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Abstract 

Research activity on query evaluation and optimization has been 
centered around processing one query at a time. Query processing 
systems. in general. attempt to minimize the cost of processing a set 
of queries by minimizing the processing cost of each query separately. 
A separate plan is generated and executed for each query. The cost 
of processing (that is the CPU cost + Input/Oulput cost) a set of 
queries evaluated in the above manner is equal to the sum of the 
processing cost for each query. In this paper we extend the connec- 
tion graph decomposition algorithm to generate a single plan for 
evaluating a set of queries. The approach presented in this paper is 
aimed at generating a single plan. exploiting the common sub- 
expressions that can be detected using heuristics. We assume. for 
the purposes of this paper. that we are answering queries over a 
deductive database. although the approach is equally applicable to a 
group of independent queries. 

1. Introduction 

Research activity on query evaluation and optimization has been 
centered around processing one query at a time. Query processing 
systems. in general. attempt to minimize the cost of processing a set 
of queries by minimizing the processing cost of each query separately. 
A separate plan is generated and executed for each query, The cost 
of processing (that is the CPU cost + I/O cost) a set of queries 
evaluated in the above manner is equal to the sum of the processing 
cost for each query. 

Processing of a set of queries individually is usually appropriate if 

a) the rate at which the database is queried in an interactive 
environment does not permit them to be grouped together 
without increasing the response time substantially. 

b) the workspace requirements of grouping together a set of 
queries is not cost effective. 

c) the queries are disjoint and do not have any computations 
that can be performed in common. 
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However, processing of a set of queries individually is expected 
to be inefficient in a batch processing environment. Also when several 
queries are submitted by a single user as one transaction. processing 
them individually could be inefficient. In an interactive environment. if 
the queries on a database are being generated at a steady rate. 
several queries may be grouped together and evaluated though they 
are generated independently. The response time may suffer slightly 
depending upon the number of queries grouped, but the evaluation 
cost could be decreased enormously if there exists sub-expressions 
that can be detected and evaluated only once. Although individual 
queries may be regarded as independent and possibly generated by 
independent sources. it is plausible that a set of queries have opera- 
tions on the same relations of the database. Many queries may 
involve the join of the same two relations. may access the same rela- 
tions and part of one query may subsume part of another query. 
Under these circumstances grouping a set of queries together and 
processing them as a unit is clearly beneficial. 

Based on the output requirements. a set of queries can be 
classified into following categories: 

1. Queries. which have been generated independently and hence 
a separate answer set for each query has to be computed. 
These queries are typically generated by independent users 
querying a database. 

2. Queries, which are derived from a single query and hence 
there is only one answer set to be computed. Queries. in a 
deductive database environment. are of this kind where a sin- 
gle query may give rise to several disjunctive queries. These 
queries also arise when view definitions are permitted on 
conventional relational systems. Queries on complex objects 
are likely to generate multiple queries requiring an answer 
set. 

In (Chak821. we analyzed the overlap probability (that is the pro- 
bability that a single relation name occuri among a group of indepen- 
dently generated queries) of a set of independent queries assuming a 
Gamma distribution. We plotted the overlap probability with respect 
to the parameters of the Gamma distribution and showed that there 
is a reasonable overlap probability even if the number of queries 
grouped are under five. 

In the context of deductive databases. multiple query processing 
is extremely useful to reduce the I/O cost when the same relation 
has to be accessed more than once in the process of answering a 
query. Identifying common sub-expressions is central to the problem 
of multiple query optimization. 

In this paper we consolidate the ideas presented in [Chak851 to 
extend the connection graph decomposition algorithm to generate a 
common plan for evaluating a set of queries. The approach presented 
in this paper generates a single plan, exploiting the common sub- 
expressions that can be detected among the queries. Our approach 
modifies and extends the algorithm that generates plans for a single 
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query. We assume that we are answering queries over a deductive 
database. although the approach is equally applicable to a group of 

employee(ename. status. ward). and 
opteam(ename. day). 

independent queries. 

