
TOWARDS DBMS.8 FOR SUPPORTING
NEW APPLICATIONS’

S. Abiteboul, M. Scholl G. Gardarin, E. Simon
Verso Project Sabre Project

I.N.R.I.A.
78153, Le Chesnay

France

1. INTRODUCTION

Due to the success of relational systems, there is a
growing demand for such database technology, in
fields like computer aided design (CAD), image pro-
cessing or office automation. It seems well accepted
that future database systems should support complex
objects and inference rules. The purpose of this paper
is to present two approaches currently investigated at
Inria in that direction, based on the existing Sabre
and Verso projects.

Database research at Inria started in the early
seventies. The Sirius project (1976-1981) [L+] was
focussing on distributed database systems. This pro-
ject gave birth to two advanced activities in database
research: (1) the study on distributed databases was
continued within the Sesame project (Li], (2) the
Sabre project was initiated in 1980 with the initial
objective of developing a performant Database
Management System (DBMS) [HI. Concurrently, the
Verso project was started with the objective of
designing a DBMS based on efficient back-end filter-
ing [BS].

Today, prototypes of the Sabre and Verso
DBMS are running under the Unix system. This
paper is devoted (i) to the presentation of these two
prototypes and (ii) to the outline of the advanced
developements based on these systems. The distri-
buted aspects will not be addressed in this paper.

The paper is organized as follows. The Sabre
and Verso projects are presented respectively in Sec-
tions 2 and 3. Within each section, the project his-
tory and objectives are first discussed; the DBMS
architecture is then presented, with focus on the
novel features; finally the current directions of
research are outlined.

1 This research was partially supported by the french agency
ADI, the CNET, and was part of the french joint research
program on databases (PRC-BDS).

2. THE SABRE PROJECT

2.1 History and objectives

The Sabre project was developed in cooperation with
the University of PARIS.VI. At that time, the
objectives of the SABRE project were set as follows :

(1)

(2)

(3)

(4

To develop an extensible and portable rela-
tional database manager able to run on classical
machines and/or on specific database comput-
ers.

To improve response time in comparison with
classical relational database systems running on
similar configurations.

To allow different groups of users to define and
query multiple databases containing real or vir-
tual relations (i.e. views) .

To guarantee the physical integrity against con-
current transactions interferences or system
failures, and the semantic integrity against
erroneous updates.

Today, objectives (l),(3) and (4) have been
achieved [G+, SVPJ while we are still working on
objective (2). This performance objective, which is
probably the most difficult to be realized, led us to
develop a new access path organization based on
predicate trees [VV] which also supports secondary
indexes [CFM]. M easurements show good perfor-
mances for query processing. Howewer, many other
factors affect the database system efficiency, such as
the style of programming and the language compiler
that we used to compile the Sabre system. Also, to
achieve this second objective, we studied a parallel
version of Sabre which will encompass several disks
performing I/O in parallel attached to one or more
processors performing data operations (i.e. selection,
join and sort...) in parallel. We still envision a paral-
lel version of Sabre for the future [CFMT] . . .

Although all the objectives of Sabre have not
yet been achieved, we are already working on two

Permission to copy wifhout fee all or part ofthis material is granted provided thut the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title offhe publication and 2s date appear, and notice is giuen that copyin is by permission of
the Very Large Data Base Endowment. TO cop
Proceedings of the Twelfth International Con erence on Very Large Data Bases J

otherwise, or to republish. requires a fee an&or special permission from t f e Endowment.
Kyoto. August, 1986

-423-

new objectives :

(5) To enhance Sabre with deductive functionalities
in such a way that it could become a useful tool
for solving decision oriented problems.

(6) To extend the data types offered by the system
towards user defined abstract domains.

In our view, these two supplementary objec-
tives with the previous four objectives will lead us
towards a fifth generation database management sys-
tem, that is a DBMS supporting rules and complex
data types in an efficient way.

In the sequel, we first present the functional
architecture of the Sabre system . Then, we focus on
the most original features of the system which intend
to make it an efficient system; these are:
- a multi-attribute clustering based access path

model [CFM],

optimized join algorithms [VG],
- an integrated query optimization strategy [V] ,

We then present the fully assertional and
optimized integrity sub-system [Si]. Finally, we
present the new developments of the system to sup
port rules and extended data types.

2.2 System architecture

The current architecture of the system is composed of
three layers of abstract machines, going from the
end-users to the disk units:

(1)

(2)

(3)

The interface machine composes the external
layer. It is responsible for the dialogue with the
end-users and the parsing of the user requests
into internal messages constituting an applica-
tion protocol called the Data Manipulation Pro-
tocol (DMP). S everal types of user interfaces
can be offered.

The assertional machine which constitutes the
intermediate layer of the system performs the
evaluation of relational tuple calculus assertions
in terms of an extended relational algebra.
This machine also includes integrity, view and
security controls . It also manages the met*
database of the system as a relational database.

The algebraic machine which is the most inter-
nal layer carries out the relational algebra
operations as fast as possible. To supply this
function, it manages the access path model
based on predicate trees [GFMVV], uses a
cache memory and implements efficient join

[VG] and filtering algorithms . In addition, the
algebraic machine performs the physical con-
trols, that is concurrency and reliability con-
trols.

Each machine is divided into functional proces-
sors which are implemented as software modules. In
the sequel, we introduce the processors of each
machine.

The interface machine is composed of one pro-
cessor for each type of interface. For the time being,
it includes a flexible non-procedural language (called
FABRE) which is a super-set of both QUEL and
SQL, a query by form and example language (called
UQBE) and a pre-compiled PASCAL/R like interface
(called SINPA). A Prolog interface [J] and an expert
system for database design [BGM] are currently
under developpement at this layer. The interface
machine also includes a set of utilitaries (system ini-
tialization, database save and restore commands . ..).

