71 discusses this topic from the viewpo.int of
relational model. Here we regard Generalization
as constraints over sets of entities, and
subsequent sections discuss the extension and the
properties of the constraints.

Section 2 gives the definition of databases
and the data model AIS. In section 3, we
introduce Inclusion Dependency (IND) and develop -
the straightforward extension with the polynomial
membership algorithms. Section 4 states the
other kind of extension, Exclusion Dependency
(El, and the interaction with INDs. However,
the EXD class will be shown to be rather
inappropriate since many %nrelatedt’ entity types
exist in the database. Alternatively we will
propose, in section 5, the notion of co-Exclusion
Dependency (CO-EXD) and its interaction with
INDs. Also the polynomial time membership
algorithms will be stated.

In any model, rigorous treatment should be
provided, for we believe that the theory has the
expressive power only when unambiguous concepts
and effective operations are provided. This
brings us to discuss database theory on
mathematical framework. Especially
axiomatization combines the intuitive correctness
and the conceptual derivability. Sound and
complete axioms for interesting universe are the
ones we want. Also, testing membership algorithm
and its (time) complexity is another importance
since our aim is to decide wether a particular
member can be derived or not.

Throughout the paper, we assume the basic
concepts in mathematical logic [16]. For

Permission fo cop
aduantage, the V l

without fee all orpart o this material is granted provided that the copies are not made or distributed for direct commercial
DB copyright notice an d the title of the publication and its dale appear, and notice is given that copyin

the Very Large DataBase Endowment. To cop
is by permission of

Proceedings of the Twelfth International Con f
otherwise, or to republish, requires a fee andlor special permission from t f e Endowment.

erence on Very Large Data Bases Kyoto, August, 1986

-449-

example, propositional logic and the first-order
predicate logic are referred without explanation.

2 AIS data model and the database

In this section, we present the definition
of Associative information structure (AIS) and
the databses on which we will state our theory.
The model stands on five ormitives: entitv.

A’

entity type, association, predicate and
constraint.

Informally, an entity is a logical object in
the database which corresponds to a
distinguishable thing in the real world. For
example, a manager or a secretary is an entity.

Collections of entities can be often grouped
together to perform a semantic unit, in turn,
this must be corresponded to an entity called
entity type. Each entitiy type is denoted by a
spelling such as Manager or Secretary.

On the other hand, the set of entitties
itself is called an entity-set or E-set.
Conceptually entity type represents V’intension”
and E-sets “extension”. For a type, the E-set
means “active” domain [ll] because of extension.

E-sets may be mutually overlapped, that is,
an entity can be included in two or more entity
sets. For instance, an office-worker may be both
a manager and a secretary.

A predicate expresses n-ary relationship
among entity sets. In other words, the predicate
corresponds to a .“relationship type”. This is
explicitly specified by the designers. The
occurrence of the predicate describes a
particular information among entities which are
in the corresponding sets. Each occurrence is
being called an association;

To keep all the information consistent, the
designers must specify constraints over types
explicitly. For example, “active” domain
property is a constraint such that every entity
in associations of a predicate must be in the
appropriate entity sets and that no other entity
exists in the entity sets. As another example,
in this paper, we discuss Inclusion Dependencies
which says “an entity set A is always a subset of
another entity set B” (i.e. if an entity e is an
element of A, then e must be an element of B).

As stated before, AIS data model represents
the information model and the data model: the
actual collection of entities, entity types.
predicates and associations constitute the AIS
database. The materialization of the database
scheme is provided by an AIS diagram. An Entity-
set is represented by ovals, a predicate by l
linked to entity sets, an entity by o and an
association by 4. In the following, lower case
letters a,b,c mean entities; upper case letters
A,B,C mean entity types; x(A),1(B),x(C) mean
entity sets of type A,B,C respectively. [El . .
En] represents the predicate defined on entity
types El,..,E,. As shown in this paper, INDs and
the extensions can be captured in the diagram by
set inclusion notation. For more detail, see
Cll,CZl and C41.

