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ABSTRACT 

This paper presents an algebraic approach to 
translation and optimization of logic queries. We 
first develop a syntax directed translation from 
rules of function-free logic programs to algebraic 
equations; then we show solution methods for 
independent equations and for systems of 
interdependent equations. Such solutions define the 
operational and fixpoint semantics of function-free 
logic programs and queries. We also present 
algebraic optimization methods for "top-down" and 
"bottom-up" strategies; the former are useful if no 
initial binding is provided with the query, while 
the latter are useful if some arguments of the 
query are bound to constant values. 

1. INTRODUCTION - 

In recent times, the combination of relational 
databases and logic programming (LPI has become a 
popular argument of research. The application of LP 
as query Language of a relational database entails 
a relevant enrichment of the expressive power of 
traditional query languages; hence the database 
community Looks at LP as a promising approach for 
posing complex (e.g. recursive or deductive) 
queries. At the same time, databases provide the 
technology for processing Large collections of data 
in an efficient way, hence solving many of the 

problems posed by LP applications when they manage 
large amounts of information. 

The efficient implementation of logic queries has 
been discussed in many recent papers, including 
CBancilhon86, Chandra82, Ceri86 Henshen84, 
Marque-Pucheu84, Sacca'86, Ul lman851. Major 
research directions are: 

a. Designing "pure" LP languages, e.g. Languages 
which do not incorporate procedural features, 
such as the dependency of the computation from 
the order of clauses and the use of special 
predicates. This trend has marked the adoption 
of "pure" Horn clauses as "standard" LP 
language, and consequently a certain resistence 
to Prolog. 

b. Determining how function-free Horn Clauses can 
be efficiently executed. New formal models, 
such as "rule-goal" graphs, describe binding 
propagation among clauses. Several rules for 
"capturing" nodes of graphs have been defined; 
capturing a node is equivalent to evaluating 
the information associated to the corresponding 
clause or rule, deduced from the database. 

C. Determining how LP programs can be made more 
efficient, by operating transformations from LP 
to LP. Tecniques such as the "magic set", the 
"counting" and the "Eager" methods have been 
developed to this purpose. 

We have focused our attention on the use of 
relational algebra at work on the same problems. 
While the idea of using relational algebra for 
executing logic queries is not new (see, among 
others, CAho 791 and CNarque-Pucheu 841), the major 
contribution of this paper is to give a systematic 
overview of how traditional algebra, extended by a 
closure operator, can be applied to solve logic 
queries. 

2. MODELS FOR LOGIC PROGRAMMING AND RELATIONAL 
CATABASES - - 

- 

In this sect ion, we give our definition and 
interpretation of function-free logic programs and 
queries; then, we introduce positive algebra 
extended with the closure operator. 

2.1 Function-free Logic programs -- -- 

A function-free logic program (FFLP) is a set of 
definite, function-free Horn clauses (i.e. clauses 
that contain exactly one positive literal); we use 
a Prolog-like syntax for clauses, which have their 
positive literal on the LHS and zero or more 
(negative) literals on the RHS, in conjunctive 
form. For instance, the following is a FFLP: 

We 
of 

S(a,b). 
R(c,b). 
P(X):- P(Y), R(X,Y). 
P(X):- S(Y,X). 
Q(X,Y):- P(X), R(X,Z), S(Y,Z). 

can better interpret a FFLP within the framework 
databases if we consider terms appearing in the 

LHS of clauses as either database relations or 
computed relations. Ground clauses of the former 
are stored in an extensional database EDB; ground 
clauses of the latter are evaluated by executing 
the FFLP; thus, each computed relation appears as 
LHS of one or more clause. In the above example, R 
and S are database relations, P and Q are computed 
relations; the first two clauses are equivalent to 
assigning an instance to relations R and S, and in 
general will not be present in FFLPs but will be 
stored in the EDB. 

We generalize the class of database relations to 
include all those terms for which we have a 

function available for evaluating arithmetic 
predicates. For instance, the relation PLUS(X,Y,Z) 
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links all representable integers X, Y, and Z such 
that X+Y=Z. Further, we can extend Horn clauses to 
include special terms such as equality between 
variables (e.g., X=Y), since we assume that the 
equality test be available, and hence we can 
represent it through a special relation EQCX,Y). We 
assume that the domain and co-domain of functions 
be finite. 