The rest of this paper is organized as follows. Section 2 briefly 
describes the previous work on to multiple query processing. In sec- 
tion 3 we present the notion of common sub-expressions which is 
central to multiple query processing. Section 4 describes the use of 
connection graphs for representing queries. In section 5 we briefly 
describe the decomposition algorithm as applied to a single query. In 
section 6 we introduce the notion of multi-query graph as a connec- 
tion graph that represents a set of queries in a non-procedural form. 
We then describe the decomposition algorithm that can be used on a 
multi-query graph to generate a single plan for the set of queries 
represented by the graph. We also present a set of heuristics that 
enable us to identify and exploit common sub-expressions. This sec- 
tion highlights the contributions of this paper. We briefly summarize 
our results in Section 7. 

2. Previous Work 

Kim (KimffO] recognized the potential of grouping queries and 
suggested the idea of processing a set of queries to reduce the total 
cost of executing a set of queries on the same database. His discus- 
sion involves subdividing a nested SQL query into several queries 
which can be executed simultaneously. He provides some rules and 
discusses examples of queries having only one relation. He treats 
transactions which have updates and deletes. 

Grant and Minker [GramlO] have studied optimization for a set of 
disjuncts produced by intensional axioms of a deductive database. 
Cost formulas for a variety of physical representations are provided 
using which an execution plan for the set of disjuncts is generated 
exploiting the commonality in the set of disjuncts. A branch and 
bound algorithm is proposed taking into consideration indexing. join 
support for relations. and common sub-expressions 

Jarke ]Jark84] discusses multiple query processing and common 
sub-expression isolation in set-oriented database systems. Recogni- 
tion and evaluation of one relation sub-expressions that are common 
to a set of relational queries are discussed. It is indicated that multi- 
relation sub-expressions can only be addressed in a heuristic manner. 

3. Common Sub-expressions 

The objective of grouping a set of queries for simultaneous 
evaluation is to reduce the overall cost of processing the set of 
queries in comparison to the combined cost of processing each query 
in the set separately. This is achieved by performing computations 
that are common to all (or even some) of the queries. only once and 
use the intermediate computations for obtaining answers to all the 
queries. The capability to incorporate common computations into the 
plan being generated for a set of queries is predicated upon the ability 
to detect common sub-expressions among the queries grouped 
together. Hence. detection of common sub-expressions is central to 

the processing of a set of queries as a single unit. The expression 
tree built from the operators of the relational algebraic expression is 
not well suited for detecting common sub-expressions. 

The following example (from [Jark84]) brings out the limitations 
of the use of an expression tree in detecting common sob- 
expressions. 

Example 1. 
Let the relations of the database be 

For the following two simple queries on the above database. the 
expression trees are shown in Figure 1. 

a) “Which wards are members of monday operating team?“. 
and 

b) “Which doctors were on monday operating team?” 

cemp&- r stat”s~day 

opteam employee opteam 

Figure 1. 

In the expression trees of Figure 1. it appears as if the right 
sub-tree below the join operation is the only common sub-expression. 
In fact. one can identify a larger sub-expression if we rewrite the 
above expression trees as shown in Figure 2. 

In figure 2. one can identify the entire sub tree below the selec- 
tion ostatus = doctw as common to both the trees. The above queries 
can be computed by accessing the relations employee and opteam 
and performing the selection and the join only once. 

Ti ward Ti ename 

@-stat m-doctor 

/%byW Anday 

employee opteam employee opteam 

Figure 2. 

