
ON THE COMPUTATION OF THE TRANSITIVE
CLOSURE OF RELATIONAL OPERATORS

Yannis E. Ioannidis

Computer Science Division
Lhiversity of California

Berkeley, CA 94720

Abstract

Query processing in the presence of recursively
defined views usually involves some form of iteration.
For example, computing the transitive closure of a
tree involves iterating N times, where N is the depth
of the tree, each time computing pairs of vertices that
are one edge further apart than the pairs produced in
the previous iteration. Applying a divide and conquer
technique we devise algorithms that need a loga-
rithmic number of iterations. Assuming that we are
looking for complete materializations of the recur-
sively defined relations we show both through analyti-
cal and experimental results that this approach is in
many cases superior in performance than the N-
iteration algorithm

1. INTRODUCTION
Recursion has received considerable attention in

the context of deductive databases, i.e. databases in
which new facts may be derived from ones that were
explicitly introduced. Interesting work has been done
on the formalization of the problem and how to per-
form query processing in the presence of recursion (
[Hens64, Banc86, Han66, Rosef36, Ullm65, Vie9361).

The purpose of this paper is to present some
experimental results on recursion processing that
indicate that the “obvious” algorithms usually used
are not always optimal. In fact, as will be apparent in
the sequel, we may use different algorithms and get
significant improvements in both I/O and CPU time.

The paper is organized as follows. In Section 2 we
give an overview of the operator model that we will use
to describe recursion and its processing. Most of this

This research was supported by the National Science Foundation under
Grant ECS-8300463

Permission to copy without fee all or part of this material is
granted provided thaf the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
Me of fhe publication and rfs date appear, and nofice is given
fhat copying is by permission of fhe Ver Large Data Ease
Endowment. To copy otherwise, or to repu x. ksh, requires a fee
and/or special permission from fhe Endowment

Proceedings of the Twelfth International
Conference on Very Large Data Bases

section is an excerpt from [Ioan86] where the opera-
tor model was flrst introduced. Section 3 contains the
description of a new algorithm together with an
analysis of its I/O behavior as compared with that of
the usual iterative algorithm We also give some
experimental performance results of the two algo-
rithms. In Section 4, we elaborate on a whole class of
algorithms that can be conceived expanding on our
initial idea. Some limited performance results are
also given there. Finally, Section 5 includes some of
our current ideas on algorithms for more general
classes of recursion, whereas Section 6 concludes with
some possible directions for future research in the
development. of query optimizers for recursion.

We assume that the reader is familiar with 1-st
order logic [Ende72] and Horn clauses [Gal1641 which
are usually the basis for the study of recursion in a
database environment.

2. OPERATOR MODEL
In this paper we will be using the following canon-

ical example for recursion. Consider a database with
a relation father with schema fat.her(fath,son). Using
father in the following two Horn clauses we may
define the virtual relation ancestor with schema
ancest.or(anc,desc):

ancestor (2.2) A father(z,y) + ancestor(z,y)

father (z ,y) 4 ancestor (z ,y)

The first Horn clause is recursive in the sense that the
relation ancestor appears on both the qualification
and the consequent of it. Answering queries on rela-
tions defined recursively as ancestor above is the
problem we want to address.

For the purpose of this paper we concentrate on
linear and immediate recursion. This means that we
have a single recursive Horn clause and the recursive
predicate appears in the antecedent only once. Dis-
sallowing any function symbols such a recursive Horn
clause will have the form

P&(O)) A Q&q A /I Q&q -t P(iG?+‘))
(1)

where for each i, z@) is a subset of some fixed set of
variables ~z,.zZ ,..., z,,] and P is a virtual relation and
{Qi 1 a flxed set of stored relations. As analyzed in
[loan861 , the problem of recursion can be defined in
operator form as follows. A recursive Horn clause, like
the one shown above, may be considered as some rela-
tional operator A applied on some relation P to pro-
duce more tuples for the same relation. So, it can be
written more clearly as APrP, where A is an operator
mapping relations over a fixed set of domains into
ones over the same set of domains. The relations in

Kyoto, August. 1986

403-

tfJi j will be parameters of the operator A. If we suggesting a different algorithm for computing A’R.
employ this approach we are able to define operations Some of these eauivalent forms toeether with the
on relational operators as follows. &fult@lication of corresponding algorithms are studiedin the next sub-
operators is defined by section.

