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1. INTRODUCTION 

Due to the success of relational systems, there is a 
growing demand for such database technology, in 
fields like computer aided design (CAD), image pro- 
cessing or office automation. It seems well accepted 
that future database systems should support complex 
objects and inference rules. The purpose of this paper 
is to present two approaches currently investigated at 
Inria in that direction, based on the existing Sabre 
and Verso projects. 

Database research at Inria started in the early 
seventies. The Sirius project (1976-1981) [L+] was 
focussing on distributed database systems. This pro- 
ject gave birth to two advanced activities in database 
research: (1) the study on distributed databases was 
continued within the Sesame project (Li], (2) the 
Sabre project was initiated in 1980 with the initial 
objective of developing a performant Database 
Management System (DBMS) [HI. Concurrently, the 
Verso project was started with the objective of 
designing a DBMS based on efficient back-end filter- 
ing [BS]. 

Today, prototypes of the Sabre and Verso 
DBMS are running under the Unix system. This 
paper is devoted (i) to the presentation of these two 
prototypes and (ii) to the outline of the advanced 
developements based on these systems. The distri- 
buted aspects will not be addressed in this paper. 

The paper is organized as follows. The Sabre 
and Verso projects are presented respectively in Sec- 
tions 2 and 3. Within each section, the project his- 
tory and objectives are first discussed; the DBMS 
architecture is then presented, with focus on the 
novel features; finally the current directions of 
research are outlined. 

1 This research was partially supported by the french agency 
ADI, the CNET, and was part of the french joint research 
program on databases (PRC-BDS). 

2. THE SABRE PROJECT 

2.1 History and objectives 

The Sabre project was developed in cooperation with 
the University of PARIS.VI. At that time, the 
objectives of the SABRE project were set as follows : 

(1) 

(2) 

(3) 

(4 

To develop an extensible and portable rela- 
tional database manager able to run on classical 
machines and/or on specific database comput- 
ers. 

To improve response time in comparison with 
classical relational database systems running on 
similar configurations. 

To allow different groups of users to define and 
query multiple databases containing real or vir- 
tual relations (i.e. views) . 

To guarantee the physical integrity against con- 
current transactions interferences or system 
failures, and the semantic integrity against 
erroneous updates. 

Today, objectives (l),(3) and (4) have been 
achieved [G+, SVPJ while we are still working on 
objective (2). This performance objective, which is 
probably the most difficult to be realized, led us to 
develop a new access path organization based on 
predicate trees [VV] which also supports secondary 
indexes [CFM]. M easurements show good perfor- 
mances for query processing. Howewer, many other 
factors affect the database system efficiency, such as 
the style of programming and the language compiler 
that we used to compile the Sabre system. Also, to 
achieve this second objective, we studied a parallel 
version of Sabre which will encompass several disks 
performing I/O in parallel attached to one or more 
processors performing data operations (i.e. selection, 
join and sort...) in parallel. We still envision a paral- 
lel version of Sabre for the future [CFMT] . . . 

Although all the objectives of Sabre have not 
yet been achieved, we are already working on two 
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new objectives : 

(5) To enhance Sabre with deductive functionalities 
in such a way that it could become a useful tool 
for solving decision oriented problems. 

(6) To extend the data types offered by the system 
towards user defined abstract domains. 

In our view, these two supplementary objec- 
tives with the previous four objectives will lead us 
towards a fifth generation database management sys- 
tem, that is a DBMS supporting rules and complex 
data types in an efficient way. 

In the sequel, we first present the functional 
architecture of the Sabre system . Then, we focus on 
the most original features of the system which intend 
to make it an efficient system; these are: 
- a multi-attribute clustering based access path 

model [CFM], 

optimized join algorithms [VG], 
- an integrated query optimization strategy [V] , 

We then present the fully assertional and 
optimized integrity sub-system [Si]. Finally, we 
present the new developments of the system to sup 
port rules and extended data types. 

2.2 System architecture 

The current architecture of the system is composed of 
three layers of abstract machines, going from the 
end-users to the disk units: 

(1) 

(2) 

(3) 

The interface machine composes the external 
layer. It is responsible for the dialogue with the 
end-users and the parsing of the user requests 
into internal messages constituting an applica- 
tion protocol called the Data Manipulation Pro- 
tocol (DMP). S everal types of user interfaces 
can be offered. 

The assertional machine which constitutes the 
intermediate layer of the system performs the 
evaluation of relational tuple calculus assertions 
in terms of an extended relational algebra. 
This machine also includes integrity, view and 
security controls . It also manages the met* 
database of the system as a relational database. 

The algebraic machine which is the most inter- 
nal layer carries out the relational algebra 
operations as fast as possible. To supply this 
function, it manages the access path model 
based on predicate trees [GFMVV], uses a 
cache memory and implements efficient join 

[VG] and filtering algorithms . In addition, the 
algebraic machine performs the physical con- 
trols, that is concurrency and reliability con- 
trols. 

