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Abstract 

Query processing in the presence of recursively 
defined views usually involves some form of iteration. 
For example, computing the transitive closure of a 
tree involves iterating N times, where N is the depth 
of the tree, each time computing pairs of vertices that 
are one edge further apart than the pairs produced in 
the previous iteration. Applying a divide and conquer 
technique we devise algorithms that need a loga- 
rithmic number of iterations. Assuming that we are 
looking for complete materializations of the recur- 
sively defined relations we show both through analyti- 
cal and experimental results that this approach is in 
many cases superior in performance than the N- 
iteration algorithm 

1. INTRODUCTION 
Recursion has received considerable attention in 

the context of deductive databases, i.e. databases in 
which new facts may be derived from ones that were 
explicitly introduced. Interesting work has been done 
on the formalization of the problem and how to per- 
form query processing in the presence of recursion ( 
[Hens64, Banc86, Han66, Rosef36, Ullm65, Vie9361 ). 

The purpose of this paper is to present some 
experimental results on recursion processing that 
indicate that the “obvious” algorithms usually used 
are not always optimal. In fact, as will be apparent in 
the sequel, we may use different algorithms and get 
significant improvements in both I/O and CPU time. 

The paper is organized as follows. In Section 2 we 
give an overview of the operator model that we will use 
to describe recursion and its processing. Most of this 
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section is an excerpt from [Ioan86] where the opera- 
tor model was flrst introduced. Section 3 contains the 
description of a new algorithm together with an 
analysis of its I/O behavior as compared with that of 
the usual iterative algorithm We also give some 
experimental performance results of the two algo- 
rithms. In Section 4, we elaborate on a whole class of 
algorithms that can be conceived expanding on our 
initial idea. Some limited performance results are 
also given there. Finally, Section 5 includes some of 
our current ideas on algorithms for more general 
classes of recursion, whereas Section 6 concludes with 
some possible directions for future research in the 
development. of query optimizers for recursion. 

We assume that the reader is familiar with 1-st 
order logic [Ende72] and Horn clauses [Gal1641 which 
are usually the basis for the study of recursion in a 
database environment. 

2. OPERATOR MODEL 
In this paper we will be using the following canon- 

ical example for recursion. Consider a database with 
a relation father with schema fat.her(fath,son). Using 
father in the following two Horn clauses we may 
define the virtual relation ancestor with schema 
ancest.or(anc,desc): 

ancestor (2.2) A father(z,y) + ancestor(z,y) 

father (z ,y ) 4 ancestor (z ,y ) 

The first Horn clause is recursive in the sense that the 
relation ancestor appears on both the qualification 
and the consequent of it. Answering queries on rela- 
tions defined recursively as ancestor above is the 
problem we want to address. 

For the purpose of this paper we concentrate on 
linear and immediate recursion. This means that we 
have a single recursive Horn clause and the recursive 
predicate appears in the antecedent only once. Dis- 
sallowing any function symbols such a recursive Horn 
clause will have the form 

P&(O)) A Q&q A /I Q&q -t P(iG?+‘)) 
(1) 

where for each i, z@) is a subset of some fixed set of 
variables ~z,.zZ ,..., z,,] and P is a virtual relation and 
{Qi 1 a flxed set of stored relations. As analyzed in 
[loan861 , the problem of recursion can be defined in 
operator form as follows. A recursive Horn clause, like 
the one shown above, may be considered as some rela- 
tional operator A applied on some relation P to pro- 
duce more tuples for the same relation. So, it can be 
written more clearly as APrP, where A is an operator 
mapping relations over a fixed set of domains into 
ones over the same set of domains. The relations in 
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tfJi j will be parameters of the operator A. If we suggesting a different algorithm for computing A’R. 
employ this approach we are able to define operations Some of these eauivalent forms toeether with the 
on relational operators as follows. &fult@lication of corresponding algorithms are studiedin the next sub- 
operators is defined by section. 