(A * B)P = A(W)

and addition by

(A+B)P = AP U BP

3.1. Equivalent Forms of the Solution
In section 2 we have already mentioned two

equivalent forms for A’, namely lim(1 + A)” and gAk.

For notational convenience we omit the operator +.
Identity (1P = P) and null (OP = (p. p the empty set)
are defined in obvious ways. The n-th power of an
operator A is inductively defined as:

k->m k=O
These correspond exactly to the two main algorithms
suggested in the literature for processing recursion.

A0 = 1, An = A *An-l = A”-‘*A

In retrospect, examining the original algorithm
that has been proposed to solve recursion [Aho] , we
can see that it is a direct application of

Having established an algebraic framework, the
problem of immediate recursion can now be stated as
follows: Assume that we have a recursive Horn clause
that can be represented by the operator A, so that

A’ = lim(1 + A)k = ‘. (1 + A)(1 + A)
k->-

APLP

Also, there exists some constant relation R, which is
either stored or produced by some other set of Horn
clauses not involving P, so that

(whenever explicit parenthesization is omitted, right
associativity is assumed far multiplication). In other
words, we apply A on some initial relation R and then
we take the union of the result with R and apply A on
that etc. until nothing new gets produced.

RrP

Then, the relation defined by the given set of Horn
clauses can be found as the solution to the equation

P=APUR (2)
Presumably, the solution will be a function of R; we
can write P = B R and the problem becomes one of
finding the operator B. Manipulation of (2) will result
in the elimination of R so that we have an equation of
operators only. In this pure operator form the recur-
sion problem can be restated as follows: Given some
operator A, find another one B satisfying:
(a) l+AB=B

As an example consider A being the operator
corresponding to the Horn clause defining the ances-
tor relation of section 2. Assume that the relation
father is given by the graph of figure 3.1, where an
edge (a-rb) indicates a tuple father(a,b), i.e. a is the
father of b. Consider the query ancestor(Uranus,y),
i.e. we are looking for the descendents of Uranus. Fol-
lowing the steps of the algorithm corresponding to (3)
we see the answer being developed as shown in figure
3.1.

(b) B is minimal with respect to (a), i.e. for all other
C satisfying (a), it is B I C.

The solution to the above equation (a) under the con-
straint (b) was shown in [Ioan66] to be equal to

Figure 3.1. Naive alg. to compute ancestor(Uranus,y).
The answer is developed by way of flnding in the k-th
step ((1 t A)“) Uranus’s descendents that are 1 gen-
erations below him, l<Lsktl, for kr0. In other words
initially we get Uranus’s children, then in step 1 we
get them with Uranus together to find their children,
which are Uranus’s children and grandchildren
together etc. This is clearly not a very good way of
doing things since A is applied on the same tuples
many times producing the same result again and
again. For example Cronos is produced as a descen-
dent of A in every iteration.

A’ = -&k
k=O

The operator A’ is called the m of A,
which taking into account the definitions of + and *
may also be written as

A’ = lim(1 + A)“.
Is->=’ (3)

Since A does not contain any functions, for every
finite relation R there exists some 7~~ (depending on
R) such that

A’R = ?A R = (1 + A)+‘R.
k=O

This says the fortunate and somewhat obvious fact
that when dealing with finite relations (which is the
case in a database environment) only a finite number
of the terms of the sum are enough to give us the
complete result. Hence, A’ is an operator mapping
finite relations to finite relations.

3. NEW ALGORITHMS
As we showed in the previous section a relation

defined recursively can be materialized by applying
some operator A’ on some stored relation R. However,
there are many equivalent forms for A’, each one

In that respect the form A’ = gAk is easily seen
k-0

as more practical in the sense of being faster. Exactly
this form has been followed in [Gutt84] and elsewhere.
Also, this form has been formally extracted in
[Baye64] and [Banc65] , even for more general cases
of recursion, i.e. without any assumptions about
linearity. To understand the algorithm implied by
that we have to see that we can write the above equa-
tion as

A’ = fJ~k = 1 t (t t (1 t ()A)A)A
k=O

(4)

In this form A is applied each time only on the tuples
produced during the previous iteration, so unneces-
sary computation is avoided.

-404-

For the same example as before, using A’ in its
form of (4) we generate Uranus’ descendents as shown
in figure 3.2.

k=O k=l k=2 k=3 k=l

Uranus Cronos Zeus

Figure 3.2. Semi-naive alg. for ancestor(Uranus,y).
In the k-th step, A’. ksO, we find Uranus’ descendents
that are exactly k +1 generations below him, i.e. ini-
tially we find Uranus’ children. in sten 1 we And their
chil&en, which are Uranus’ grandchildren etc. In the
end we take the union of all the sets to get the com-
plete answer.

