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ABSTRACT

This paper presents an algebraic approach to
translation and optimization of logic queries. We
first develop a syntax directed translation from
rules of function-free logic programs to algebraic
equations; then we show solution methods for
independent equations and for systems of
interdependent equations. Such solutions define the
operational and fixpoint semantics of function-free
logic programs and queries. We also present
algebraic optimization methods for "top-down'" and
"bottom—up" strategies; the former are useful if no
initial binding is provided with the query, while
the Llatter are useful if some arguments of the
query are bound to constant values.

1. INTRODUCTION

In recent times, the combination of relational
databases and logic programming (LP) has become a
popular argument of research. The application of LP
as query language of a relational database entails
a relevant enrichment of the expressive power of
traditional query Llanguages; hence the database
community looks at LP as a promising approach for
posing complex (e.g. recursive or deductive)
queries. At the same time, databases provide the
technology for processing large collections of data
in an efficient way, hence solving many of the
problems posed by LP applications when they manage
large amounts of information.

The efficient implementation of logic queries has
been discussed 1in many recent papers, including
[Bancilhon86, Chandra82, Ceri86 Henshen84,
Marque-Pucheu84, Sacca'86, Ullman85]. Major
research directions are:

a. Designing "pure"” LP languages, e.g. languages
which do not incorporate procedural features,
such as the dependency of the computation from
the order of clauses and the use of special
predicates. This trend has marked the adoption
of ‘"pure" Horn clauses as ‘'standard” LP
Language, and consequently a certain resistence
to Prolog.

b. Determining how function-free Horn Clauses can
be efficiently executed. New formal models,
such as ''rule-goal" graphs, describe binding
propagation among clauses. Several rules for
"capturing' nodes of graphs have been defined;
capturing a node 1is equivalent to evaluating
the information associated to the corresponding
clause or rule, deduced from the database.

c. Determining how LP programs can be made more
efficient, by operating transformations from LP
to LP. Tecniques such as the "magic set", the
"counting" and the "Eager” methods have been
developed to this purpose.

We have focused our attention on the use of
relational algebra at work on the same problems.
While the idea of using relational algebra for
executing logic queries 1is not new (see, among
others, [Aho 791 and [Marque-Pucheu 841), the major
contribution of this paper is to give a systematic
overview of how traditional algebra, extended by a
closure operator, can be applied to solve logic
queries.

2. MODELS FOR LOGIC PROGRAMMING AND RELATIONAL
DATABASES

In this section, we give our definition and
interpretation of function-free logic programs and
queries; then, we introduce positive algebra
extended with the closure operator.

2.1 Function-free logic programs

A function—-free logic program (FFLP) is a set of
definite, function—-free Horn clauses (i.e. clauses
that contain exactly one positive Literal); we use
a Prolog-like syntax for clauses, which have their
positive Lliteral on the LHS and zero or more
(negative) literals on the RHS, in conjunctive
form. For instance, the following is a FFLP:

S(a,b).

R(c,b).

P(X):= P(Y), RCX,Y).

PO - SCY,X).

ax,Y):- P(X), R(X,Z), SCY,2).

We can better interpret a FFLP within the framework
of databases if we consider terms appearing in the
LHS of clauses as either database relations or
computed relations. Ground clauses of the former
are stored in an extensional database EDB; ground
clauses of the latter are evaluated by executing
the FFLP; thus, each computed relation appears as
LHS of one or more clause. In the above example, R
and S are database relations, P and Q are computed
relations; the first two clauses are equivalent to
assigning an instance to relations R and S, and in
general will not be present in FFLPs but will be
stored in the EDB.

We generalize the class of database relations to
include all those terms for which we have a
function available for evaluating arithmetic
predicates. For instance, the relation PLUS(X,Y,Z)
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links all representable integers X, Y, and Z such
that X+Y=Z. Further, we can extend Horn clauses to
include special terms such as equality between
variables (e.g., X=Y), since we assume that the
equality test be available, and hence we can
represent it through a special relation EQ(X,Y). We
assume that the domain and co-domain of functions
be finite.