Each machine is divided into functional proces- 
sors which are implemented as software modules. In 
the sequel, we introduce the processors of each 
machine. 

The interface machine is composed of one pro- 
cessor for each type of interface. For the time being, 
it includes a flexible non-procedural language (called 
FABRE) which is a super-set of both QUEL and 
SQL, a query by form and example language (called 
UQBE) and a pre-compiled PASCAL/R like interface 
(called SINPA). A Prolog interface [J] and an expert 
system for database design [BGM] are currently 
under developpement at this layer. The interface 
machine also includes a set of utilitaries (system ini- 
tialization, database save and restore commands . ..). 

The assertional machine includes four main pro- 
cessors : 

The integrity processor performs the integrity 
control using a specific algorithm [SV]. 

- The view processor carries out the view to 
database mapping. 

- The request evaluation processor performs an 
optimized decomposition of each request in a 
tree of relational algebra operations. 

The meta-database management processor sup- 
plies a set of functions to access and update the 
relations containing the database schemas. 

Finally, the algebraic machine is divided into 
six functional processors : 
- The relation access processor manages the 

access paths to a relation, that is the predicate 
tree associated with each non sequential rela- 
tion and also clustered indexes. 

The join, sort and aggregate processor performs 
join, sort and compute aggregate functions 
using specific algorithms [VG]. 

The localization and storage processor allocates 
physical space on disk to store logical subsets of 
a relation and retrieves these logical subsets on 
disks from logical addresses. 

- The concurrency control and recovery processor 
carries out concurrency control using two phase 
locking and performs reliability control using 
shadow page and two phase commit methods. 
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The filtering processor performs selection, inser- 
tion and deletion of tuples in a disk partition 
which is a fixed size bucket containing tuples 
stored sequentially. 

The cache memory processor is responsible for 
managing the random-access memory which 
contains temporary and intermediate results of 
user operations; this memory is extended to 
disk if not enough RAM is available. 

In summary, the functional architecture of 
Sabre is portrayed figure 1. Let us point out that the 
machines and processors herein defined are virtual in 
the sense that they correspond to functions; thus, in 
non parallel versions of Sabre, they are all imple- 
mented on a unique real processor. They may be 
implemented on parallel processors. We shall not 
focus here on possible parallel implementations of 
Sabre. The parallel version of Sabre we are currently 
working on is described in [CFMT]. 

2.9 System eficiency 

Several features allow the system to process queries 
efficiently, among them : 

a multiple attribute clustering method, 
- an efficient join algorithm, 

an optimized query processing strategy. 

We briefly describe these three devices below. 

2.3.1 Multiple attribute clustering 

One of the major tools developped in the system to 
improve its performance is a multi-attribute cluster- 
ing based access model. The method is built upon 
the concept of predicate tree [VV]. A predicate tree 
is a balanced tree of predicates; each level of the tree 
corresponds to a list of contradictory predicates of 
the form : 

function (attribute) = value. 
A predicate tree is defined by the data base adminis- 
trator when creating a relation. It specifies the clus- 
tering to be performed on that relation. When tuples 
are inserted, the relation grows according to the 
predicate tree : whenever a page is full, it is split into 
two pages according to the current digit of the 
hierarchical address (called a signature) of the tuples 
in the predicate tree. 

The predicate tree is used to accelerate 
retrievals : the predicates in the tree are compared 
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Figure 1 : Sabre architecture 

with each selection qualification; when a match 
occurs, the branch number of the predicate in the 
tree is generated as the corresponding part of the 
hierarchical address (i.e. a signature profile); if no 
match is possible, an unknown address part is gen- 
erated. Finally, only pages corresponding to the gen- 
erated signature profiles have to be searched. The 
search is then performed efficiently by the filter in 
main memory. 

In addition to a predicate tree which directs a 
relation clustering, the database administrator may 
specify indexes. Indexes are managed as a clustered 
relation giving for each indexed attribute value the 
signatures of the pages containing corresponding 
tuples. Thus, when an indexed attribute is specified 
in a query, an index access first gives a list of 
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signatures to be searched. This list is intersected with 
the signature profiles obtained from the tree in order 
to reduce the number of pages to be scanned. A more 
thorough description of this rather complex but 
efficient method is presented in [CFM]. 

2.5.2 Optimized join algorithms 

Join algorithms are implemented in the join proces- 
sor. They work on pages whose content is brought in 
cache memory. At first, after a paper study and 
evaluation of three join algorithms (nested loops, 
sort-merge and hash) in a single and multiple proces- 
sor environnement, we concluded that each algorithm 
is the best depending on relation sizes [VG] and has a 
specific domain of application. Therefore, we imple- 
mented the three algorithms in the system. This solu- 
tion rapidly appeared to be complex and not really 
optimal. 