[Example] Throughout this paper we refer the

same example, modified version of [61. We assume
there are three predicates and eight entity types
like:

[O Worker Floor] says Office Worker w is
located on Floor f.
[Manager Secretary Day] says Manager m works on
Day d with Secretary s.
[Director Limousine Driver] says Director r
uses Limousine 1 drived by Driver e.

All these are drawn by Fig.l,(a)-(c).

(b) (cl

Fig. 1 AIS diagram

3 EXTENDED GENERALIZATION CONSTRAINTS

3.1 Inclusion Dependency

To each object in the real world one and
only one entity is associated in the database so
that several entity sets may share entities.
Moreover, very often there are several inclusion
relationship among entity sets, and they must be
considered as constraints.

Given two entity types A and B, A is called
inclusive to B, denoted A<B, if ,4(A) is always a
subset of h(B). Such kind of constraints is said
Inclusion Dependency (IND).

On the other hanzGeneralization [22] is a
constraint such that every entity in A(T1) has
the same relationship involved by T2 if T2 is a
generalization of Tl. Tl is sometimes said
“subtype” of T2. This is naturally embedded in
AIS databses; if an entity in X(Tl) is in A(T2),
then the entity has to be related to an
association on T2, for, all entity sets are
active in AIS.

Semantically IND is based on this concept.
In fact, as we show later, extended INDs can
describe more sophisticated classes of Generali-
zation. [4] discusses the design methodology
using extended INDs. [7] discusses INDs in the
framework of relational model. [25] presents the
similar discuss ion from the viewpoint of

-450-

knowledge representation. Also, [21] shows that
“classical” relational model plus allowable INDs
is equivalent to a subclass of Universal Instance
model. Note that the inference problem of INDs
is PSPACE complete and we need powerful
subclasses. (PSPACE complete problems are
problems that can be solved using only polynomial
space and are hard as any problem that can be
solved using plynomial space. It’s believed that
this problem cannot be solved in polynomial time
c151.1 In this paper, our major concern is to
give new subclasses of INDs and to characterize
them.

[Example] In our example, we assume the
following INDs:

Manager<O-Worker
Secretary<0 Worker
Director<Ma<ager
Director<0 Worker -

Figure 2 shows the AIS diagram which visualizes
our database environment.

Fig. 2 AIS diagram with Inclusion Dependencies

Note that there may be an office worker who is
both secretary and manager.

According to 171, INDs have the following
inference axioms:

[Ill A<A for every entity type A
[I21 A<0 and B<C imply A<C

Note INDs in Cl31 are more general than ours so
that some computing intractabilty happens. Our
axioms are restricted to entity sets and
therefore much simpler. Similar approach is in
Cl31 which discusses. “unary” INDs and the
interaction with FDs. Intuitively, these are the
axioms on set inclusion and they can be
illustrated using AIS diagram. Here we have our
first result.

[Theorem 11 [Ill and [I21 are sound and
complete with respect to INDs.

(Proof) We show here the theorem by propositional
logic, that is, by relating IND A<B to a logical

formula A=>B(“=>‘l means implication); such
technique is in [20]. We denote A=>B by p if p
is A<B and the set by X if X is a set of
formulas. For logical formula A->B, we can
assign “Usual” boolean truth values; A=>B is
defined true if A is false or B is true.
We have similar propositional axioms for [II] and
[I21 corresponded.
Suppose that X 19 a set of INDs and p an IND A<B.
To prove the theorem, it is enough to show:
(i) p is a logical consequence of X iff p is a

logical consequence of X (Equivalence Theorem)
(ii) p is a logical consequence of X iff p is

derived from X
(iii) p is derived from X iff p is derived from X
Proof of (i): If p is not a logical consequence
of x, there can be an entity x of type A but not
of type B while X holds in the database. Now
consider the truth assignment:
C is true if the entity is in a(C), false
otherwise. Clearly A=>B is false. Assume some
C=>D in X is false. C is true and D is false.
The entity x is in A(C) by definition. But X
holds in the database, then x must be in A(D), or
D is true. Or, p is not the logical consequence.
Conversely, assume p is false, or A is true and
B is false. Now we consider the database whose
entity types appear exactly in X and p such that:

Given one entity x, for every entity type W, x
is in A(W) if W is true under the assignment.
For each C<D in X, if x is in X(C), it must be in
A(D) since C=>D is true and C is true. By
assumption, x is in ,4(A) and not in A(B). That
means p is not the logical consequence.
Proof of (ii): If-part (soundness) is’ clear, and
we show the converse. It is sufficient to show
the assignment which satisfies X but not p, when
p is not derived from X.
Consider the assignment as follows:
* Assign false to C if A->C is not derived from
x.
. Assign true otherwise.

A=>B is false since A is true (A=>A is always
obtained by [Ill) and B is false by assumption.
Suppose C=>D in X is false. C is true and D is
false. That is, A=>C can be derived. As C=>D is
in X, by CI21, A=>D can be also derived, or D
must be true, contradiction.
Proof of (iii): Syntactical translation of the
proof procedure shows the correctness. 0
Note that [25] presents another proof.

[Example] In the above example, Director
<0 Worker is redundant since it can be induced. -

3.2 Extended Generalization

Consider the constraint [A*B<C]. This means
that each entity both in X(A) and i(B) must be in
r?(C). Note this cannot be expressed by INDs in
section 3.1. Similarly, {A<B+C) presents a new
type of constraint which says that every entity
in A(A) must be in A(B) or A(C). As this example
shows, more than two types participate in new
classes of the constraints. In this section, we
give the rigorous definitions and the
characterization [2].

INDs or Generalization may concern the
“vertical” relationship, IS-A hierarchy, between

-451-

two types. On the other hand, t’horizontal”
relationship may interact with vertical ones.
For example, in our example, every one who is a
secretary 0 or 11 a manager, must be an office
worker.

First, the notion of expression is to define
the above “her izontal” relationship. The
expression of Intersection (Union respectively)
is defined recursively:

+ For entity type A, A is the expression.
. If Wl and W2 are both expressions, Wl*W2 (

Wl+W2) is also an expression.
. There is no other expression except those

using the above rules.
Using these expressions, two kinds of

constraints are defined;
Intersection Extended Generalization (IXC) is a
class of INDs which can involve the in=section
expression instead of single types,
Union Extended Generalization (UXG) is similarly
defined usina the union excressiz

We - that say IXC ‘A,* , .*A,,<Bl*. .*B, (UXG
Al+.. +A,<Bl+..+B, respectively) holds if the
intersection (union) of A(Al),..,i(A,) is always
a subset of the intersection (union) of
A(Bl),--BA(Bm)e

For example, the comment above is specified
by

Manager+Secretary<O Worker.
Note Cl91 discusses updating on IXG and UXG
framework, but doesn’t show the characterization
of these constraints. In this section we prove
the existence of sound and complete inference
axioms of IXC and UXG.

Now let us turn to consider some properties.
[1X1] Al’ ..*A,<Ai for every i=l...,n
cm21 A<B1*..*Bm if and only if A<Bi for

every i=l,..,m
[UXl]~~Ai<Al+..+An for every i=l,..,n
Cm21 A,+ ..+A,<0 if and only if Ai<B for

every i=l , . . , n

Also we extend the meaning of [Ill and [I21 to
allow the introduction of expressions.

[lemma 11 Every formula of IXG (UXC
respectively) can be transformed into a form such
that the intersection appears only on left side
(the union appears only on right side). In fact,
[IX21 cux.21 can be applied for this
renormalization”. This can be done using one pass
compiling technique, the space complexity is
O(n2) where n is the description length. [I

For example, {Manager+Secretary<O_Worker] is
equivalent to (Manager<O-Worker,
Secretary<0 Worker). For another example, the
set (A*B<C) 2nd {A<B+C) are already normal.

[Theorem 21
(1) [11][12][IXl][IX2] are sound and complete

with respect to IXGs.
(2) [Il][I2][UXl][UX2] are sound and complete

with respect to UXGs.
(Proof) see Appendix 0.