Each variable X of a clause of a FFLP program is 
associated to a finite range RgCX). Ranges of 
variables of databKla= are limited to the 
values existing in the instance of that relation or 
to the domain and co-domain of functions; all 
variables of computed relations are limited to a 
unique finite universe U which includes all 
individuals possibly occurring in the DB. 

An input goal to a FFLP is a clause consisting of a 
sinmiteral, for instance: 

?-QCa,X). 

The solution of an input goal PCtl,...,tn) is the 
set of all ground instances of PCtl,...,tn) which 
are logical consequences of the FFLP; for example: 

SolCFFLP, QCa,X)) = CQCa,c) 1 Cc E U) h 
CFFLP U EDB => GlCa,c))> 

If the input goal is a literal with all places 
bound to constant values, then the solution space 
is reduced to the answers "yes" or "no": 

SolCFFLP, P(c)) = "yes" if Cc E U)) A 
CFFLP U EDB => P(c)), 

"no" otherwise. 

2.2. Positive algebra with closure -- --~ 

We assume that the reader is familiar with the 
relational model and algebra as from CUllman821. 
Positive relational algebra CRA+) includes as 
primitive operators selection CO-), projection( 
Cartesian product(x), join(W), semi-join(lx), and 
union CU); noticeably, it does not include the 
difference operator. We extend projection to 
include $, E (projection on the empty set) as an 
operator which can be applied to an algebraic 
expression E; F+ E returns "yes" if E #+, "no" if 
E =+. + denotes the empty relation of suitable 
degree. 

The closure operator (0') is applied to an 
expression -E(X) of a (variable) relation X, 
provided that the schema of the result of E(X) is 
the same as the schema of X. The language obtained 
by extending RA+ with the closure operator is 
denoted as ERA+. The operational definition of the 
closure operator isX given by the following program 
AU which computes 0 E(X): 

1 A (E(X)): 
OS <- + 

) REPEAT 

/ 

Y <- E(S) 
s <- s u Y 

UNTIL Y=S 
1 RETURN S 

The fixpoint semantics of the closure operator is 
also well defined. Let P denote the set of all 
possible relations having the same ciomain as X: 

P = powerset @m(X)) 

Then, P is a complete lattice under the union and 
intersection operations, having as minimal element 
the empty relation and as maximal element Dm(X). 

Expressions of RA+ are monotone: (i.e. X C Y => 
E(X) C E(Y)), hence algorithm AU always tgriinates 
after-a finite number of iterations, and 0 E(X) is 
the minimal solution (i.e. the least fixpoint) of 
the equation X=ECX): 

Ox E(X) = min C X c P i X = E(X) ) 

3. SYNTAX DIRECTED TRANSLATION FROM FUNCTION - 
FREE LOGIC PROGRAMS TO EXTENDED RELATIONAL ALGEBRA -- - 

A syntax-directed translation algorithm maps each 
clause of a FFLP into a correspondent disequation 
of RA+. Disequations are subsequently interpreted 
as equations under the Closed World Assumption 
CCWA) and solved using the closure operation. 

3.1 Translation of individual clauses -- - 

Let a generic Horn clause of a FFLP have the 
following structure: 

R: PCo,,... m,):- Q,(p ,,... p,), . . . . Qh(ps ,... 13,) 

Then, the translation associates to R an algebraic 
disequation: 

ExprCQ,, . . . Qn) C P - 

where P is a computed relation correspondent to 
predicate P, and similarly Q. are either computed 
or database relations corres$ondent to predicates 
Q . . The specification of the algorithm for the 
s;ntax directed translation requires defining some 
useful notation and two rewriting functions. 

- occursCo(.,RHS), of sort boolean, is "true" if 
the ter& cxi belongs to the RHS, "false" 
otherwise. 

- corr(i) denotes the function returning, for 
each o(. of the LHS, the index j of the leftmost 
variable p. of the RHS such that pj=Mi, if such 
a variable'exists. 

- const(M.) of sort boolean, is true if 9'. is a 
constant, false otherwise; 
similarly defined. 

constCpj5 is 

- var(x.), of sort boolean, is defined as "not 
conSdXiY. 

- newvat- is a procedure returning a new 
mle name at each invocation. 

- Let E denote a string, x and y denote symbols. 
Then E<x,y> denotes a new string in which the 
first occurence of x is substituted by y. 