4. Query Representation using a Connection Graph 

A connection graph [Ullm82] is used to represent a query in a 
non-procedural form. A connection graph consists of nodes 
(representing relations) and edges representing conditions between 
attributes of the nodes they are connected with. An edge in a connec- 
tion graph may be associated with more than two nodes making it a 
hypergraph. A connection graph can be decomposed (using the 
QUEL decomposition algorithm of [WONG76]) into a plan by using 
two transformations. namely. instantiation and iteration. These 
transformations consist of selecting a node. writing an expression for 
evaluating the graph in terms of the selected node (and the edges 
associated with the node) and rewriting the graph in terms of a 
simpler graph. The process described above is recursively applied till 
the graph consists only of isolated nodes. 
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A connection graph can be decomposed in several ways depend- 
ing on the criterion used to select a node for the purpose of decom- 
position. Heuristics have been proposed to select the nodes in such a 
manner that the decomposition minimizes the computation cost for 
evaluating a query 

In this paper we propose the evaluation of a set of queries using 
the connection graph approach. We indicate how the non-procedural 
representation using a multi-query graph helps isolate common sub- 
expressions (using appropriate heuristics) in a set of queries and how 
a single plan can be generated that evaluates common sub- 
expressions only once. 

We briefly describe the decomposition of a connection graph in 
the next section before presenting our extensions to multiple queries. 
The notation used in the remainder of the paper is borrowed from 
Maier [MaieE3] and is extended suitably for presenting our work. 

5. Decomposition of a Connection Graph 

Let E be an algebraic expression 
UC (SlX. . ..* XS,). 

where C = CIA ACk is in conjunctive normal form (CNF). The 
expression E is represented by a labeled hypergraph HE, called the 
connection graph. In a hypergraph. edges may contain one or more 
nodes, rather than just two as in regular graphs. HE has a node for 
each of S1. _... S,. HE contains an edge ei for each conjunct Ct. 
Edge et contains nodes Sf. if yf.B appears in Ct for any attribute B. 
where yf is any tuple of Sf. Edge ei is labeled by Ct. 

Though an edge in a connection graph many be associated with 
more than two nodes. we will assume that an edge will have at most 
two nodes in all subsequent discussions. A connection graph can be 
drawn as a regular graph under the above assumption. 

Figure 2a represents a connection graph for the expression 

ny c.2 BUC, AC2 AC3 AC, ~Syx%4J 

where Ct is y.B = monday. C2 is y.A = z.A. C3 is z.B = w.A and C4 

Figure 2a. 

is w.B = wound. S,. S, and S, are relations. 

For an expression of the form 
Ilxoc (S,x. . XS,“). 

the aim is to compute the relation corresponding to the above expres- 
sion by decomposing the connection graph of the expression 
oc (Six. __., xS,). The result of the decomposition is a program 
that contains assignment. selection, projection and for loops. but no 
joins. The joins are performed via for loops instead. Two transforma- 
tions - instantiation and iteration, are used to achieve the above goal. 
The transformations correspond to edge removal and node removal 
respectively, and the goal is to transform the connection graph for 
oc (Six. ,,., xS,) to a graph with isolated nodes. 

/nsbntiation is analogous to pushing selections down an expres- 
sion tree, Consider the statement 

r + n,ac (SIX. . XS,). 

where C = CtA ACk is a CNF selection condition. Let E denote 
the expression oc (Stx. _... xS,). For the purpose of instantiation 
choose a relation. say S1. Let et. e,, be the edges in HE that con- 
sists only of node S1. The transformed program for this instantiation 
has two statements 

rl - nV’CIA ACg (%) 

r - nxUc,+,,, ACk (tlx. ..,. xs,) 

Y is the set of attributes in S1 that are mentioned in either 
C,+tb ACk or contained in X. Relation rl is a temporary rela- 
tion to hold the intermediate result. Note that instantiation can be 
applied to a set of nodes (relations) of the graph HE. 

The connection graph is modified as follows. Substitute ri in 
place of St and remove all edges eI. _.., ee. Create a new graph with 
node St and the edges el. . . eq. 

instantiation of the relation 5, in the Figure 2a produces the fol- 
lowing program. The modified connection graph is shown in Figure 
2b. 

‘1 + fly A.y c by B =monday (S,ll 

‘+~~CZB~~C~ACJAC, hxf%xsw~ 

@ 
sy 5 

Figure 2b. 