The membership complexity problem consists
of determining how fast a member can be derived
from the given set of formulas. We have the

following.

[Theorem 31 Testing membership of INDs, IXCs and
UXCs takes time O(k), O(k) and O(k4) respectively
where k is the description length of the given
set.

(Proof) see Appendix 0.

[Example] We add more constraints; Every one who
is a Manager and a Secretary, should be a project
leader. Leader may be an office worker or a
driver. The new predicate is :

[Leader Project] says Leader a is affected to
Project p.
The constraints are:

Manager*Secretary<Leader
Leader<0 Worker+Driver

Here we calculate non-redundant set of the
constraints in our example (Fig. 3).

Manager<0 Worker
Secretary70 Worker
Leader<0 Worker+Driver
Director<Manager
Manager*Secretary<Leader

-O-Worker.--

mSecretY I Director

Leader I \ I

-Driver-

Fig. 3 AIS diagram with IXGs

4 EXCLUSION DEPEDENCIES

Natural extension of INDs covers the
exclusion relationship. Here we address this
problem.

We. sometimes find exclusive relationship
during the database design phase. Partitioning
and categorizing entity sets [17]’ can treat this
kind of relationships. On the other hand, in E-
R model, this is out of conceren. Substantially,
the problem here is, at best, to produce several
design alternatives depending on how such
constraints are captured. Moreover, redundancy
or exclusion management is required. Unlike
them, our initial approach is to model this kind

-452-

of relationships and to give mathematical
framework.

Exclusive relationship among entity types
says that the entity sets never intersect. It
is on the opposite side of INDs, and explicit
specification is necessary.

Formally, given two entity types A and B, A
is called exclusive to B, denoted by A 1 18, if and
only if no common entity can exist in both A and
0. This sort of constraints is called Exclusive
Dependency or EXD [a]. - cl21 presents the
detection mechanism for invalidity of a query
using an exclusive relationship graph, but no
characterization is found. (181 gives the
axiomatization.) Also [25] presents IND and EXD
with the complete axioms.

Here we go back to the initial problem:
consider how effective the EXD class is at
database design. The following example shows the
class is useless.

[Example] In our example (Figure 2), implicitly
we assume that 0 Worker, Driver, Day, Floor and
Limousine are mut<ally exclusive. However, as we
have the tool for the specification of these
facts, following constraints must be stated
explicitly:

0 Worker Driver
O-Worker Floor
O-Worker Day
O-Worker Limousine
DFiver Floor
Driver Day
Driver Limousine
Floor Day
Floor Limousine
Day) Limousine

In addition, we assume that a secretary can
also be a manager;however no secretary is a
director. This fact is expressed by:

Secretary 11 Director

Note the above set of descriptions are non-
redundant.

[Example] In the case of Figure 3, descriptions
about Project are added to the above:

Project 0 Worker
Project Driver
Project Limousine
Project Day
Project Floor

As easily seen, even by the help of the
complete axioms, the designers must be annoyed to
specify EXDs, not only because there are a lot of
“unrelated” entity types, but also because they
should look for vain relationship.

We find one more problem about EXD. Unlike
the constraints discussed so far, there exists a
set of EXDs which is unstatisfiable by any entity
sets. For example, (AIIB, A<B]. C81 calls this
class of EXD “vacuous” EXDs. This means testing
satisfiability should be performed.

We will stop to investigate EXDs any more,
for, by the reasons above, the database designers
must prefer co-EXDs to EXDs as shown in the next
section.

5 CO-EXCLUSIVE DEPENDENCIES AND
INTERACTION HITH IXG/UXG

5.1 Co-Exclusive Dependencies

We introduced and discussed several classes
of extended INDs so far, and evaluated them from
the view point of database design. Practically
EXDs are less intuitive and e.ffective than
others, and are hard to be detected easily and
naturally.