The assertional machine includes four main pro-
cessors :

The integrity processor performs the integrity
control using a specific algorithm [SV].

- The view processor carries out the view to
database mapping.

- The request evaluation processor performs an
optimized decomposition of each request in a
tree of relational algebra operations.

The meta-database management processor sup-
plies a set of functions to access and update the
relations containing the database schemas.

Finally, the algebraic machine is divided into
six functional processors :
- The relation access processor manages the

access paths to a relation, that is the predicate
tree associated with each non sequential rela-
tion and also clustered indexes.

The join, sort and aggregate processor performs
join, sort and compute aggregate functions
using specific algorithms [VG].

The localization and storage processor allocates
physical space on disk to store logical subsets of
a relation and retrieves these logical subsets on
disks from logical addresses.

- The concurrency control and recovery processor
carries out concurrency control using two phase
locking and performs reliability control using
shadow page and two phase commit methods.

-424-

The filtering processor performs selection, inser-
tion and deletion of tuples in a disk partition
which is a fixed size bucket containing tuples
stored sequentially.

The cache memory processor is responsible for
managing the random-access memory which
contains temporary and intermediate results of
user operations; this memory is extended to
disk if not enough RAM is available.

In summary, the functional architecture of
Sabre is portrayed figure 1. Let us point out that the
machines and processors herein defined are virtual in
the sense that they correspond to functions; thus, in
non parallel versions of Sabre, they are all imple-
mented on a unique real processor. They may be
implemented on parallel processors. We shall not
focus here on possible parallel implementations of
Sabre. The parallel version of Sabre we are currently
working on is described in [CFMT].

2.9 System eficiency

Several features allow the system to process queries
efficiently, among them :

a multiple attribute clustering method,
- an efficient join algorithm,

an optimized query processing strategy.

We briefly describe these three devices below.

2.3.1 Multiple attribute clustering

One of the major tools developped in the system to
improve its performance is a multi-attribute cluster-
ing based access model. The method is built upon
the concept of predicate tree [VV]. A predicate tree
is a balanced tree of predicates; each level of the tree
corresponds to a list of contradictory predicates of
the form :

function (attribute) = value.
A predicate tree is defined by the data base adminis-
trator when creating a relation. It specifies the clus-
tering to be performed on that relation. When tuples
are inserted, the relation grows according to the
predicate tree : whenever a page is full, it is split into
two pages according to the current digit of the
hierarchical address (called a signature) of the tuples
in the predicate tree.

The predicate tree is used to accelerate
retrievals : the predicates in the tree are compared

EVl?ZRFACE
MACHINE

PASCAL/R Qs”pL” QU==Y
--_----------

--___--------

VIEWS mEf;ESE INTEGRITY

ASSERTIONAL I

JOIN, SORT,
AGGREGATES

I
ACCESS METHOD

I

ALGEBRAIC CON- -==&TON CAQiE

h4AcHrNE RELJABILITY STORAGE
MEMORY

I FILTER I

Figure 1 : Sabre architecture

with each selection qualification; when a match
occurs, the branch number of the predicate in the
tree is generated as the corresponding part of the
hierarchical address (i.e. a signature profile); if no
match is possible, an unknown address part is gen-
erated. Finally, only pages corresponding to the gen-
erated signature profiles have to be searched. The
search is then performed efficiently by the filter in
main memory.

In addition to a predicate tree which directs a
relation clustering, the database administrator may
specify indexes. Indexes are managed as a clustered
relation giving for each indexed attribute value the
signatures of the pages containing corresponding
tuples. Thus, when an indexed attribute is specified
in a query, an index access first gives a list of

-425-

signatures to be searched. This list is intersected with
the signature profiles obtained from the tree in order
to reduce the number of pages to be scanned. A more
thorough description of this rather complex but
efficient method is presented in [CFM].

2.5.2 Optimized join algorithms

Join algorithms are implemented in the join proces-
sor. They work on pages whose content is brought in
cache memory. At first, after a paper study and
evaluation of three join algorithms (nested loops,
sort-merge and hash) in a single and multiple proces-
sor environnement, we concluded that each algorithm
is the best depending on relation sizes [VG] and has a
specific domain of application. Therefore, we imple-
mented the three algorithms in the system. This solu-
tion rapidly appeared to be complex and not really
optimal.

A new and unique algorithm was then designed
and implemented. The algorithm performs joins in
two steps. The first step is only activated for rela-
tions having a size superior to a ratio of the cache
memory size. Such relations are divided into buckets,
by using a hash function on the join domain. In the
second step, each bucket of one relation is joined
with the corresponding bucket of the other relation.
For this purpose, a bit array is built by hashing the
first smallest relation bucket. For each bit set to one
in the bit array, the address of the corresponding
tuples are kept in a list. The other relation
corresponding bucket is scanned and matched to the
bit array. When a match ocurrs, the tuples are com-
pared and if the comparison is successful, the result
tuple is written in cache memory. The algorithm
proceeds in a similar way for each couple of buckets
of the two relations. Measurements have shown the
algorithm efficiency [VI. Also, the algorithm fits well
with the multi-attribute clustering : when the join
attributes are used for clustering, the first step is not
neccessary.