(A * B)P = A(W) 

and addition by 

(A+B)P = AP U BP 

3.1. Equivalent Forms of the Solution 
In section 2 we have already mentioned two 

equivalent forms for A’, namely lim(1 + A)” and gAk. 

For notational convenience we omit the operator +. 
Identity (1P = P) and null (OP = (p. p the empty set) 
are defined in obvious ways. The n-th power of an 
operator A is inductively defined as: 

k->m k=O 
These correspond exactly to the two main algorithms 
suggested in the literature for processing recursion. 

A0 = 1, An = A *An-l = A”-‘*A 

In retrospect, examining the original algorithm 
that has been proposed to solve recursion [Aho] , we 
can see that it is a direct application of 

Having established an algebraic framework, the 
problem of immediate recursion can now be stated as 
follows: Assume that we have a recursive Horn clause 
that can be represented by the operator A, so that 

A’ = lim(1 + A)k = ‘. (1 + A)(1 + A) 
k->- 

APLP 

Also, there exists some constant relation R, which is 
either stored or produced by some other set of Horn 
clauses not involving P, so that 

(whenever explicit parenthesization is omitted, right 
associativity is assumed far multiplication). In other 
words, we apply A on some initial relation R and then 
we take the union of the result with R and apply A on 
that etc. until nothing new gets produced. 

RrP 

Then, the relation defined by the given set of Horn 
clauses can be found as the solution to the equation 

P=APUR (2) 
Presumably, the solution will be a function of R; we 
can write P = B R and the problem becomes one of 
finding the operator B. Manipulation of (2) will result 
in the elimination of R so that we have an equation of 
operators only. In this pure operator form the recur- 
sion problem can be restated as follows: Given some 
operator A, find another one B satisfying: 
(a) l+AB=B 

As an example consider A being the operator 
corresponding to the Horn clause defining the ances- 
tor relation of section 2. Assume that the relation 
father is given by the graph of figure 3.1, where an 
edge (a-rb) indicates a tuple father(a,b), i.e. a is the 
father of b. Consider the query ancestor(Uranus,y), 
i.e. we are looking for the descendents of Uranus. Fol- 
lowing the steps of the algorithm corresponding to (3) 
we see the answer being developed as shown in figure 
3.1. 

(b) B is minimal with respect to (a), i.e. for all other 
C satisfying (a), it is B I C. 

The solution to the above equation (a) under the con- 
straint (b) was shown in [Ioan66] to be equal to 

Figure 3.1. Naive alg. to compute ancestor(Uranus,y). 
The answer is developed by way of flnding in the k-th 
step ((1 t A)“) Uranus’s descendents that are 1 gen- 
erations below him, l<Lsktl, for kr0. In other words 
initially we get Uranus’s children, then in step 1 we 
get them with Uranus together to find their children, 
which are Uranus’s children and grandchildren 
together etc. This is clearly not a very good way of 
doing things since A is applied on the same tuples 
many times producing the same result again and 
again. For example Cronos is produced as a descen- 
dent of A in every iteration. 

A’ = -&k 
k=O 

The operator A’ is called the m of A, 
which taking into account the definitions of + and * 
may also be written as 

A’ = lim(1 + A)“. 
Is->=’ (3) 

Since A does not contain any functions, for every 
finite relation R there exists some 7~~ (depending on 
R) such that 

A’R = ?A R = (1 + A)+‘R. 
k=O 

This says the fortunate and somewhat obvious fact 
that when dealing with finite relations (which is the 
case in a database environment) only a finite number 
of the terms of the sum are enough to give us the 
complete result. Hence, A’ is an operator mapping 
finite relations to finite relations. 