Here we propose as an extension of INDS
which designers can get familiarized more easily
with. We simply consider the negation of EXD as
a constraint, and we call it co-EXD; that is, two
entity sets “can” share entities. Such
constraints are, in fact, extension of.INDs. We
assume that two entity sets must be exclusive if
and only if the co-EXD cannot be implied. This
idea is similar to Closed World Assumption in
mathematical logic.

Given two entity types A and B. A is said to
be coexclusive to B, denoted A#B, if not(AllB)
holds, or i.e., two sets A(A) and A(B) can
intersect.

We have to remark on co-EXD. In the case of
INDs (IXGs, UXGs), they constrain databases in
such a way that the only databases satisfying the
constraints are said consistent. As for co-EXDs,
they mean there can be databases satisfying the
constraints and do not mean the entity sets must
intersect. What co-EXDs mean is to constrain
database when updating and sharing entities.

Let us compare co-EXD with EXD. The set
IA<B, AlIBl is never satisfied for any
assignment, that is, there is no set assignment
by which both formulas are “true”. On the other
hand, (A<B,A#B) is satisfiable, that is, there
exists a set assignment by which both are true;
A(A) and A(B) are not exclusive and A(A) is a
subset of X(B). In this sense, we want to put an
emphasis on the fact that local satisfaction of
co-EXDs is always reflected to global view.

Note A//B is said true under the assignment
if and only if there exists an element both in
X(A) and A(B). Then A#B holds if and only if AIlB
can be true for some assignment. A#B is said to
be a logical consequence of a set of co-EXDs and
(extended) INDs, X, if and only if for every
assignment which makes every formula of X true,
AIB is true.

[Example] Again we show our example. In Figure
2, only the following description must be
specified:

Manager#Secretary
Note that there is no need to describe
“unrelated” relationship, compared to section 4.

Informative description is that there is no
intersection between 0 Worker and Driver. Here
we don’t describe this fact with certainty. In
general, the more constraints exist, the’ more
descriptions are required.

Some properties are easily proved (note
A,B,C are all entity types):

[Cl] ACA for every A
CC21 A#B implies B#A

-453-

CC33 Ail0 and B<C imply AK
Using them we have:

[lemma 23
(i) A<B implies AIB. In fact, since AtA holds

([Cl]), we have AI/B by [C3].
(ii) A<B and A<C imply B/K. In fact, A<B implies

AIB by (i), and by CC31 BK holds. 0

[Theorem 41 [Il][I2][Cl][C2][Cj] are sound and
complete with respect to INDs and co-EXDs.
(Proof) see Appendix Cl.

5.2 Co-EXD and the interaction with intersection
eltpression

Co-EXD involving more than two entity types
is not equal to a number of co-EXDs of two entity
types. For instance, [A#B, BIIC. C//A) does not
say there exists a common entity in A(A), A(B)
and X(C). Now we extend co-EXD to multiple
entity types environment, denoted C(AI,..,A,).
which says the intersection of ,4(Al),.,,A(An) can
not be empty. For example. I#(A,B,C)I says
there can be an entity common in the three sets.
Note that if t(A,B,C) then (AIIB, BtC, C/IA) holds
but the reverse does not hold true.

More precisely, entity types Al..,A, are
mutually co-exclusive if the following recursive
conditions hold:

(i) AI//A2 if n=2
(ii) #(AI,..,A,-1) ; and (AI*..*An-1, A,) when

n>2.

[Example] In the case of Figure 3, we change
Manager*Secretary<Leader into the two cases as
follows:

X=(B(Manager.Secretary,Leader)]
Y-[I(Manager,Secretary), #(Manager,Leader)]

The former says that there can be a leader
who is a manager and a secretary, the latter says
that there is no such person, although there can
be a leader who is a manager (see Fig.4).
Hereafter we assume X.

To avoid the notational complexity, we define
"equivalence" symbol (I): we say EzF if and only
if E<F and F<E.