In our search for other equivalent forms for A’
that will possibly give us more efficient execution algo-
rithms we arrive at the following form

A’ = fi(1 + A27 = . ..(l +A’)(1 +A2)(1 +A) (5)
k=O

The algorithm indicated by this formula for A’ avoids
the application of the same operator on the same
tuples more than once so it is presumably faster than
the original formula (3). The interesting question is
how it compares with the second formula (4). To get a
feeling for this algorithm we use it to find again
Uranus’ descendents. The steps of the generation of
the answer are shown in figure 3.3.

k=O k=l k=2

----(Q-o-(,i b

Uranus Crones Zeus

Figure 3.3. Smart alg. to compute ancestor(Uranus,y).
Using (5), in the k-th step we generate Uranus’ des-
cendents that are 1 generations below him, 2k-L<1~2k,
kr0, i.e. we get Uranus’ children, then in step 1 we
take them with Uranus and get their grandchildren,
which are Uranus’ grandchildren and great-
grandchildren together etc. The particular query that
we used in our examples is not one where (5) is the
most efTicient as it will be pointed out in section 6. It
is only presented here because of its simplicity.

At this point we should mention that the algo-
rithm corresponding to (5) was independently pro-
posed by Valduriez and Boral [Vald66] They use a
different formalism to describe it, namely Relational
Algebra Programs, but it is essentially the same algo-
rithm as (5). We should also mention that this aleo-
rilhm is re&iniscent of graph theory algorithmsYto
find transitive closure of graphs.

Adopting the terminology of [Ban&51 we call the
algorithm corresponding to (3) naive algorithm and
the one to (4) semi -ive algorithm. In the same
spirit we call the algorithm corresponding to (5)
smart algorit/Lm. Looking at the three algorithms
together we see the following: At each step the naive
algorithm applies the same operator on all the tuples
that have been produced during the execution. The
semi-naive algorithm does the same but only on the
tuples produced in the last iteration. Finally the
smart algorithm at each step applies a different
operator on all the tuples produced up to that point.
In this sense it is the dual of the semi-naive algorithm
with respect to the naive algorithm Figure 3.4 sum-
marizes Lhe above.

-I

Figure 3.4. Algorithm types for the computation of A l .
It is an interesting question to study whether there
exists an algorithm covering the last remaining empty
box.

The issue raised is whether this new smart algo-
rithm will run any faster than the others. Looking at
the formulas as given above is not enough to give us
any useful conclusion in this direction. On the one
hand, the number of multiplications performed by the
smart algorithm is much smaller than by the semi-
naive one (roughly it should be equal to 2*logzN, logzN
to find the powers ,of 2 and another log,N for the outer
multiplications, with N the number the semi-naive
algorithm needs). Assuming that in most cases multi-
plying implies joining, we see that the smart one per-
forms fewer joins. On the other hand, in each step we
are calculating bigger portions of the final outcome,
by applying a more expensive operator on larger rela-
tions than the semi-naive algorithm Hence, each step
is definitely more expensive.

When this trade-off of the number of multiplica-
tions versus their individual costs is beneficial for the
overall performance, is the focal point of the discus-
sion that follows in the next two subsections.
3.2. I/O Cost Analysis

In this section we present an analysis of the I/O
performance of the semi-naive and smart algorithms
mentioned above (formulas (4) and (5)). For simpli-
city, our analysis (and our experiments in section 3.3)
have been restricted on A representing the computa-
tion of the transitive closure of a binary relation.
However, our analysis extends easily to more general
forms of A. We have assumed that for the implemen-
tation of the semi-naive algorithm we first compute all
significant powers of A as AL = A AL-’ and at the end
we take the sum of all of them The relation in A is
sorted only once in the beginning. Likewise for the
smart algorithm we compute all operators A* keeping
the results sorted (loopl), and then perform massive
joins of the current result with the corresponding
power of A, which would be of the formA@, for some k
(100~2). The outcome of these joins is appended
directly to the current result to be used in the next
iteration.