3. NEW ALGORITHMS 
As we showed in the previous section a relation 

defined recursively can be materialized by applying 
some operator A’ on some stored relation R. However, 
there are many equivalent forms for A’, each one 

In that respect the form A’ = gAk is easily seen 
k-0 

as more practical in the sense of being faster. Exactly 
this form has been followed in [Gutt84] and elsewhere. 
Also, this form has been formally extracted in 
[Baye64] and [Banc65] , even for more general cases 
of recursion, i.e. without any assumptions about 
linearity. To understand the algorithm implied by 
that we have to see that we can write the above equa- 
tion as 

A’ = fJ~k = 1 t (t t (1 t ( )A)A)A 
k=O 

(4) 

In this form A is applied each time only on the tuples 
produced during the previous iteration, so unneces- 
sary computation is avoided. 
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For the same example as before, using A’ in its 
form of (4) we generate Uranus’ descendents as shown 
in figure 3.2. 

k=O k=l k=2 k=3 k=l 

Uranus Cronos Zeus 

Figure 3.2. Semi-naive alg. for ancestor(Uranus,y). 
In the k-th step, A’. ksO, we find Uranus’ descendents 
that are exactly k +1 generations below him, i.e. ini- 
tially we find Uranus’ children. in sten 1 we And their 
chil&en, which are Uranus’ grandchildren etc. In the 
end we take the union of all the sets to get the com- 
plete answer. 

In our search for other equivalent forms for A’ 
that will possibly give us more efficient execution algo- 
rithms we arrive at the following form 

A’ = fi(1 + A27 = . ..(l +A’)(1 +A2)(1 +A) (5) 
k=O 

The algorithm indicated by this formula for A’ avoids 
the application of the same operator on the same 
tuples more than once so it is presumably faster than 
the original formula (3). The interesting question is 
how it compares with the second formula (4). To get a 
feeling for this algorithm we use it to find again 
Uranus’ descendents. The steps of the generation of 
the answer are shown in figure 3.3. 

k=O k=l k=2 

----(Q-o-(,i b 

Uranus Crones Zeus 

Figure 3.3. Smart alg. to compute ancestor(Uranus,y). 
Using (5), in the k-th step we generate Uranus’ des- 
cendents that are 1 generations below him, 2k-L<1~2k, 
kr0, i.e. we get Uranus’ children, then in step 1 we 
take them with Uranus and get their grandchildren, 
which are Uranus’ grandchildren and great- 
grandchildren together etc. The particular query that 
we used in our examples is not one where (5) is the 
most efTicient as it will be pointed out in section 6. It 
is only presented here because of its simplicity. 

At this point we should mention that the algo- 
rithm corresponding to (5) was independently pro- 
posed by Valduriez and Boral [Vald66] They use a 
different formalism to describe it, namely Relational 
Algebra Programs, but it is essentially the same algo- 
rithm as (5). We should also mention that this aleo- 
rilhm is re&iniscent of graph theory algorithmsYto 
find transitive closure of graphs. 

Adopting the terminology of [Ban&51 we call the 
algorithm corresponding to (3) naive algorithm and 
the one to (4) semi -ive algorithm. In the same 
spirit we call the algorithm corresponding to (5) 
smart algorit/Lm. Looking at the three algorithms 
together we see the following: At each step the naive 
algorithm applies the same operator on all the tuples 
that have been produced during the execution. The 
semi-naive algorithm does the same but only on the 
tuples produced in the last iteration. Finally the 
smart algorithm at each step applies a different 
operator on all the tuples produced up to that point. 
In this sense it is the dual of the semi-naive algorithm 
with respect to the naive algorithm Figure 3.4 sum- 
marizes Lhe above. 

-I 

Figure 3.4. Algorithm types for the computation of A l . 
It is an interesting question to study whether there 
exists an algorithm covering the last remaining empty 
box. 

The issue raised is whether this new smart algo- 
rithm will run any faster than the others. Looking at 
the formulas as given above is not enough to give us 
any useful conclusion in this direction. On the one 
hand, the number of multiplications performed by the 
smart algorithm is much smaller than by the semi- 
naive one (roughly it should be equal to 2*logzN, logzN 
to find the powers ,of 2 and another log,N for the outer 
multiplications, with N the number the semi-naive 
algorithm needs). Assuming that in most cases multi- 
plying implies joining, we see that the smart one per- 
forms fewer joins. On the other hand, in each step we 
are calculating bigger portions of the final outcome, 
by applying a more expensive operator on larger rela- 
tions than the semi-naive algorithm Hence, each step 
is definitely more expensive. 

