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. 
Abstract 

The set of resolvents generated by a recursive intension 
in a lirst-order database is treated as a set of concurrent data- 
base queries. A strategy for egiciently ev,aluating these con- 
current queries in a multi-processor environment is presented. 
The strategy combines three query processing techniques, 
namely, query decomposition, intermediate result sharing and 
data-flow and pipelined query execution to achieve a high 
degree of parallelism. An analytical study uses the response 
time for each resolvent and the execution time for a set of 
resolvents as a performance measure to examine the perfor- 
mance gain due to the data-flow and pipelined approach to 
query processing. 

1. Introduction 

Knowledge base management systems (KBMS) is a new 
technology resulting from the integration of techniques from 
database management systems (DBMS) and artificial intelli- 
gcncc (AI)’ [BRO84, GAL83, JhR84, KEL82, KER84, RhS85, 
SU85, WIE84]. A KBMS requires a powerful language for 
defining various kinds of knowledge rules including integrity 
and security constraints, deductive rules to generate new 
information, rules for describing properties such as transi- 
tivity, symmetry, etc., as well as domain specilic expert rules. 
To support this, query languages have to be enriched; one 
such extension is to permit the use of general logical clauses in 
the query languages of relational databases. As a result of 
such an extension, queries may be dclined recursively and 
straightforward methods of query evaluation may fail. A 
variety of strategies have been proposed to deal with recursive 
queries ]HAN86, NAQ84 and ULLSS], and in section 2 WC 
examine schemes that generate a series of resolvents that pro- 
vide answers to a recursive query. 

EIIiciency is a key factor in the succesful integration of 
AI and DBMS technology. In this paper, we present tech- 
niques for the ellicient implementation of recursively defined 
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queries in KBMS. More specifically, we treat the sequence of 
resolvents generated by a recursive clause as a set of con- 
current database queries and apply query processing tech- 
niques to optimize the evaluation of these concurrent queries. 

In section 3, we describe a strategy which combines three 
known techniques, namely query decomposition, intermediate 
result sharing, and pipelining and data-flow based approaches 
to query execution. In section 4, we apply this strategy in the 
evaluation of a simple recursive rule that delines the transi- 
tive closure of a database relation. We identify operations 
that are candidates for parallel evaluation as well as opera- 
tions that can beneft from result sharing. We then study the 
ellcct of pipelined execution on this evaluation strategy. In 
section 5, we study the effect of pipelining on this evaluation 
strategy, using the execution time for evaluating the set of 
resolvents and the response time of each individual resolvent 
as performance measures. In section 6, we discuss relevant 
extensions to this work that involve general recursive clauses. 

2. Methods for Evaluating Recursive Queries 

It is assumed that the reader is familiar with the rela- 
tionship between lagic programming and relational databases 
[BRO84, GAL83, JAR84, REI78a, REI78b] and the resolution 
principle in theorem proving [ROB65]. A first-order database 
is a function-free first-order theory in which the extensional 
database (EDB), corresponding to the data in relations, is a 
set of ground (having no variables) positive unit clauses. If 
we consider a Horn database, then the intensional database 
(IDB) is a set of Horn definite clauses with exactly one posi- 
tive literal. Each clause of the IDB represents a definition of 
some of the tuples named in its positive literal, which could 
also be an EDB predicate. For example, 

Phz) :- Qhy), R(Y,z) 
says that the appropriate join (over y) of Q and R is con- 
tained in P. The set of tuples in P is the union of all tuples 
provided by each intensional clause defining P as well as all 
EDB tuples if I’ is an EDB predicate as well. 

Straightforward methods for query evaluation are 
insulficient in the presence of recursive definitions. Recent 
research has focused on this problem [CHA81, HAN86, 
MIN81, NAQ84 and ULL85]. In [ULL85], methods for imple- 
menting queries that are expressed using first order logic as a 
collection of IIorn clauses are reported. A rule/goal tree is 
built using the rules (Horn clauses) and goals (terms). A 
rule/goal tree is equivalent to an expression in relational alge- 
bra and, for a finite tree, a bottom up evaluation will build a 
relation at each node until the root is evaluated. Recursive 
rules result in potentially infinite rule/goal trees. The paper 
presents a limit or trees process to evaluate infinite trees. 
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Significant contributions of (ULL851 include the use of 
capture rules which specify under what circumstances a node 
(of a rule/goal graph constructed using the logical rules) can 
bc evaluated and provide an efficient implementation strategy 
for evaluating these trees. Two methods to terminate rules 
that involve recursion are given; one takes advantage of the 
finileness of the domains and this is the method we adopt. 