Each variable X of a clause of a FFLP program is
associated to a finite range Rg(X). Ranges of
variables of database relations are limited to the
values existing in the instance of that relation or
to the domain and co-domain of functions; all
variables of computed relations are Llimited to a
unique finite universe U which dincludes all
individuals possibly occurring in the DB.

An input goal to a FFLP is a clause consisting of a
single literal, for instance:
?7-Q(a,X).

The solution of an input goal P(t1,...,tn) is the
set of all ground instances of P(t1,...,tn) which
are logical consequences of the FFLP; for example:
Sol(FFLP, Q(a,X)) = {QCa,c) | (c €« W A
(FFLP U EDB => Q(a,c))}

If the input goal is a Lliteral with all places
bound to constant values, then the solution space
is reduced to the answers '"yes'" or '"no':
SolL(FFLP, P(c)) = "yes" if (c € U)) A
(FFLP U EDB => P(c)),
otherwise.

no

2.2. Positive algebra with closure

We assume that the reader 1is familiar with the
relational model and algebra as from [Ullman82].
Positive relational algebra (RA+) includes as
primitive operators selection (G), projection(m),
cartesian product(x), join(bd), semi-join(®<), and
union (U); noticeably, it does not include the
difference operator. We extend projection to
include Tﬂ$ E (projection on the empty set) as an
operator which can be applied to an algebraic
expression E; T, £ returns "yes" if E #&, "no" if
E =¢ . ¢ denotes the empty relation of suitable
degree.

The closure operator (OX) is applied to an
expression E(X) of a (variable) relation X,
provided that the schema of the result of E(X) is
the same as the schema of X. The language obtained
by extending RA+ with the closure operator is
denoted as ERA+. The operational definition of the
closure operator i& given by the following program
A, which computes 0 E(X):

0

] AGCE):

| Ys <-4

| REPEAT

] Y <- E(S)
I

|

|

S<-SuUY
UNTIL Y=S
RETURN S

The fixpoint semantics of the closure operator is
also well defined. Let P denote the set of all
possible relations having the same domain as X:

P = powerset (Dm(X))

Then, P is a complete lattice under the union and
intersection operations, having as minimal element
the empty relation and as maximal element Dm(X).

Expressions of RA+ are monotone: (i.e. X C Y =>
E(X) C E(Y)), hence algorithm A, always t;ﬁﬁinates
after a finite number of iterations, and 0" E(X) is
the minimal solution (i.e. the least fixpoint) of
the equation X=E(X):

0OX EQO =min { Xe P | X = ECX) 3

3. SYNTAX DIRECTED TRANSLATION FROM FUNCTION -
FREE LOGIC PROGRAMS TO EXTENDED RELATIONAL ALGEBRA

A syntax-directed translation algorithm maps each
clause of a FFLP into a correspondent disequation
of RA+. Disequations are subsequently interpreted
as equations under the Closed World Assumption
(CWA) and solved using the closure operation.

3.1 Translation of individual clauses

Let a generic Horn clause of a FFLP have the
following structure:
R:P(«V...«n):-a1(ﬁ,...ﬁk),...,Qh(&,...ﬁm)
Then, the translation associates to R an algebraic
disequation:

Expr(Q1, cen Qn) cre

where P is a computed relation correspondent to
predicate P, and similarly Q. are either computed
or database relations correspondent to predicates
Q,. The specification of the algorithm for the
s}ntax directed translation requires defining some
useful notation and two rewriting functions.

- occurs(X, ,RHS), of sort boolean, is '"true" if
the terh . belongs to the RHS, 'false"
otherwise.

- corr(i) denotes the function returning, for
each &, of the LHS, the index j of the leftmost
variable . of the RHS such that B.=«, if such
a variable’exists. 1

- const(X.,) of sort boolean, is true if ¢ is a
constant, false otherwise; const (B, is
similarly defined. ]

- var(x.,), of sort boolean, is defined as '"not

const Xi)"'

- newvar{(x) 1is a procedure returning a new
variable name at each invocation.

~ Let E denote a string, x and y denote symbols.
Then E<x,y> denotes a new string in which the
first occurence of x js substituted by y.

The syntax directed translation of R into an
algebraic disequation of RA+ is defined through two
recursive rules which apply to the LHS and RHS of R
respectively.