When this trade-off of the number of multiplica- 
tions versus their individual costs is beneficial for the 
overall performance, is the focal point of the discus- 
sion that follows in the next two subsections. 
3.2. I/O Cost Analysis 

In this section we present an analysis of the I/O 
performance of the semi-naive and smart algorithms 
mentioned above (formulas (4) and (5)). For simpli- 
city, our analysis (and our experiments in section 3.3) 
have been restricted on A representing the computa- 
tion of the transitive closure of a binary relation. 
However, our analysis extends easily to more general 
forms of A. We have assumed that for the implemen- 
tation of the semi-naive algorithm we first compute all 
significant powers of A as AL = A AL-’ and at the end 
we take the sum of all of them The relation in A is 
sorted only once in the beginning. Likewise for the 
smart algorithm we compute all operators A* keeping 
the results sorted (loopl), and then perform massive 
joins of the current result with the corresponding 
power of A, which would be of the formA@, for some k 
(100~2). The outcome of these joins is appended 
directly to the current result to be used in the next 
iteration. 

For the analysis we need to define the following 
parameters. 

tup [k 1 Number of tupies in the relation of A” 

page [k 1 Number of pages occupied by tup [k ] 
tuples (= Pagenum(tup[k]), see below) 

pagenum (t ) Number of pages occupied by t tuples 

Pg= Number of tuples fitting in a page 
buf Number of buffers available in the sys- 

tem 
sort (p ) = 2pI10gwpl, I/O cost to sort p pages 

having bu,f buffers [Blas76] 
c I/O cost to create a relation 
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D I/O cost to destroy a relation 
N Number of iterations needed by the 

semi-naive algorithm 
M = [log2N] = rqx {k: tup[Z’] # Oj 

Notice that according to the above def$nitions, 

the final outcome for A’ should contain z+[k] 
k=l 

tuples. Using the above parameters the l/O cost 
s-naive-i0 and smart-io of the semi-naive and smart 
algorithms respectively should be as follows: 

s-naive-i0 = 

sort (page [ 11) 
Sort original relation on appropriate field(s). It is 
done only once. 

+ Nzwe El1 
At each step read sorted original relation. 

+ f sort (page[k]) 
k=l 

Sort the second relation for the join. 

+ fpage[kl 
k=2 

Write the outcome of the join. 

+ k$,pwe [k 1 + mm- tk$, W [k I) 
At the end read all the intermediate results and 
put them into one relation. 

+N(C+D)+C 
Create and Destroy the N intermediate results 
and also create the final result. 

silnart Jilgmam 
smart-i0 = 

loop1 

2fswt(page[2*]) 
k=O 

For each step sort AZ’ on two different (set of) 
ftelds for the join. We keep one of them for 100~2. 

+ k$,m7y [2” 1 
Write the result. 

loop2 

+ k$,-t (Pag~um (It:tup PI)) 
At each step sort current answer for the next 
join. 

+ k$,rwe 12” 1 
Read second relation (A$), which is sorted from 
loopl. 

+ k~~pasBnun(~~~tup[2k+ll) 
Join the two relations and append the outcome to 
the result. 

+ I5mv[2*1 
k=l 

Append the relation of the used A2’ to the result. 
+M(C+D)+C 

Create and destroy the M intermediate results 
and also create the final result. 

Before evaluating the above formulas for some 
specific values of their parameters we would like to 
make the following comments. 

(a) First, we can see that for large relations the 
most significant terms for both formulas should be 
the ones of sorting, since the other ones are linear in 
the size of the input. In the smart algorithm we are 
sorting bigger relations than in the semi-naive one. 
Hence, we should expect that as the relations grow 
bigger the semi-naive algorithm should have better 
performance. 

(b) On the other hand, since the sorting cost is 
highly dependent on the number of available buffers, 
increasing them should make the smart algorithm 
benefit more than the semi-naive one and therefore 
make its performance more competent. 