In [NAQ84], the problem of deriving a set of database 
retrieval requests, which gives the correct answers to a query 
involving a recursive statement and is guaranteed to ter- 
minate, is addressed. In this work, the clauses of the IDB are 
represented as a connection gra.ph (CC) [SIC76]. A recursive 
intension occurs in a CG as a special form of cycle called a 
potential recursive loop (PRL). Only PRLs lead to database 
retrievals containing recursive statements and algorithms for 
detecting PRLs are well known [SIC76]. 

Consider an example database relation such as 
Edge(start-node, end-node) which has a tuple for each direct 
edge between two nodes in a graph. Then, the transitive clo- 
sure of the relation Edge would be a relation, Reach, which 
has a tuple for any two nodes in the graph that has a path 
between them. The following Horn definite clauses will define 
the transitive closure, Reach, of the Edge relation: 

Reach(xl,yl) :- Edge(xl,yl) (1) 
Reach(xl,zl) :- Reach(xl,yl), Edge(yl,zl) (2) 

Using the CG and resolving around the PRL, a query 
such as Reach(?,c), where c is a constant, i.e., a query that 
retrieves all nodes that have a path to node c, will generate 
the following resolvents: 

Edge(?,c) (3) 
Edge(?,yl), Eddyl,c) (4) 
Edge(?,y2), Edge(yZ,yl), Edge(yl,c) (5) etc., 

A general algorithm for retrieving answers from the 
database, based on these resolvents is presented in [NhQ84]. 
The algorithm consists of an outer loop (corresponding to 
each resolvent) and two inner loops. Initially, using selection 
on the dalabnse relation Edge, values for yl will be pushed on 
a qucuc. Then, for each resolvent, all answers will be 
extracted in the first inner loop (using appropriate join, selec- 
tion and projection operations) and the corresponding set of 
values for the next resolvent, eg., the values for y2, will be 
queued in the second inner loop. 

The time for serially evaluating several resolvents, on a 
single processor system, will be very long. What we have stu- 
died is a strategy for the parallel evaluation of these resol- 
vents which are generated by the recursive intensions, on a 
multi-processor system. Parallel evaluation or the resolvents 
will eliminate the outer loop. In addition, identifying common 
subexpressions in these resolvents will allow intermediate 
result sharing among these parallel operations, thus simplify- 
ing the operations in the inner loops and allowing the two 
inner loops to be executed simultaneously. Further, the 
evaluation strategy gains additional parallelism by using a 
pipelining approach for executing database operations. 

In [HAN86], the performance of several algorithms for 
processing a recursive query are compared. The process of 
applying a recursive rule and generating longer resolvents is 
compared to a wavefront i.e., the saved result of an operation 
is used to derive a new result. The algorithm DW (or double 
wavefront) is similar to our strategy (descibed in section 4) in 
the manner it shares results among resolvents. However, they 
do not treat the resolvents as a set of concurrent queries nor 

do they consider horizontal and vertical concurrency and 
pipelining techniques to increase the degree of parallelism and 
to improve the efficiency of execution. 

3. The Impact of Query Processing Techniques 

In the previous section, a query of the form Reach(?,c) 
generated a sequence of resolvents that had to be evaluated to 
provide answers to the query. Each of these resolvents can be 
considered a query against the database and the set of resol- 
vents can be treated as a set of concurrent queries; query pro- 
cessing and optimization techniques can then be used to 
optimize the execution of these concurrent queries. 

Query decomposition is a process of translating a query 
into a hierarchy of primitive operations; the result is a query 
tree in which the nodes represent the primitive operations 
(AST76, ROT80, ST076, WON76]. The advantage of query 
decomposition is that it identifies primitive operations on 
difTerent branches of a query tree that can be executed in 
parallel (i.e., )I horizontal” concurrency), thus increasing the 
degree of parallelism. It also increases the probability of 
finding an overlap among several query trees which facilitates 
intermediate result sharing. 