The syntax directed translat 
algebraic disequation of RA+ is 
recursive rules which apply to 
respectively. 

ion of R into an 
defined through two 

the LHS and RHS of R 

The first rule deals with three 

a. bindings to constant values 

special cases: 

in the LHS; 

b. multiple occurrences of the same variable in 
the LHS; 

C. existence of a variable of the LHS that does 
not occur in the RHS. 
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Each such special case is reconducted, by suitable 
string transformations, to an equivalent case in 
which all positions of the LHS are bound to 
distinct variables. Then, the second rule is 
applied to the RHS; it simply generates all 
selection conditions due to constant bindings or 
replicated variables within the RHS, and then 
builds a Cartesian product with all database or 
computed relations corresponding to terms of the 
RHS. 

After applying the second rule, equiva Lence - 
preserving transformations can be applied to the 
resulting expression in RA+ to transform Cartesian 
products into joins and to propagate selections to 
their operands, in the convent iona 1 w (see 
CULLman821). The notation Xi=, ..kQi 

indicates the 

Cartesian product of relations Q I’..‘ ‘k’ 
rule 1. -- 
TCR)=if 3 i : constCMi) /*a*/ 

then 
neuvar Cx) 
return TCLHS<K,x>:-RHS, EQCx,ai)) 

elsif 3 i,j 
then 

: cXi=oi, iCj /*b*/ 

newvar(x) 
return TCLHStofi ,x>:-RHS, EQCx,Mj 1 

elsif 1 i: varCC$) A not occursCK,RHS) /*c*/ 

then return TCLHS:-RHS, RgCwi)) 
else returnncorrC,) T’ CRHS) 
end if; ,...corrCn) 

rule 2. -- 
T’(R) = if 3 i : 

then 
constC/$) I* a *I 

newvar(x) 
return @I=8 T’(RHS&,x>) 

elsif 3 i,j :’ 
then 

‘pi=aj, i<j I* b *I 

newvarCx1 
return (5: 

i=j 
T’ CRHS<pi ,x>) 

else return (Xi=, 
end if; 

. . k ‘i) 

Example. The following is a systematic application 
of the translation algorithm. 

P(X,X,Z):-SCX,Y)RCY,a,Z) 

1. by T, case Cb) 
TC PCNl,X,Z):-SCX,Y),RCY,a,Z),EQCNl,X) 1 

2. by T, last recursive call 

%,I,5 
T’ C SCX,Y),RCY,a,Z),EQCNl,XI ) 

3. by T’, cases (a) and Cb) 

V6,1,5%aA2=3A1=7 
T’CSCN2,N3),RCY,N4,Z),EQ(N1,X)I 

4. by T’, last recursive call 
n- 6,j,‘jc4=a A 2~3 ,j 1~7 (’ ’ R ’ EQ) 
5. After pushing selection and join conditions 

r6,1,5 ((s W2=, (eZzaR)) ‘-J,=, EQ) 

6. Final disequation: 
r 6 , 5 ((s Hz=, (Oi,,R)) w,=, EQ) c p 

I I 

3.2. Transformations from disequations to 
eq;8tions in RA+ 

- 
-- 

By effect of the translation rules explained above, 
we can turn each FFLP into a set of algebraic 
disequations. For instance, the last 3 clauses of 
the FFLP in Section 2.1 generate: 

-rr, CP W,=2 R) C P 

-m2 s c P - 

Tt-., 
I 

4 ((I= t-l,=, R) W3,2 s) C Q - 
The Closed World Assumption (CWA, CReiter783) 
enables us to turn these disequations into 
equations. By the CWA, all facts which cannot be 
deduced by the application of the FFLP to the 
database are false; hence, no fact about a generic 
term P can be proved other than through existing 
disequations; hence the union of all RHS of 

disequations gives the algebraic equation required 
to compute P. The above example generates the 
system of equations: 

P =TT, CP w 
1=2 RI U ‘TC2 S) 

Q =TT , 4 ((P W,=, R) D43=2 s) 

FlarquelPucheu et a I. CMarque Pucheu841 show a 
transformation from logic programs into equations 
which does not directly use relational algebra. 

3.3. Solution of independent equations -- - 

Solving a system of equations is easier if each 
equation is independent from the others (or can be 
made independent by suitable substitutions); an 
equation is independent when it does not contain 
computed relations in the RHS other than the one in 
the LHS. For the solution of independent equations, 
two cases are given: 

a. 

b. 

In 

The RHS contains only database relations; in 
this case, the solution of the equation is 
simply given by the evaluation of the 
expression in RA+. This happens when rules for 
the computed relation in the FFLP are 
nonrecursive. 