Iteration is analogous to the notion of tuple substitution. Given a 
single statement 

r +- n,u, (SIX. ..I XS,). 

and its corresponding connection graph. choose a relation. say St. 
The tuples of Sl are iterated giving rise to the program 

r+-0 
for each tuple t in St do 
begin 

r1 +- rIYUC(,) (Szx. . . XS,) 
add rt to r with appropriate padding 

end 

Here C(t) means C with every occurrence of an attribute yt.A 
replaced by the value t(y1.A). Y contains those attributes in X that 
are not in the schema of S1. The appropriate padding for ri is t(X-Y). 
That is ri is extended by the portion oft that is included in X. 

The corresponding changes in the connection graph is to remove 
the node St. Any edges that were incident on St become loops. 

Iterating on the tuples of the relation S, in Figure 2b. we obtain 
the following program. The transformation of the connection graph of 
Figure 2b is shown in Fieure 2c. 

rl + ~Y.A,~ c Gy B =mondv FYI): 

r - 0; 

The query decomposition algorithm carries out the above two 
. 

transformations on a given connection graph until the graph reduces 
to a set of isolated nodes. For details regarding the query decomposi- 
tion algorithm see Maier [Maie83]. 

for each tuple t in 5, do 
begin 

II y C r2 - UC2 (I) AC3 (I) AC4 (‘1X%& 

add r2 x <t(z.B)> to r: 
end. 

-386- 



CP 
ST cl 

Figure 2~. 

6. Multi-query Graph and its Decomposition 

The basic idea behind a multi-query graph is to create a single 
connection graph which represents a set of queries in a non- 
procedural form. A multi-query graph facilitates the detection of com- 
mon sub-expressions among the queries represented by the graph. In 
this section we start with the definition of a multi-query graph. We 
then extend the definition of the two tran&rmations. namely. instan- 
tiation and iteration with respect to a multi-query graph and describe 
the new decomposition algorithm for a multi-query graph. A multi- 
query graph. when decomposed. computes the relations correspond- 
ing to the queries represented by the multi-query graph. We propose 
a set of heuristics for the decomposition of a multi-query graph using 
which common sub-expressions are easily identified. 

Let El. . . . . En be n algebraic expressions as shown below: 
UC’ (S{x xs$ 

UC2 (ST x 211 xs,2 

UC” (Sfx xs:; 

where C’ = CiA ACii is in conjunctive normal form. We shall 

write the expressions El. __.. E, in an alternative form as 
UC’: :uc” (S’X XS,) 

where each Si. for i = 1 to m is a member of the set of relations 
making up the Cartesian product of any of the expression Ei. for j=l 
to n. The separator ‘:’ separates the selection conditions of the 
queries. Note that the expression (Six xS,) may contain rela- 
tions that are not reference> in some of the conditional expressions. 
In that case the Cartesian product with respect to a relation whose 
attributes are not referenced in the selection expression need not be 
computed. For the sake of simplicity. we will assume in the 
remainder of the discussion that every condition Ci is atomic in 
nature. 

Example 2. 

Two expressions El and E2 are shown below. 

“ci’ AC) ACf (SXXSY) and 

"Cl AC2 AC3 AC2 (sYxs~xsw) 
The two expressions El and E2 can be alternatively written 
as 

uC,’ AC1 AC1 : UC? AC,j ,,C] ,,Cj (sXxsYxsZxsW) 

We represent the expressions El. . . . . En by a hypergraph 
HE,, ,, E,. called the multi-query graph. For an arbitrary expression 

UC’: DC” (S’X XS,) 

a multi-query graph is defined as follows: 

a) There is a node corresponding to each of the relations 
S,. .__, S, in the above expression. 

b) There is an edge for each of the conditions in the selection 
expressions C’ through C”. Each edge bears the condition 
number as well as the query number it belongs to. 

Henceforth. We shall simply refer to a multi-query graph as a 
query graph. 