A new and unique algorithm was then designed 
and implemented. The algorithm performs joins in 
two steps. The first step is only activated for rela- 
tions having a size superior to a ratio of the cache 
memory size. Such relations are divided into buckets, 
by using a hash function on the join domain. In the 
second step, each bucket of one relation is joined 
with the corresponding bucket of the other relation. 
For this purpose, a bit array is built by hashing the 
first smallest relation bucket. For each bit set to one 
in the bit array, the address of the corresponding 
tuples are kept in a list. The other relation 
corresponding bucket is scanned and matched to the 
bit array. When a match ocurrs, the tuples are com- 
pared and if the comparison is successful, the result 
tuple is written in cache memory. The algorithm 
proceeds in a similar way for each couple of buckets 
of the two relations. Measurements have shown the 
algorithm efficiency [VI. Also, the algorithm fits well 
with the multi-attribute clustering : when the join 
attributes are used for clustering, the first step is not 
neccessary. 

2.8.3 Query processing strategy 

The query decomposition algorithm of Sabre 
transforms a query into a sequence of relational alge- 
bra operations. The query is expressed in conjunctive 
normal form. The decomposition method is recursive. 
At each recursion step, we select the couple of rela- 
tion instances in the query whose join cost is 
minimal, if any. Then, based on the simple heuristic 
of performing selections before join, we apply all 

possible selections to each relation. The join is then 
performed. When no join is possible, aggregates and 
unions are considered and performed if possible. 
Finally, when recursion is not possible anymore, the 
query is a mono-relation query or an invalid one. 

The method is completely interpreted. Thus, 
the real size of intermediate results is always known. 
The sum of sizes of relations to join is in fact our cost 
estimate; thus, we order join starting with the smal- 
lest relations. Of course, each selection is optimized 
using predicate trees and indexes as described above. 
Join are optimized by the previously described algo- 
rithm. The algebraic machine performs the computa- 
tion of aggregate functions by using optimized algo- 
rithms which give intermediate relations. 

2.94 Performance measurements 

A performance evaluation of the system was con- 
ducted on a French SM9O mono-processor machine, 
in cooperation with the French CNET. The bench- 
mark was performed with the University of Wiscon- 
sin benchmark database [Bit]. The results show that 
the performances are similar to that of the INGRES 
University system. However, Sabre is not very 
efficient for queries on key attributes; this is due to 
the filtering approach combined with the multi- 
attribute clustering : at least, the system accesses to 
an index and filters a disk partition to get a unique 
record. That step requires a minimum of 0.4 second 
in the current implementation. On the contrary, 
Sabre is efficient for queries which specify a clustering 
attribute. 

An interesting aspect of the benchmark was an 
estimation of the time ratio spent in each functional 
processor. A summary of the results for typical 
queries of the Wisconsin benchmark is given in figure 
2. The ratios show the importance of the filtering 
process overhead and possibly justifies the amount of 
work spent to build a hardware filter such aa the 
VERSO filter [BS, ERT]. 

2.4 Reliability and integrity control 

The integrity subsystem provides rich functionalities 
and high performances. A high level language sup- 
ports the definition of a large subset of multi-variable 
multi-relation assertions with aggregate functions. 
These assertions are expressed into an extended rela- 
tional tuple calculus. Also, predefined key-words are 
used to express the most usual structural integrity 
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TIME PERCENT 

PROFFSSOR 
REQUEST 1 REQUEST 2 REQUEST 3 

-- 

INTERFACE 1.0 0.1 1.0 

VIEWS 0.1 0.1 0.1 

INTEGRITY 0.0 0.0 0.0 

OPTIMIZER 8.6 0.6 1.2 

ACCESS PATHS 7.3 0.1 0.1 

JOIN, SORT 0.0 0.0 85.0 

LOC. k STOR. 8.8 2.9 0.5 

CACHE MEK 0.5 3.9 0.1 

PETER 59.2 88.1 11.6 

DISKS 14.5 4.2 1.4 

-- 

-- 

-1 

REQUEST 1: RETRIEVE MILl.’ WHERE 
UNIQUE-1 = 1 OR UNIQUE-l = 254; 

REQUEST2:RETRIJZVE MILI.* ; 

REQUESTJ: RETRIEVE ml.*, MIL.2.” WHERE 

ml.niousAND = MIL2.THOUSAND 

AND MILl.TEN=S OR MILl.TJiN=s; 

MILl and MIL2 M the benchmark drdxu with 1000 t@es each 

Figure 2 : time ratio spent in each processor 

constraints (key, entity, referential, functional and 
inclusion dependencies). 