The RHS contains one or more occurrences of the 
computed relation CR; in this case, the 
definition of the closure operator as fixpoint 
of algebraic equations enables us to build the 
solution as follows: 

sol(CR) = OCR RHSCCR) 

the above example (Sect. 3.21, the first 
equation is independent, and can be solved as: 

sol(P) = 0 
P 

tTf2CP W,=2 RI U CK2 S)) 

The second equation for Q depends on P, however we 
can suspend its evaluation until we have solved the 
equation for P. Then we consider P as a fixed (i.e. 
database) relation, and the second equation falls 
in case (a) above: 

sol(Q) =r, 4 
I 

((sol(P) W,=, R) W3=2 S) 

We can now interpret input goals as suitable 
expressions on the algebraic solutions; for 
instance: 

?-P(X). <=> sol(P) 

?-P(a). <=>-(j- G * ,=a sol(P) 

?-QCa,X). <=>@,=a sol(Q) 

?-QCa,b). <=>$G,=a h 2=b sol(Q) 
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3.4. Reduction by substitutions -- - 

We ,have seen that by suitable substitutions it is 
sometimes possible to reduce a system of mutually 
interdependent equations to a system of equations 
which are independently resolvable, when a certain 
order of evaluation is observed. We call these 
systems of equations reducible by substitutions. 
Let us first define the problem Gre formally. We 
start with a given set S of equations of the 
following form: 
s: RI = ElCRl,...RnI 

R2 = EZCRl,...Rnl 
. . . . . . . 
Rn = EnCRl,...Rnl 

where each Ri is a distinct relational variable and 
each Ei is an expression of RA , which involves 
some (not necessarily all) variables Rl,...Rn; we 
call Ei the defining part of Ri. 

A substitution consists in the replacement of some 
variable Ri by its defining part Ei in the RHSs of 
all equations of S. A resolution of Rj consists of 
a series of substitutions which generate an 
equation Rj=E’ that does not contain any variable 
different from Rj. Clearly, if Rj has a resolution, 
then its value can be computed either by evaluation 
of an expression of constant relations (if Rj does 
not appear in 
closure operator 

E’) or by the apajication of the 
to E’, yielding 0 E’CRj). 

After successful resolution, Rj can be marked as a 
known constant reCation and we can eliminate the 
defining equation for Rj from the original system 
of equations S. This step is called the elimination 
of Rj from S. A set of equations is reducible by 
substitutions iff it can be transformed to the 
empty set by successive resolutions and 
eliminations. Note that it is useless to substitute 
a variable which occurs in its own defining part; 
we shall forbid such substitutions. 

It is clear that the particular form of each 
expression Ei in S as well as the constant 
relations that appear in Ei are not relevant for 
determining whether S is reducible by 
substitutions; the only relevant information is the 
mutual interdependency of relational variables in 
S. The information on variable interdependency is 
most appropriately represented in the dependency 
graph G=<N,E> defined as follows: 

N(G)= CRl,...,Rn> 
E(G)= C<Ri,Rj>lRj occurs in Eil. 

Note that loops of the form’ <Ri,Ri> may occur in 
E(G); in thiscase we call Ri a Looping node. -- 
It is easy to see that substituting a variable Ri 
in S exactly corresponds to dropping the node Ri 
from G and linking all the predecessors of Ri to 
all successors of Ri by new edges. By analogy, we 
call such a process the substitution of node Ri in 
G. Since we have forbidden to substitze?i;;i;lz 
Fi that occur in their own defining part, we forbid 
to substitute looping nodes in a dependency graph. 

If, after a series of node substitutions, the node 
Rj has no outgoing edges to any nodes different 
from Rj, we say that we have resolved Rj. After a 
successful resolution of Rj we can eliminate node 
Rj and all its incident and outgoing edges from the 
original graph G, yielding a new (and simpler) 

graph G’=G-CRj). If, by successive resolution and 
elimination of nodes, it is possible to get an 
empty graph, we say that G is reducible by 
substitutions. 

- 

Lemma 3.1. Any acyclic 
reducibie-by substitutions. 

connection graph G is 

Theorem 3.1. A strongly connected graph G is 
reducible-b? substitution iff it contains a node K 
such that G-CK) is acyclic. 

Theorem 3.2. A graph G is reducible by substitution 
iffits-strongly connected components are each 
reducible by substitutions. 