2.8.3 Query processing strategy

The query decomposition algorithm of Sabre
transforms a query into a sequence of relational alge-
bra operations. The query is expressed in conjunctive
normal form. The decomposition method is recursive.
At each recursion step, we select the couple of rela-
tion instances in the query whose join cost is
minimal, if any. Then, based on the simple heuristic
of performing selections before join, we apply all

possible selections to each relation. The join is then
performed. When no join is possible, aggregates and
unions are considered and performed if possible.
Finally, when recursion is not possible anymore, the
query is a mono-relation query or an invalid one.

The method is completely interpreted. Thus,
the real size of intermediate results is always known.
The sum of sizes of relations to join is in fact our cost
estimate; thus, we order join starting with the smal-
lest relations. Of course, each selection is optimized
using predicate trees and indexes as described above.
Join are optimized by the previously described algo-
rithm. The algebraic machine performs the computa-
tion of aggregate functions by using optimized algo-
rithms which give intermediate relations.

2.94 Performance measurements

A performance evaluation of the system was con-
ducted on a French SM9O mono-processor machine,
in cooperation with the French CNET. The bench-
mark was performed with the University of Wiscon-
sin benchmark database [Bit]. The results show that
the performances are similar to that of the INGRES
University system. However, Sabre is not very
efficient for queries on key attributes; this is due to
the filtering approach combined with the multi-
attribute clustering : at least, the system accesses to
an index and filters a disk partition to get a unique
record. That step requires a minimum of 0.4 second
in the current implementation. On the contrary,
Sabre is efficient for queries which specify a clustering
attribute.

An interesting aspect of the benchmark was an
estimation of the time ratio spent in each functional
processor. A summary of the results for typical
queries of the Wisconsin benchmark is given in figure
2. The ratios show the importance of the filtering
process overhead and possibly justifies the amount of
work spent to build a hardware filter such aa the
VERSO filter [BS, ERT].

2.4 Reliability and integrity control

The integrity subsystem provides rich functionalities
and high performances. A high level language sup-
ports the definition of a large subset of multi-variable
multi-relation assertions with aggregate functions.
These assertions are expressed into an extended rela-
tional tuple calculus. Also, predefined key-words are
used to express the most usual structural integrity

-426-

TIME PERCENT

PROFFSSOR
REQUEST 1 REQUEST 2 REQUEST 3

--

INTERFACE 1.0 0.1 1.0

VIEWS 0.1 0.1 0.1

INTEGRITY 0.0 0.0 0.0

OPTIMIZER 8.6 0.6 1.2

ACCESS PATHS 7.3 0.1 0.1

JOIN, SORT 0.0 0.0 85.0

LOC. k STOR. 8.8 2.9 0.5

CACHE MEK 0.5 3.9 0.1

PETER 59.2 88.1 11.6

DISKS 14.5 4.2 1.4

--

--

-1

REQUEST 1: RETRIEVE MILl.’ WHERE
UNIQUE-1 = 1 OR UNIQUE-l = 254;

REQUEST2:RETRIJZVE MILI.* ;

REQUESTJ: RETRIEVE ml.*, MIL.2.” WHERE

ml.niousAND = MIL2.THOUSAND

AND MILl.TEN=S OR MILl.TJiN=s;

MILl and MIL2 M the benchmark drdxu with 1000 t@es each

Figure 2 : time ratio spent in each processor

constraints (key, entity, referential, functional and
inclusion dependencies).

High performance is attained through the use of
an assertion simplification method activated at asser-
tion definition time. This method can be illustrated
as follows. Let A be an assertion containing tuple
variables ranging over several database relations. A is
transformed, at compile time, into a set of compiled
constraints of the form (R, T, E) where R is a rela-
tion involved in A, T is a type of update (among
insert, delete, modify) and E is a differential pre-test
for A, R and T. A differential pre-test for A, R and
T is an optimized pre-condition that the T updated
tuples of R must satisfy in order to guaranty the
preservation of A. By optimized pre-condition, we
mean that the amount of data needed to enforce E is
much smaller than the one needed to enforce A,
whenever R is updated by T. It is assumed that A is
always satisfied by the current database state. This
transformation of assertions into compiled constraints
is performed by a specific module of the integrity
subsytem called “assertion compiler”. The design of
the algorithms used by this module and their imple-
mentation are described in [Si, SV2]. The benefits of
the method are the following:

(9 it allows to prevent the introduction of incon-
sistencies in the database,

(ii) it reduces the number of assertions to be
enforced at each update,

(iii) it supports a large class of assertions and multi-
ple tuple updates of a single relation,

(iv) it optimizes the assertion enforcement cost.

The algorithm which enforces integrity asser-
tions is specialized for three classes of assertions [SV].
The main properties of the algorithm are: (i) To gen-
eralize the integrity control to general database tran-
sactions composed of several updates. (ii) To
manage automatic or manual reliable integrity check-
points. An analysis exhibits the value of the algo-
rithm [Si, SV2]. In particular, the proposed method is
shown to be better than the query modification
method. Finally, all algorithms are integrated in a
modular and extensible subsytem architecture. The
other functionalities supported are a constraint mani-
pulation language and the precise management of
errors.

The mechanisms described above take great
benefit of the update validation technique described
in [VM]. This technique is based on a Private
Workspace Model for transactions. In this model, a
private transaction’s workspace is associated with
each transaction. This workspace reflects the changes
made by the transaction independently of the other
concurrent transactions. Furthermore, this technique
guarantees that updates executed by a request i are
visible by all requests i + j within a same transac-
tion. This last point is very useful for the integrity
control algorithms. Concurency control and recovery
mechanisms are integrated in a unified way. Reliabil-
ity is implemented by using an improved variation of
the shadow page technique (L]. Finally, at transac-
tion end, all updates are commited by using a two-
phase commit protocol.

fZ.5 New directions of research

2.5.1 Rule support

To allow the system to support complex derived rela-
tions, including recursive relations, we are enriching
it with a rule definition language. The rules are
expressed as a set of production rules of the form :
IF <qualification> THEN <action>[,<action>]...