The first rule deals with three special cases:
a. bindings to constant values in the LHS;

b. multiple occurrences of the same variable in
the LHS;

c. existence of a variable of the LHS that does
not occur in the RHS.
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Each such special case is reconducted, by suitable
string transformations, to an equivalent case in
which all positions of the LHS are bound to
distinct wvariables. Then, the second rule is
applied to the RHS; it simply generates all
selection conditions due to constant bindings or
replicated variables within the RHS, and then
builds a cartesian product with all database or
computed relations corresponding to terms of the
RHS.

After applying the second rule, equivalence -
preserving transformations can be applied to the
resulting expression in RA+ to transform cartesian
products into joins and to propagate sefections to
their operands, in the conventional way (see
[ULLman821). The notation Xi=1..in indicates the

cartesian product of relations Q1,... Qk.
rule 1.

T(RI=if J i : const(x,) /*a*x/
then !
newvar (x)
return T(LHS<0g,x>:-RHS, EQ(x,OS))

elsif 34,3 :o{i=(x,. i<j  /xbx/
then J
newvar(x)
return T(LH3<62,X>3-RH3, Eﬁ(x,oﬁ)
elsif J i: var(o%) A not occurs(o@,RHS) /xcx/

then return T(LHS:-RHS, Rg(X.))

T o1
else retur"TT;orr(1),...corr(n) T (RHS)

end if:*
end if;
rule 2.
PP P B Pl b I . .
IT*(R) =1t 41 : const(Pi) /* a */
then
newvar(x)

return GT_& T'(RHS<B, , x>)
i=h, i

elsif J i,j :'B.=B., i<j /* b */
then L
newvar(x)
return 6}=j T'(RHS<Pi,x>)

else return (Xi=1 K Q,)
end if; b !

Example. The following is a systematic application
of the translation algorithm.

P(X,X,2):=S(X,Y)R(Y,a,2)

1. by T, case (b)
TC P(N1,X,2):-S(X,Y),R(Y,a,Z),EQ(NTX) )

2. by T, Last recursive call

'ﬂz’1’5 T € s{X,Y),R(Y,a,Z)  EQ(NT, X) )

3. by T', cases (a) and (b)
G- '
T, 1,50%=an2=3n127 1" (SNZ,N3),RCY,NA,2) EQINT, X))

4, by T', last recursive call

Tr6,1’50‘4=a A 223 A 127 (S x R x EQ)

5. After pushing selection and join conditions

Mg, 1,5 (2% (G5_ R >, EQ)

6. Final disequation:

TI‘6,1’5 ((s pa,_, (G5_RY) DA, _, EQ) C P

1=1

3.2. Transformations from
equations in RA+

disequations to

By effect of the translation rules explained above,
we can turn each FFLP dnte a set of algebraic
disequations. For instance, the last 3 clauses of
the FFLP in Section 2.1 generate:

T, (P o<, R CP
T, sCP

T, (P D4y R P4y, ) Ca

The Closed World Assumption (CWA, [Reiter781)
enables us to turn these disequations into
equations. By the CWA, all facts which cannot be
deduced by the application of the FFLP to the
database are false; hence, no fact about a generic
term P can be proved other than through existing
disequations; hence the union of all RHS of

disequations gives the algebraic equation required
to compute P. The above example generates the
system of equations:
P =TT (PPa,_, R) U QL 5)
Q = b D

W, 4, (PD_ R D4, S)
Marque—-Pucheu et al. [Marque Pucheu84l show a
transformation from Llogic programs into equations
which does not directly use relational algebra.

3.3. Solution of independent equations

Solving a system of equations is easier if each

anuation 1e indonandant feam tha athsre (arn can ha
€QuaTIon 1§ InGependGent Irom Une OINErSsS o fan o

made independent by suitable substitutions); an
equation is independent when it does not contain
computed relations in the RHS other than the one in
the LHS. For the solution of independent equations,
two cases are given: )

a. The RHS contains only database relations; in
this case, the solution of the equation is
simply given by the evaluation of the
expression in RA+. This happens when rules for
the computed relation 1in the FFLP are
nonrecursive.

b. The RHS contains one or more occurrences of the
computed relation CR; 1in this case, the
definition of the closure operator as fixpoint
of algebraic equations enables us to build the
solution as follows:

CR eHS(CR)

sol(CR) =0
In the above example (Sect. 3.2), the first

equation is independent, and can be solved as:

_oP
sol(P) = 0 (T (P Dd,_, R) U T, $))

The second equation for @ depends on P, however we
can suspend its evaluation until we have solved the
equation for P. Then we consider P as a fixed (i.e.
database) relation, and the second equation falls
in case (a) above:

sol (@) =1TH'4 ((sol(P) >4, _, 325 S
We can now interpret input goals as suitable
expressions on the algebraic solutions; for
instance:

?7-P(X). <=> sol(P)

7-P(a). <=>T\:‘>G'1=a sol(P)
7-Q(a,X). <=>05_ sol(q)
7-Q(a,b). <=>1T¢5~1=a A 22p SOL(®

R) pd )
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3.4. Reduction by substitutions

We have seen that by suitable substitutions it is
sometimes possible to reduce a system of mutually
interdependent equations to a system of equations
which are independently resolvable, when a certain
order of evaluation is observed. We call these
systems of equations reducible by substitutions.
Let us first define the problem more formally. We
start with a given set S of equations of the
following form:
S: R1 = E1[R1,...Rn]

R2 = E2[R1,...Rn]

Rn = En{R1,...Rn]
where each Ri is a distinct relational variable and
each Ei Js an expression of RA , which involves
some (not necessarily all) variables R1,...Rn; we
calt Ei the defining part of Ri.

A substitution consists in the replacement of some
variable Ri by its defining part Ei in the RHSs of
atl equations of S. A resolution of Rj consists of
a series of substitutions which generate an
equation Rj=E' that does not contain any variable
different from Rj. Clearly, if Rj has a resolution,
then its value can be computed either by evaluation
of an expression of constant relations (if Rj does
not appear in E') or by the apRLication of the
closure operator to E', yielding O ? E'(Rj).

After successful resolution, Rj can be marked as a
known constant relation and we can eliminate the
defining equation for Rj from the original system
of equations S. This step is called the elimination
of Rj from S. A set of equations is reducible by
substitutions iff it can be transformed to the
empty set by successive resolutions and
eliminations. Note that it is useless to substitute
a variable which occurs in its own defining part;
we shall forbid such substitutions.

It is clear that the particular form of each
expression Ei din S as well as the constant
relations that appear in Ei are not relevant for
determining whether S is  reducible by
substitutions; the only relevant information is the
mutual interdependency of relational variables in
S. The information on variable interdependency is
most appropriately represented in the dependency
graph G=<N,E> defined as follows:

N(G)= {R1,...,Rn}

E(6)= {<Ri,Rj>|Rj occurs in Ei}.
Note that Lloops of the form <Ri,Ri> may occur in
E(G); in this case we call Ri a looping node.

It is easy to see that substituting a variable Ri
in S exactly corresponds to dropping the node Ri
from G and linking all the predecessors of Ri to
all successors of Ri by new edges. By analogy, we
call such a process the substitution of node Ri in
G. Since we have forbidden to substitute variables
Ri that occur in their own defining part, we forbid
to substitute looping nodes in a dependency graph.

1f, after a series of node substitutions, the node
Rj has no outgoing edges to any nodes different
from Rj, we say that we have resolved Rj. After a
successful resolution of Rj we can eliminate node
Rj and all its incident and outgoing edges from the
original graph G, yielding a2 new (and simpler)

graph G'=G-{Rj)}. If, by successive resolution and
elimination of nodes, it is possible to get an
empty graph, we say that 6 is reducible by
substitutions. -

Lemma 3.1. Any acyclic connection graph 6 is

reducible by substitutions.

Theorem 3.1. A strongly connected graph 6 is
reducible by substitution iff it contains a node K
such that 6-{K} is acyclic.

Theorem 3.2. A graph G is reducible by substitution

iff its strongly connected components are each

reducible by substitutions.

Proofs of Lemma 3.1 and of Theorems 3.1 and 3.2 are
presented in [Camerini86]. Based on Theorems 3.1
and 3.2, we build algorithm REDUCE which determines
whether a graph 6 is reducible by substitutions; in
the positive case, the algorithm outputs a series
of substitutions and resolutions (in correct order)
to reduce G.