Proofs of Lemma 3.1 and of Theorems 3.1 and 3.2 are 
presented in CCamerini861. Based on Theorems 3.1 
and 3.2, we build algorithm REDUCE which determines 
whether a graph G is reducible by substitutions; in 
the positive case, the algorithm outputs a series 
of substitutions and resolutions (in correct order) 
to reduce G. 

The algorithm requires 
Graph i!?CN,E), 

introducing a Reduc t i on 
built from the dependency graph G by 

eifying all strongly connected components of G. 
NC& are the connected components of G; 
EC& are the edges between connected components 

of G, defined in the obvious way. 
Clearly % is acyclic; we call bottom nodes of % all 
nodes which have no outgoing edges. 

ALGORITHM “REDUCE” 
INPUT: Dependency Graph G 
OUTPUT: Sequence of substitutions or resolutions 

1. identify strong connection components Gl...Gk 
of G. 

2. for each component Gi find a node Ki in Gi such 
that Gi-CKi) is acyclic; if Ki cannot be found 
then stop with output “irreducible”. 

3. build the reduction graph %. 

4. if % is empty then stop. 

5. for any bottom node Gi of c do: 
for each node Rj in Gi-CKi> 

output “substitute Rj”; 
output “resolve Ki “; 
apply REDUCE to Gi-CKil; 
‘remove Gi from %. 

6. got0 4. 

It is easy to see that the REDUCE algorithm is 
polynomial in the size of its input (i.e. the 
dependency graph G): the identification of the 
strong connection components (step I) as well as 
the acyclicity test (step 2) are well known 
polynomial problems; furthermore it is not hard to 
see that steps 4-6 are repeated at most IINCG)lI 
times. 
Example. Consider the following system S of 
mns in RA+: 

RI = Cl UT$,CRl W 
PI 

R6) U R5 

R2 = R5 U R4 

R3 =-rr,, CR4 W R3) U C2 

R4 = R3 W p3 c4p2 

R5 =nL3 CR1 W 
P4 

R6) u c3 

R6 = (RI W p5 C5) U C6 
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Figure 1 shows the reduction graph for S. 

Fig. 1. Dependency graph and reduction graph for a 
system of equations 

The output produced by the REDUCE algorithm is as 
follous: 

SUBSTITUTE R4; RESOLVE R3; RESOLVE R4; 
SUBSTITUTE R5; SUBSTITUTE R6; RESOLVE RI; 
RESOLVE R6; RESOLVE R5; RESOLVE R2. 

The sequence of solutions is produced as follows: 

R3 =nl,CCR3 W 

p3 c4p3 

C4) Pa 

p2 

R3) U C2 

R4 = R3 W 

RI =rrl,CRl Wp,CCRl W p5 C5) U C6) U 

TT13CR1 Wp4 ((RI Wp5 C5I U C6)) U Cl U C3 

R6 = CR1 W 
P5 

C5) U C6 

R5 =~13CCR1 W 
P4 

R6) u C3) 

R2 = R5 U R4 

3.5. Resolution of mutually dependent equations -- - 

Some systems of equations cannot be reduced by 
substitutions; in such cases we have to use other 
solution methods. There are two approaches for 
solving nonreducible systems. In the first 

approach, the single relation variables Ri are 
combined to one super-variable R, for instance by 
use of Cartesian products. Then the original system 
of equations can be rewritten as R=ECRl and solved 
by applying the closure operator. Two different 

variants of this method are described in 
CChandra821 and CCeri861. 

The second approach computes the solution directly 
from the original system of equations by initially 
setting Ri=d for i=l...n and then sucessively 
computing Ri:=EiCRl,.., Rnl, until the value of each 
Ri remains unchanged: 

ALGORITHM A 

i ;;;Ei;=l-TO n DO Ri:=q; 

cond:=true; 
1 FOR i:=l TO n DO Si:=Ri; 

! 

FOR i:=l TO n DO 
BEGIN 

1 

Ri:= EiCSl,...,Snl; 
IF Ri <> Si THEN cond:=false; 

. 