The sharing of intermediate results among concurrent 
queries and the resulting elimination of redundant execution 
of operations have been proposed in [FIN82 and JAR84j. In 
[BOR84, CHO85], it has been shown that as the degree of 
sharing among concurient queries increases, the query 
throughput also increases. Most of this research studies the 
elfect of eliminating low-level read operations by sharing 
buffer space. More recent work IMIK85, SU86], shows the 
advantage of sharing the output of high-level operations such 
as select, join, etc. 

Both query decomposition and intermediate result shar- 
ing have an impact on the evaluation of the concurrent resol- 
vents. Each resolven t is equivalent to a relational algebra 
expression [ULL85]; thus, the set of concurrent queries or 
resolvents can be decomposed into a hierarchy of primitive 
algebraic operations some of which can be evaluated in paral- 
lel. The feature of a recursive intension is that each time the 
recursive clause is applied it generates a longer resolvent 
which is an extension of a previous resolvent [NAQ85]. Thus, 
there is a potential for identifying common sub-expressions 
and sharing intermediate results of high-level algebraic opera- 
tions among the concurrent queries. For example, on examin- 
ing the resolvents in expressions (3), (4) and (5), we see that 
(3) is a sub-expression of (4), (4) is a sub-expression of (S), etc. 

The third technique is the pipelining and data-flow 
based processing approach proposed for several database 
machines IBIC81, BOR80, FIS84, HON84, KIM84]. Using this 
technique, each processor assigned to a node in a query tree 
transmits a block of information as soon as it is produced. 
This is in contrast to traditional distributed systems that 
delay output until the operation assigned to the node is com- 
pletely executed. The main advantage of this data-flow based 
approach is the possibility of “vertical” concurrency, where an 
operation at one level that requires input from an operation 
at a previous level can get its input data at an earlier instant, 
before the operation at the previous level is completed. Pipe- 
lining has a significant impact on the elficiency of concurrent 
queries that share intermediate results (such as the resolvents 
of a recursive intension), since the processors can get their 
shared data earlier, and start execution sooner. 
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4. Efficient Implementation of Recursive Queries 

In this section, we describe a strategy which applies the 
query processing techniques of section 3 to process a set of 
concurrent queries (resolvents). 

We lirst decompose each resolvent (query) into a hierar- 
chy of primitive (algebraic) operations that can benefit from 
pipelining. We identify possible parallelism in executing these 
primitive operations es well as opportunities for intermediate 
result sharing among the resolvents (queries). Next, we study 
the effect of pipelining on this evaluation strategy. Finally, 
we determine a termination condition to halt the evaluation 
of these concurrent queries. 

Although it is advantageous to maximize both the 
number of primitive operations being executed in parallel as 
well as intermediate result sharing among queries, the degree 
of parallelism is limited by the availability of processors and 
the amount of result sharing is limited by the bandwidth and 
the structure of the interconnection network. As the rcso]- 
vents become longer (by the repeated application of the rccur- 
sive rules), there is increasing opportunity for parallelism and 
there are several ways to decompose each resolvent into prim- 
itive operations. IIowever, to maximize the opportunity for 
result sharing, it is desirable to decompose each resolvent so 
that it can share the greatest common sub-expression from a 
previously evaluated resolvent. In addition, to improve execu- 
tion elficiency, the decomposition must first process operations 
on restricted relations, e.g., execute selection before join. To 
avoid irregularity in the interconnection network and to sim- 
plify the network structure, it is desirable to limit the sharing 
of results only between adjacent resolvents. 

We use the example of the transitive closure, T, of a 
database relation A with two attributes of interest. T is 
delined as follows: 

T(x,Y) :- Nx,Y) 
‘WV) :- Thy), A(Y,z) 

For convenience, we represent the database relation as 
A-6 where each “f” indicates an attribute that is free 
(unbound). We use “b” to indicate a variable bound to a con- 
stant value (i.e., a selection based on an attribute value). 
Thus, A-bf is the result of selecting tuples from the database 
relation A, based on the value of the first attribute. 