For the analysis we need to define the following
parameters.

tup [k 1 Number of tupies in the relation of A”

page [k 1 Number of pages occupied by tup [k]
tuples (= Pagenum(tup[k]), see below)

pagenum (t) Number of pages occupied by t tuples

Pg= Number of tuples fitting in a page
buf Number of buffers available in the sys-

tem
sort (p) = 2pI10gwpl, I/O cost to sort p pages

having bu,f buffers [Blas76]
c I/O cost to create a relation

-405-

D I/O cost to destroy a relation
N Number of iterations needed by the

semi-naive algorithm
M = [log2N] = rqx {k: tup[Z’] # Oj

Notice that according to the above def$nitions,

the final outcome for A’ should contain z+[k]
k=l

tuples. Using the above parameters the l/O cost
s-naive-i0 and smart-io of the semi-naive and smart
algorithms respectively should be as follows:

s-naive-i0 =

sort (page [11)
Sort original relation on appropriate field(s). It is
done only once.

+ Nzwe El1
At each step read sorted original relation.

+ f sort (page[k])
k=l

Sort the second relation for the join.

+ fpage[kl
k=2

Write the outcome of the join.

+ k$,pwe [k 1 + mm- tk$, W [k I)
At the end read all the intermediate results and
put them into one relation.

+N(C+D)+C
Create and Destroy the N intermediate results
and also create the final result.

silnart Jilgmam
smart-i0 =

loop1

2fswt(page[2*])
k=O

For each step sort AZ’ on two different (set of)
ftelds for the join. We keep one of them for 100~2.

+ k$,m7y [2” 1
Write the result.

loop2

+ k$,-t (Pag~um (It:tup PI))
At each step sort current answer for the next
join.

+ k$,rwe 12” 1
Read second relation (A$), which is sorted from
loopl.

+ k~~pasBnun(~~~tup[2k+ll)
Join the two relations and append the outcome to
the result.

+ I5mv[2*1
k=l

Append the relation of the used A2’ to the result.
+M(C+D)+C

Create and destroy the M intermediate results
and also create the final result.

Before evaluating the above formulas for some
specific values of their parameters we would like to
make the following comments.

(a) First, we can see that for large relations the
most significant terms for both formulas should be
the ones of sorting, since the other ones are linear in
the size of the input. In the smart algorithm we are
sorting bigger relations than in the semi-naive one.
Hence, we should expect that as the relations grow
bigger the semi-naive algorithm should have better
performance.

(b) On the other hand, since the sorting cost is
highly dependent on the number of available buffers,
increasing them should make the smart algorithm
benefit more than the semi-naive one and therefore
make its performance more competent.

(c) Also, for small relations (where sorting is not
that expensive) the overhead of creating and destroy-
ing temporaries (costs C and D above) may become
significant. In that case, the fact that the factor of
C + D in s-naive-io is greater than in smart-io (N vs.
M =]log2Nj) should make the smart algorithm perform
better. This should be especially true when N is quite
large so that there is significant difference with its
logarithm.

(d) Finally, we should point out that, for most of
the cases, the smart algorithm will overcompute
powers of A that are not significant (they are equal to
0 for the database concerned). This is not true with
the semi-naive algorithm since it computes one power
at a time. As N increases the number of joins per-
formed changes only when we cross a power of 2. The
smart algorithm should be expected to be particular
weak on these points, where the overcomputation is
maximal.

To validate our observations above we will apply
the formulas for s-naive-i0 and s?nu?-t-io for some
specific cases. The number of the parameters involved
is significantly large and we will not be able to cover
the complete spectrum of possibilities. Nevertheless,
we believe that the special cases examined below are
enough to give us some insight for the rest also. We
assume that our binary relations represent trees. By
doing this we avoid worrying about retaining any pos-
sible duplicates or not, which is another dimension in
the optimization of such operators, yet unrelated to
our problem

We only examine complete trees of outdegree 1
(simple lists), 2 and 3 (see figure 3.5).

Figure 3.5. Complete trees of outdegree 2 and 1 (list).
We chose to present these categories because they
represent two extremes in terms of the ratio of depth
over width of the tree. For the various parameters of
the problem we chose the following values:

c=7 I/O cost to create a relation
D = 10 l/O cost to destroy a relation
pgsz = 200 Number of tuples fitting in a page
buf = 50 Number of buffers in the system

-406-

These values were chosen so that we may compare the
results of the formulas derived above with the ones we
aclually got simulaling lhe semi-naive and smart algo-
rithms on INGRES (see section 3.3). The numbers for
C, U and DuJ where laken as an average of what was
observed in a number of experiments. In our experi-
ments we had O-byle tuplks with 2K pages. Due Lo
some overhead information in each page, pgsz was
200. In figure 3.6 we show the plots for the ratio
r = s-nuilJe_i.o/sma&-i.o as a function of the depth of
the list/tree, for lists and complete trees of outdegree
2 and 3.