(c) Also, for small relations (where sorting is not 
that expensive) the overhead of creating and destroy- 
ing temporaries (costs C and D above) may become 
significant. In that case, the fact that the factor of 
C + D in s-naive-io is greater than in smart-io (N vs. 
M = ]log2Nj) should make the smart algorithm perform 
better. This should be especially true when N is quite 
large so that there is significant difference with its 
logarithm. 

(d) Finally, we should point out that, for most of 
the cases, the smart algorithm will overcompute 
powers of A that are not significant (they are equal to 
0 for the database concerned). This is not true with 
the semi-naive algorithm since it computes one power 
at a time. As N increases the number of joins per- 
formed changes only when we cross a power of 2. The 
smart algorithm should be expected to be particular 
weak on these points, where the overcomputation is 
maximal. 

To validate our observations above we will apply 
the formulas for s-naive-i0 and s?nu?-t-io for some 
specific cases. The number of the parameters involved 
is significantly large and we will not be able to cover 
the complete spectrum of possibilities. Nevertheless, 
we believe that the special cases examined below are 
enough to give us some insight for the rest also. We 
assume that our binary relations represent trees. By 
doing this we avoid worrying about retaining any pos- 
sible duplicates or not, which is another dimension in 
the optimization of such operators, yet unrelated to 
our problem 

We only examine complete trees of outdegree 1 
(simple lists), 2 and 3 (see figure 3.5). 

Figure 3.5. Complete trees of outdegree 2 and 1 (list). 
We chose to present these categories because they 
represent two extremes in terms of the ratio of depth 
over width of the tree. For the various parameters of 
the problem we chose the following values: 

c=7 I/O cost to create a relation 
D = 10 l/O cost to destroy a relation 
pgsz = 200 Number of tuples fitting in a page 
buf = 50 Number of buffers in the system 
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These values were chosen so that we may compare the 
results of the formulas derived above with the ones we 
aclually got simulaling lhe semi-naive and smart algo- 
rithms on INGRES (see section 3.3). The numbers for 
C, U and DuJ where laken as an average of what was 
observed in a number of experiments. In our experi- 
ments we had O-byle tuplks with 2K pages. Due Lo 
some overhead information in each page, pgsz was 
200. In figure 3.6 we show the plots for the ratio 
r = s-nuilJe_i.o/sma&-i.o as a function of the depth of 
the list/tree, for lists and complete trees of outdegree 
2 and 3. 
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Figure 3.6. Expected relative I/O performance: 
T = s-nuiue-io / smart -io . 

(a Lists 
(b j Complete trees, outdegree 2 
(c) Complete trees, outdegree 3 

Figure 3.6 validates our comments (a)-(d) above. 
As the relations grow bigger, sorting becomes more 
signifioanl and the semi-naive algorithm performs 
better compared to the smart one. IIowever, we can 
see that it takes a considerably big relation for this to 
happen. For lists we need depth at least 2040. Like- 
wise, for complete trees of outdegree 2, the break- 
point depth is 16, which even though it is not a very 
big number, it corresponds to a considerably big tree 
of 131072 edges (tuples). Incidently. this relation will 
need 1Mbyte to be stored in our system, whereas the 
result for A’ will need approximately 20Mbytes. The 
same can be said about complete trees of outdegree 3. 
Figure 3.6~ shows that the breakpoint is at depth 8. 
All the above show that it takes an exceptionally big 
(deep/wide) relation for the semi-naive algorithm to 
perform less I/O than the smart one. Furthermore, 
the wider the tree is, the shorter it needs to be for 
this to happen. 

