
ON ANAI~OGICAL Qur~lru P1~0c~3slNG IN LOGIC DATAUASE

Takashi YOKOMOIU

IIkfi-sIs, ~UJI~KU L’.t’D. :
140 Miyamoto, Numazu

’ ‘Shizuoka, JBPAN 410-03 :

Abstract
This paper discusses a problem OF query

processing in logic databases and proposes a method for
optimizing queries which is based on the idea of
analogical query processing. First, we introduce the
notion of a higher-order relation which leads to a kind
of design principle for constructing spatially efficient
logic databases. Then, by making use of the notion of a,
higher-order relation, a method is presented in which a
query given in a Horn’logic formula is transformed into
a string called primitive expression over the alphapet
comprising primitive constructs of’ an internal
representation language. A primitive expression of a
query represents the essential meaning of the query
and is used to detect analogy between queries. By using
the analogical property between the transformed
queries, a method for optimizing queries is
demonstratedin threeways of query processing.

1. Introduction.
It is one of the primary i!ssues for those who wish

to construct database management systems to establish
the efficient methods ,for data representation, data
manipulation, query processing, and so forth. Here, the
efiiciency is the most important requirement; and it
has two aspects: time and space. Thesetwo measures on
efficiency are mutually related and there exists, in
principle, a trade-off relation between them. It totally
depends on our intension which benefit should be more
pursued.

Since a logic programming language Prolog has
been proven to be a powerful tool for designing and
constructing relational databases, a large amount of
work on logic databases has been reported in reference
to the area of query optimization, problem solving, and
others in logic databases ([C 811, [G 811, [I 811, [KY
82],[YSI 863). In fact, being supported by unification
mechanism and backtracking control, Prolog has many
attractive features as a database query language, and
some functional extensions of Prolog are proposed for
the purpose of building up its descriptive power as a
query language.([OT 841,U 821,lY 841). However, it is
also true that Prolog must pay much time(inefficiency)

in return for its convenience, which is the current main
problem in the areas of logic databases.

This paper discusses a problem of processing
queries in logic databases and proposes a method fog
optimizing queries in which the key idea is based on the
utilization of “analogy” among queries.

In analogical query processing, we face several
difiiculties to overcome. One of them is the problem of
how to detect analogy betweenqueries. We propose one
possible method for detecting analogy in which the
concept of higher-order relations plays the central and
essential role. The .basic idea underlying the concept
may be explained as follows.

In a conventiona logical formula;the concept of
“ancestor” is defined using the concept “parent” as

ancesfor-(X,Y) cpurentiX,Y)
ancestor(X,Y) tparent(X,Z),ancestor(Z,Y)
where ancestor(X,Y)(orpurent(X,Y)) means that

* X is an ancestor(or parent),of Y.
On the other hand, we notice there is another way

of representing the concept “ancestor”. It is not so hard
to see that a .relation “ancestor” can be obtained by
applying infinitely many times the transitive law to a
relation “parent”. In. other words, “ancestor” is the
transitive closure of “parent”, which is formulated by

uncestor(X,Y) d transitive-cZos~re(purerzt X,Y)
where the definition of “trunsiti~e-closure:’ is
assumed,

in an informal manner.
We analyse the difference between the two

formulations as follows. That is, the latter way of
defining “ancestor” is based on abstracting the higher-
order predicate of “transitive-closure”, while the former
is concerned with a static formulation of the concepts,
and as shown below, the notion of a higher-order
relation leads to a design principle for spatially
efficient logic databases.

The next section introduces the concept of higher-
order relations, and based on the concepts we sketch a
logic database design. Section 3 shows how a given
query is transformed into,another representation called
primitive expression which can be taken as the
semantic essence of the query and is used for detecting

Permission fo co y
aduanfegi, fhe $

wifhouf fee all orparf olfhis maferiaZ is granfedprouided fhaf fhe copies are nof made or distributed /or dire& commercial
LDB copyright notice and fhe Me offhe publicafion and ifs dafe appear, and nofice is given fhaf copyin is, by permission o/

fhe Very Large Data Ease Endowmenf. To cop
r

ofherroise, or fo republish, requires a fee and/or special permission from f e Endowment.
a

Proceedings of the Twelfth International Con erence on Very Large Data Bases Kyoto. August, 1986

-376-

analogy between queries. In Section 4, using the
analogical property between queries a method for
optimizing queries is demonstrated in three ways: two
of them concern analogical query optimization, and one
concerns parallel query evaluation. Finally, con-
cluding remarks and the future research directions are
briefly mentioned in Section 5.