1 UNTILE::;d- 
1 FOR i:=l Th n DO OUTPUT( 

We can optimize Algorithm A by using at each step 
the recently computed values for Rl,...,Ri for the 
computation of the new value of Ri+l, instead of 
using the old values, i.e., Sl,...,Si: 

ALGORITHM B - 

1 FOR i:=l TO n DO Ri:=+; 
1 REPEAT 

I 

cond:=true; 
FOR i:=l TO n DO 

I 

BEGIN 
S:= Ri; 

i 

Ri:= EiCRl,...,Rnl; 
IF Ri <> S THEN cond:=false; 
END; 

1 UNTIL cond; 
1 FOR i:=l TO n DO OUTPUT( 

Algorithms A and B have well-known correspondents 
in the field of numerical analysis: Algorithm A 
corresponds to the Jacobi algorithm for the 
iterative solution of systems of equations, while 
algorithm B corresponds to the Gauss-Seidel 

algorithm. 

3.6. Conclusion of Section 3 -- --- 

In this section we have given rules for 
transforming FFLPs into systems of equations in RA+ 
and we have shown how these systems can be solved 
by use of the closure operator. By this process we 
have defined both the fixpoint semantics and the 
operational semantics for FFLPs and queries 
operating on an extensional database EDB. 

Though outside the scope of this paper, it can be 
seen that our semantics correspond exactly to the 
semantics for logic programs defined by Van Emden 
and Kovalski CVanEmden761; due to the limitedness 
of ranges for individual variables and to the 
absence of function symbols, the Herbrand universe 
of any FFLP is finite. 

4. ALGEBRAIC APPROACH TO THE OPTIMIZATION OF LOGIC 
FROGRAMS 

-- -- 

We turn nou to the optimization of expressions in 
ERA+. Execution strategies presented in the 

previous section suffer from two major 
disadvantages: 

a. The algorithm which computes the closure 
operation is not too efficient. 

b. In the computation; l+OXEtXj, conditions of the 
logica 1 query are not used, because the 

s lection 
5 

condition is not pushed inside 

0 E(X). 

Proofs of theorems in this section are quite simple 
and can be found in CCeri867. 

4.1. Efficient computation of the closure operator -- --- 

Algorithm An presented in section 2.2 is not very 
eff 
and 
for 
eff 

1 A 1 

cient b&cause several partial unions are needed 
because E(S) has to be evaluated several times 

the same tuples; consider now the more 
cient program A,: 

(E(X)): 
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I SC-d) 
( REPEAT 

1 

Y <- s 
S <- E(S) 

1 UNTIL Y=S 
1 RETURN S 

Theorem 4.1. If E(X) is an expression in RA+, then --- 
AUCECX)) and A,(ECX)) are equivalent programs. 

Note that Theorem 4.1 does not hold if E(X) is not 
in RA+; for instance, if ECX)=K-X, K #+, then A, 
never halts while AU terminates returning K as 
result. 

Program A, eliminates the first source of 
inefficiency, i.e. the computation of unions within 
the program AU, but it does not eliminate the 
second source, i.e. the computation of E(S) several 
times for the same tuple. We now develop two 
algorithms which do not have this burdensome 
property. 

Definition 4.1. An expression E(X) over RA+ is 
linear if it-h;lds: 

V X,Y C Rg(E) : ECXUY) = E(X) U E(Y) 

We can now present algorithm A2: 

1 A2CECX)k 
1 S t-9; D c-6 
1 REPEAT 

I 

D <- E(D) - S 
S<-SUD 

1 UNTIL D = + 
1 RETURN S 

Theorem 4.2. If E(X) is linear, then A2CECX)) is 
meGto AO(E(X)). 

The advantage of algorithm A compared to algorithm 
A, is that the size of D. 4 the "difference term" 
produced at each iteration? is smaller with respect 
to the size of Si (the "accumulation" term). 

Theorem 4.3. Each expression E(X) can be rewritten 
innG7ca 1 form: 

‘i=l ..k TT-~‘ ~~i( ‘~ ’ ‘i) ’ ‘0 
where X" represents the Cartesian product of Ji 
terms X and Ci are constant (database) relations. 

Let can denote the transformation in RA+ from an 
expression E(X) to its canonica 1 form. Let 

degreeCE(x)) denote the maximal $i in can(ECX)) 
Efficient algorithms can be developed depending on 
the degree of an expression; we show, in 

particular, algorithms developed for 
degree(E(X))=2. Note that if degreeCECX))=l then 
the expression is linear, hence A2 can be applied. 

Let E'CX,Y) be the expression obtained from E(X) by 
replacing each Cartesian product X x X with X x Y. 
Then, we can build algorithm A3. 