Example 3: 

The multi-query graph corresponding to the expression of Exam- 
ple 2 is shown in Figure 3. The conditions correspond to the attri- 
butes of the participating nodes (or relations). It is straightforward to 
construct a multi-query graph using the algorithm for constructing a 
connection graph. The Lransformations on the multi-query graph are 
explained below. 

6.1 Instantiation 

The purpose of instantiation is to push the selections towards 
the leaves of an expression tree. In a query graph several selections 
on a relation can be performed depending on the number of edges 
from different queries that are incident on that node. Later we will 
indicate how the similarity of these conditions can be used to 

3 . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3. 

compute temporary relations for the instantiation operation. 

We start with the statement 
r’ : :r”+-IIx~:...:IIxnuc~: :ucn (Six xS,) 

Instantiation starts with the choice of a relation to instantiate. 
Let Si be the relation (node) chosen. Let ei, ___. eq be the only edges 
of the query graph that consists of node S1. Recall that each edge ei 
is labeled with a conjunct C/ where j denotes the query number to 
which the conjunct q belongs. Let us partition the edges ei. _._. eg 
into n sets. each corresponding to a query. such that each partition 
contains edges that belongs to that query. If there are no edges in a 
partition. then an identity condition (which is satisfied by every tuple 
in a relation) is assumed for that partition. Let k partitions numbered 
1 through k contain non-identity conditions. 

The ~~nsforkmed program for this instantiation is as follows: 

rl . :htnyl L. :nvk(“ciI.,t, .,,, qsl h)) 

‘k r +-’ x”“c,k,st (rjx xS,) 

rk+‘+~,k+luck+l (six xs,) 

r”+~,,o,, (Six xS,) 

where r[. p = 1 to k represents different relations computed for 
different queries using the selection condition Cist (the subscript inst 
denotes the conditions that are relevant to the instantiation of the 
query p: the subscript rest denotes the rest of the conditions (Clest) 
for the query p. That is Cist = (Cp-C&,),) on S1. For a query u 
whose edges are not .incident on Si (that is Cy is the identity condi- 
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tion) no selection is applied and the temporary relation is not com- 
puted. Y’ for i = 1 to k represents the set of attributes that are in 
St and are not mentioned in the rest of the conditions in the graph 
corresponding to the query i or contained in Xi. Relations r/ are tem- 
porary relations to hold the intermediate result. 

The changes to the query graph. corresponding to an instantia- 
tion, are as follows. Replace the node St by a set of nodes rr. .._, rb. 
Each edge ei, belonging to the query i that is incident on St and does 
not belong to the set et, ,... e, is associated with the node r/. if i is 
in the range 1 to k or with the node St. Also the node St is 
represented k times associating the appropriate edges from the set 
et. en. The resulting graph has at least k+l components. 

Example 4: 

For the query graph of the previous example. if we instantiate on 

Figure 4. 

the node S,. we would obtain the graph shown in Figure 4. 

Note that the instantiation transformation as stated above splits a 
node into k nodes (two in this example) which is determined by the 
edges that are incident on the instantiated node from other nodes in 
the query graph. Note also that if the conditions Ctt and C: were to 
be identical. then the node S, need not be split into two nodes. In 
other words. rf and rt would be identical. It is also possible to 
choose a set of nodes for the purpose of instantiation. 

The transformation described above on a query graph computes 
r] for each i by scanning the relation St only once. 

6.2 Iteration 

Iteration performs one or more joins using a for loop. This 
transformation is also referred to as tuple substitution or dissection in 
the literature. 

We start with a query graph corresponding to the statement 
rl : :,n 41x1:...:Il )(“ocl: XC” (SIX ’ XS,) 

One of the relations, say St is chosen for iteration. The 
transformed program is 

r :...:r 1 k+-0 

for each tuple t in St do 
be in 

8 rl:...:rf+-nvl:...:Il ynucl,tl: :op I,) (S2x XS”,) 

for i = 1 to k do 
begin 

add ri to ri with appropriate padding. 
end: 

end. 