It is also very interesting to see the particular 
behavior of the ratio T = s-naive-b/smart-io. In 
agreement with point (d) above, there are significant 
jumps in favor of the semi-naive algorithm at depths 
N = 2* for any k. This may be noticed for example at 
depths 256, 512. 1024, 2048 and 4096 for lists. We can 
also see that at depths 16, 32 and 64 for complete 
trees of outdegree 2 and 3. However, there is a 
noticeable difference in the behavior of lists and com- 
plete trees in this respect. For lists T remains rela- 
tively invariant between A* and AZL*’ for some k. On 
the contrary, for both cases of complete trees exam 
ined, as the amount of overcomputation decreases 
(approaching A @r-i) the relative performance of the 
smart algorithm improves significantly. For example, 
for a tree of outdegree 2 and IV=16 we have a drop to 
T = 0.61 but then as N grows it rises again to a point 
where for N=30 it is T = 1.04. So, it seems that 
T = S2I.Uiue-iO/SmUTt-i0 iS not a mOnOtOne function 
of N at all. 

We have already mentioned that the smart algo- 
rithm was independently proposed in [Vald86] , where 
its performance is analyzed in comparison with the 
semi-naive algorithm as well. It is difficult to accu- 
rately compare the results or our analysis with those 
in [Vald86] We used merge-scan join always, whereas 
they mainly used a hash join similar to the one pro- 
posed in [DeWi84] They also assume a very big buffer 
pool, whereas we do not. In both points above we were 
mainly constrained by the system we used for the 
simulations (see next section). However, there is a 
common observation of both papers that the smart 
algorithm performs well in many cases. 

3.3. Experimental Performance Results 
We have mentioned above that we have simulated 

the semi-naive and smart algorithms using the com- 
mercial version of INGRES [RTI84] on a VAX i 111700 
running Unix2 4.3. Out of all the performed experi- 
ments, we present here the I/O results observed for 
lists and complete trees of depth 2 and 3 in figure 3.7. 
We show again the ratio T = s-naive-io/ smart-io 
together with the corresponding curve given from the 
analysis of section 3.2. Unfortunately, due to the 
space (and time) requirements of the experiments we 
were not able to compare the algorithms on very deep 
trees, so we were unable to verify that after some 
point the semi-naive algorithm becomes better and 

’ VAX is a trademark of Digital Equipment Corporation. 

’ Unix is a trademark of Bell Laboratories. 
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identify that breakpoint. Nevertheless, to the extent 
that we did experiment we see that the results follow 
more or less what our analysis of section 3.2 showed. 
Whenever there is a disagreement we believe it is 
partly because of the simulation overhead and parlly 
because of the pessimism of our model about the way 
the optimizer uses the buffer pool and the cost of a 
sort. 
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Figure 3.7. Observed relative I/O performance: 
T = s-naive-i0 / smart -io . 
(a) Lists 
(b) Complete trees of outdegree 2 
(c) Complete trees of outdegree 3 

In our experiments we also monitored the CPU 
time consumed by the algorithms. The ratio 
r = s-naive-cpu/ smart-cpu was the monitored 
parameter, with s-naive-cpti and smart-cp?L being the 

CPU time consumed by the semi-naive and smart algo- 
rithms respectively. For the same categories of trees 
as above the observed T is shown in figure 3.8. We can 
see that the smart algorithm was at least a factor of 2 
better in performance for lists, whereas it was from 
marginally better to marginally worse for trees, for 
the depths we examined. We can speculate that as the 
depth of the tree grow, sorting cost will be the 
significant factor and hence the smart algorithm will 
behave worse after some point. 
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.8. Observed relative CPU performance: 
r = s-naive-cpu/ smart-cpu. 
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4. MORE ALGORITI-IMS 
A natural, question, that arises after looking at 

the smart algorithm (formula (5)), is whether in the 
same spirit we can come up with other, occasionally 
even more efficient algorithms. The idea is to look at 
A’ as a regular expression for which there are many 
equivalent forms. Formulas (3), (4) and (5) represent 
only three of these forms and therefore correspond to 
only three of the possible algorithms to compute A’. 
Some possible alternative algorithms can be realized 
by noticing that A’ may be written as 

A’= ..: (1 + A12)(1 + Ae)(l + A3)(1 + A + A’) (6) 

or 

A’ = fi(l + A+ + Ae*3*)‘= 
k=O 

. (,l + A9 + A’?(1 + A3 + Ae)(l + A + AZ) (7) 

Soon, we realize that there is an infinite number 
of ways to write A , l in the same sense that there is an 
infinite number of coding systems to code all integer 
numbers. Testing the performance of a large number 
of’ them is ‘prohibitive because of their own time 
requirements and the complexity of their develop- 
ment All we dan hope for is to follow our intuition 
and get good heuristics so that the large majority of’ 
the suboptimal candidate algorithms are not con- 
sidered. 