Qualifications are typical query qualifications while
actions are either tuple insertions or deletions. Rules

-427-

are grouped into modules which define derived predi-
cates (i.e. inferred relations). A compiled form of
rules is stored in a rule base which is a set of rela-
tions.

A query of any interface module can refer a
derived predicate. In that case, the deduction pro-
cessor (which is added at the level of the assertional
machine) retrieves the relevant rules for the query
and performs, in an optimized way, the necessary
inference process. The optimization is based on an
internal model allowing the system to represent rules
and queries in a uniform net [GMS].

Several problems remain to be solved, although
a first implementation of the rule support is already
operational. Among them are the following :
- rule module consistency,

rule module commutativity and convergence,
- rule modifications and exception handling,
- improving performances of the inference

mechanism using specific algebraic operators.

Another important problem which has been
studied is the optimization of recursive rules. The
next paragraph introduces our solution.

2.5.2 Recursive Horn clause evaluation

A particular class of rules which are hard to optimize
is the class of recursive Horn clauses. We introduce a
new method to compile queries referencing recur-
sively defined predicates. The method works for gen-
eral rules such as the non linear definition of ances-
tors:
ancestor(x,y) +- parent(x,y)
ancestor(x,y) + ancestor(x,z) k ancestor(z,y)

The method is based on an interpretation of the
query and the relations as functions which map one
column of a relation to another column. For example,
the query ancestor(c,x?) is considered as a request to
evaluate the function a({c}) for a given set of con-
stants c; this function maps the first column of the
ancestor relation to the second one. Translating the
rules into functional equations, we get :
a&4) = I) + a(a((x)))

Using Tarski theorem, leads to evaluate the series :
aO({c}) = 0
alW = ~((4)
.
an({c}) = p({c}) + an-1(-1((c))

whose limit is obviously :

44 = P({C)) + P(PW) + es** +
P(P(P...P((C)))) + ***

The method lends itself to the specification of
polynomial operators to solve each class of rules. For
example, linear rules can be solved using an extended
transitive closure, called external closure [GM]. Such
operators are currently being implemented in the
Sabre system. Most of them are special cases of graph
traversals.

2.53 Eztending data types

The current implementation of sabre suppports res-
tricted data types : integer, real and variable length
character strings. Our current approach for extend-
ing these data types is based on a LISP interpretor :
we enrich the system with a new type “list” imple-
mented as a LISP binary tree. Domains of this type
may be manipulated through functions, including the
basic LISP functions CONS, CAR, CDR, a library of
supplied functions as APPEND, REVERSE,
MEMBER . . . and also database administrator defined
functions. The functions may be used at the level of
the non procedural languages as a modifier applied to
an attribute name, using the dot notation. This
approach which seems very powerful and which does
not imply strong modifications in the system is
currently under investigation.

2.6 Conclusion

The development of a complete DBMS as Sabre, with
a sound kernel based on software filtering of disk par-
titions , an original multi-attribute clustering and a
tuple relational calculus including functions, is a huge
task. One strenght of the system is its division into
abstract machines and processors. This architecture
was elaborated to develop a multi-processor system.
Surprisingly, this allows us to develop new func-
tionalities without changing the whole system.

The experience shows us many difficulties to
achieve the multi-processor goal, among them the
lack of multiprocessor operating systems able to sup-
port the DBMS in an efficient way.However, multi-
processor operating systems are rapidly evolving.
That is why we still think about developing a parallel
version of Sabre, as presented in (CFMT].

-428-

3. THE VERSO PROJECT

9.1 History and Objectives

The VERSO project was started at Inria, in the early
eighties [BS], with the following objectives in mind:
- Justify the approach consisting in relegating

some tasks to a processor close to the mass
storage device under the conventional assump
tion that Database Management Systems
(DBMS) are I/O bound.

- Check that an automaton-like mechanism for
this on-the-fly filtering capability is well
adapted to query processing.

The major motivation behind such an architec-
tural approach is to increase the performance of a
relational DBMS. Although the usefulness of on-the-
fly filtering ha8 been widely accepted (see, for exam-
ple [HI), no filter has been included in a complete
DBMS design to our knowledge. Our intention was
therefore to develop a fully relational system that
would use the above filtering concept. To take full
advantage of the filter, it was decided to store data
in hierarchical structures. This physical organization
strongly suggests a logical data organization into non
first normal form (non 1NF) relations called V-
relations. An algebraic language for non 1NF rela-
tions is then used to manipulate data [AB].

3.1.1 Non 1NF relations

Existing relational database systems already provide
high level query language8 like SQL or Ingres which
are relatively easy to use. They answer at least par-
tially the data acceseing needs of many applications
in areas like business administration. Due to the BUC-
cess of relational ayeterns, there is a growing demand
for such database technology in other fields like com-
puter aided design(CAD), image processing, VLSI, or
office automation. The relational model proposes to
represent the logical structure of data in tables, pro-
viding data dependencies as the only means of
defining more precise semantics. Unfortunately, this
approach is too simplistic for the new applications.
For instance cAD-8y8tem8 often manipulate
hierarchical data structure8 with many levels. The
flattening of these data structures is not satisfactory
neither from a performance point of view, nor for
conceptual reasons.