The algorithm requires introducing a Reduction
Graph G(N,E), built from the dependency graph G by
identifying all strongly connected components of G.
N(G) are the connected components of G;
E(8) are the edges between connected components
of G, defined in the obvious way.
Clearly G is acyclic; we call bottom nodes of G all
nodes which have no outgoing edges.

ALGORITHM ''REDUCE"
INPUT: Dependency Graph G
OUTPUT: Sequence of substitutions or resolutions

1. identify strong connection components G1...Gk
of G.

2. for each component Gi find a node Ki in Gi such
that Gi-{Ki} is acyclic; if Ki cannot be found
then stop with output "irreducible”.

3. build the reduction graph G.
4, if G is empty then stop.

5. for any bottom node Gi of G do:
for each node Rj in 6i-{Ki)}
output "substitute Rj";
output "resolve Ki";
apply REDUCE toﬁﬁi-(Ki};
remove Gi from G.

6. goto 4.

It is easy to see that the REDUCE algorithm is
polynomial in the size of its input (i.e. the
dependency graph 6): the identification of the
strong connection components (step 1) as well as
the acyclicity test (step 2) are well known
polynomial problems; furthermore it is not hard to
see that steps 4~6 are repeated at most ||N(G)]|
times.

Example. Consider the
equations in RA+:

R1 = €1 UTT ,(R1 4, RE) U RS
L1 p

following system S of

1
R2 = R5 U R4
R3 =7T12 (R4 ><p2 R3) U C2
R4 = R3 b C4

p3
RS =TT

3 (R1 >4p4 R6) U €3
R6 = (R1 >4p5 C5) U Cé
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Figure 1 shows the reduction graph for S.

()

oﬂ?“"" R

Fig. 1. Dependency graph and reduction graph for a
system of equations

The output produced by the REDUCE algorithm is as
follows:

SUBSTITUTE R4; RESOLVE R3; RESOLVE R&;
SUBSTITUTE R5; SUBSTITUTE R6; RESOLVE R1;
RESOLVE R6; RESOLVE R5; RESOLVE R2.

The sequence of solutions is produced as follows:

R3 =TTLZ((R3 > 5 c4)_>ap2 R3) U C2
R4 = R3 D4, Cé4
p3
R1 =TT _(R1 bd__((R1 DG__. CS) U C6Y U
& p1 pS
TV, ,(R1 pa_, ((RT D . C5) U C6)) U C1 UC3
13 ph pS
R6 = (R1 °<ps cS) U €6
=TT
RS L3¢ (R ><p4 R6) U C3)
R2 = RS U R4 ’

3.5. Resolution of mutually dependent equations

Some systems of equations cannot be reduced by
substitutions; in such cases we have to use other
solution methods. There are two approaches for
solving nonreducible systems. In the first
approach, the single relation variables Ri are
combined to one super-variable R, for instance by
use of cartesian products. Then the original system
of equations can be rewritten as R=ELR] and solved
by applying the closure operator. Two different
variants of this method = are described in
[Chandra82] and [Ceri86].

The second approach computes the solution directly
from the original system of equations by initially
setting Ri=¢ for i=1...n and then sucessively
computing Ri:=EilR1,..,Rn], until the value of each
Ri remains unchanged:

ALGORITHM A

| FOR i:=1 TO n DO Ri:=¢;
| REPEAT

|  cond:=true;

| FOR i:=1 TO n DO Si:=Ri;

] FOR i:=1 TO n DO

| BEGIN

] Ri:= EilS1,...,5n];

| IF Ri <> Si THEN cond:=false;
| END;

| UNTIL cond;

| FOR i:=1 TO n DO OUTPUT(Ri).

We can optimize Algorithm A by using at each step
the recently computed values for R1,...,Ri for the
computation of the new value of Ri+1, instead of
using the old values, i.e., S1,...,Si:

ALGORITHM B

| FOR i:=1 TO n DO Ri:=d;

| REPEAT

| cond:=true;

] FOR i:=1 T0 n DO

[ BEGIN

| S:= Ri;

] Ri:= Ei[R1,...,Rn];

| IF Ri <> S THEN cond:=false;
] END;

| UNTIL cond;

| FOR i:=1 TO n DO OUTPUT(Ri).