Consider an example query which is a verification of the 
form T(a,c), where a and c are constants. This would 
correspond to finding all paths between two given points of a 
graph. Then, to answer this query, a series of database queries 
(resolvents) Ti-bb, as seen in Figure 4.1, will be generated, 
where “i” identifies the depth of the resolvent and “b” 
indicates each variable (or attribute of a relation) that is 
bound to a constant. Tl-bb corresponds to the expression 
A(a,c) and the corresponding query will be (A-bb), which is a 
direct selection of tuples from the relation A. The second 
resolvent, TZ-bb, corresponds to the expression A(% Al), 

A(yl, c) where yl is unbound and will be represented by 
(A-bf JN A-fb) 

which is identified as a primitive operation in our evaluation. 
This primitive operation comprises initial selections, A-bf and 
A-fb, from the relation A (corresponding to binding a variable 
in a predicate to a constant), a subsequent join (JN) operation 
over the appropriate attribute, here yl, (corresponding to 
variable binding between clauses) followed by a Projection 
operation to produce answers corresponding to T2-bb of the 
form T(a,c). The primitive operation we have just described 

is typical of the operations resulting from the decomposition 
of resolvcnts. If the variables are not bound, then the initial 
selection will be omitted. 

Resolvent T3-bb will be hierarchically decomposed into 
( (A-bf JN A-IT) JN A-fb) 

where (A-bf JN A-8) will be evaluated lirst. Resolvent T4-bb 
will also be hierarchically decomposed into 

( (A-bf JN A-IT) JN (A-B JN A-fb) ) 

Figure 4.2 shows the hierarchical decomposition of the 
resolvents into primitive operations. Several of these opera- 
tions can be executed in parallel. The legend [ml-j in the 
figure represents those primitive operations at level m that 
can be executed in parallel. The level, m, of the operation is 
different from the depth, i, of the resolvents and the value of 
m is determined by the input requirements. For example, 
operations at level 1, represented by [11-j, are at the lowest 
level in the tree and do not require input from any other 
operation. However, operations at level 2, [21-j, are those that 
require input from a previous level, in this case, from opera- 
tions at level I, etc. The value of j serves to distinguish 
between parallel operations at the same level. 

Those expressions that are common sub-expressions are 
labelled in the figure by “common.” For example, resolvents 
T3-bb and T4-bb have (A-bf JN A-IT) in common. To maxim- 
ize result sharing, each resolvent is decomposed so that it can 
share the maximum common sub-expression from its immedi- 
ate predecessor, i.e., the first resolvent is decomposed into its 
primitives and then the next resolvent is decomposed so as to 
share as many sub-expressions as possible from the previous 
resolvent, etc. For example, the resolvent TG-bb is decom- 
posed into 

( ( (A-bf !&l-f) %:-II) !%~A-, %;A-, !%!A-lb) ) ) 
rather than an alternative decomposition of 

PI-3 121-P Ill-5 WI Ill-4 
( ( (A-bf JN A-IT) JN (A-8 JN A-8) ) JN (A-II JN A-fb) ) 

The Hurst decomposition is based on using the largest 
sub-expressions, namely, the output of operations \2]-3 and 
[2]-4. The second decomposition does not maximize result 
sharing. It is also less efficient as it includes an operation 
[I]-5 which computes the join of two unrestricted relations. 

Figure 4.3 illustrates the advantages of maximizing 
result sharing and maintaining a regular interconnection 
structure; i.e. it results in an evaluation strategy that is regu- 
lar with respect to primitive operations and interconnections. 
This regularity is advantageous if special-purpose hardware is 
to be built to execute recursive queries. In this figure, the 
boxes at each level represents the primitive operations that 
can be executed in parallel at that level. The level, m, does 
not necessarily correspond to the depth, i, of the resolvent Ti 
being evaluated at that level. For example, at level 2, opera- 
tion [21-l and 121-2 produce output for resolvents Tfbb and 
T4-bb, respectively. All the operations do not produce 
answers to the query; some operations evaluate sub- 
expressions. For example, operations [2]-3 and [2]-4 evaluate 
the sub-expressions T3-bf and T3-fb, respectively. 

Next, we examine the termination condition, based on 
the finiteness of domains. If the relation A is finite, then the 
transitive closure T is also linite. Referring to figure 4.3, if at 
any level, m, the operation [ml-3 did not produce any output, 
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i.e., T,,,-- bf was empty, then the processing can be ter- 
minrrted at that level m, since answers cannot be produced at 
subscqucnt levels (m-tl). Th’ IS also holds for the operation 
[ml-4 which evaluates T,,,-fb. IIowever, in the case of cyclic 
databases (databases that have cyclic relations, eg., {(a,b), 
(,,a)} ), determining the termination condition is more com- 
plcx. IIerc, the operations [ml-3 and [ml-4 could produce out- 
put without necessarily producing new answers at subsequent 
levels. The system must check the output of the operations 
[ml-3 and [ml-4 and determine that there are tuples produced 
in ‘~m+l- bf and T,+l -fb which will indeed produce answers, 
i.e., T,+l-bf must be compared with the set {A-bf, TZ-bf, _... 
Tm-bf} to ensure that T,tl- bf is not a sub-set of this set. lf 
T m+l-bf is indeed a subset of this set, then no new answers 
will be produced at subsequent Icvels. Execution should tcr- 
minate at that level. The same holds for T,,,-fb. 