It should be noted that as a terminological
convention, we often use “query” to mean its relational
definition throughout this paper.

2.IIigher-Order Relations and Logic

Databases
This section introduces the notions of a higher-

order relation and logic database in a rather informal
manner.
2.1 Higher-order Relations

There are, in general, two kinds of levels with
which the inference mechanism is usually concerned:
the object-level and the meta-level. Following the
conventional understanding, the object-level concerns
relations about the facts of the world considered, while
the meta-level deals with the methods of manipulating
relations at the object-level.

We start our discussion with defining the object-
level as the world comprising all sorts of individuals. It
may contain names of persons, physical materials, and
all others that do not involve any abstract concecpt. We
call statements concerning the object-level the first-
order relation. Further, by the second-order relation we
mean the statement which refers to the first-order
relation. In this manner, one can think of the higher
order of relations, and the notion of a higher-order
relation plays the central role in this paper.

In the literature, meta-level inference has been
often discussed in reference to the subjects of
controlling search and deriving control information in
various fields such as algebraic manipulation, program
verification, and meta interpreter([BW Sl],[D 80],[SB
SZ]), and the concept itself is recongnized as important
in its own way. In this paper, we are concerned with a
kind of meta-level inference as well as higher-order
relations in general.

To illustrate these concepts introduced above, we
give a simple example.

I<xampIe I.(Family World)
Consider a small database comprising the

following facts. The domain of the world is the set of
person’s names: { barbara, cathy, jim, mary, nancy,
robert, tom }. The set of facts is as follows:

“bnrhara ” is n person, “colhy” is a person,
‘~irn” is a person, “mary” is n person,
“rmncy” is 8 person, “ro6et-t” is n person,
“lam” is n person, “catlty” is a child of”roberl”,

“nartcy” is a child of “bar6ara”. “jilt” is a child of”mary”,
‘ljinz” is n child of”tom”. “mad’ is a child of “nancv”.

”

“robert” is n child of “rtaacy”, ‘jirn” is a man,
“roberl” is a mnn, “lam” is a man

gives a set of the first-order relations, while some of the
second-order relations are

“parent” is the symmetric relation of “child,‘,
“ancestor” is the transitive closure of “parent”,
“woman” is the complement of “man”,
“person” is the union of “man” and “woman’,.

Further, the set of the third-order relations may
contain:

The complement of “complement” is “identity”,
The complement of’knion” is the intersection of
“complement”s (De Morgan’s Law).

As easily seen, it is all right to understand that
(1) the first-order relation is a relation concerning the
object-level relation, i.e., a relation among individual
constants in the universe of discourse,
(2) the second-order relation is a relation concerning
the first-order relations, and inductively
(3) the Nth-order relation is a relation concerning (N-l)
th-order relations.

We shall show in the next subsection that this
classification of relations leads to a very spatially
efficient design technique for representing relations,
and hence, for logic databases.

Before moving on to the next discussion, some
definitions are needed.

Let p be a relation of some order. If no variable is
contained in p, then p is called instance relation.
Otherwise, p is called relation schema. In other words,
an instance relation literally represents an instance,
while a relation schema specifies a set of instance
relations. For example, relations given in Example 1
are all instance relations. A statement like “X is a
symmetric relation of Y,, is a relation schema.

Finally, as a notation, for n >O, Rn denotes the set
of all n-th order relations, and for convenience by Ro we
denote the set of individual constants in the domain of
discourse world.

2.2 Logic Database lIesign
Now, we outline the logical design of the logic

database which we call LDB. Taking a database shown
in Example 1 into a part of the LDB, we illustrate the
conceptual configuration ofLDB.

LDB mainly consists of three components : HRS
(Higher-order Relation Schema) module, BIR (Base and
Instance Relation) module, and EM (Evaluation
Module). HRS module contains all kinds of higher-
order relation schemas which are independent of data
domains, while BIR module comprises a finite number
of its submodules each of which is used for storing
fundamental relations, called base relations (see below,
for definition), and instnace relations in each domain.