These limitations of the relational model come
essentially from the so-called first normal form

assumption which states that values in a relation
should be exclusively atomic. The model used in the
Vera0 system does not make that assumption, and is
therefore better suited for the new database applica-
tions. Indeed, several researchers have studied this
concept of non 1NF relations [e.g., AB,FT,SS]. It
should al80 be noted that this notion of hierarchical
data arises naturally in the context of semantic data-
base modelling [AHl]. However, the Verso system
was, to our knowledge, the first implemented system
based on non 1NF relations.

The query language is algebraic. All algebraic
operations (except for one, namely restructuring) are
performed by the filter. This filter can be viewed as
a finite state automaton (FSA) tihich scans sequen-
tially one or two input buffers, and writes the result
of the operation on an outpnt buffer. The restructur-
ing operation involve8 8ome sorting, and cannot be
realized uniquely ‘by the filter. The performance of
the system thereby depend8 heavily on the perfor-
mance of the filter, and on it8 connection to the rest
of the system.

9.12 Filtering and Performance

The version of the system presented here, runs under
the Unix operating system. Prototype8 have already
been experimented on a 68000 based multiprocessor
machine, the SM90. Most of the code is written in
Pascal. A apecialiied hardware processor was first
designed to realize the FSA filter [B+] and developed
by the Inria SCD team . This hardware processor,
connected to the mass storage as well a8 to the cen-
tral bus was in charge of data transfer and data
filtering. Later on, the hardware filter was aban-
doned and replaced by a standard disk exchange
module including an Intel 8086 processor on which
filtering ia implemented by software.

A performance evaluation work was conducted
which focussed on the problem of choosing between
these two competitive approaches for implementing a
performant relational DBMS. At the time of this
performance study, no real life measures were avail-
able, and modelling was used for evaluating the
filter’s response time to a query in both architectures
[G,GS,S]. The result of the comparison was that
software filtering should provide an acceptable perfor-
mance, although very inferior to that of hardware
filtering. Later on, when the system was operational
with a eoftware filter, the system was tested against a
benchmark provided by the french AD1 agency, and
a benchmark designed at the University of Wisconsin

-429-

[Bit]. Two conclusions on software filtering were
drawn from these experiments.
- a comparison between the (measured) software

filter’s response time and the (predicted)
hardware filter’s response time reported in [GS]
is attempted in [S,JV]. To summarize, the
hardware filter should be extremely faster
(more than 20 times faster) than the current
filter implemented by means of an “off-the-
shelf” Intel 8086 processor.

despite the mediocrity of the Intel 8086 proces-
sor , the Verso system’s performance is accept-
able, compared to that reported in [Bit] of
other DBMS such as Oracle or Ingres imple-
mented on VAX 11/750 computers.

In the following sections, we describe the Versa
data model and system. A thorough presentation
may be found in [JV]. Except for the use of a filter,
and for the model of V-relations, the Verso system is
a quite standard system: the data is stored in rela-
tions contained in databases; secondary indexes are
not implemented; concurrency is offered via the con-
cept of transaction, and managed using two phase
locking; mechanisms for handling crash recovery are
provided.

9.2 The System

9.2.1 The Model

In this section, we briefly describe the Verso data
model. We first describe the data structure called
V-relation. We then present the Verso algebra. A
formal presentation of the model, together with some
basic results on V-relations can be found in (AB,Bi].

In the Verso data model, the data is organized
in non-1NF relations called V-relations. In a V-
relation, the values of some attributes are atomic
whereas the values of other attributes are V-relations
of simpler structure. An example of V-relation is
given in Figure 3.1. The first line of the figure
represents the structure or format of the V-relation.

This database describes information about
movies, theaters, times, and actors. Note that:

(1) for the movie “Karate Night”, there is no
known schedule, and no known actor. Thus V-
relations handle null values in a simple manner.
As a consequence of this, some queries which
are typically complicated to be expressed in the

MOVIE (THEATER (TIME)*)* (ACTOR)*

Straw Dogs

Chinese 18.30
I I 20.30

Metropolis Studio3

Pierrot le Fou
v 1 R. .Kleinregge
1 Studio3 1 20 I J.P Belmondc

Karate Night L Studio3

22 I] L A. Karim

I

Figure 3.1: example of V-relation

relational model are simple selections in this
model. An example of such a query is: “Give all
movies with no known schedule”.

(2) the data is naturally organized in a hierarchical
manner. (It is possible to speak of the schedule
of a movie in a theater.) Furthermore this
hierarchical data organization induces some
implicit connection between attributes. For
instance, in this example, there is a connection
between theater and actors through movie.

A simple algebra can be defined for V-relations.
As mentioned above, all algebraic operations but one
can be computed by the filter. The unique “expen-
sive ” operation is restructuring. This operation
involves some sorting. Thus, the complexity of main
memory computation is restricted to a unique
module, namely the sorter.

The algebra consists of unary and binary opera-
tions. The unary operations are projection, selection,
renaming, and restructuring. The binary ones are
join, union, and difference. Examples of unary opera-
tions are now given. These queries are expressed here
in natural language.

Ezample 2.1: The following projection/selection can
be performed on the MOVIE database: “who are the
actors playing in a movie shown at the Rex between
7:30 and 8:30 featuring J.P. Belmondo and A. Kar-
ina, or at the Chinese theater after 10:30?”
(Note. that the previous operation would involve
several joins in the relational model.)

Ezample 1.1: The following restructuring can be per-
formed on the MOVIE database: “give the list of

-430-

theaters, and for each theater, the movies that are
shown there”. Note that some information may be
lost when restructuring data. Even if the loss of infor-
mation is tolerated (which is typically the case in
queries), some restructuring operations have no
meaning. For instance, it is not possible to restruc-
ture a flat relation (A B C)* into (A(B)*(C)*)*. A
thorough study of loaay, and loaaleaa restructuring of
V-relations is presented in [AB].