Here C’ (t) means C’ with every occurrence of an attribute Vj.A 
is replaced by the value t(V1.A). Y’ contains those attributes in Xi 

that are not in the scheme of St. The appropriate padding for rl is 
t[X’-Y’). That is ri is extended by that portion of t that is included in 
X’. 

The query graph is transformed as follows. The node St is 
removed from the query graph. Any edges that were incident on St 
become loops. 

Example 5: 

Iterating on S,. of Figure 3. gives the following transformed pro- 
gram. 

r1 : r* + 0: 
for each tuple t in S, do 
begin 

1.2h-n h . h xl : n,2(ql,,) : UC2 ,I) (s,xs,xswl) 

add r1 to rt with appropriate padding 
1 add rt to r2 with appropriate padding 

end. 

where C’ (t) is Ci (t) A C: (t) A Cf (t) and 
C2 (t) is C: (t) A C; (t) AC3 (t) ACf (t). 

Note that Cl (t) and (Cf (t) AC$ (t)) do not contain any attributes 
of S,. Hence the tuple t does not participate in the evaluation of 
these conditions. 

The modified query graph after the iteration is shown in Figure 

1 

5 

8 ,e’ 

sx ,,........,, “‘I 1 

2 
‘* 

c 
. .I . . . . . . . 2 

r. 
L ,... . . . . . . . 2 I ,’ ‘O( B 

0 
2 #~~~~---~~ 

. ..., z . . . . . . . . . . . . . . . . . . . c3 . . . . . . . . . . . . . . . . . . . . . . . . . 0 SW )“: 

../’ 

5. Figure 5. 

6.3 Heuristics for Detecting Common Sub-expressions 

So far we have extended the transformations, namely. instantia- 
tion and iteration in order that they can be applied to decompose a 
multi-query graph. Using the decomposition algorithm proposed in the 
next section. one can obtain a single program which computes 
answers for a set of queries. However. the transformations do not 
identify and make use of the presence of a common sub-expression in 
the evaluation of a set of queries. The detection and exploitation of 
common sub-expressions have to be performed using heuristics to 
select a node that is appropriate for that purpose. In this section we 
express the conditions under which common sub-expressions can be 
detected and present heuristics that can be incorporated into the 
decomposition algorithm. 

We enumerate below conditions that can be used to detect com- 
mon sub-expressions. 

1. A node chosen for instantiation has several edges from 
different queries incident on it and the conditions associated with all 
the edges are identical. 

2. A node chosen for instantiation has several edges from 
different queries incident on it and the edges can be partitioned into 
two groups (each having identical conditions with in the group) such 
that the condition of one group subsumes (intuitively more general) 
the condition of the other group 

-388- 



3. A node chosen for iteration has several edges from different 
queries incident on it and these edges can be partitioned into sets. 
where each set consists of edges from the same subset of queries. 

4. Whenever. a node chosen for instantiation satisfies 3) and 
the number of partitions is small (either 1 or 2). then perform the 
iteration immediately followed by instantiation. 

In the above. the first heuristic handles the case where all selec- 
tions conditions are identical and hence a single temporary relation is 
computed. The second heuristic groups conditions for instantiation in 
such a way that only a single temporary relation corresponding to the 
weaker of the two conditions is computed and later the tuples are 
separated using a selection using the subsumed condition. 

The third heuristic tries to perform the iteration operation for 
several queries once. The fourth heuristic is important to postpone 
the selection in favor of iteration to capture a larger sub-expression. 

6.4 The Decomposition Algorithm 

We describe below an algorithm to decompose a multi-query 
graph. The algorithm incorporates the heuristics described in the pre- 
vious section. 

Algorithm MQD /* multiple query decomposition */ 

INPUT: A multi-query graph and a statement corresponding to the 
multi-query graph. 

OUTPUT: A program which computes the relations for the expres- 
sions in the multi-query graph. 

begin 
Repeat 

Choose a node satisfying the lowest numbered option from the 
following set of options. 