-377-

(AS for other components such as interface module, no
discussion will be given, simply because they are not
our intension of discussion here.)
[HRS module]

I-IRS module contains the definitions of higher-
order relation schemas whose orders are greater than
one. It may contain “universal” concepts independent
of individual domains.
[BIR module]

Each submodule is created per each domain of a
world. It contains instance relations of higher-order
relations as well as base relations which are specific to
the domain. Base relations in a domain give the
minimum sufBcient set of the first-order relations from
which one can derive any other first-order relations in
the domain by using both relation schemas of HRS and
instance relations contained in the submodule itself.
For example, BIR submodule for the faimly world may
contain instance relations of “child” as its base relation,
and also instance relations of second-order relation
“symmetric”.
LEMI

Evaluation module evaluates queries which are
given in QL (Query Language). It consists of
Transformation module and Evaluator. More details
on EM and QL will be given later.

Figure 1 sketches the conceptual design of LDB.

Here we present the full description of BIR
submodule 1 which corresponds to the data of a family
world given in Example 1.

[Blli submodule for Family World I

[Base relations]
person(barbara) manfjim) child(nancy,6arbara)
person(cathy) man(robert) child(jim,ntary)
person(jim) man(tom) child(marynancy)
person(mary) chiZd(robert,nancy)
person(nancy) child(jim,tom)
person(robert) chiZd(cathy,robert)
person(tom)

[Instances of second-order relations]
symntetric(chiZd,parent)
transitive-closure(parent,ancestor)
complement(man,woman)
union(person,man,woman)

[Instances of third-order relations]
equivatence(compZement +complement,identity)
equiuaeZnce(complement(union),

intersection(compZement))

It should be noted that the set of base relations for
Family World contains only instance relations of first-
order: “person”, “man”, and “child”, and no other
relation concerning a family world (like “parent”,
“ancestor” and so forth) appears in anywhere of LDB.
As shown later, first-order relations other than base
relations are derived (constructed) from base relations
using higher-order relations.

HRS module

(definitions of higher-
order relation schemas)
e.g., the definitions of
symmetric(X,Y)
transitive-closure(X,Y)
complement(X,Y)

1 etc. I

I +
I

+
BIR submodule 1

1
(base relations &
instances of higher-
order relations)

;eTson(tom)
child(tom,mary)
symmetric

(chiZd,parent)
etc.

2
----- ----

J&Fid
of

Arith-
metic

. . . Itzid
of

Com-
merce

Figure 1. Conceptual Configuration of LDB

The design philosophy behind our configuration
may be summarized as follows:
(1) abstracting high-level concepts (higher-order
relations),
(2) separating low-level details depending on domains
from the universal properties of high-level concepts,
(3) gaining clarity and modularity in handling data and
processing queries, leading to a design method for
spatially efficient (compact) logic databases.

3. Transforming Queries into Primitives

Using the notions of higher-order relations
introduced in the previous section, we shall show in
this section how a query given in a Horn logic
formulation is transformed into a string of primitive
relations with connectives (operations) which consists
of base relations and higher-order relations.

3.1 Query Language(QL) and Internal Representa-
tion Language(IRL)
Query language QL is assumed to be the Horn

logic, that is, the subset of the first-order logic on which
the programming language Prolog is based. (Note that
Prolog is not purely a subset of first-order logic.)

Given a query defined in Horn logic formulation,
we transform it into another expression which is

-378-

constructed from base relations and instance relations
in the domain the query concerns by using relational
algebraic operations and set operations. As shown
below, relational algebraic operations as well as the set
operations are closely related to and easily translated
into(or realized by) the first-order logic formulas, and
vice versa.

< llelational Algebra Operations >

(1) projection : pr(P,Z)
pr(P,T)(X) iff P(Y,X,Z), for some Y,Z, where X is
the I-th argument of P.

(2) restriction : res(P,Q,f,J)
res(P,QJ,J)(X) iff P(X) and Q(Y,Z), where Y,Z are
the I-th and J-th arguments in X of P, respectively.

(3) conjunction : AND
(P AND Q)(X) iff P(X) and Q(X).