5. Performance Evaluation 

In this section, we evaluate the performance of the tran- 
sitive closure algorithm. In our evaluation, we compare the 
performance of this algorithm with and without pipelining. 

We compare the “distributed” approach which uses only 
horizontal concurrency, with the data-flow and pipelining 
based approach which uses both horizontal and vertical con- 
currency (MIK85, SUSSa]. In both cases, we assume that 
parallel execution of primitive operations by multiple proces- 
sors and intermediate result sharing are exploited. With the 
pipelined approach, a block of data is transmitted as soon as 
it is produced. A block is the operand granularity for input 
and output (of results). Processing at level (m+l) commences 
as soon as operations at this level have a block of data at 
their input nodes. This results in vertical concurrency across 
several levels. With respect to recursive intensions, this 
implies that several resolvents Ti-bb, will be evaluated in 

parallel. 

The two performance measures used in this study are 
the response time (or the time to produce the first block of 
data) and the execution time (or the time to complete process- 
ing an operation). We measure the response time of each 
resolvent or query, Ti-bb, and the execution time for the set 
of concurrent queries, for some depth, i, of these resolvents. 
We expect that the pipelined approach will have better 
response time and execution time since each level will com- 
mence execution at a much earlier instant, as compared to the 
distributed approach. 

For our evaluation, we use the simple hash join to model 
a primitive operation. The analysis of main memory resident 
database systems, in [DEW84], suggests that hash based 
query processing strategies are advantageous. The same 
result is reported in [MI1<85, SU86a] for the data flow and 
pipelined approach. We assume that the hash tables lit into 
main memory. 

Let the two relations to be joined be Rl and R2, and let 
their sizes (number of tuples) be kl*B and k2*B, respectively, 
where B is the block size expressed as the number of tuples in 
a block. Assume kl>k2. Let Tbr be the time to input a 
block, Th the time for hashing the value of an attribute over 
which the join is to be performed, Tw the time to write a 
tuple in memory, and Tc the time to compare a hashed value 
with values in the stored hash table. Let j be the join selec- 
tivity defined as 
j = (number of join tuples output) / kl*k2*B*B 

Using values in [DEW84], we set values of 9, 20 and 3 
microseconds for Th, Tw and Tc, respectively. The time for a 
sequential I/O operation was set at 10 milliseconds per page, 
for a page size of 40 tuples. In our analysis, the block size, B, 
is a parameter; thus, we vary the value of Tbr from 5 mil- 
liseconds (B = 20) to 25 milliseconds (B = 100). For blocks 
of shared results, the input time will be the transfer time 
across the network. We assume the same values for the 
transfer time as for the sequential I/O operation. We assume 
a selectivity factor, s, for both A-bf and A-fb of 10 percent. 
We do not vary s, as it only occurs at the first level and its 
ellect is negligible. 

For the distributed approach, the smaller relation, R2, 
will be read first, hashed and the hash table is stored in 
memory. The larger relation, Rl, will then be read, hashed 
and compared with the stored hash table. Note that a 20 
percent overhead accommodates the extra comparisons 
required when comparing values using a hash table [DEW84). 
If there is a match, then the two matching tuples will be out- 
put. The selection only occurs at level 1 and will be con- 
sidered as part of the input time. Any final projections will 
be included in the time to move the join output tuples to the 
buflkr. The time spent to transmit the final result is also the 
input time of the next level operation(s) that use this result. 
However, we do not assume overlap in the I/O and processing 
times of an operation. The execution time of the primitive 
operation in the distributed case is the same as the response 
time, since output is not transmitted until processing is com- 
plete. It is the following: 

time to read, hash and store tuples of R2 + 
{ = Tbr*k2 + Th*k2*B + Tw*k2*B } 

time to read, hash and compare tuples of Rl + 
{ = Tbr*kl + Th*kl*B +Tc*kl*B*1.2 ) 

time to output tuples or join result 
{ = Tw*2*j*B*B*kl*k2 } 

In the pipelined approach, the first block of R2 will be 
read, hashed and stored in memory. The first block of RI 
will be read, hashed, compared with the current contents of 
the hash table and the join output, i.e., the pairs of matching 
tuples from both relations will be written into an output 
buffer. Rl will also be stored in the hash table for further 
comparison with subsequent blocks of R2. The subsequent 
blocks of Ri and R2 will be treated in a similar fashion. As 
soon as the number of tuples in the output buffer exceeds B, a 
block of output will be transmitted. After the last (k2-th) 
block of R2 is processed, the remaining blocks of RI need not 
be stored in the hash table. 