1) Choose a node for iteration. if all the edges going to 
other nodes are identical and the edges associated with 
that node itself are not in the option 2). If edges incident 
only on that node satisfy 2). then perform instantiation 
immediately following the iteration operation. 

2) Instantiate a relation that is contained in several one 
node edges. if 

a) the conditions for all edges are identical 
b) the conditions can be grouped into two sets such 
that one set subsumes the conditions of the other set 

If all the edges are simple (an edge is simple. if the condi- 
tion associated with the edge is an equality condition). then 
label the newly generated relations as small. In the above. 
preference is given to a node that has edges incident on it 
from different queries rather than the same query. 

3) When a sub-graph (or a node) has edges belonging to 
only one query. then use the heuristics associated with the 
connection graph decomposition algorithm. 

4) Iterate a “small” relation. Prefer the one having only 
simple edges. 

5) Iterate a relation. Prefer one on simple edges. 

Either instantiate or iterate on the chosen node. Obtain a new 
multi-query graph as well as the corresponding program. 

until (the query graph is a set of isolated nodes) 
end 

6.5 Examples 

We illustrate the above algorithm on the following examples to 
indicate the computation of common sub-expressions. The examples 
are drawn from Jarke [Jark84). 

Example 6. 

Let the database consist of the following base relations: 
isolated(pname. organism. site. qty) 
observed(pname. symptom) 
relevant(symptom. site) 
surgery(pname. day) 

Let the intensional axioms (view detinitions) be 
infected(pname. site) +- isolated(pname. organism. site. qty) 
infected(pname. site) 6 observed(pname. symptom). 

relevant(symptom. site) 

Let the query to be evaluated on the above deductive database 
be 

‘What patients with monday surgery have wound infec- 
tions?’ 

The above query produces the following two disjunctive queries: 

Ql: &A “cf AC- *cf (sxxs,) 

where Cd is x.C = wound. Ci is y.A = x.A and C: is y.B = monday 
and S, represents the relation isolated and S, represents the relation 
surgery. The attributes in each relation are denoted by upper case 
alphabets such as A. B etc. 

where CT is y.B = monday. C$ is y.A = z.A. C$ is z.B = w.A and 
C$ is w.B = wound. Here S, represents the relation surgery. 5, 
represents the relation observed and S, represents the relation 
relevant. 

The multi-query graph corresponding to the above disjunctive 
queries is as shown in Figure 3. The statements corresponding to the 
queries are 

Selecting the node S, for instantiation (using option 2). we 
obtain the following program: 

r + r1 U r2. 

rf.’ is labeled as a simple relation since all the conditions of instantia- 
tion are equality conditions. The transformed graph is shown in Fig- 

c: 
8 3 -““‘I) 2 

‘. . . . . . . . . .*’ 
,rC 

1 

Figure 6. 

ure 6. 

Iterating on the node rt.* (using option 1). we obtain the follow- 
ing program. 
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;/ 2yf;:y.. by B = manday(S 

for each tuple t in r!.’ do 

begin 

end. 
r + ri U 3. 

where Cj (t) is x.A = t(y.A) and Cl (t) is z.A = t(y.A). The 

Figure”7. ’ ., 
transformed graph is shown in Figure 7. 

Selecting S, for instantiation [using option 2). we obtain’ the prv- 
gram 

begin 

4 - “cj (1) ACj w 
rj t (i)xs,xs,): 

+ ccf 11, AC] ,,Cj (sXxsZxsW)’ 

add r’ x <t(y.A)> to r’: 
add r2 x <t (y.A)> to?: 3 

end. 
r + r’ U r*. 

Note that since there are no conditions assocbated with the com- 
putation of rj. the statement can be removed and the relation r] can 
be renamed as rd. We effect this change when we write the next 
version of this program. The corresponding query graph is shown in 
Figure 8. Note that r] is labeled as simple. 