(4) disjunction : OR
(P OR Q)(X) iff P(X) or Q(X).

(5) complement : com(T,P)
com(T,P)(X) iff T(X) and not(P(X)), where not(P(X))
means P(X) does not hold true.

(6) product : P X Q
(PX Q)(X,Y) iff P(X) and Q(Y).

Notes
1) In the definition above, an upper-case letter X (or Y,
or Z) denotes a sequence of arguments.
2) In the definition of complement “com(T,P)“! T is a
relation that specifies the total domain in whrch P is
definable.
3) Meta-notion “not(P)” is assumed to be defined as a
relation with higher order than that of P exactly by
one.

In addition to the operations above, we need some
more definitions.(Note that Ro is the set of all
individuals at the object-level in the world of
discourse.)

(i) Composition
Let P and Q are binary relation names such that

P(X,Y), Q(Y,Z) are in R,. Then, the composition of P
and Q, denoted by P+ Q, is defined as follows:

(P-t- Q)(X,Z) iff P(X,Y) and Q(Y,Z).

The composition of P and Q also results in a relation of
RI,.

(ii) Identity
One distinguished binary relation in Rn, which is

called the n-t/z order identity and denoted by In, is
defined by

1,(X,X) for all X in Rn-1.

(iii) Logical constants

By ‘I’ and F we denote “tautology” and
“contradiction”, respectively.

The set of all relational algebraic operations, all base
relation names, an operation +, I,(n>O), ‘I’ and F
constitute the set of primitive constructs of the internal
representation languageflKL) ofLDB.

3.2l’ransforming query into primitive expression
Now, recall the BIR submodule for the family

world. In what follows, we always assume the
submodule to be in LDB.

For a given query, say, “Who is a cousin of Jim?‘,
we shall show how the query is trasformed into a string
of primitive constructs, and then how it is evaluated for
obtaining solutions.

Note that LDB has neither facts nor rules
concerning “cousin” relation. However, we observe one
of the possible ways to solve this problem in the
following manner.

A first-order relation “cousin” is defined in a
Prolog-like notation

cousin(X,Y)tchiZd(X,Z),sibZing(Z,W),parent(W,Y)(3.1)
sibling(Z!W)+-

chlZd(Z,U),parent(U,W),not(identity(Z,W))..,(3.2)

Using “composition(+)” and “conjunction(AND)“, (3.1)
and (3.2) can be rewritten as
cousin(X,Y)t [child + sibZing+parent](X,Y) *** (3.1’)
sibZing(Z,W) 6

[(child+parent)AND(not(identity))J “‘(3.2’).
Hence, we have

cousin(X,Y) 4-
[child+ (child +parent)AND
(not(identity))+parent](X,Y).

Note that “parent” is a symmetric relation of “child”,
and let “parent” be denoted by “symmetric(child)“, then
finally ,

cousin(X,Y)t
[child + (child + symmetric(child))AND
(not(identity))+symmetric(child)l(X,Y)

is obtained.
Abbreviating the right-hand side of this expression, we
may as well identify a relation “cousin” with

c+(c+s(c))AND(not(I))+s(c) “’ (3.3)
where c(child) and I(identity) are in RI,
s(symmetric) is in R2.

Thus, using base relations and primitive constructs
(higher-order relations and operations) a relation
“cousin” is transformed into a string consisting of only
those elements. The transformed formula is called
primitive expression for the original relation.

Another example for query transformation is that
given a query “Who is an aunt of Cathy?“, represented
by ” taunt(X,cathy)” with its definition :

aunt(X,Y)tsibling(X,Z),parent(Z,Y),fenal,

-379-

the transformed query is as follows :

aurtt(X,Y)+-[((c+s(c))AND(not(I))+s(c))AND
(coln(p,m) XT)l(X,Y)

where p(person) and m(man) are base relation
names in Rl.(Note that com,‘J’,~(poroduct)
are primitive constructs of IRL in LDB.)

Getting back to the query “tcousin(Xjim)“, one
may eventually obtain an answer “X=cathy” by
evaluating(3.3).