[lemma 31 Extended co-EXD can be expressed by
binary co-EXDs and IXCs with an introduction of a
new type. In fact, {#(A l,..,A,)] is equal to
(BIA,, #(A~,..,A,-~). B=A~*..*A,-~]. As easily
seen, the description length is still O(n). 0

As for the above example, the additional
constraint X is expressed as follows:

MgrSecsManager*Secretary
MgrSectLeader
Manager//Secretary

The following properties clearly hold:
[Ml] t(E) for every E, E is non-empty

(this is rather a definition)
CM21 //(El p -. ,En) implies t(F1 r*.rFn) where

(F l,..,F,j is a permutation of [Ei,..,E,).
[M3] #(EI,..,En) implies #(El,..rEn,Ei) where

i=l , . . ,n
[M4] I(Ei,..,E,,Fl,..,F,) and FI*..*Fm<G imply

B (E ,,..,E,,G) where n>=O, m>O

[Example] In the Figure 4, we again change our
environment such that

(0 Worker+Driver)CLeader
insTead of
Leader<0 Worker+Driver.

That meat% some other person, say Bob, may be a
leader. The constraint is the above one. (Fig 5)
Let us consider co-EXDs and UXGs. Following
example shows us how hard to draw the difference
on the diagram.

-454-

[Example]
X=(A#(B+C))
Y={ACB, AK)
Z=(A#B, A#(B+C))

Clearly X and Y are not equivalent though Y
implies X. This is because every assignment
satisfying Y makes all the elements of X, but the
reverse direction is not. Also Z is redundant
since the first implies the second in a sense
that every assignment satisfying the first
formula should satisfy the second. Note X cannot
be expressed straightforward by the diagram
though Y can.

[lemma 41 An extended co-EXD (A1+..+An)

Driver

X={#(Manager,Secretary,
Leader)}

-o-Worker
--I

Driver

y={#(Manager,SecretarY).
#(Manager,Leader)}

Fig. 4 AIS diagram with co-EXDs

CM51 IICE, s**sEn) implies i~(Fle-.pFm) where
(F l,..F,] is a subset of {E1,..En] where all
the symbols are intersection expressions.

Note CM21 corresponds to [C2], CM41 to CC31 and
CM1 lCM31CM51 to Ccl I.

[Theorem 51 [Ml]-[M5][11][12][IXl][IX2] are
sound and complete with respect to IXGs and co-
EXDs under intersection expressions.
(Proof) see Appendix IJ.

5.3 Interaction with union expression

-.
Now we go back to binary co-EXDs in order to

discuss UXGs. Our extended co-EXDs can involve
union expression.

Leader

Fig. 5 AIS diagram with co-EXDs

#(B,+..+Bm) is equivalent to the set [A//B,
A-Al +. .+A,. B-B1 + . . +Bm) . Also note the
description length is still O(n+m).O

For example, the above constraint is
GDmO Worker+Driver
Lead&#OD

One more definition is needed. A normal UXG
A<B1
and

+..+Bm is called minimal if ahd only if m=l
A&B 1,

(B, ,
or any proper subset IBj, ,..,Bjk) of

..,Bm) does not satisfy A<Bj,+..+B.. .
i”

Note
that a given UXG may have several minima forms.

[Theorem 61 Allowing union expression,
[Ill[I2lEUXllCUX2l cc1 l-CC31 are sound and
complete with respect to co-EXDs and UXGs.
(Proof) see C21.0

[Example] The constraints in the figure 5 are
non-redundant.

[Theorem 71
(1) Testing membership of INDs and co-EXDs takes
time O(n2) where n is the description length of
the given set and the candidate.
(2) Testing membership of IXGs and co-EXDs takes
time O(n2)
(3) Testing membership of UXGs and co-EXDs takes
time O(n5)
(Proof) see C21.0

6 CONCLUSION

In this paper, we proposed new classes of
Inclusion Dependent ies as extension of
Generalization based on entity and association
concept. Various kinds of extensions were
discussed, and four classes (IND, IXG, UXG and
co-EXD) were evaluated from the viewpoint of
database design. We presented the complete
inference axioms for each class and the

polynomial complexity of inference problems.
In order to construct databases according to

a given scheme, it is helpful to consider the
data structure on logical data storage as well as
abstract data model1 ing. For, redundancy
reduction of entity sets or association sets, and
query optimization generally require fairly
uniform and logical treatment on data storage.
We call this level of database abstraction
“realization structure”. Non-First normal form
Relation (NFR) [3], for ‘example, is addressed for
this purpose. Using the theory, domain can be
organized systematically from more than one
entity set using inter entity sets structure.