For each diock i, where i = l,...,kl, Tin-Rli and 
,Tin-R2i is the time to read, hash and store (optional) blocks, 
respectively. Tcompi is the time spent in comparing hashed 
values with the hash table and Touti is the time spent in out- 
put of the join result. For i = 1 the following hold: 
Tin-Rll =Tbr + Th*B + Tw*B; 
Tin-R2, =Tbr + Th*B + Tw*B; 
Tcompl = Tc*B*1.2; Tout1 = Tw*2*j*B*B 

For subsequent blocks i = 2,3,..,k2, the following hold: 
Tin-Rli = Tin-R1,; Tin-R2i = Tin-RZ1 
Tcompi = Tc*2*B*1.2; Touti = Tw*2*j*(2*i - l)*B*B 

For blocks i = k2+l,..,kl, the following hold: 
Tin-Rli = Tbr + Th*B; Tin-R2i = 0 
Tcompl = Tc*B*1.2; Touti = Tw*2*j*k2*BfB 
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In [MIK85, SU80a], the output rate of the pipelined join 
was averaged over the execution time to obtain an average 
rate of output. This is not very accurate since as more input 
blocks are accumulated, a single block of input will be com- 
pared against several blocks and the number of output tuples 
produced will increase. We have modeled a varying output 
rate for the join operation. The following discussion ela- 
borates our model. In any data-flow based algorithm, the rate 
of output blocks produced by an operation is determined by 
the availability of input, as long as the i-th block or input can 
be completely processed before the (i-+1)-th input block is 
available, i.e., the output rate is determined by the input rate 
(which is the output rate of the previous operation providing 
the input). At some point, the input blocks are available at a 
faster rate than they can be consumed. This is the critics1 
point and after this point, the output rate is determined by 
the processing rate ol the operation, itself. 

Figure 4.3 shows that a sequence of operations, 111-3, 
[2]-3, [m-11-3, etc., controls the availability of input for 
[ml-l and can be considered a critical path for [ml-l. In Figure 
5.1, we have a sample graph describing the rate of producing 
output blocks as a function of the number of input blocks 
consumed, for the critical path operation 121-3. The relation- 
ship between the number of input blocks consumed (bi) and 
the number of output blocks produced (bo) is the following: 

j*bi*bi*B*B = bo*B if j*k2*k2*B*B > bo*B --- 5.1 
j*bi*k2*B*B = bo*B otherwise --- 5.2 

The time for operation P to consume (process) bi blocks of 
input is defined as Tproc(P,bi) and the time to produce bo 
blocks of output is defined as Tprod(P,bo). Figure 5.1 shows 
plots for two values of N (the number of tuples in the data- 
base relation A-IT) equal to 1OOOO and 200000 and dilTerent 
block sizes (B = 20 and B = 40). Our results show that the 
output rate increases gradually with increasing input being 
consumed. Assuming that the processing speeds of the opera- 
tions along the pipeline are matched, the critical point for an 
operat,ion, at level k, corresponds to the first block of input 
(bc) at level (k-l) that produces more than one block or out- 
put. The critical point is the least value of bc satisfying the 
following: 

j*(2*bc - l)*B*B > B 

The response time and execution time for operations at 
level m will be defined recursively with respect to operations 
at level m-l which provide input. For level 1 operations, 
these values can be obtained directly using the expressions lor 
Tcompi, Touti, etc. 