Generally, it may happen that a relation has its
more than one primitive expressions. For example, a
relation “cousin” has another formulation as shown
below :

cousin(X,Y)tgrarrdcltiId(X,Z),grandparerli(Z,Y),
child(X,u),not(identIty(U,W)),parent(W,Y)

that is ,
co~~si~l(X,Y)t[(gra~~dchild+grund~~arent)AND

(child + nol(identity) +parent)](X,Y).
We can eventually have another primitive expression
for “cousin”:

(~+~+~(~)+s(c))AND(c+not(I)+s(c)) . . . (3.4)

Now, it is almost obvious that the distribution law as
well as the associative law hold :

X+(YANDZ)= (X+Y)AND(X-i-Z)
(XANDY) +Z=(X+Z)AND(Y+Z) 1 * * * (L)
x+(Y+z) = (x+Y)+z.

Then, one can easily see that using these laws the
expression (3.3) is reformulated into (3.4). and vice
versa.

Let y be a primitive expression for a relation, and
suppose it is expressed as : p =yl +pz+ ... +I),~ (n>O),
where no pi can be transformed by the laws (L) into the
form of qi + ri any more. Then, a primitive expression p
is called canonical.

As shown later, the canonical primitive
expression of a query provides a method for treating the
meaning of the query, and hence, for the semantic
analogies among queries in logic databases. We note
that in additon to (L) other conventional laws involving
OR, AND, ‘I’, 1’ like commutativity, associativity,
identity are all available for transforming (optimizing)
primitive expressions.

Figure 2 illustrates the query processing line in
EM.

4. Analogical Query Processing and
Optimization

In the process of evaluating queries, we often
observe that there are many cases where exactly the
same or quite similar path for retrieving data is
repeatedly performed. There may be no doubt that for
the purpose of gaining time efficiency the utilization of
this “analogical feature” in query processing will be
greatly beneficial. In this section we shall discuss this

Evaluation Module
i...“..“.“.. .

query in I

primitive expression

where a primitive expression is a string over the alphabet:
BIR~U~~~UBIR,,URAU{+,I,,,T,F:n>O};

BIRi = (r: relation name in BIR submodule itbase or
inslance whatever it is)}

RA = the set of relational algebra operations (including
set operations)

Figure 2. A Query Transformation in EM

problem of analogical query processing and show a
possible way to solve it within the framework of logic
databases.

Roughly, there are two primary difficulties in
dealing with “analogy” in the general situation. One is
how to detect analogies, in other words, how to
formalize analogies. Further, the problem of how one
can justify the results obtained by means of analogy
will be the other. Here, we are concerned with the
former, while the latter seems to be much more
profound and too hard to solve. In the context of
analogical query processing in logic databases, we
notice there are two kinds of analogy : syntactic
analogy and semantic analogy. Compared with
syntactic analogy, semantic analogy has broader
meanings and fully covers many kinds of analogies in
daily life.

Using several examples, we demonstrate a
method for evaluating queries based on analogies
among them. Our approach strongly depends on the
use of primitive expressions for the queries introduced
in the previous section. Taking advantage of the
property of canonical primitive expressions, one can get
a way of detecting analogy and argue on analogy
between the two queries.

4.1 Transforming semantic analogy into syntactic
one
Turning back to the discussion given in the

previous section, we have observed that the
identification of a relation in different formulations can
be treated using the primitive expressions for the
relation. Actually, a relation “cousin” formulated in
two different ways (in syntax) has been identified as a
unique representation called the canonical primitive

-380-

expression. We notice this is a special case OF semantic
analogy in daily life in the sense that identity is
nothing but the extremity of analogy.

On the other hand, the prefix like “quasi”, “semi”,
or the suffix like “in-law” introduces one of the typical
expressions For describing analogial objects.

Example 2

Suppose that a query “Who is a grandparent-in-
law of Torn?” is given in a logical Formulation:“+-in-
law(grandparent,X,tom)” A second-order relation
schema “in-law(R,X,Y)“is defined as follows :

in-law(R,X,Y)tR(X,Z),couple(Z,Y)
where R is a first-order relation(name).

Further, with the help oFa logical formula :

couple(Z,Y)+--
parertt(Z,W),child(W,Y),not(identity(Z,Y))

we eventually have a primitive expression for “in-law”
as follows :

in-Zaw(R,X,Y)+-[R +(s(c)+c)AND(not(I))J(X,Y)..(4.1).