1 A (E(X)): 
1 3S <-+; D <-+ 
1 REPEAT 

I 

Tl <- E'(S,D) 
T2 <- E'CD,S) 

I 

T3 <- E(D) 
D <- CT1 U T2 U T3) 
S <-SUD 

1 UNTIL D = 9 
1 RETURN S 

S 

Theorem 4.4. If the degree of E(X) is 2, then 
-hrn-A- 

3 
is equivalent to A,. 

The advantage of algorithm A 
A, is that we never compute ? 

compared to algorithm 
he term E'CS,S), which 

might be large. We further notice that the program 
can be simplified by omitting the evaluation of T2 
if the expression E'(X,Y) is commutative. Algorithm 
A3 can be generalized for a generic i. 

Example: Nonlinear ancestor program 

FFLP: ancCx,y):- parCx,y). 
ancCx,y):- ancCx,z), ancCz,y). 

DISEQUATIONS: PAR C ANC 
-n- , 6(ANC W2,, ANC) C ANC 

EQUATION: ANC = ;AR UTT, 4 (ANC M2;, ANC) 

SOLUTION: 
sol CANC) = OANC(PAR Urr,'4CANC W2,,ANC)) 

The degree of ECANC) is ;. Assuming acyclicity of 
the PAR relation, algorithm A3 produces at each 
iteration i the pair of ancestors corresponding 
to the Zi-th and 2i+l-th generations; term T2 
should not be evaluated, as the expression is 
clearly commutative. Acyclicity of the PAR 

relation is not required by algorithm A3. 

4.2. Pushing selection conditions into linear -- 
expressions 

-- 

Aho and Ullman CAho791 indicate a Ipethod for 
optimizing expressions of the type: GF 0 (E(X)). We 
briefly outline their method by one example. The 
linear expression for the set of all ancestors of 
an individual "a" is: 

ANC = @,=a Ox 'TF; 
I 

4CXW2,1PAR) U PAR) 

It holds: 
clzaX =elza 'n, 

I 
4CXW2=IPAR) U PAR) 

By applying associativity and distributivity: 

ci- 1=a~ = ml 
I 

4C~=a~~2=I~~~) u @,,,PAR) 

By introducing the variable Y for@l=aX we get: 

y = (~1,4(~~2,1 PAR) u l?lza~~~) 

Thus we have: 

ANC = 0 
Y 

cITl,4(YW2=1 PAR) u O;,,PAR) 

This formula can now be evaluated using algorithm 
A . 

i 
Unfortunately, this method applies only when 

t e selection can be pushed directly to the 
variable X in E(X). In the rest of this section we 
show, on the ground of examples, how other 
optimizations are possible. Consider the terms: 

(4.1) Do = EC+) 
D 

n+l 
= ECD,) - EC+) 

Considering algorithm A2, it is easy to verify 
that, for linear expressions E(X), the following 
equation holds: 

X 
0 E(X) = Ui=o,...,oo D i' 

This formulation for E(X) is attractive because we 
can compute terms so thatCF is pushed into each 
D i, and never compute the full terms D.: 

(4.2) rOxECX) = ui=U 
,...,a 5 Di' ' 
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Starting from this general form, we can see how 
algebraic manipulations produce the same effect as 
techniques such as the "magic set" and "magic 
counting". We use a well-known example: the search 
of same generation cousins. Let us produce the 
transformation from FFLP to ERA+ for this example: 

FFLP: sgCX,X). 
sg(X,Y):- parCX,Xl),sgCXl,Yl),parCY,Yl). 

DISEQUATIONS: EQ C SG 

5 5CCPARW2=,SG)W4=2PAR) C SG 
, 

EQUATION: SG = EQ UT-$,5CCPARW2=,SG)W4=2PAR) 

SOLUTION: 
sol(SG) = OsGCEQ U-l-T 1 ,#CPARW2=,SG)W4,2PAR)) 

Notice that the expreision computing SG is linear. 
We introduce the "composition" operation, as in 
CAho 791, to denote the following expression (where 
R and S are binary relations): 

RoS=i-i- 
I,4 R w2=l s 

Then, denoting as RAP the relation obtained by 
exchanging the order of attributes in PAR CRAP = 

‘Tr2,1 PAR), we have: 

soi = OSGEQ U (PAR o CSG o RAP)) 

Note that the composition operation is associative, 
hence: 

(X 0 Y) 0 2 = x 0 (Y 0 Z) = x 0 Y 0 z 

Further, ue indicate as X' a chain of i-l 
applications of the composition to a binary 
relation X: 

X' = x, 0 x2 0 . . . xi 

Terms D. defined by the system (4.1) are: 