The response time for any primitive operation Pi, 
Tres(Pi), will be a function of rl, the number of input blocks 
needed to produce the first output block. By substituting 
(bo=l) in either 5.1 or 5.2, the value of rl (=bi) can be 
obtained. Tres(Pi) is also a function of the response time of 
the operation(s) providing input, Pi-1 and Pi-l’ Operation Pi 
requires rl blocks of input, each, from Pi-l and Pi_,’ , to pro- 
duce the first block of output. In all our experiments, the rl 
blocks of input were produced before the critical point; thus, 
the response time is also determined by the output rates of 
the operations Pi-l and Pi-l’ The following holds: 
Tres(Pi) = maximuti of the response times of Pi-l, Pi-l’ 

{ max [ Tres(Pi-I), Tres(Pi-l’ ) ] } 
+ maximum time for Pi_,, Pi-: to produce rl blocks 

{ max [ Tprod(Pi_l,rl), Tprod(Pi-i ,rl) ] } 
Note that this time must be adjusted to account for 
the fact that the first block is already available. 

To determine the execution time of operation Pi, 
Texec(Pi), we first determine the critical point ol operations, 

Pi-l and I’-1’ , which provide input, and the corresponding 
output block, pc or PC’, produced at the critical point. Before 
the critical point the output rate will be controlled by Pi-1 (or 
Pi_l’ ), and after the critical point the output rate will be con- 
trolled by operation Pi. If operation Pi processes (consumes) a 
maximum of kl blocks, then the following holds: 
Texec(Pi) = maximum of the response times of Pi-l, Pi-l’ 

{ max [ Tres(Pi-I), Tres(Pi-< ) ] } 
+ max. time for Pi-l, Pi-i to produce PC, pc’ blocks, resp. 

{ mm [ TprOd(Pi-I,pC), ‘I’prod(Pi-1’ ,PC’ ) ] } 
+ time ror Pi to process a max. of (kl-pc) or (kl-pc’) blocks 

{ Tproc(Pi,kl) - Tproc(Pi,pcmin) }; pcmin is min [PC, PC’] 
This expression models the worst case situation for 
evaluating Texec(Pi). 

The expression Tproc(Pi,p), for any operation Pi, is given 
by the following: 

i=p 
c [ Tin-Rli + Tin-R2i + Tcompi + Touti ] 

i=l 

The expression Tprod(Pi,p), for any operation Pi at level 1 is 
given by 

i=p’ 
C [ Tin-Rli + Tin-R2i + Tcompi + Touti ] 

i=l 

where p’ is the number of input blocks consumed to produce 
p blocks of output. For subsequent levels, 
‘J.‘Prod(Pi,P) = max [ Tprod(Pi-l,p’ ), Tprod(Pi-l’ ,P’ ) ] 

We study the performance of this algorithm with and 
without pipelining, with respect to three parameters. The 
first parameter is the block size, l3, which we vary from 20 to 
100. The value of Tbr will also vary correspondingly. The 
second parameter is the join selectivity, j, of the critical path 
operations and the operations that produce answers. The join 
selectivity is not an absolute value but is defined as a ratio; 
thus we vary j in proportion to the sizes of the input relations 
for each operation. The third parameter is the number of 
tuples, N, of the initial database relation, noted A-ff. We 
vary this parameter from 200000 to 800000. 

Figure 5.2 shows the response time and the execution 
time for both the pipelined and distributed cases as a function 
of the depth i of the resolvents, Ti-bb. In this plot, the value 
of N is 200000, B is 20 and j is 5*10-s. This value of j 
(=1/N) ensures that the size of the output produced by the 
critical operations is roughly equal at dillerent levels along the 
pipeline. The figure shows that for small i, with pipelining, 
the response time is much less than the execution time. As i 
increases these two curves tend to move closer. The reason is 
that for small i there are less operations (and delays) along 
the critical path and thus, the response time is small. As i 
increases, there are more operations (and delays) along the 
critical path which tend to increase the delay in producing the 
first block of output for Ti-bb. The figure also indicates that 
for small i, the execution time for the distributed and pipe- 
lined approaches are very close but these curves tend to 
diverge with increasing i. This is because for small i, there 
are fewer operations in the pipeline and the advantage of 
pipelining on the execution time is limited. As i increases, the 
number of operations in the pipeline increase and the perfor- 
mance improvement increases correspondingly. 
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In Figure 5.3, we show the elIcct of the block size, B, (or 
operand granularity) on the response time. We plot the ratio 
of the response time in the distributed case to the response 
time with pipelining, as a function of the block size. We 
examine three resolvents, T4-bb, ‘I%-bb and T8-bb. This 
ratio, which is proportional to the performance improvement 
due to pipelining, is largest for B=20, and gradually decreases 
with increasing block size. This is true for all resolvents. The 
reason is that the response time is closely related to the block 
size. The number of tuples consumed to produce a small 
block of output is less, and this reduces the response time. As 
the block size increases, more input tuples have to be con- 
sumed to produce the lirst block and the response time 
increases. 