Several problems remain unsolved. First, we
must relate IXGs, UXGs and co-EXDs to predicates
in AIS and to compound value association [2][4].
Second, decomposing domains helps us to
distribute data onto several sites in order to
achieve parallel processing as in database
machines. The new criteria for design may be
presented;

Cl1

c.21

c31

[41

151

C61

c71

Cal

c91

REFERENCES

H.Arisawa: A conceptual design of a database
machine based on a new data model, E-R
approach to system analysis and design, Proc.
1st E-R Conference, North-Holland, 523-540;
(1979)
H.Arisawa: Formal Approach to Database Design

Based on Entity-Association Model, doctoral
dissertation, Kyoto University, (1986)
H.Arisawa, K.Moriya and T.Miura: Operations

and the properties on non first normal form
relational databases, Proc. VLDB, 197-204,
(1983)
H .Ari sawa and T. Miura: Formal approach to

database description, Proc. IEEE-COMPCON,
463-470, (1984)
C.Beeri et al: Computational problems related
to the design of normal form relational
schemes, ACM-TODS, 4-1, 30-59, (1979)
C.Beeri: Compatible attributes in a universal
relation, Proc.ACM-PODS. 55-62, (1982)
M.Casanova et al: Inclusion Dependencies and
their interaction with functional
dependencies, proc. ACM-PODS, 171-176, (1982)

M.Casanova et al: Towards a sound view
integration methodology, proc. ACM-PODS, 36-
47, (1983)

M.Casanova et al: Mapping uninterpreted
schemes into E-R diagram, IBM J.Res.Develop.,
28-1, 82-94, (1984)

[lo] P.Chen: The. entity-relationship model -
towards unified view of data, ACM-TODS, l-l,
9-36, (1976)

Cl 11 E.F.Codd: A relational model of data for
large shared data banks, CACM, 13-6, 337-387,
(1970)

[121 Demolombe: Assigning meaning to ill-defined
queries expressed in predicate calculus
language. Advances in Databases, Plenum
Press, 367-395, (1980)

Cl31 P.C.Kanellakis et al: Unary INDs have
polynomial time inference problems, ACM STOC,
264-277, (1983)

Cl41 W.Kent: Choices in practical database

-455-

design, proc.VLDB, 165-180, (1982)
Cl51 M.R.Carey et 81: Computers and

Intractability - A guide to the theory of NP-
completeness, Freeman, (1979)

Cl61 E.Mendelson: Introduction to mathematical
logic (2nd), Van Nostrand, (1979)

cl71 S.Navathe et al: View Representation in
logical database design, proc. ACM-SIGMOD,
144-156, (1978)

[I81 A.Pirotte: The Entity Association model,
International Computing Symposium, North-
Holland, 581-597, (1977)

Cl91 R.Reiter: On the integrity of typed first
order databases, Advances in Databases,
Plenum Press, 137-157, (1980)

[20] Y.Sagiv et al.: An equivalence between
relational database dependencies and a
fragment of propositional logic, JACM, 28-3,
435-453, (1981)

[211 E.Sciore: Inclusion dependencies and the
universal instance, proc. ACM-PODS, 36-47,
(1983)

c221 J.Smith et al: Database abstraction -
Aggregation and Generalization, ACM TODS, 2-
2, 105-133, (1977)

[231 J.D.Ullman: Principles of Database systems
(2nd), Computer Science Press, (1982)

[241 C.Beeri et al: Comprehensive approach to
design of relational database schemes, proc.
VLDB. 196-207, (1984)

[251 P. Atzeni et al: Formal properties of net-
based knowledge representation schemes, IEEE
COMPDEC (1986)

APPENDIX

Proof of [Theorem 21
By [lemma 11 we assume every formula is normal.