Union allows to “add” the information of two
instances. Join allows to ‘combine” the information
of two instances. Finally, difference is used to with-
draw the information of one instance from the infor-
mation in another one. In that sense, these three
operations can be seen as generalizations of the
(pure) relational operations of union, join (and inter-
section), and difference. It is not possible to apply
binary operations to relations of arbitrary structures.
The two relations involved have to be compatible.
(See [AB] for a formal definition of comptibility.)

The Verso language is used as the communica-
tion language between the system, and the rest of the
world. Indeed, other interfaces can be viewed as
translation modules between more user friendly inter-
faces and the Verso language. Users can use the
Verso system directly in the Verso language, from
Pascal programs, or through a screen interface.

The Versa language provides commands for
handling transactions, and within a transaction for
data definition, and manipulation. The screen inter-
face called Ever (for Editor of Verso Relations) is
provided for non sophisticated users. Ever is a multi
window screen interface tailored to answer the vari-
ous needs of a dialogue with the Verso system. Four
modes are offered: a mode for command edition, a
mode for selection/projection, a mode for data edi-
tion, and a mode for format manipulation. The data
mode, for instance, is used for browsing through V-
relations, and for updating. Except for the particular
nature of the data, the editing of V-relations ressem-
bles the editing of text in a conventional editor like
Vi or Emacs.

The third interface, V-Pascal, is a Pascal exten-
sion which combines the advantages of the Verso sys-
tern, and that of the Pascal programming language.
The major problem raised by this type of interface is
that Pascal does not allow the definition of structures
like V-relations. Therefore, in the V-Pascal interface,
V-relations are viewed through a strict relational
view. This is clearly not satisfactory from a logical

point of view, but has been developed mainly for
being able to realize applications on top of Verso,
and to gain experience in the embedding of database
features in conventional programming languages.

3.2.b The Architecture

We first present the hardware architecture, then we
give an overall description of the DBMS. The ver-
sion of the system presented here runs on the Unix
operating system and has been experimented on a
68000 based multiprocessor machine, SM90.

As shown in Figure 3.2, the machine includes
the following components, which share the central
bus, the SM bus:

4 a central processing unit (CPU) including a
Motorola 68000 processor, its local memory and
a memory management unit;

b) a RAM memory;

4 an exchange module (EM) interfacing with a
disk hosting the Unix system and the programs;

4 an user interface (V.24 or Ethernet);

4 another EM interfacing with another Disk
where the databases are stored. Filtering is
implemented on this EM.

The CPU is in charge of the user interface, the
high level DBMS layers to be described below and
the titer’s control: it sends to the filter data transfer
and filtering commands (see [JV] for a description of
the filter internal structure) .

Figure 3.2: Verso hardware architecture

-431-

In terms of functionality, Verso is a fairly stan- 3) At the lowest level, we find a block character-
dard system: it offers data definition, search and ized by its address. There are two kinds of
manipulation, transaction management, concurrency operations at the block level: filtering and inter-
control and recovery and simultaneous access from nal sort of a block. As mentionned earlier, this
separate sites . operation is not performed by the filter.

The three latter functions will only be roughly
sketched, since classical solutions have been chosen
for those problems. The interested reader is referred
to [B+] for more details.

As usual, a transaction is a sequence of
requests. The system accepts interleaving of requests
issued from different transactions, but requests are
sequentially run. In order to improve the global
throughput, pipelining of requests on a single CPU is
under study.

A regular two-phase locking protocol is. used,
together with deadlock prevention. Physical locking
has been chosen with granularity of one block (one
disk track). However the index is locked only for the
duration of the index request (and not until the end
of transaction, as for a regular data access).

We will describe in more details the data search
and manipulation functions.

1)

The system consists of three layers:

The highest level is the V-relational level: the
objects seen at that level are the V-relations
and the schema.

2) The second level is the file level: the objects
defined at that level are Verso files, or physical
representations of V-relations and the non-
dense Index which permits to locate data. A file
is a set of pages or blocks which are not neces-
sarily contiguous. The operations at that level
are:

i) index manipulation in order to locate a V-
relation,

ii) selection/projection, insertion, deletion
into/from a file (corresponding to a unary
operation on V-relations);

iii) binary operations on files (corresponding
to a binary operation on V-relations);

iv) file sort (corresponding to restructuring).
We use a merge-sorting algorithm: once each
block has been sorted, blocks are merged. This
merge is a file union performed in linear time
by the filter.

Let us take the example of the V-selection to
illustrate query processing through the three layers
as well as the splitting of tasks between the CPU and
the filter. A V-selection is submitted to the system.
At the first level, given the V-relation name ,the
schema is searched to get the V-relation format. Two
operations are then performed:

4 compile the query into an FSA to be loaded
into the filter memory (LM);

ii) search the index in order to get a subset of the
blocks of the V-relation that have to be filtered.
The result of this index search is a list of one or
more block addresses.

The above processing is performed by the CPU.
Once the FSA corresponding to the query has been
loaded into the filter’s memory , the filter starts pro-
cessing a set of blocks. Except for input and output
blocks of data, no data are transferred through the
central bus or main memory.

To summarize, V-relation operations are per-
formed by the CPU, including transaction manage-
ment and concurrency control. The CPU is also in
charge of Index operations, as well as FSA generation
and loading. The filter is in charge of file and block
level operations on data (except internal sort of a
block). Binary operations can also be performed in
linear time by the filter since the files are sorted.