High performance is attained through the use of 
an assertion simplification method activated at asser- 
tion definition time. This method can be illustrated 
as follows. Let A be an assertion containing tuple 
variables ranging over several database relations. A is 
transformed, at compile time, into a set of compiled 
constraints of the form (R, T, E) where R is a rela- 
tion involved in A, T is a type of update (among 
insert, delete, modify) and E is a differential pre-test 
for A, R and T. A differential pre-test for A, R and 
T is an optimized pre-condition that the T updated 
tuples of R must satisfy in order to guaranty the 
preservation of A. By optimized pre-condition, we 
mean that the amount of data needed to enforce E is 
much smaller than the one needed to enforce A, 
whenever R is updated by T. It is assumed that A is 
always satisfied by the current database state. This 
transformation of assertions into compiled constraints 
is performed by a specific module of the integrity 
subsytem called “assertion compiler”. The design of 
the algorithms used by this module and their imple- 
mentation are described in [Si, SV2]. The benefits of 
the method are the following: 

(9 it allows to prevent the introduction of incon- 
sistencies in the database, 

(ii) it reduces the number of assertions to be 
enforced at each update, 

(iii) it supports a large class of assertions and multi- 
ple tuple updates of a single relation, 

(iv) it optimizes the assertion enforcement cost. 

The algorithm which enforces integrity asser- 
tions is specialized for three classes of assertions [SV]. 
The main properties of the algorithm are: (i) To gen- 
eralize the integrity control to general database tran- 
sactions composed of several updates. (ii) To 
manage automatic or manual reliable integrity check- 
points. An analysis exhibits the value of the algo- 
rithm [Si, SV2]. In particular, the proposed method is 
shown to be better than the query modification 
method. Finally, all algorithms are integrated in a 
modular and extensible subsytem architecture. The 
other functionalities supported are a constraint mani- 
pulation language and the precise management of 
errors. 

The mechanisms described above take great 
benefit of the update validation technique described 
in [VM]. This technique is based on a Private 
Workspace Model for transactions. In this model, a 
private transaction’s workspace is associated with 
each transaction. This workspace reflects the changes 
made by the transaction independently of the other 
concurrent transactions. Furthermore, this technique 
guarantees that updates executed by a request i are 
visible by all requests i + j within a same transac- 
tion. This last point is very useful for the integrity 
control algorithms. Concurency control and recovery 
mechanisms are integrated in a unified way. Reliabil- 
ity is implemented by using an improved variation of 
the shadow page technique (L]. Finally, at transac- 
tion end, all updates are commited by using a two- 
phase commit protocol. 

fZ.5 New directions of research 

2.5.1 Rule support 

To allow the system to support complex derived rela- 
tions, including recursive relations, we are enriching 
it with a rule definition language. The rules are 
expressed as a set of production rules of the form : 
IF <qualification> THEN <action>[,<action>]... 

Qualifications are typical query qualifications while 
actions are either tuple insertions or deletions. Rules 

-427- 



are grouped into modules which define derived predi- 
cates (i.e. inferred relations). A compiled form of 
rules is stored in a rule base which is a set of rela- 
tions. 

A query of any interface module can refer a 
derived predicate. In that case, the deduction pro- 
cessor (which is added at the level of the assertional 
machine) retrieves the relevant rules for the query 
and performs, in an optimized way, the necessary 
inference process. The optimization is based on an 
internal model allowing the system to represent rules 
and queries in a uniform net [GMS]. 

Several problems remain to be solved, although 
a first implementation of the rule support is already 
operational. Among them are the following : 
- rule module consistency, 

rule module commutativity and convergence, 
- rule modifications and exception handling, 
- improving performances of the inference 

mechanism using specific algebraic operators. 

Another important problem which has been 
studied is the optimization of recursive rules. The 
next paragraph introduces our solution. 

2.5.2 Recursive Horn clause evaluation 

A particular class of rules which are hard to optimize 
is the class of recursive Horn clauses. We introduce a 
new method to compile queries referencing recur- 
sively defined predicates. The method works for gen- 
eral rules such as the non linear definition of ances- 
tors: 
ancestor(x,y) +- parent(x,y) 
ancestor(x,y) + ancestor(x,z) k ancestor(z,y) 

The method is based on an interpretation of the 
query and the relations as functions which map one 
column of a relation to another column. For example, 
the query ancestor(c,x?) is considered as a request to 
evaluate the function a({c}) for a given set of con- 
stants c; this function maps the first column of the 
ancestor relation to the second one. Translating the 
rules into functional equations, we get : 
a&4) = I) + a(a((x))) 

Using Tarski theorem, leads to evaluate the series : 
aO({c}) = 0 
alW = ~((4) 
. . . . . . . . . . . . . . . . 
an({c}) = p({c}) + an-1(-1((c)) 

whose limit is obviously : 

44 = P({C)) + P(PW) + es** + 
P(P(P...P((C)))) + *** 

The method lends itself to the specification of 
polynomial operators to solve each class of rules. For 
example, linear rules can be solved using an extended 
transitive closure, called external closure [GM]. Such 
operators are currently being implemented in the 
Sabre system. Most of them are special cases of graph 
traversals. 