Thus, the meaning of a relation ‘R” with the suffix “in-
law” is represented by its primitive expression (4.1).
Note that (4.1) is already canonical if so is R. Since

grandparent(X,Y)tparertt(X,Z),parent(Z,Y)...(4.2)

it follows that “grandparent-in-law” has its canonical
primitive expression:

s(c) +s(c) + (s(c) + c)AND(not(I)) . * . (4.3)

and the sub-expression underlined just corresponds to
the “in-law” semantics.

Now, from the view point of analogical query
processing, we take the following definition of
analogical queries :

Let r and r’ be two relations in LDB and let p and
p’ be their canonical primitive expressions, respective-
ly. Then, r and r’ haoe an analogy if there exists a
common sub-expression of p and p’. Further, a common
sub-expression @ is called maximal analogy between r
and r’ if the number of occurrences of + contained in E
is the greatest.(Note that a maximal analogy is not
necessarily unique.) In the case above, For example, the
maximal analogy between “grandparent” and
“grandparent-in-law” is clearly a sub-expression “s(c)
+ s(c)” whose translation is “grandparent” itself. In the
general case, it is not so easy to detect the maximal
analogy among queries without the help of primitive
expression or of this kind of device. This is understood
when one compares (4.2) with the original formula of
another query:

grandparent-in-law(X,Y)t
grandparent(X,Z), coupZe(Z,Y) .** (4.4)

On the right-hand sides of these two definitions there is
no common syntactic element as they are.

The key idea underlying the algorithm for
analogical query processing is now straghtforward:
For a given query,
(1) transform it into the canonical primitive expression,
(2) detect a maximal analogy between the query and
relation schemas which have already been processed
and added to HRS, provided that LDB keeps both the
evaluation result&retrieving paths) and their
canonical primitive expressions for whatever relation
schemas it has processed.
(3) gain an efficiency by making use of the common
retrieving path for evaluating analogical queries.
Thus, in this case LDB is supposed to be a kind of
incremental database models. One smiple example for
analogical query processing in LDB is as Follows:

Given a query “+-grandchild-in-law(tom,X)” with
its logical definition :

grandclrild-in-law(X,Y)tcoupZe(X,Z),grandchild(Z,Y),

the trasformation process results in the expression :

[(s(c) + c)AND(not(I)) + c+ cl(X,Y).

Using the (meta) relations ‘%(x+y) = s(y) + s(x)” and
“s(s(x)) =x”, which are supposed to be in HRS, we have

sls(c) 3-s(c) + (s(c) +c)A.ND(not(I))l(X,Y) *** (4.5)
(Note that s(not(I)) = not(I).)

Hence, to answer the query, all we have to do is to
evaluate s[s(c) + s(c) + (s(c) + c)AND(not(I))l(tom,X),
that is,

[s(c) + s(c) i- (s(c) i-c)AND(not(I))l(X,tom) ... (4.5’).
Provided LDB has ever processed the relation schema
“in-law”, i.e.&he relation schema (s(X) +X)AND(not(I))
has been stored in HRS and that the underlined part of
(4.5’) has already been evaluated for (z,tom) with
certain partial answer z, the rest of the task is to
compute [s(c)+s(c)](X,z) for an answer “X= barbara”.
If (4.4) or equivalently (4.3) has ever been evaluated,
then, as a matter of course, nothing remains to be done.

4.2 Making use of analogical mapping
Another type of analogical query processing we

would like to discuss here concerns analogies between
the two different domains.
Example 3

Suppose that LDB has already processed a large
amount of queries concerning the family world to some
extent, and that one wish to answer a query on the
“Block World” such that ‘What blocks are the feet
blocks of an arch?“. All we know about the block world
is as Follows:
[Base relations]

block(c) block(k) on(n,r) on(r,c)
Hock(e) block(m) on(m,j) on(n,m)

-381-

block(j) DZock(n) on(e,k)
block(r)
where “on(~,y)” means that “x is on y”.

Figure 3 shows the block world above.