We end up this description with a few words on
filtering. Recall that the filter sequentially scans a
source buffer and writes into a target buffer the
relevant data. In the case of insertion or binary
operations, two source buffers are concurrently
scanned. Three processes are pipelined: (i) loading
the source relation into a source buffer, (ii) filtering
another source buffer previously loaded, (iii) unload-
ing a target buffer either onto disk or to the user.
The FSA filtering principle has been thoroughly
described in [BS,BRS]. It was shown in [B&S] that
an automaton-like device is sufficient to perform on
the fly the V-algebra operations. The reader
interested in a detailed description of the filtering
mechanism is referred to [BS,JV].

-432-

8.3 Conclusion and New Directions of Research

With respect to more classical relational DBMS
designs, Verso major novel features are the following:

1) It includes a filter implemented on a separate
processor close to the mass storage device. This
filter is in charge of all algebraic operations
except for restructuring. This automaton-like
mechanism is extremely well adapted to pro-
cessing of both unary, and binary operations.
Furthermore, the filter is also used for provid-
ing fast updates.

2) Data is organized in non 1NF relations. This
allows to combine the advantages of the rela-
tional model (e.g., an algebraic language), and
the possibility of hierarchical data organization.
To our knowledge, the Versa system is the first
running system based on non 1NF relations.

The first response time measurements clearly
show that the Versa system is not faster than com-
mercial systems such az Oracle or Ingres. The main
reason is that the 8086 microprocessor on which
filtering was implemented is slow. By using dedi-
cated hardware for filtering, one should gain two ord-
ers of magnitude on response time. However, stan-
dard microcomputers have a performance that
increases rapidly with time. For that reason, follow-
ing [BD], we believe that the use of “off-the-shelf”
components for filtering should be preferred to a
time-consuming and costly design of dedicated
hardware.

Besides, this first experience with a non 1NF
model is quite promising: users seem to adjust quite
fast to those more complex structures. For instance,
it turned out that although the Verzo language was
not intended to be user friendly, it didn’t require too
much practice from the user to be capable of writing
even complex queries in that language. Not surpris-
ingly, the screen interface Ever haz been quite an
improvement for users.

The Versa model is based on non 1NF. In this
model, set and tuple constructors are used alterna-
tively to construct higher order relations. It is
assumed that at each level at least one attribute is
atomic, and furthermore that this attribute forms a
key for the relation. Although these restrictions are
useful for implementation reasons (they form the
basis for the functionning of the filter), they are cer-
tainly not logically needed. We are actually looking
at some query languages for typed objets where the
type is defined using set and tuple constructors in an

unrestricted manner [AB] .

Various possible extensions should also be con-
sidered like:

union of type (e,g, an object is of type either A
or B) which can roughly be seen as a variant
record in Pascal [AHl,AHP].

- unknown values (e.g., not applicable nulls)
W21,

m lists, and
- data strutures with possibly recursive type

definitions (e.g., the Unix dictionnaries).

Tomorrow’s database systems should provide
such logical data structures. The challenge is to
incorporate them elegantly in query languages. This
motivates again (if necessary) the need to abandon
the strict relational model: the simplistic data struc-
ture it uses makes that model inappropriate for
embedding query constructs in powerful program-
ming languages. In particular, the use of more
powerful data structures should facilitate the incor-
poration of the database paradigm in classical func-
tional programming, or logical programming
approaches.

These more elaborate data structures, and
languages may be restricted to the external level. We
intend to develop some new layers on top of the
Versa system which will provide all the new func-
tionalities. As mentioned above, it is clear that a
standard relational system would be inappropriate for
such development. We believe that the Verso system
allowing to directly manipulate hierachical data pro-
videa the minimal kernel on which to base future
development.

Other fields of interest of the group include
form manipulation [RB] and image databases. The
group objectives are twofold:

1) objects modelisation: to look for new data
structures, and query languages adapted for the
manipulation of spatial objects and office forms.

2) experimentation: we intend to develop new
applications based on these complex objects on
top of the Versa system, and check whether the
current system is suited for such applications.

REFERENCES

[AB] Abiteboul S., Bidoit N., “Non First Normal
Form Relations to Represent Hierarchically

-433-

Organized Data”, Proc. of ACM-SIGMOD Conf. on
Principles of Database Systems, Atlanta, 1984, pp.
191-200 (To appear in Journal of Computer Science
and Systems).

[ABe] Abiteboul s., Beeri C., “On the Power of
Languages for the Manipulation of Complex
Objects”, in preparation.

[AHl] Abiteboul, S., R. Hull, “IFO, a Formal Seman-
tic Database Model”, Proc. of ACM-SIGMOD Conf.
on Principles of Database Systems, Waterloo, 1984.

[AH21 Abiteboul, S., R. Hull, “Restructuring Com-
plex Objects and Office Forms”, Proc. of Interna-
tional Conference on Database Theory, Rome, 1986.

(B+] Bancilhon F. et al, “VERSO: A Relational Back
End Data Base Machine”, IWDM proceedings, San
Diego, Sept. 1982 ; also in [HI.

[BD] Boral H.,DeWitt D.J., “Database Machines: An
Idea whose Time has passed. A Critique of the
future of Database Machines”, in Database Machines,
H.O. Leilich and M. Missikoff editors,Springer-
Verlag,1983 pp X6-187.

(Bi] Bidoit N., “Un Modele de Donnees Relationnel
Non Normalise: Algebre et Interpretation”, These 3e
cycle, Universite Paris-Sud, 1984.

[Bit] Bitton D. et Al., “Benchmarking Database Sys-
tems: A Systematic Approach”., Computer Science
Department, Technical Report, no 526, University of
Wisconsin, December 1983.