Algorithms A and B have well-known correspondents
in the field of numerical analysis: Algorithm A
corresponds to the Jacobi algorithm for the
iterative solution of systems of equations, while
algorithm B corresponds to the Gauss-Seidel
algorithm.

3.6. Conclusion of Section 3

In this section we have given rules for
transforming FFLPs into systems of equations in RA+
and we have shown how these systems can be solved
by use of the closure operator. By this process we
have defined both the fixpoint semantics and the
operational semantics for FFLPs and queries
operating on an extensional database EDB.

Though outside the scope of this paper, it can be
seen that our semantics correspond exactly to the
semantics for logic programs defined by Van Emden
and Kovalski [VanEmden76]; due to the Llimitedness
of ranges for individual variables and to the
absence of function symbols, the Herbrand universe
of any FFLP is finite.

PROGRAMS

We turn now to the optimization of expressions in

ERA+. Execution strategies presented in the
previous section suffer from two major
disadvantages:

a. The algorithm which computes the closure

operation is not too efficient.

b. In the computation; O?OXE(X), conditions of the
logical query are not used, because the
s;lection condition is not pushed inside
0 E(X).

Proofs of theorems in this section are quite simple
and can be found in [Ceri86].

4.1. Efficient computation of the closure operator

Algorithm A_ presented in section 2.2 is not very
efficient because several partial unions are needed
and because E(S) has to be evaluated several times
for the same tuples; consider now the more
efficient program A1:

| A EOO):
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| s«

| REPEAT

| Y <- S

| S <~ E(S)
| UNTIL Y=S

| RETURN S

Theorem 4.1. If E(X) is an expression in RA+, then
AO(E(X)) and A1(E(X)) are equivalent programs.

Note that Theorem 4.1 does not hold if E(X) is not
in RA+; for instance, if E(X)=K-X, K #¢, then A1
never halts while AO terminates returning K as
result.

Program A eliminates the first source of
inefficiency, i.e. the computation of unions within
the program A_., but it does not eliminate the
second source, 1.e. the computation of E(S) several
times for the same tuple. We now develop two
algorithms which do not have this burdensome
property.

befinition 4.1. An éxpression E(X) over RA+ is
Uinear if it holds:

¥ X,Y C Rg(E) : E(XUY) = E(X) U E(Y)
We can now present algorithm AZ:
| AZ(E(X)):
| s <d;0<d
| REPEAT . v
| D <= E(D) - S
] $<-SUD
! UNTILD = ¢
| RETURN S

Theorem 4.2. 1If E(X) is Llinear, then AZ(E(X)) is
equivalent to AO(E(X)).

The advantage of algorithm A, compared to algorithm
A, is that the size of D, (the "difference term"

produced at each 1terat1on’ is smaller with respect
to the size of S (the "accumulation” term).

Theorem 4.3. Each expression E(X) can be rewritten
in a canonical form:

yi
Ui=1..k 1T;1 GBL( X X Ci) u CO
where X! represents the cartesian product of i

terms X and Ci are constant (database) relations.

tet can denote the transformation in RA+ from an
expression E(X) to its canonical form. Let
degree(E(x)) denote the maximal yi in can(E(X))
Efficient algorithms can be developed depending on
the degree of an expression; we show, in
particular, algorithms deve loped for
degree(E(X))=2. Note that if degree(E(X))=1 then
the expression is linear, hence A2 can be applied.

Let E'(X,Y) be the expression obtained from E(X) by
replacing each cartesian product X x X with X x Y.
Then, we can build algorithm A3.

| A3(E(X)):

| s <-P; b <=
|  REPEAT

| T1 <= E*(S,D)

| T2 <= E'(D,S)

| T3 <~ E(D)

| D <= (T1TUT2U T3 -5
| S <= SUD

| UNTIL D =

| RETURN S

Theorem &4.4. If the degree of E(X) is 2, then

algorithm A, is equivalent to A

3 1°

The advantage of algorithm A, compared to algorithm
A, is that we never compute %he term E'(S,S), which
might be large. We further notice that the program
can be simplified by omitting the evaluation of T2
if the expression E'(X,Y) is commutative. Algorithm

A3 can be generalized for a generic 1.