12
11

10

0

8’

7’

r8’
5

4’

3’

2

1’ I

OI
0 l&o qrJ$xi&l 40-00 do0

a

3.0 1

o.“. 0 30 100 120
Tree Depth

(b)

Figure 3.6. Expected relative I/O performance:
T = s-nuiue-io / smart -io .

(a Lists
(b j Complete trees, outdegree 2
(c) Complete trees, outdegree 3

Figure 3.6 validates our comments (a)-(d) above.
As the relations grow bigger, sorting becomes more
signifioanl and the semi-naive algorithm performs
better compared to the smart one. IIowever, we can
see that it takes a considerably big relation for this to
happen. For lists we need depth at least 2040. Like-
wise, for complete trees of outdegree 2, the break-
point depth is 16, which even though it is not a very
big number, it corresponds to a considerably big tree
of 131072 edges (tuples). Incidently. this relation will
need 1Mbyte to be stored in our system, whereas the
result for A’ will need approximately 20Mbytes. The
same can be said about complete trees of outdegree 3.
Figure 3.6~ shows that the breakpoint is at depth 8.
All the above show that it takes an exceptionally big
(deep/wide) relation for the semi-naive algorithm to
perform less I/O than the smart one. Furthermore,
the wider the tree is, the shorter it needs to be for
this to happen.

It is also very interesting to see the particular
behavior of the ratio T = s-naive-b/smart-io. In
agreement with point (d) above, there are significant
jumps in favor of the semi-naive algorithm at depths
N = 2* for any k. This may be noticed for example at
depths 256, 512. 1024, 2048 and 4096 for lists. We can
also see that at depths 16, 32 and 64 for complete
trees of outdegree 2 and 3. However, there is a
noticeable difference in the behavior of lists and com-
plete trees in this respect. For lists T remains rela-
tively invariant between A* and AZL*’ for some k. On
the contrary, for both cases of complete trees exam
ined, as the amount of overcomputation decreases
(approaching A @r-i) the relative performance of the
smart algorithm improves significantly. For example,
for a tree of outdegree 2 and IV=16 we have a drop to
T = 0.61 but then as N grows it rises again to a point
where for N=30 it is T = 1.04. So, it seems that
T = S2I.Uiue-iO/SmUTt-i0 iS not a mOnOtOne function
of N at all.

We have already mentioned that the smart algo-
rithm was independently proposed in [Vald86] , where
its performance is analyzed in comparison with the
semi-naive algorithm as well. It is difficult to accu-
rately compare the results or our analysis with those
in [Vald86] We used merge-scan join always, whereas
they mainly used a hash join similar to the one pro-
posed in [DeWi84] They also assume a very big buffer
pool, whereas we do not. In both points above we were
mainly constrained by the system we used for the
simulations (see next section). However, there is a
common observation of both papers that the smart
algorithm performs well in many cases.

3.3. Experimental Performance Results
We have mentioned above that we have simulated

the semi-naive and smart algorithms using the com-
mercial version of INGRES [RTI84] on a VAX i 111700
running Unix2 4.3. Out of all the performed experi-
ments, we present here the I/O results observed for
lists and complete trees of depth 2 and 3 in figure 3.7.
We show again the ratio T = s-naive-io/ smart-io
together with the corresponding curve given from the
analysis of section 3.2. Unfortunately, due to the
space (and time) requirements of the experiments we
were not able to compare the algorithms on very deep
trees, so we were unable to verify that after some
point the semi-naive algorithm becomes better and

’ VAX is a trademark of Digital Equipment Corporation.

’ Unix is a trademark of Bell Laboratories.

-407-

identify that breakpoint. Nevertheless, to the extent
that we did experiment we see that the results follow
more or less what our analysis of section 3.2 showed.
Whenever there is a disagreement we believe it is
partly because of the simulation overhead and parlly
because of the pessimism of our model about the way
the optimizer uses the buffer pool and the cost of a
sort.