2.53 Eztending data types 

The current implementation of sabre suppports res- 
tricted data types : integer, real and variable length 
character strings. Our current approach for extend- 
ing these data types is based on a LISP interpretor : 
we enrich the system with a new type “list” imple- 
mented as a LISP binary tree. Domains of this type 
may be manipulated through functions, including the 
basic LISP functions CONS, CAR, CDR, a library of 
supplied functions as APPEND, REVERSE, 
MEMBER . . . and also database administrator defined 
functions. The functions may be used at the level of 
the non procedural languages as a modifier applied to 
an attribute name, using the dot notation. This 
approach which seems very powerful and which does 
not imply strong modifications in the system is 
currently under investigation. 

2.6 Conclusion 

The development of a complete DBMS as Sabre, with 
a sound kernel based on software filtering of disk par- 
titions , an original multi-attribute clustering and a 
tuple relational calculus including functions, is a huge 
task. One strenght of the system is its division into 
abstract machines and processors. This architecture 
was elaborated to develop a multi-processor system. 
Surprisingly, this allows us to develop new func- 
tionalities without changing the whole system. 

The experience shows us many difficulties to 
achieve the multi-processor goal, among them the 
lack of multiprocessor operating systems able to sup- 
port the DBMS in an efficient way.However, multi- 
processor operating systems are rapidly evolving. 
That is why we still think about developing a parallel 
version of Sabre, as presented in (CFMT]. 
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3. THE VERSO PROJECT 

9.1 History and Objectives 

The VERSO project was started at Inria, in the early 
eighties [BS], with the following objectives in mind: 
- Justify the approach consisting in relegating 

some tasks to a processor close to the mass 
storage device under the conventional assump 
tion that Database Management Systems 
(DBMS) are I/O bound. 

- Check that an automaton-like mechanism for 
this on-the-fly filtering capability is well 
adapted to query processing. 

The major motivation behind such an architec- 
tural approach is to increase the performance of a 
relational DBMS. Although the usefulness of on-the- 
fly filtering ha8 been widely accepted (see, for exam- 
ple [HI), no filter has been included in a complete 
DBMS design to our knowledge. Our intention was 
therefore to develop a fully relational system that 
would use the above filtering concept. To take full 
advantage of the filter, it was decided to store data 
in hierarchical structures. This physical organization 
strongly suggests a logical data organization into non 
first normal form (non 1NF) relations called V- 
relations. An algebraic language for non 1NF rela- 
tions is then used to manipulate data [AB]. 

3.1.1 Non 1NF relations 

Existing relational database systems already provide 
high level query language8 like SQL or Ingres which 
are relatively easy to use. They answer at least par- 
tially the data acceseing needs of many applications 
in areas like business administration. Due to the BUC- 
cess of relational ayeterns, there is a growing demand 
for such database technology in other fields like com- 
puter aided design(CAD), image processing, VLSI, or 
office automation. The relational model proposes to 
represent the logical structure of data in tables, pro- 
viding data dependencies as the only means of 
defining more precise semantics. Unfortunately, this 
approach is too simplistic for the new applications. 
For instance cAD-8y8tem8 often manipulate 
hierarchical data structure8 with many levels. The 
flattening of these data structures is not satisfactory 
neither from a performance point of view, nor for 
conceptual reasons. 

These limitations of the relational model come 
essentially from the so-called first normal form 

assumption which states that values in a relation 
should be exclusively atomic. The model used in the 
Vera0 system does not make that assumption, and is 
therefore better suited for the new database applica- 
tions. Indeed, several researchers have studied this 
concept of non 1NF relations [e.g., AB,FT,SS]. It 
should al80 be noted that this notion of hierarchical 
data arises naturally in the context of semantic data- 
base modelling [AHl]. However, the Verso system 
was, to our knowledge, the first implemented system 
based on non 1NF relations. 

The query language is algebraic. All algebraic 
operations (except for one, namely restructuring) are 
performed by the filter. This filter can be viewed as 
a finite state automaton (FSA) tihich scans sequen- 
tially one or two input buffers, and writes the result 
of the operation on an outpnt buffer. The restructur- 
ing operation involve8 8ome sorting, and cannot be 
realized uniquely ‘by the filter. The performance of 
the system thereby depend8 heavily on the perfor- 
mance of the filter, and on it8 connection to the rest 
of the system. 

9.12 Filtering and Performance 

The version of the system presented here, runs under 
the Unix operating system. Prototype8 have already 
been experimented on a 68000 based multiprocessor 
machine, the SM90. Most of the code is written in 
Pascal. A apecialiied hardware processor was first 
designed to realize the FSA filter [B+] and developed 
by the Inria SCD team . This hardware processor, 
connected to the mass storage as well a8 to the cen- 
tral bus was in charge of data transfer and data 
filtering. Later on, the hardware filter was aban- 
doned and replaced by a standard disk exchange 
module including an Intel 8086 processor on which 
filtering ia implemented by software. 