Example: Nonlinear ancestor program

FFLP: anc(x,y):- par(x,y).
anc(x,y):- anc(x,z), anc(z,y).

DISEQUATIONS: PAR C ANC

LA TCANC pa,_, ANC) T ANC
EQUATION: ANC = PAR UTT,  (ANC D<__, ANC)
1,4 2=1
SOLUTION: .
SoL(ANC) = 0™"" (PAR UTT, , (ANC b4,_ ANC))
, -

The degree of E(ANC) is 2. Assuming acyclicity of
the PAR relation, algorithm A3 produces at each
iteration i the pair of ancestors corresponding
to the 2i-th and. 2i+1-th generations; term T2
should not be evaluated, as the expression is

clearly commutative. Acyclicity of the PAR
relation is not required by algorithm A3.
4.2.  Pushing selection conditions into Llinear
‘expressions
Aho and Ullman C[Aho79]1 indicate a pethod for

optimizing expressions of the type: U} 07 (E(X)). We
briefly outline their method by one example. The
linear expression for the set of all ancestors of
an individual "a" is:

=0 X
ANC =17 07 (T, (Xb<,_,PAR) U PAR)
It holds:
O=x =00, (H},k(x><2=1PAR) U PAR)

By applying associativity and distributivity:

G, = (T,
122X (TT,"I.((\‘,‘:aXMzﬂPAR) U0, _,PAR)

By introducing the variable Y for'03=
Y = (I, ,(vpd,_,PAR) U G, __PAR)
1,4 i=a
Thus we have:

_ oY
ANC = 0" CT, (YD,

aX we get:

2=1

PAR) U G _ PAR)
1=a

This formula can now be evaluated using algorithm
Unfortunately, this method applies only when
tﬁe selection can be pushed directly to the
variabte X in E(X). In the rest of this section we
show, on the ground of examples, how other
optimizations are possible. Consider the terms:

4.1 Dy = E()

D 41 = EC®D = E@)
Considering algorithm A_, it is easy to verify
that, for Llinear expresSions E(X), the following
equation holds:
o*E() = u, D..

i=0,...,00 i
This formulation for E(X) is attractive because we
can compute terms so that G°_ is pushed into each
Di’ and never compute the full terms Di:

4.2y @ o =
( FOEX =U. 4 o OF 0.
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Starting from this general form, we can see how
algebraic manipulations produce the same effect as
techniques such as the 'magic set" and '"magic
counting'. We use 3 well-known example: the search
of same generation cousins. Let us produce the
transformation from FFLP to ERA+ for this example:

FFLP: sg(X,X).
sg(X,Y):~ par(X,X1),sg(X1,Y1) par(Y,vY1).

DISEQUATIONS: EQ € SG

TG 5C(PARD,_, SGIPa

EQUATION: SG = EQ UTT, 5((PARD<1
4

1 2=1
SOLUTION: .

sol(SG6) = 0" "(EQ U'Tq’s((PAR>42=1SG)D<4;2PAR))

Notice that the expression computing SG is Llinear.
We introduce the "composition" operation, as in
CAho 791, to denote the following expression (where
R and S are binary relations):

Ros -TT1’4 RPa, , 8
Then, denoting as RAP the relation obtained by
exchanging the order of attributes in PAR (RAP =

T PAR), we have:
2,1 3G
sol(SG) = 0" EQ@ U (PAR o (SG o RAP))

4=2PAR) € 56

SG)><A=2PAR)

Note that the composition operation is associative,
hence: '