[BRS) Bancilhon F., Richard P., Scholl M., “Cn Line
Processing of Compacted Relations”, Proc. Inter.
Conf. on Very Large Data Bases, Mexico, 1982.

[BS] Bancilhon F., Scholl M., “Design of a Backend
Processor for a Database Machine”, Proc. ACM-
SIGMOD., Santa Monica, May 14-16, 1980, pp. 93-
93g.

[BGM] Bouzeghoub M., Gardarin G., Metais E.,
“Database Design:, An Expert System Approach”,
Int. Conf. on Very Large, Data Bases, Stockholm,
Aug. 1985.

[CFM] Cheiney J.P., Faudemay P., Michel R., “An
extension of access paths to improve Joins and Selec-
tions”, 2nd. Int. Conf. on Data Engineering, Los
Angeles, Feb. 1986.

[CFMT] Cheiney J.P., Faudemay P., Michel R.,
Thevenin J.M., “A reliable Multiple Backend using
Multi-attribute Clustering”, Int. Conf. on Very Large
Data Bases, Kyoto, Aug. 1986.

[ERT] El Masri A., Rohmer J. et Tusera D., “A
Machine for Information Retrieval”, Proc. 4th
Workshop on Comp. Arch. for Non-numerical Pro-
cessing, Syracuse, New York, August 1978.

[FT] Fisher, P., S. Thomas, “Operators for Non-
First-Normal-Form Relations”, Proc. of the 7th Inter-
national Comp. Soft. Applications Conf., Chicago,
1983.

[G] Gamerman S., “Oit l’on decouvre que les perfor-
mances des Filtres dans les Machines Bases de Don-
nees ne sont pas celles que l’on croyait”, These de 3e
cycle, Universite de Paris-Sud, Juin 1984.

[GS] Gamerman S., Scholl M;, “Hardware versus
Software Data Filtering: The Verso Experience”,
Proceedings of the Fourth International Workshop on
Database Machines, Grand Bahama Island, March
6-8, 1985, pp. 112-136.

[GFMVV} Gardarin G., Faudemay P., Michel R.,
Valduriez P., Viemont Y., “An integrated approach
to Multi-Dimensional Searching Using Predicate
Trees and Filtering”, INRIA Internal Report, Dec.
1984.

[G+] Gardarin et al., “SABRINA: Un Systeme de
Gestion de Bases de Donnees Relationnelles issu de la
recherche ” , to appear in TSI-AFCET-DUNOD, 1986.

[GMS] Gardarin G., De Maindreville C., Simon E.,
“Extending a relational DBMS towards a Rule Based
System”, Int. Workshop on AI and Data Bases,
Creta, June 1985.

[GM] Gardarin G., De Maindreville C., “Evaluation
of Data Base Recursive Logic Programs as Recurrent
Function Series”, Int. ACM-SIGMOD Conf., Wash-
ington, May 1986.

[H] “Advanced Database Machine Architecture”,
D.K. Hsiao Editor, Prentice-Hall 1983, pp.36-86.

[HY] Hull, R., C. Yap, “The Format Model: A
Theory of Database Organization”, Journal of the
Assoc. for Comp. Machinary, 1984.

[J] Jouve M., “Etude du couplage de Prolog et d’un
systeme de gestion de bases de donnees: Application

-434-

au SGBD SABRE”, These de 3e cycle, Universite de
Paris VI, Dec. 1985.

SIGMOD Conf., Boston, June 1984.

[JV] Jules Verso (pen name for the Verso team),
“Verso: a Database Machine Based on non-First-
Normal-Form Relations * , Inria Research Report, No
523, May 1986.

[L-I-] Lebihan J. et al., “SIRIUS: A French Nation-
wide Project on Distributed Data Bases”, Int. Conf.
on Very Large Data Bases, Montreal, Oct. 1980.

[Li] Litwin W. “Concepts for multidatabase manipu-
lation languages”, COMPDEC, Los Angeles, May
1984.

[RB] Richard P.,G.Barbedette, “An object oriented
approach for form management”, in preparation.

[SS] Scheck, H.-J., M. Scholl, “The Relational Model
with Relation-Valued Attributes”, Information Sys-
tems, Vol. 11, No 2, 1986

[S] Scholl M., “Architecture pour le Filtrage dans les
Bases de Donnees Relationnelles”, Thkse d’Etat,
INPG, Grenoble, 1985.

[S+] Schweppe H. et al., “RDBM - A dedicated Mul-
tiprocessor System for Database Management”, Proc.
of the 7th International Workshop on Database
Machines, San Diego, September 1982, also in [HI,
pp.3686.

[SV] Simon E., Valduriez P., “Design and Implemen-
tation of An extendible Integrity Subsystem”, Int.
ACM-SIGMOD Conf., Boston, June 1984.

[SV2] Simon E., Valduriez P., “Design and Analysis
of a Relational Integrity Subsystem”, submitted to
publication (50 p.), 1986.

[Si] Simon E., “Conception, analyse et realisation
d’un sous systeme d’integrite relationnel”, These de
Doctorat, Univ. Paris VI, 1986.

[V] Verlaine L., “Optimisation des requetes dans une
machine base de donnees”, These de 3e cycle, Univ.
of Paris VI, 1986.

[VG] Valduriez P., Gardarin G., “Join and Semi-join
algorithms for a Multiprocessor Database Machine”,
ACM-TODS, Vo1.9, N.l, March 1984.

[VV] Valduriez P., Viemont Y., “A multi-key Hash-
ing Scheme using Predicate Trees*, Int. ACM-

-435-