Figure3 A Block World

Suppose, in addition, that paris (c,cathy), (i&n),
(m,mary),(n,nancy),(r,robert) satisfy the one-to-one
mappingT between the block world and the family
world such that

on(x,y) iff parent(T(r),T(y)) **a (*).
Now, the query is formulated as follows:

feet-of-arch(X,Y)tort(Z,X),on(U,Z),orz(U,W)
not(identity(Z,W)),on(W,Y) *** (4.6)

that is,

feet-of-nrch(X,Y)+
syntnrelric(on(X,Z)),symlnetric(on(Z,U)),
on(U,W),not(identity(Z,W)),on(W,Y) -0. (4.7).

Paying attention to the facts that under T”on = parent
= symmetric(child)” and “symmetric(on)=child”, we
end up the transformation of (4.7) with :

feet-of-arch(X,Y)+-
[c+(c+s(c))AND(not(I)) +s(c)](X,Y) ... (4.8).

This leads to the conclusion that to answer the query of
(4.6) we have only to transform answers for the query of
“cousin” relation (r-e-expressed as (3.3)) under the
inverse mapping 0fT.

Thus, we can extend the scope of analogical query
processing to the case when there exists a one-to-one
mapping from the base world to the world in question.

One may consider the further extensions of the
above argument by weakening the restriction on one-
to-one mapping T in several ways. Here we briefly
mention one of them.

A one-to-one mapping T maps one base relation
name to another base relation name in different world
with the condition of preserving the circumstance of the
original world. (See the definition of T marked(*)) As
far as this condition is preserved, one can extend T SO

that it may map one base relation name in the original

world to a primitive expression rather than one base
relation name in the other world.

4.3 A l’aralell Evaluation Feature
For the purpose of query optimization, we have

discussed the method for processing analogical queries
based on the primitive expressions. We notice that a
careful observation on primitive expressions brings us
another interesting aspect of the expressions which
suggests a possible way of parallel query evaluation.

Recall the two primitive expressions (3.3) and
(3.4) for an identical relation %ousin”in Section 3:

c + (c + s(c))AND(not(I)) +s(c) .a. (3.3)
(~+~+~(~)+s(c))AND(c+not(1) +s(c,j) ... (3.4).

Since, unlike the connective “+“, the connective”AND”
represents a logical “and” which forces its both sides to
have an identical arguments (that is, (P AND Q)(X) iff
P(X) and Q(X)), it is possible to evaluate both sides of
“AND” in parallel. In such a sense (3.4) is preferable to
(3.3) if some kind of parallel processing environment is
assumed.

The idea is as follows: Using the transformation
laws (L) and other necessary rules available mentioned
in Section 3, for a given query we find a primitive
expression for it which can contain as many as “AND”
connectives as possible. In case there are two or more
expressions which contain the same number of “AND”
s, we may take the one which gives the largest total
sum in length of all the sub-expressions at either side of
“AND” connectives.

Example 4
Consider the query “+cousin(Xjim)” with its

defining formulas (3.1) and (3.2). Then, the
transformation line proceeds as follows:

(a) “+cousin(X,jim)” with (3.1) and (3.2)
-(b) a primitive expression (3.3)
-(c) a primitive expression (3.4)
-(dl) evaluate [c + c + s(c) +s(c)l(X,jim)

(in parallel)
-(dz) evaluate [c+not(I) +s(c)l(X$m).

This is interesting in the sense that the
transformation procedure from (a) through (4s
described above shows one possible method for
extracting the possibility of parallel evaluation from a
given query.

Finally, we would like to call one’s attention to
the fact that whenever a query has no answer, a
primitive expression of the form (3.4) has again a great
advantage over that of the form (3.3), because for our
purpose it suffrces to see whether either (dl) or (dz)
fails.

5. Concluding Remarks

-382-

We have discussed a problem of query processing
in logic databases in the context of analogical query
optimization. By abstracting concepts in some way, the
notion of a higher-order relation has been introduced to
classify relations and to provide a method for query
transformation. Given a query, the method transforms
into its primitive expression which reveals the
essential meaning of the query. The detection of
analogy between queries has been performed through
their primitive expressions. Our approach is , we
believe, promising in that in contrast to the other
traditional methods like a semantic nets, the primitive
expression method is much easier and simpler to
handle. Similar discussion on both classifying rela-
tions and reformulating a Horn query by relational
operations can be found in [R 781 and [YSI 861,
respectively, in different contexts.