0 60 loo 160 200 2&O so0 8EQ 100
Lb(DqAb

(a)

II---
0 2 I 6 * 10 12 I4 18

Tma Depth

(b)

0.0 !TT---Co
T; h$

(cl

Figure 3.7. Observed relative I/O performance:
T = s-naive-i0 / smart -io .
(a) Lists
(b) Complete trees of outdegree 2
(c) Complete trees of outdegree 3

In our experiments we also monitored the CPU
time consumed by the algorithms. The ratio
r = s-naive-cpu/ smart-cpu was the monitored
parameter, with s-naive-cpti and smart-cp?L being the

CPU time consumed by the semi-naive and smart algo-
rithms respectively. For the same categories of trees
as above the observed T is shown in figure 3.8. We can
see that the smart algorithm was at least a factor of 2
better in performance for lists, whereas it was from
marginally better to marginally worse for trees, for
the depths we examined. We can speculate that as the
depth of the tree grow, sorting cost will be the
significant factor and hence the smart algorithm will
behave worse after some point.

LO-

3.6’

3.0’

2.6’

2.0.
r

1.6.

0 60 100 1643 s!ccl 260 300 360 IM
Lbt D&b

(a>

Figure 3

(b)

0.4’

0.2.

0.0. *
0 1 2 ?. I 6 e 7 8

Tree D&b

(cl

.8. Observed relative CPU performance:
r = s-naive-cpu/ smart-cpu.

(a) Lists
(b) Complete trees of outdegree 2
(c) Complete trees of outdegree 3

-408

4. MORE ALGORITI-IMS
A natural, question, that arises after looking at

the smart algorithm (formula (5)), is whether in the
same spirit we can come up with other, occasionally
even more efficient algorithms. The idea is to look at
A’ as a regular expression for which there are many
equivalent forms. Formulas (3), (4) and (5) represent
only three of these forms and therefore correspond to
only three of the possible algorithms to compute A’.
Some possible alternative algorithms can be realized
by noticing that A’ may be written as

A’= ..: (1 + A12)(1 + Ae)(l + A3)(1 + A + A’) (6)

or

A’ = fi(l + A+ + Ae*3*)‘=
k=O

. (,l + A9 + A’?(1 + A3 + Ae)(l + A + AZ) (7)

Soon, we realize that there is an infinite number
of ways to write A , l in the same sense that there is an
infinite number of coding systems to code all integer
numbers. Testing the performance of a large number
of’ them is ‘prohibitive because of their own time
requirements and the complexity of their develop-
ment All we dan hope for is to follow our intuition
and get good heuristics so that the large majority of’
the suboptimal candidate algorithms are not con-
sidered.

Expression (6) differs from (5) in that the gro.up-
ing starts one iteration later ,than in (5), that is we
compute A and A2 separately and then we group what-
ever we got and start, applying A3 and then group
everything again etc. On the other hand, expression
(7) is even more aggressive in the grouping sense. It
iterates. twice, before oombining everything that it got
up to that point and use it in the next iteration.

In terms of the number of multiplications, expres-
sion (6) will need approximately 2 logaN, where N is
the number of multiplications of (4) (the greater’N is,
the closer to that number the actual number of multi-
plications gets). In the same ‘way expression (7) will
need about 3 1ogsN multiplications. As we can see we
may create algorithms that will need mlog,N multipli-
cations for arbitrary m at the expense of making each
multiplication more eomplex. We may speculate, how-
ever, that with a few exceptions m = 2 or m = 3 at
most will be all that we need. In particular, assume
that we concentrate on the general form

A’ = fi (m~lAL*mk)
k=O I=0

Formulas (5) and (7) are of this form for m=2 and
m =3 respectively. The number of multiplications
required by these formulas is very close to mlog,N.
An easy analysis shows that

m log,,, N % 210gzN

only for m in {2,3,43. In fact, the expression mlog,N
has a minimum for m=3 (restricting m to the
integers) independent of N. Therefore, we may
immediately conclude that all the other options’ will
be more expensive than (5) and (7) and consider them
no further.

Of all the alternative algorithms we chose to
experiment only with the one represented by expres-
sion (7), which we call the minimal algorithm (since it
performs the minimum number of multiplications).
The analysis in the previous paragraph was the

dominant reason for our choice. Of all our experimen-
tal results we show here the ones for lists and com-
plete trees of outdegree 2 in figures 4.la (l/O), 4.2a
(CPU) and 4.lb (l/O), 4.2b (CPU) respectively. Assum-
ing that the minimal algorithm consumed minimal-io
and minimal-cpu units of I/O and CPU time respec-
tively, we are interested in the I/O cost ratio
7 = s-naive-io/ minimal-io and the CPU cost ratio
T = s_nuive_cpu/minimul_cpu. In the Agures below
we also show the curves for the corresponding ratios
of the semi-naive over the smart algorithm so that all
three of them are compared simultaneously.