Figure 5.4 shows the effect of block size on the execution 
time. For resolvents T24-bb and T32-bb, we plot the execu- 
tion time of the distributed case and the pipelined case, as a 
function of B. The execution time, which is the time to com- 
plete processing all blocks, is not as sensitive to pipelining as 
the response time. Ilowever, with increasing values for B, the 
execution time reduces slightly. This is because the delays 
along the critical path stem to be larger for smaller block size, 
i.e., with smaller block sizes, the input rate controls (and 
delays) the pipeline rate along the critical path for a longer 
time. This delay has a corresponding eIIect on the execution 
time and the execution time is slightly less with larger block 
size. If we assumed a penalty for transmitting smaller blocks, 
then the execution time for the distributed case would also 
reduce slightly, with larger block size. 

Figure 5.5 shows the ellect of the join selectivity j, on 
the response time, for various resolvents. The ratio of the 
response time in the distributed case to the response time 
with pipelining is plotted as a function of j. This ratio is seen 
to increase with increasing join selectivity for all resolvents. 
The reason is that with increasing values of j, less input 
blocks have to be consumed to produce the first block of out- 
put. As a result, the response time for the pipelined case is 
smaller. 

Finally, in Figure 5.6, we show the effect of N, the 
number of tuples of the database relation, A-8, on the execu- 
tion time’for the distributed and pipelined cases. Note that 
the value of join selectivity is varied correspondingly; this 
ensures that the size of the answers produced for each resol- 
vent is proportional to the size of the input relations and the 
analysis is unbiased by arbitrary sizes of the output relations. 
The execution time for two resolvents T24-bb and T32-bb are 
shown. Each of these plots is linear in N, as is expected since 
the execution time must be proportional to the size of input 
relations being processed. However, the execution time for the 
distributed case increases more rapidly with increasing N as 
compared to the pipclined case, resulting in enhanced perfor- 
mance due to pipelining. The reason is that after the initial 
delays in setting up the pipeline, the longer the piepeline 
operates under steady state, the greater the benefit of pipelin- 
ing. With increasing N, the pipeline operates longer under 
steady state, hence the improved performance. 

6. Conclusions and Future Research 

To summarize, we presented a strategy for the con- 
current evaluation of the resolvents generated by a recursive 
query using query processing and optimization techniques. 
Analytical formulae were derived for the response times and 
execution times of the concurrent queries and the performance 

gain due to pipelining was examined. 

To summarize the results of our analysis, the pipelined 
approach with both vertical and horizontal concurrency 
always performed better than the distributed approach, which 
uses only horizontal concurrency; both approaches used inter- 
mediate result sharing. The elfects of pipelining on the 
response time is much more pronounced as compared to the 
execution time; this is as expected since pipelining inherently 
produces data at an earlier instant. The elIects of the block 
size, B, and the join selectivity, j, on the response time are 
similarly explained. The advantages of pipelining are more 
marked with longer sequences of operations in the pipeline, 
e.g., with increasing depth i, of the resolvents, Ti-bb. The 
advantages of pipelining are also greater, the longer the pipe- 
line operates under the steady state (after the initial delays), 
e.g., with larger database relations. 

The example of transitive closure is a direct recursion. 
In [NAQ84] an indirect recursion is described for S, as follows: 

S(xl,zl) :- M(xI,yl), T(yl,zl) 
T(yl,zI) :- S(yI,wI), P(wI,zl) 
T(y1,zl) :- F(yl,zl) 

where M: F and P are database relations. A query of the 
form S(c,?), or S-bf, would generate the set of resolvents, ’ 
Si-bf, of Figure 6.1 and, by applying the method described in 
Section 4, an evaluation strategy such as shown in Figure 6.2 
can be obtained. 

In general, any recursive intension can be reduced to the 
form: 

S( .,.,..) :- M( .,.,.. ), S( .,.,.. ), P( .,.,..) 
where M and P are relational algebra expressions. We are 
currently developing an algorithm, based on the method 
described in section 4, to evaluate any genera1 recursive inten- 
sion S. Mutually recursive clauses may require further 
research. 
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