It should be noted that the I-IRS module in our
conceptual design of LDB can be compiled, so that one
can improve the process time of query evaluation.

Although we limited to only the use of binary
relations throughout demonstrating examples, the
primary reason for it is the simplicity and we just
intended to show the methodological idea behind it.
The principle of the method, we claim, works in the
general case of handling relations of any arity.

For the future research direction, we would like to
point out the topic of query processing in the logic
database with incomplete data. In the framework
presented in this paper one may argue for the subject of
the problem solving by analogical reasoning([H 851). In
the problem of analogical reasoning, one must deal
with an incomplete database in which analogical
reasoning mechanism is strongly expected to make up

for the incompleteness in the process of query
processing. Further, the problem of justifying such an
analogical query processing is another important topic,
and a recent work in [HA 861 deals with the problem in
the framework of logic programs and gives an anwer for
it.

Ac~<N~WI,EI)GI~MI~N~‘S
The author is very grateful to Dr.T.Kitagawa, the

president of IIAS-SIS, for his ceaseless encouragement
and stimulus. He is also indebted to Dr.H.Enomoto, the
director of HAS-SIS, for many fruitful discussion and
suggestion.

[BW 813 Bundy,A. and Welham,B., Using Meta-level
Inference for Selective Applications of Muliple Rewrite
Rule Sets in Algebraic Manipulation, Artificial

Intelligence 16,189-212 (1981).

[C 811 Chang,C.L., On evaluation of queries Containing

derived relations in a relational data base, in

‘Advances in Database Theory” (H.Gallaire, J.Minker
and J.-M.Nicolas, Eds.), Plenum, 235260 (1981).

[D 801 Davis,R., Meta-rules : reasoning about control,
Artificial Intelligence 15,179-222 (1980).

[G 811 Gallaire,H., “Impact of logic on database”, Proc.
of 7th Intern. Conf. on VLDB, 248-259,198l.

[II 851 Haraguchi,M., Analogical reasoning based on
the theory of analogy, Research Report of RIFIS,
Kyushu Univ., No.105,1985.

[HA 861 Haraguchi,M. and Arikawa,S., A Foundation
of Reasoning by Analogy: Analogical Union of Logic
Programs, Proc. of Logic Programming Conf.‘86, ICOT,
June, 1986.

[I 811 Imielinski,T. Algebraic Query Processing in
Logical Databases, in “Advances in Database Theory”
(H.Gallaire, J.Minker and J.-M.Nicolas, Eds.), Plenum,
285-318 (1981).

[KY 821 Kunifuji,S. and Yokota,H., Prolog and
relational databases for Fifth Generation Computer
Systems, Proc. of the Workshop on Logical Bases for
Data Bases (Toulouse, France), ONERA-CERT,
Toulouse, France, 1982.

[OT 841 Oda,M. and Tanaka,Y., Introducing vocabulary
building mechanism into Prolog, Proc. of the 29th
National Conf. of the Inf. Process. Sot. of Japan, 1205-
1206,1984 (in Japanese).

[R78] Reiter,R., Deductive Question-Answering on
Relational Data Bases, in “‘Logic and Data Bases”
(H.Gallaire and J.Minker, Eds.), Plenum, 149-177
(1978).

[T 821 Tanaka,Y., Vocabulary building for database
queries, Proc. of the RIMS Symposia on Software
Science and Engineering (Kyoto,1982), Lecture Notes
in Computer Science 147, Springer, 215-232,1982.

[SB 821 Sterling,L. and Bundy,A., Meta-level inference
and program verification, Proc. of the 6th Conf. on
Automated Deduction (D.W.Loveland, Ed.), Lecture
Notes in Computer Science 138, Springer, 144-150,
1982.

[YSI 861 Yokota,H. Sakai,K. and Itoh,H., Deductive
Database System based on Unit Resolution, Proc.of
Intern.Conf. on Data Engineering, Feb., 228-235,1986.

[Y 841 Yokomori,T., A Note on the Set Abstraction in
Logic Programming Language, Proc. of the Intern.
Conf. on FGCS’84, Tokyo, 333-340,1984.

[Y 851 Yokomori,T., A Logic Program Schema and Its
Applications, Proc. of the 9th IJCAI, UCLA, Los
Angeles, 723-725,1985.

-383-