A performance evaluation work was conducted 
which focussed on the problem of choosing between 
these two competitive approaches for implementing a 
performant relational DBMS. At the time of this 
performance study, no real life measures were avail- 
able, and modelling was used for evaluating the 
filter’s response time to a query in both architectures 
[G,GS,S]. The result of the comparison was that 
software filtering should provide an acceptable perfor- 
mance, although very inferior to that of hardware 
filtering. Later on, when the system was operational 
with a eoftware filter, the system was tested against a 
benchmark provided by the french AD1 agency, and 
a benchmark designed at the University of Wisconsin 
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[Bit]. Two conclusions on software filtering were 
drawn from these experiments. 
- a comparison between the (measured) software 

filter’s response time and the (predicted) 
hardware filter’s response time reported in [GS] 
is attempted in [S,JV]. To summarize, the 
hardware filter should be extremely faster 
(more than 20 times faster) than the current 
filter implemented by means of an “off-the- 
shelf” Intel 8086 processor. 

despite the mediocrity of the Intel 8086 proces- 
sor , the Verso system’s performance is accept- 
able, compared to that reported in [Bit] of 
other DBMS such as Oracle or Ingres imple- 
mented on VAX 11/750 computers. 

In the following sections, we describe the Versa 
data model and system. A thorough presentation 
may be found in [JV]. Except for the use of a filter, 
and for the model of V-relations, the Verso system is 
a quite standard system: the data is stored in rela- 
tions contained in databases; secondary indexes are 
not implemented; concurrency is offered via the con- 
cept of transaction, and managed using two phase 
locking; mechanisms for handling crash recovery are 
provided. 

9.2 The System 

9.2.1 The Model 

In this section, we briefly describe the Verso data 
model. We first describe the data structure called 
V-relation. We then present the Verso algebra. A 
formal presentation of the model, together with some 
basic results on V-relations can be found in (AB,Bi]. 

In the Verso data model, the data is organized 
in non-1NF relations called V-relations. In a V- 
relation, the values of some attributes are atomic 
whereas the values of other attributes are V-relations 
of simpler structure. An example of V-relation is 
given in Figure 3.1. The first line of the figure 
represents the structure or format of the V-relation. 

This database describes information about 
movies, theaters, times, and actors. Note that: 

(1) for the movie “Karate Night”, there is no 
known schedule, and no known actor. Thus V- 
relations handle null values in a simple manner. 
As a consequence of this, some queries which 
are typically complicated to be expressed in the 

MOVIE (THEATER (TIME)*)* (ACTOR)* 

Straw Dogs 

Chinese 18.30 
I I 20.30 

Metropolis Studio3 

Pierrot le Fou 
v 1 R. .Kleinregge 
1 Studio3 1 20 I J.P Belmondc 

Karate Night L Studio3 

22 I] L A. Karim 

I 

Figure 3.1: example of V-relation 

relational model are simple selections in this 
model. An example of such a query is: “Give all 
movies with no known schedule”. 

(2) the data is naturally organized in a hierarchical 
manner. (It is possible to speak of the schedule 
of a movie in a theater.) Furthermore this 
hierarchical data organization induces some 
implicit connection between attributes. For 
instance, in this example, there is a connection 
between theater and actors through movie. 

A simple algebra can be defined for V-relations. 
As mentioned above, all algebraic operations but one 
can be computed by the filter. The unique “expen- 
sive ” operation is restructuring. This operation 
involves some sorting. Thus, the complexity of main 
memory computation is restricted to a unique 
module, namely the sorter. 

The algebra consists of unary and binary opera- 
tions. The unary operations are projection, selection, 
renaming, and restructuring. The binary ones are 
join, union, and difference. Examples of unary opera- 
tions are now given. These queries are expressed here 
in natural language. 

Ezample 2.1: The following projection/selection can 
be performed on the MOVIE database: “who are the 
actors playing in a movie shown at the Rex between 
7:30 and 8:30 featuring J.P. Belmondo and A. Kar- 
ina, or at the Chinese theater after 10:30?” 
(Note. that the previous operation would involve 
several joins in the relational model.) 

Ezample 1.1: The following restructuring can be per- 
formed on the MOVIE database: “give the list of 
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theaters, and for each theater, the movies that are 
shown there”. Note that some information may be 
lost when restructuring data. Even if the loss of infor- 
mation is tolerated (which is typically the case in 
queries), some restructuring operations have no 
meaning. For instance, it is not possible to restruc- 
ture a flat relation (A B C)* into (A(B)*(C)*)*. A 
thorough study of loaay, and loaaleaa restructuring of 
V-relations is presented in [AB]. 

Union allows to “add” the information of two 
instances. Join allows to ‘combine” the information 
of two instances. Finally, difference is used to with- 
draw the information of one instance from the infor- 
mation in another one. In that sense, these three 
operations can be seen as generalizations of the 
(pure) relational operations of union, join (and inter- 
section), and difference. It is not possible to apply 
binary operations to relations of arbitrary structures. 
The two relations involved have to be compatible. 
(See [AB] for a formal definition of comptibility.) 