Expression (6) differs from (5) in that the gro.up- 
ing starts one iteration later ,than in (5), that is we 
compute A and A2 separately and then we group what- 
ever we got and start, applying A3 and then group 
everything again etc. On the other hand, expression 
(7) is even more aggressive in the grouping sense. It 
iterates. twice, before oombining everything that it got 
up to that point and use it in the next iteration. 

In terms of the number of multiplications, expres- 
sion (6) will need approximately 2 logaN, where N is 
the number of multiplications of (4) (the greater’N is, 
the closer to that number the actual number of multi- 
plications gets). In the same ‘way expression (7) will 
need about 3 1ogsN multiplications. As we can see we 
may create algorithms that will need mlog,N multipli- 
cations for arbitrary m at the expense of making each 
multiplication more eomplex. We may speculate, how- 
ever, that with a few exceptions m = 2 or m = 3 at 
most will be all that we need. In particular, assume 
that we concentrate on the general form 

A’ = fi (m~lAL*mk) 
k=O I=0 

Formulas (5) and (7) are of this form for m=2 and 
m =3 respectively. The number of multiplications 
required by these formulas is very close to mlog,N. 
An easy analysis shows that 

m log,,, N % 210gzN 

only for m in {2,3,43. In fact, the expression mlog,N 
has a minimum for m=3 (restricting m to the 
integers) independent of N. Therefore, we may 
immediately conclude that all the other options’ will 
be more expensive than (5) and (7) and consider them 
no further. 

Of all the alternative algorithms we chose to 
experiment only with the one represented by expres- 
sion (7), which we call the minimal algorithm (since it 
performs the minimum number of multiplications). 
The analysis in the previous paragraph was the 

dominant reason for our choice. Of all our experimen- 
tal results we show here the ones for lists and com- 
plete trees of outdegree 2 in figures 4.la (l/O), 4.2a 
(CPU) and 4.lb (l/O), 4.2b (CPU) respectively. Assum- 
ing that the minimal algorithm consumed minimal-io 
and minimal-cpu units of I/O and CPU time respec- 
tively, we are interested in the I/O cost ratio 
7 = s-naive-io/ minimal-io and the CPU cost ratio 
T = s_nuive_cpu/minimul_cpu. In the Agures below 
we also show the curves for the corresponding ratios 
of the semi-naive over the smart algorithm so that all 
three of them are compared simultaneously. 

II 

I 
0.6 ,: 

Figure 4.1. Observed relative I/O performance: 
T = sdmiveA0 / smart-i0 or 
T = s-naive -io / minimal -io , 
~(a) Lists 
(b) Complete trees of outdegree 2, 

Figures 4.1 and 4.2 show that the minimal algo- 
rithm performs consistently better than the smart 
one in l/O (and even more so than the semi-naive 
algorithm). For the range of our experiments it is 
doing about a factor of 2 less l/O for lists, whereas for 
complete trees the analogous improvement was about 
a factor of 1.5. As it concerns CPU performance for 
lists the minimal was marginally better than the 
smart algorithm whereas the opposite was the case 
for trees. A more extensive set of experimental 
results is definitely needed to get a better picture of 
the relative performance of all three algorithms. 
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Figure 4.2. Observed relative CPU performance: 
7 = s-naive-cpu/smart-cpu or 
T = s-naive-cpu/ minimal-cpu. 