XoYYoZ=X0{(Yo0oZ)=Xo0Yol

7

Further, we indicate as X a chain of i-1

applications of the composition to a binary
relation X:
i
X = X1 o X2 O een X_i
Terms D, defined by the system (4.1) are:
Do=é(¢)=ea ; ;
D_.|+1 = E(Di) ~ E(®) = PAR o EQ o RAP
Consider the query in FFLP:
?7- sg(a,X).
corresponding to the expression in ERA+:
G, sol(s&)
1=a
By propagating selections to the terms Di in the

right side, we obtain:
D, = G;__ PAR' o EQ o RAP’
i 1=a ‘
Let us compare the terms Di and Di+1: we denote as

reducing common subexpression(s) Ri the largest

common subexpression(s) of Di’ D,.. which includes

i+1
selection condition(s); in this case,
R, = G, par’
i 1=a

It is possible to pre-determine a subset of the
relation PAR which contains all relevant tuples for
the computation of SG; this is done by evaluating
the '"magic" set M of all elements that can appear
in the second column of terms R,; this is the set
of all ancestors of "a". 1

PAR = &b

.M
i=0
while R, is not empty do
begin

PARM = PARM U Ri

i =i+

end

=TT
M 2 PARM

Consider now the semi-join reduction of PAR:

¢t =
PAR PAR D<2=1
It is easy to see that only tuples of this relation
give a contribution to terms Di; we can then write:

b, =0, PAR'' o EQ o RAP'

M.

By using equation (4.2), we deduce that:

G5, 0°° (Ea U (PAR 0 G o RAP)) =

u,_ G5_. PAR' o EQ o RAP' =
i=0,...,m " 1=a i 5
. PAR’ =
U‘=D"s<;'°° 03—, PAR' o EQ 0 RAP
G;=a 0 (EQ U (PAR' o SG o RAP)).
We can then apply algorithm A, to solve this
simplified problem. Note that M is itself obtained
as the application of the closure to a simple
expression, as follows:

M =T o* ((x o PAR) u0;__ PAR)
2 1=a

Assuming acyclic data, we can easily show the
algebraic equivalent of the '"magic counting”
method. Let us first simplify each term D, by
eliminating the EQ relation and propaggting
equality conditions:

D... = PAR' o RAP’
with acyclic data, there cannot be replicated
tuples in the union of terms R.; hence, there is an
i such that R.,=¢ for j>i. But if R.,=¢, then also
D.=d. Hence we can evaluate SG usihg the LHS of
e&uation (4.2) by the following algorithm:

6= ¢

= 0, PAR
1=a

- 0w
o]

while R #<¢ do

begin

R =R o PAR .
SG = SG U (R o RAP")
i=i+1

end

Algebraic transformations of this section are
easily generalized for a query with two bindings:

?-sgla,b). ‘
corresponding to the expression:
()\4
WT; 1=a A 2=b sol (SG).
We omit details of derivations, and show the final
results:
(1) Using magic sets:
0 56 ' )
o 1=ana=p O (EQ U (PAR' 0 SG 0 RAP'))

with RAP' being the semi-join reduction of RAP by
the magic set produced by the selection GT=b RAP.

(2) Using magic counting, we produce the program:
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(2) Using magic counting, we produce the program:

answer=no
R1 = G} PAR
R2 = PAR
~2=b
if R1 o R2 # & then answer = yes
while ((RT #¢) and (R2 £&) and (answer = no))
do
begin
R1 =Rl o?P

AR
R2 = PAR o R2
if R1 o R2 # & then answer = yes
end
output answer

Notice that with this program we compute
iteratively two terms, each obtained from one
binding condition. The computation. is halted as
soon as either of the two terms 1is empty or

Di = R1 o R2 produces one tuple.

5. CONCLUSIONS

This paper has p
inis pa nas p

{8121
the algebraic treatment of Llogic que
shown a syntax directed translation from FFLP to
algebraic equations and then shown how equations or
systems of equations can be solved and how
individual equations can be optimized.

Several problems considered in this paper need
further improvements:

a. The proposed solution method for systems of
equations could be mproved by propagating
i

i
bindings from one equation to another.

b. Efficient algorithms presented for expressions

of degree 1 and 2 can be generalized to

expressions of any degree.

c. Further investigation 1is needed to fully
understand how the algebraic approach compares
with the ‘'magic set" and 'magic counting”
mathande

mein Ss

d. Another noticeable direction of research has as
goal the treatment of Horn clauses including
function symbols. The necessary counterpart on
the database side is the extension of the
ralatianal madal and lanmiianaes A mada nl
rTiacvtiivigy nJuc L Qg \.ullguagco LU wmiuuc L LUV L

objects (e.g., non—INF relations).
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