The Verso language is used as the communica- 
tion language between the system, and the rest of the 
world. Indeed, other interfaces can be viewed as 
translation modules between more user friendly inter- 
faces and the Verso language. Users can use the 
Verso system directly in the Verso language, from 
Pascal programs, or through a screen interface. 

The Versa language provides commands for 
handling transactions, and within a transaction for 
data definition, and manipulation. The screen inter- 
face called Ever (for Editor of Verso Relations) is 
provided for non sophisticated users. Ever is a multi 
window screen interface tailored to answer the vari- 
ous needs of a dialogue with the Verso system. Four 
modes are offered: a mode for command edition, a 
mode for selection/projection, a mode for data edi- 
tion, and a mode for format manipulation. The data 
mode, for instance, is used for browsing through V- 
relations, and for updating. Except for the particular 
nature of the data, the editing of V-relations ressem- 
bles the editing of text in a conventional editor like 
Vi or Emacs. 

The third interface, V-Pascal, is a Pascal exten- 
sion which combines the advantages of the Verso sys- 
tern, and that of the Pascal programming language. 
The major problem raised by this type of interface is 
that Pascal does not allow the definition of structures 
like V-relations. Therefore, in the V-Pascal interface, 
V-relations are viewed through a strict relational 
view. This is clearly not satisfactory from a logical 

point of view, but has been developed mainly for 
being able to realize applications on top of Verso, 
and to gain experience in the embedding of database 
features in conventional programming languages. 

3.2.b The Architecture 

We first present the hardware architecture, then we 
give an overall description of the DBMS. The ver- 
sion of the system presented here runs on the Unix 
operating system and has been experimented on a 
68000 based multiprocessor machine, SM90. 

As shown in Figure 3.2, the machine includes 
the following components, which share the central 
bus, the SM bus: 

4 a central processing unit (CPU) including a 
Motorola 68000 processor, its local memory and 
a memory management unit; 

b) a RAM memory; 

4 an exchange module (EM) interfacing with a 
disk hosting the Unix system and the programs; 

4 an user interface (V.24 or Ethernet); 

4 another EM interfacing with another Disk 
where the databases are stored. Filtering is 
implemented on this EM. 

The CPU is in charge of the user interface, the 
high level DBMS layers to be described below and 
the titer’s control: it sends to the filter data transfer 
and filtering commands (see [JV] for a description of 
the filter internal structure) . 

Figure 3.2: Verso hardware architecture 
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In terms of functionality, Verso is a fairly stan- 3) At the lowest level, we find a block character- 
dard system: it offers data definition, search and ized by its address. There are two kinds of 
manipulation, transaction management, concurrency operations at the block level: filtering and inter- 
control and recovery and simultaneous access from nal sort of a block. As mentionned earlier, this 
separate sites . operation is not performed by the filter. 

The three latter functions will only be roughly 
sketched, since classical solutions have been chosen 
for those problems. The interested reader is referred 
to [B+] for more details. 

As usual, a transaction is a sequence of 
requests. The system accepts interleaving of requests 
issued from different transactions, but requests are 
sequentially run. In order to improve the global 
throughput, pipelining of requests on a single CPU is 
under study. 

A regular two-phase locking protocol is. used, 
together with deadlock prevention. Physical locking 
has been chosen with granularity of one block (one 
disk track). However the index is locked only for the 
duration of the index request (and not until the end 
of transaction, as for a regular data access). 

We will describe in more details the data search 
and manipulation functions. 

1) 

The system consists of three layers: 

The highest level is the V-relational level: the 
objects seen at that level are the V-relations 
and the schema. 

2) The second level is the file level: the objects 
defined at that level are Verso files, or physical 
representations of V-relations and the non- 
dense Index which permits to locate data. A file 
is a set of pages or blocks which are not neces- 
sarily contiguous. The operations at that level 
are: 

i) index manipulation in order to locate a V- 
relation, 

ii) selection/projection, insertion, deletion 
into/from a file (corresponding to a unary 
operation on V-relations); 

iii) binary operations on files (corresponding 
to a binary operation on V-relations); 

iv) file sort (corresponding to restructuring). 
We use a merge-sorting algorithm: once each 
block has been sorted, blocks are merged. This 
merge is a file union performed in linear time 
by the filter. 

Let us take the example of the V-selection to 
illustrate query processing through the three layers 
as well as the splitting of tasks between the CPU and 
the filter. A V-selection is submitted to the system. 
At the first level, given the V-relation name ,the 
schema is searched to get the V-relation format. Two 
operations are then performed: 

4 compile the query into an FSA to be loaded 
into the filter memory (LM); 

ii) search the index in order to get a subset of the 
blocks of the V-relation that have to be filtered. 
The result of this index search is a list of one or 
more block addresses. 