Instantiating on S, (using option 2a). we obtain the following 
program. 

rl” + nyn (0~ B = monday (Sy)): 
r :r*+-0: t 

for each tuple t in. r{.2 do 
be in 

$ - OC$(,) A,; (‘X): 

rf - fl WA (“~1 (%I): 

‘22 + “C$ II) AC] (Sx~Szxr~): 

add rd x <t (y.A)> to r’; 
add r$ x <t (y.A)> to?: 

end. 
r + r1 U r*. 

The corresponding query graph is shown in Figure 9. 

Iterating on r]. we obtain the following program. 
r{.2 + ny.A (“y B = myday (Sy)): 
r’ : r2 + 0: 

Figure 8. 

@ ‘Q-)<.. (g--,‘: 

(r;;l,c;(t;2 o 
. . . . . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 9. 
for each tuple t in rt.2 do 
begin 

d - “Cj (I) ACj &)’ 

rl e &A bcj (%d: 

r2 ‘+ 0: 
for each tuple u in r: do 
begin 

rl’ - “C# It) ,,Cf (,,I (sXxsZ); 

add rf to r& 
end: 
add r$ x ~i’(y.A)> to r’: 
add r$ x <t (y.A)> to $: 

end. 
r +- ri ti r*. 

where cf (u) is 2.~ = u(w.A). The query graph is shown in Figure 19. 

Finally. instantiating on the relation S,. we obtain the following 
program. 

rl,’ +- ny.A by+3 = monday (Sy)): 
r :r*+0: i 

for each tuple t in r:.2 do 
be in 

(i 
‘2 + “Cf (r) AC1 (%): 

rf +- kA bet h)h 

rb + 0: 
for each tuple u in r] do 
begin 

‘+ - “Cf (I) AC? (II) (sz): 

rj t (S,xr$): 
add ri to r$: 

end: 
add r1 x <t (y.A)> to r’: 

3 .add r2 x <t (y.A)> to &: 
end. 
r + r’ U r*, 

The above program can be simplified by removing relations from 
the Cartesian products for which there are no conditions. The final 

-390- 



Figure 10. 
versions of the program is as follows: 

4.’ + ny.A by B = monday (Sy)): 
r’:r2-0: 

for each tuple t in rt.2 do 
begin 

4 - ?&I) AC3 (SJ: 

d + &A bJc2 (SW)): 

r? +- 0; 
for each tuple u in r] do 
begin 

d + “cf (I) AC3 (to) (Sk 

4 - (4: 
add ri to r]: 

end: 
add rj x <t (y.A)> to r’: 
add r$ x <t (y.A)> to ?: 

end. 
r 6 r1 U r2. 

In the above program. several computations are performed in 
common. The relation S, is accessed only once and the selection on 
that relation is performed only once. Also. the intermediate relation 
ri,2 is scanned only once to compute join with respect two relations 
S, and S, corresponding to different queries. 

Apart from the heuristics specifically characterizing the detection 
and exploitation of common computations. heuristics associated with 
the decomposition of a connection graph can also be utilized. 

Example 7: 

Without going into the details. the final program obtained for the 
the queries of Example I. using the heuristics described above. is: 

r”2 +- “y A (~Y.B = monday VS.)) 
r f x2 t 0: 
for each tuple t in S, do 
begin 

add r] times <t(x.B)> to r2 
end: 

r2 *- b A bcj2 (r’))) 

Figure 11. 

The transformed graph is shown in Figure 11 

In the above program the larger common sub-expression has 
been identified and computed. The selection on employee has been 
postponed to compute the common join. 

7. Summary 

In this paper we defined a multi-query graph as a means to 
represent a set of queries in a non-procedural form. We defined 
instantiation and iteration operations for a multi-query graph. We 
proposed a set of heuristics and indicated through several examples 
how common sub-expressions can be detected and exploited using 
the proposed heuristics. We described an algorithm to generate a sin- 
gle plan from a multi-query graph using a set of heuristics. We 
believe that the approach presented in this paper can be extended to 
include a cost model based of the physical representation of relations. 
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