II

I
0.6 ,:

Figure 4.1. Observed relative I/O performance:
T = sdmiveA0 / smart-i0 or
T = s-naive -io / minimal -io ,
~(a) Lists
(b) Complete trees of outdegree 2,

Figures 4.1 and 4.2 show that the minimal algo-
rithm performs consistently better than the smart
one in l/O (and even more so than the semi-naive
algorithm). For the range of our experiments it is
doing about a factor of 2 less l/O for lists, whereas for
complete trees the analogous improvement was about
a factor of 1.5. As it concerns CPU performance for
lists the minimal was marginally better than the
smart algorithm whereas the opposite was the case
for trees. A more extensive set of experimental
results is definitely needed to get a better picture of
the relative performance of all three algorithms.

-409-

0.76.

O.COI
0 2 4 6 1) 10 12 14 10

Tree L%plb

(b)

Figure 4.2. Observed relative CPU performance:
7 = s-naive-cpu/smart-cpu or
T = s-naive-cpu/ minimal-cpu.

(a) Lists
(b) Complete trees of outdegree 2

5. MORE IDJMS FOR GENERAL RECURSION ALGO-
RITHMS

In the previous sections we have identifled and
experimented with a small number of equivalent
expressions of the power series of a relational opera-
tor A, that is A’. The main characteristic of the
expressions that we examined was that A remained
unchanged and all we were doing was to find alterna-

tive factorizations for the polynomial E A”.
k=O

One deviation from this, explored in [loan661 , is
to take advantage of the internal structure of A. That
is, use the fact that A is (presumably) some composi-
tion of more fundamental operators (like join, project
etc.) and, having these to be the units of algebraic
manipulation, search for equivalent expressions
representing more efficient algorithms. For a (still
abstract) example assume that A = BC. Then we may
write

A’ = (BC)’ = 1 + B(CB)’ C 03)
Expression (6) represents a different algorithm for the
computation of A’, whose significant difference from
the original one is the loop on which the iteration is
performed, namely (CL?)’ instead of (BC)‘. Depending
on what B and C represent and the contents of the
relations that are parameters in B and C, the second
algorithm may be much more efficient.

The problem that arises here again is the size of
the space of alternative expressions that is thus
created. The more complicated the internal structure
of A, the bigger the alternative expression space. It is
again the subject of our current and future research
to see exactly which operators are worth permuting in
an attempt to find faster algorithms for A’.

As a final comment for the computation of A’ we
should say that the above alternative algorithms can
definitely be combined with the ideas of Sections 3
and 4 about grouping results and decreasing the
number of iterations. Taking into account that we
have only indicated two or three out of possibly many
general ways to find equivalent expressions for A’ and
that the two ideas are orthogonal to each other giving
us the ability to arbitrarily combine them in any way
we want, is definitely showing that any sophisticated
optimizer for recursive queries will have a problem of
big search space size. In the future good heuristics
should be developed to make the search space
manageable.

6. CONCLUSION
Using the operator algebra developed in [Ioan66]

we have been able to identify many alternative algo-
rithms to materialize recursively defined relations in a
database environment. We have analyzed and experi-
mented with a few promising ones, which make a
trade-off between the number of multiplications
(joins) and their individual costs. Restricting our-
selves to computing the transitive closure of trees,
our analysis and experimental results have shown that
our algorithms perform better than the original one
for more shallow relations than for deeper ones. As
the relations grow bigger this ceases to be so. How-
ever the breakpoint in erformance is significantly
high in terms of the size width/depth) of the original P
relation, which makes the new algorithms more
attractive for many of the expected cases. Finally, the
results of comparing the two new algorithms examined
with each other showed again that, for recursive com-
putations, minimizing the number of multiplications
pays off unless the relations are big.

Analyzing and testing the semi-naive, smart and
minimal algorithms using join strategies other than
merge-scan is part of our current work. Since sorting
costs become prohibitive as the relations grow, hash-
join techniques seem very promising, as was also
pointed out in [Vald86] . We are also planning to inves-
tigate the effect of increasing the buffer pool as well
as avoiding the creation and destruction of tem-
poraries as much as possible. Finally, it should be
interesting to monitor the performance of the three
algorithms on more complicated recursive operators
than simple transitive closure of binary relations.