The above processing is performed by the CPU. 
Once the FSA corresponding to the query has been 
loaded into the filter’s memory , the filter starts pro- 
cessing a set of blocks. Except for input and output 
blocks of data, no data are transferred through the 
central bus or main memory. 

To summarize, V-relation operations are per- 
formed by the CPU, including transaction manage- 
ment and concurrency control. The CPU is also in 
charge of Index operations, as well as FSA generation 
and loading. The filter is in charge of file and block 
level operations on data (except internal sort of a 
block). Binary operations can also be performed in 
linear time by the filter since the files are sorted. 

We end up this description with a few words on 
filtering. Recall that the filter sequentially scans a 
source buffer and writes into a target buffer the 
relevant data. In the case of insertion or binary 
operations, two source buffers are concurrently 
scanned. Three processes are pipelined: (i) loading 
the source relation into a source buffer, (ii) filtering 
another source buffer previously loaded, (iii) unload- 
ing a target buffer either onto disk or to the user. 
The FSA filtering principle has been thoroughly 
described in [BS,BRS]. It was shown in [B&S] that 
an automaton-like device is sufficient to perform on 
the fly the V-algebra operations. The reader 
interested in a detailed description of the filtering 
mechanism is referred to [BS,JV]. 
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8.3 Conclusion and New Directions of Research 

With respect to more classical relational DBMS 
designs, Verso major novel features are the following: 

1) It includes a filter implemented on a separate 
processor close to the mass storage device. This 
filter is in charge of all algebraic operations 
except for restructuring. This automaton-like 
mechanism is extremely well adapted to pro- 
cessing of both unary, and binary operations. 
Furthermore, the filter is also used for provid- 
ing fast updates. 

2) Data is organized in non 1NF relations. This 
allows to combine the advantages of the rela- 
tional model (e.g., an algebraic language), and 
the possibility of hierarchical data organization. 
To our knowledge, the Versa system is the first 
running system based on non 1NF relations. 

The first response time measurements clearly 
show that the Versa system is not faster than com- 
mercial systems such az Oracle or Ingres. The main 
reason is that the 8086 microprocessor on which 
filtering was implemented is slow. By using dedi- 
cated hardware for filtering, one should gain two ord- 
ers of magnitude on response time. However, stan- 
dard microcomputers have a performance that 
increases rapidly with time. For that reason, follow- 
ing [BD], we believe that the use of “off-the-shelf” 
components for filtering should be preferred to a 
time-consuming and costly design of dedicated 
hardware. 

Besides, this first experience with a non 1NF 
model is quite promising: users seem to adjust quite 
fast to those more complex structures. For instance, 
it turned out that although the Verzo language was 
not intended to be user friendly, it didn’t require too 
much practice from the user to be capable of writing 
even complex queries in that language. Not surpris- 
ingly, the screen interface Ever haz been quite an 
improvement for users. 

The Versa model is based on non 1NF. In this 
model, set and tuple constructors are used alterna- 
tively to construct higher order relations. It is 
assumed that at each level at least one attribute is 
atomic, and furthermore that this attribute forms a 
key for the relation. Although these restrictions are 
useful for implementation reasons (they form the 
basis for the functionning of the filter), they are cer- 
tainly not logically needed. We are actually looking 
at some query languages for typed objets where the 
type is defined using set and tuple constructors in an 

unrestricted manner [ AB] . 

Various possible extensions should also be con- 
sidered like: 

union of type (e,g, an object is of type either A 
or B) which can roughly be seen as a variant 
record in Pascal [AHl,AHP]. 

- unknown values (e.g., not applicable nulls) 
W21, 

m lists, and 
- data strutures with possibly recursive type 

definitions (e.g., the Unix dictionnaries). 

Tomorrow’s database systems should provide 
such logical data structures. The challenge is to 
incorporate them elegantly in query languages. This 
motivates again (if necessary) the need to abandon 
the strict relational model: the simplistic data struc- 
ture it uses makes that model inappropriate for 
embedding query constructs in powerful program- 
ming languages. In particular, the use of more 
powerful data structures should facilitate the incor- 
poration of the database paradigm in classical func- 
tional programming, or logical programming 
approaches. 

These more elaborate data structures, and 
languages may be restricted to the external level. We 
intend to develop some new layers on top of the 
Versa system which will provide all the new func- 
tionalities. As mentioned above, it is clear that a 
standard relational system would be inappropriate for 
such development. We believe that the Verso system 
allowing to directly manipulate hierachical data pro- 
videa the minimal kernel on which to base future 
development. 

Other fields of interest of the group include 
form manipulation [ RB] and image databases. The 
group objectives are twofold: 

1) objects modelisation: to look for new data 
structures, and query languages adapted for the 
manipulation of spatial objects and office forms. 

2) experimentation: we intend to develop new 
applications based on these complex objects on 
top of the Versa system, and check whether the 
current system is suited for such applications. 
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