E" 
= 6(+, = EQ 

i+l 
= ECDi) - EC+) = PAR' o EQ o RAP' 

Consider the query in FFLP: 

?- sgCa,X). 

corresponding to the expression in ERA+: 
c- ,=a sol(SG) 

By propagating selections to the terms Di in the 
right side, we obtain: 

D 
i =qa * PAR' o EQ o RAP' 

Let us compare the terms Di and Di+,: we denote as 

reducing common subexpression Ri the largest 

common subexpression of Di, Di+, which includes 

selection condition(s); in this case, 

R 
i 

= qza PARi 

It is possible to pre-determine a subset of the 
relation PAR which contains all relevant tuples for 
the computation of SG; this is done by evaluating 
the "magic" set M of all elements that can appear 
in the second column of terms R.; this is the set 
of all ancestors of "all. 

1 

PAR = + 
i=o" 

while Ri is not empty do 
begin 

PARN = PAR,, U Ri 

i =i+l 
end 

M =-rr2 PAR 
M 

Consider now the semi-join reduction of PAR: 

PAR' = PAR lX2,, M. 

It is easy to see that only tuples of this relation 
give a contribution to terms Di: we can then write: 

Di 
=o- l=a PAR Ii o EQ o RAPi 

By using equation (4.21, we deduce that: 

@,,a 0 sG (EQ u (PAR 0 SG 0 RAP)) = 

U 
i=O,...,oD 

c- . ,=a PAR' o EQ o RAP' = 

'i=lJ R 'SG'a' 
()iza PAR 

,i o EQ o RAP' = 

?=a O CEQ U (PAR' o SG o RAP)). 

We can then apply algorithm A2 to solve this 
simplified problem. Note that M is itself obtained 
as the application of the closure to a simple 
expression, as follows: 

N ='n, Ox CCX o PAR) U G;,a PAR) 

Assuming acyclic data, we can easily show the 
algebraic equivalent of the "magic counting" 
method. Let us first simplify each term D. by 
eliminating the EQ relation and propagdting 
equality conditions: 

D. = PAR' o RAP' 
Witft+'acyclic data, there cannot be replicated 
tuples in the union of terms Ri; hence, there is an 
i such that R.=$for j>i. But if R.=b, then also 
D.=+. Hence d can evaluate SC usihg the LHS of 
eduation (4.2) by the following algorithm: 

SG = + 

while R #c$ do 
begin 
R = R o PAR 
SG = SG U CR o RAP') 
i=j+l 

end 

Algebraic transformations of this section are 
easily generalized for a query with two bindings: 

?-sg(a,b). 

corresponding to the expression: 

We omit details of derivations, and show the final 
results: 

Cl) Using magic sets: 

n- Gc - 
+ l=ah2=b 

-p CEQ U (PAR' o SG o RAP')) 

with RAP' being the semi-join reduction of RAP by 
the magic set produced by the selection qzb RAP. 

(2) Using magic counting, we produce the program: 
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(2) Using magic counting, we produce the program: 

answer=no 
RI =G- 
R2 = el=a ;;; 

2=b 
if RI o R2 #Q then answer = yes 
while ((RI # +I and CR2 #4) and (answer = no)) 

do 

begin 
RI = RI o PAR 
R2 = PAR o R2 
if RI o R2 # Q then answer = yes 
end 

output answer 

Notice that with this program we compute 
iteratively two terms, each obtained from one 
binding condition. The computation is halted as 
soon as either of the two terms is empty or 

'i 
= RI o R2 produces one tuple. 

5. CONCLUSIONS - 

This paper has presented a systematic approach to 
the algebraic treatment of logic queries; we have 
shown a syntax directed translation from FFLP to 
algebraic equations and then shown how equations or 
systems of equations can be solved and how 
individual equations can be optimized. 

Several problems considered in this paper need 
further improvements: 

a. The proposed solution method for systems of 
equations could be improved by propagating 
bindings from one equation to another. 

b. Efficient algorithms presented for expressions 
of degree 1 and 2 can be generalized to 
expressions of any degree. 

C. Further investigation is needed to fully 
understand how the algebraic approach compares 
with the "magic set" and "magic counting" 
methods. 

d. Another noticeable direction of research has as 
goal the treatment of Horn clauses including 
function symbols. The necessary counterpart on 
the database side is the extension of the 
relational model and languages to model complex 
objects (e.g., non-INF relations). 
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