(a) Lists 
(b) Complete trees of outdegree 2 

5. MORE IDJMS FOR GENERAL RECURSION ALGO- 
RITHMS 

In the previous sections we have identifled and 
experimented with a small number of equivalent 
expressions of the power series of a relational opera- 
tor A, that is A’. The main characteristic of the 
expressions that we examined was that A remained 
unchanged and all we were doing was to find alterna- 

tive factorizations for the polynomial E A”. 
k=O 

One deviation from this, explored in [loan661 , is 
to take advantage of the internal structure of A. That 
is, use the fact that A is (presumably) some composi- 
tion of more fundamental operators (like join, project 
etc.) and, having these to be the units of algebraic 
manipulation, search for equivalent expressions 
representing more efficient algorithms. For a (still 
abstract) example assume that A = BC. Then we may 
write 

A’ = (BC)’ = 1 + B(CB)’ C 03) 
Expression (6) represents a different algorithm for the 
computation of A’, whose significant difference from 
the original one is the loop on which the iteration is 
performed, namely (CL?)’ instead of (BC)‘. Depending 
on what B and C represent and the contents of the 
relations that are parameters in B and C, the second 
algorithm may be much more efficient. 

The problem that arises here again is the size of 
the space of alternative expressions that is thus 
created. The more complicated the internal structure 
of A, the bigger the alternative expression space. It is 
again the subject of our current and future research 
to see exactly which operators are worth permuting in 
an attempt to find faster algorithms for A’. 

As a final comment for the computation of A’ we 
should say that the above alternative algorithms can 
definitely be combined with the ideas of Sections 3 
and 4 about grouping results and decreasing the 
number of iterations. Taking into account that we 
have only indicated two or three out of possibly many 
general ways to find equivalent expressions for A’ and 
that the two ideas are orthogonal to each other giving 
us the ability to arbitrarily combine them in any way 
we want, is definitely showing that any sophisticated 
optimizer for recursive queries will have a problem of 
big search space size. In the future good heuristics 
should be developed to make the search space 
manageable. 

6. CONCLUSION 
Using the operator algebra developed in [Ioan66] 

we have been able to identify many alternative algo- 
rithms to materialize recursively defined relations in a 
database environment. We have analyzed and experi- 
mented with a few promising ones, which make a 
trade-off between the number of multiplications 
(joins) and their individual costs. Restricting our- 
selves to computing the transitive closure of trees, 
our analysis and experimental results have shown that 
our algorithms perform better than the original one 
for more shallow relations than for deeper ones. As 
the relations grow bigger this ceases to be so. How- 
ever the breakpoint in erformance is significantly 
high in terms of the size width/depth) of the original P 
relation, which makes the new algorithms more 
attractive for many of the expected cases. Finally, the 
results of comparing the two new algorithms examined 
with each other showed again that, for recursive com- 
putations, minimizing the number of multiplications 
pays off unless the relations are big. 

Analyzing and testing the semi-naive, smart and 
minimal algorithms using join strategies other than 
merge-scan is part of our current work. Since sorting 
costs become prohibitive as the relations grow, hash- 
join techniques seem very promising, as was also 
pointed out in [Vald86] . We are also planning to inves- 
tigate the effect of increasing the buffer pool as well 
as avoiding the creation and destruction of tem- 
poraries as much as possible. Finally, it should be 
interesting to monitor the performance of the three 
algorithms on more complicated recursive operators 
than simple transitive closure of binary relations. 

In closing we have to comment on the limited 
scope of the smart and minimal algorithms. Minimiz- 
ing the number of joins is an issue only when we com- 
pute the complete A’. For queries that involve selec- 
tions on the underlying relations it is the semi-naive 
algorithm that should be used taking one step at a 
time and using the available selections at each point 
before performing the join. Most likely, this will be 
much faster than precomputing A’ first (using any 
algorithm) and applying the selections afterwards. 
One may validly argue that queries involving selec- 
tions are much more common than ones asking for a 
complete materialization of the recursively defined 
relation. Whether winning in these more rare cases is 
worth the implementation effort of the smart (or 

-410- 



minimal) algorithm is questionable and to some extent 
application dependent. 
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