The proof strategy is similar to [Theorem 11.
Moreover, we outline the proof of (1) and a
similar proof holds for the case of union.
Care should be taken that we extend [Ill [I23 to
the ones involving expressions. Relating
A1*..*An<B to A1*..*An=>B, we have the
corresponding set -of. logical formulas. The
logical formula above is defined true if some Ai
is false or B is true. Assume X is the given set
of IXGs and p an IXG. Equivalence Theorem is
proved similarly in [Theorem 11. In order to
prove completeness, we assume p is not derived
from X. and show that there is an assignment
which satisfies all X but not p.
Assign false to every C if Al*..*A,,<C cannot be
derived from X. By [1X11, Al,..,A, are all true
and B is false by assumption.
When Cl*.. *C,=>D is false, Cl,..,& are true and
D false, that is, Al* ..*An<Ci can be derived for
i=l,..,m. By [1X21, Ai*.. *A,<D is proved from X
since Cl*..*C,<D is b-i x, D must be true,
contradicti0n.O

Proof of [Theorem 31
INDs and IXGs are much similar to functional

dependencies, and [51 can be applied to our
problem. In the case of UXGs, when deriving
Al+.. +An<Bl+..+Bm, we want to calculate all the
unioh expressions of the UXG which have B1+..+Bm
on the right side. Then we will test whether the

set contains Al+..+An.

(1) Y:={B,,..,B,]

I:', repeat for each Cl+..+Cl<Dl+..+Dh in X
(4) if all Of Dj,..,Dh are in Y

then add Cl,..,Cl to Y
(5) until (Y is not modified) or (Y contains all
the elements of

Alt.-eAn)
(6) if Y is not modified then return(FALSE) else
return(TRUE)

The above algorithm calculates the set
desired, since (1) represents [Ill, (4)
represents [I21 and CUX.21, the latter of (5)
means [UXl]. Also this halts in finite steps
because the set Y is increasing monotonously and
X is finite. (3) and (5) take O(k), and (4) takes
O(k2). The loop (2)-(5) halts in O(k) times,
for, Y has the limit length.
takes time O(k4). 0

In total, this

Proof of [Theorem 41
Soundness holds clearly and we show the

completeness. Assume X is a set of INDs and co-
EXDs, p an IND or co-EXD. In order to prove the
completeness, we construct the set assignment
which satisfies all of X but not p if p is not
derived from X.
When p is an IND, [Cl]-CC31 cannot derive new
INDs and the theorem is reduced to [Theorem 11.
Assume p is a co-EXD A#B where A,B are both
entity types.
Let Cl,..,C, be entity types in X and p.
Consider the assignment as follows:

(i) Add Xij to Cit Cj if Ci#Cj can be derived
from X.

(ii) Add Xij to Ck if Ci#Cj, Ci<Ck are derived
from X.

(iii)' Repeat (i) and (ii) as many times as
possible.
where Xij are all distinct and i&j.

[i] The assignment is well-defined: The number of
IXijJ are O(n2), and every Ci is increased
monotonously. Then generating procedure halts in
finite steps. It is easy to show the assignment
is Finite Church Rosser, that is, there is the
finite length procedure and the result is unique,
not dependent on the applying sequence.
[ii] p is not satisfied: By (i), X(A) and A(B)
are both nonempty. Since p is not derived from
X, rule (i) cannot applied directly to A and B.
Assume there is an element xij both in A and B;
Then certainly we have Ci#Cj, Ci<A and Cj<B (or
Ci<B) derived from X. Then, we must have A#B
by [C3] or [lemma 21.
[iii] Every formula in X holds: Co-EXD in X must
hold because of (i). Assume Ci<Cj is in X.
Every element xik in Ci mUSt be in Cj by (ii);
Element xpq in Ci y;; b;yCe
Cp<Ci (or C,<Ci).
adds xpq to C(j) by (ii;. 0

and Cq with CE#Cq;
121, Cp<Cj and pICq

-456-