In closing we have to comment on the limited
scope of the smart and minimal algorithms. Minimiz-
ing the number of joins is an issue only when we com-
pute the complete A’. For queries that involve selec-
tions on the underlying relations it is the semi-naive
algorithm that should be used taking one step at a
time and using the available selections at each point
before performing the join. Most likely, this will be
much faster than precomputing A’ first (using any
algorithm) and applying the selections afterwards.
One may validly argue that queries involving selec-
tions are much more common than ones asking for a
complete materialization of the recursively defined
relation. Whether winning in these more rare cases is
worth the implementation effort of the smart (or

-410-

minimal) algorithm is questionable and to some extent
application dependent.
Acknowledgements: I would like to give thanks Lo
Prof. E. Wong and to Timos Sellis for all their valuable
help. I would also like to thank the anonymous
referee whose comments greatly improved the reada-
bility of the text.

7. REFERENCES

[hoI
Aho, A. and J. Ullman, “Universality of Data
Retrieval Languages”, in I+-oceedings of the 6th
ACM si/mposium on Principles of Programming
Languages.

[Ban&51
Bancilhon, F., “Naive Evaluation of Recursively
Deflned Relations”, in F’roceedings of the
Islawao!a ‘Workshop on Iarge Sxle Knowledge
Base and Reasoning Systems, Islamorada, FL,
February 1965.

[Ban&61
Bancilhon, F., D. Maier, Y. Sagiv, and J. D. Ullman,
“Magic Sets and Other Strange Ways to Implement
Logic Programs”, in Proceedings of the 5th ACM
SIGMOD-SIGACT S&nposium on I+inciples of
htabase Systemsdf, Boston, MA, March 1966,
pages i- 15.

[Baye64]
Bayer, R., “Query Evaluation and Recursion in
Deductive Database Systems”, in F’roceedings of
the Islamorada Workshop on Knowledge &se
Management &stems, Islamorada, Florida, 1964.

[Blas76]
Blasgen, M. W. and K. P. Eswaran, On the I&alua-
tion of Queries in a Relational ma Base System,
Research Report RJ-1745, IBM San Jose , April
1976.

[DeWi64]
Dewitt, D. J., R. H. Katz, F. Olken, L. D. Shapiro, M.
R. Stonebraker. and D. Wood. “Imolementation
Techniques for ‘Main Memory Database Systems”,
in Proceedings of the 1984 ACM-SIGiUOD Confer-
ence, Boston, MA, June 1964.

[Ende72]
Enderton, H. B., A Mathematical Introduction to
Logic, Academic Press, New York, N.Y., 1972.

[Ga1164]
Gallaire, H., J. Minker, and J. M. Nicolas, “Logic
and Databases: A Deductive Approach”, ACM Com-
puting Sarueys 16, 2 (June 1964).

[Han661
Han, J. and H. Lu, ” Some Performance Results on
Recursive Query Processing in Relational Data-
base Systems”, in Boceedings International
Conference on Data Engineering, Los Angeles, CA,
January 1986, pages 533-539.

[Hens641
Henschen, L. and S. Naqvi, “On Compiling Queries
in Recursive First-Order Databases”, JACM 31, 1
(January 1964).

[Ioan66]
Ioannidis, Y. E. and E. Wong, “An Algebraic
Approach to Recursive Inference”, in Proceedings
of the 1st international Conference on &pert
Database S&sterns, Charleston, South Carolina,
April 1966.

[RTI64]
RTI, INGRES Reference Manual, Version 2.1, July
1984.

[Rose661
Rosenthal, A., S. Heiler, U. Dayal, and F. Manola,
“Traversal Recursion: A Practical Approach to
Supporting Recursive Applications”, in Proceed-
ings of the 1966 ACMSIGMOD Conference on the
Management of hta, Washington, DC, May 1966.

[Ullm65]
Ullman, J., “Implementation of Logical Query
Languages for Databases”, ACM TODS 10 , 3
(September 1985). pages 269-321.

[Vald66]
Valduriez, P. and H. Boral, “Evaluation of Recur-
sive Queries Using Join Indices”, in fioceedings of
the 1st International Conference on &ert Data
Base S&terns, Charleston, SC, April 1966, pages
197-206.

[Viei66]
Vieille, L.. “Recursive Axioms in Deductive Data-
bases: The Query / Subquery Approach”, in
Proceedings of the 1st mternational Conference
on l&pert Data &se Systems, Charleston, SC,
April 1966, pages 179-193.

‘GUt?!&nan A .I “New Features for Relational LkLta-
base S&tems to Support CAD Applications”, PhD
Thesis, University of California, Berkeley, CA, June
1984.

-411-

