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Abstract 

This paper presents a new architecture that fully 
integrates local and global database management in a 
transparent for the user fashion. The architecture util- 
izes the workstation’s local processing and uses the glo- 
bal mainframe for sharing and maintenance of con- 
sistency. Two access path distribution protocols distri- 
bute data and processing by localizing uncommon 
paths to their requesting workstations while avoiding 
repetition of globally shared paths in workstations. A 
new concurrency control protocol is used which has its 
foundation on the deferred update strategy, the con- 
cept of differential files, and a new lock for derived 
objects. 

1. Introduction 

Recent advances in hardware technology and the 
drop of the cost of powerful workstations dictates new 
architectures in which terminals are replaced by works- 
tations which can be fully integrated with the main- 
frames Such a workstation-mainframe integrated 
environment provide several advantages the most 
important of which is that (a) local processing on the 
workstation is independent of the mainframe’s load 
and (b) local storage can be accessed even when the 
mainframe is unavailable. Although a good deal of 
work has been done in the area of workstation comput- 
ing environments, [Yalamanchili et al 19841, [Schroeder 
et al 19851, [Adobe 1985],etc., no research has been 
reported on tightly coupled cooperating environments 
with data bindings and dynamic data download facili- 
ties between mainframes and workstations. 

In this paper we define a new database system 
architecture environment based on a hybrid system 
ADMSt built around an Advanced Database Manage- 
ment System ADMS [Roussopoulos et al 19841, [Rous- 
sopoulos 19851. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial aduanta e the VLDB copyright notice and the 
title of the publication am! ’ rts dute appear, and notice is given 
thnt copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
a&or special permission from the Endowment. 

Proceedings of the Twelfth International 
Conference on Very Large Data Bases 

It consists of two similar and cooperating DBMSs. The 
mainframe DBMS, called ADMS+, is a full DBMS 
which in addition to the ordinary management tasks, 
keeps track of data and access paths downloaded to 
workstations. The workstation DBMS, called ADMS-, 
maintains data downloaded from ADMS+ to answer 
queries on the workstation and needs no concurrency 
and security control subsystem because it operates in a 
single user mode. ADMS- can be thought of as an 
intelligent cache database access subsystem which capi- 
talizes on the locality of data usage and its bindings. 
The communication in ADMSi- is between the works- 
tation and the mainframe. No communication exists 
between workstations which are typically turned off 
when not in use. 

The ADMS* architecture is not a distributed 
one but rather an extended centralized architecture. 
The user accesses the database as if he were on a cen- 
tralized system using his workstation as a terminal. 
The workstation-mainframe interactions are hidden 
from him. As the user interacts with ADMS+, database 
access paths along with data associated with them are 
dynamically downloaded using an access path distribu- 
tion protocol. The downloaded access paths are then 
incrementally maintained locally at the workstation 
using differential files between the ADMS+ and 
ADMS-. The distribution protocols localize the user’s 
subset of the database on his own workstation provid- 
ing speedier access to it. To offset a total localization, 
local access paths are uploaded and become global in 
the mainframe when they are found to be shared by a 
number of workstations. 

The ADMS* architecture does not prevent addi- 
tional database distribution among several ADMS+s. 
The rationale behind such an architecture is that, in 
the foreseeabIe future, there will always be a need to 
handle differently local from global data. Furthermore, 
at this time, and it may be the case for a while, the 
difference in speed and capacity between a mainframe 
and a workstation IS significant. When tomorrow’s 
workstations achieve the capabilities of today’s main- 
frames, tomorrow’s mainframes would be super- 
computers that explore parallelism, and other special 
hardware storage machines. 

Kyoto, August, 1986 
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Section 2 of this paper outlines the basic ADMS 
system features which provide the foundations for 
ADMS+. Section 3 describes the hybrid architecture of 
ADMS+, the access path distribution protocols, and 
the concurrency control protocols. Conclusions are in 
section 4. 

2. Basic ADMS Features 

ADMS has two distinctive features not found in 
other DBMS’s: a cache technique for rapid access to 
views and a deferred update strategy. These are 
instrumental in providing very efficient “incremental 
computation on demand”. 

2.1. Access Path Model 

ADMS supports the access path model defined in 
[Roussopoulos 1982a,b]. According to that model, an 
access path is defined by a query graph whose nodes 
are base relations and/or views, and whose edges are 
relational operators, such as select, join, union, inter- 
section, etc. Each node in an access path is either a 
preexisting base relation or a view that is referenced by 
the query or an intermediate result needed to generate 
the target relation. The lowest node on the query 
graph is the target relation. The collection of all access 
paths executed against the database are integrated to 
form a Logical Access Path Schema. 

2.2. View Cache 

The view cache idea is to maintain for each view 
a pointer array consisting of pointers to those tuples of 
the base relations and/or other views needed to con- 
struct the view. We refer to these pointer arrays as 
view indexes. These indexes can then be cached to 
materialize the view at a much lower cost than either 
reexecution of the view definition or query modification 
[Stonebraker 19751. View indexes are hierarchically 
structured, therefore, materialization of a view is a 
matter of following one or more levels of indirection to 
fetch the necessary tuples from the underlying base 
relations and mapping the view attributes into their 
corresponding base relation attributes. Since view 
indexes are maintained sorted, minimal buffering is 
required to avoid reading more disk blocks than it is 
absolutely necessary (optimal caching). 

2.3. Incremental View Update 

Updates to base relations, (i.e. insertions, dele- 
tions and modifications), outdate view indexes. There- 
fore, a subsequent request against an indexed view may 
have to be preceded by an incremental update of 
the view index to reflect the changes made to the base 
relations before caching. We refer to the Incremental 
Update Cost by IUC, and to the Caching the 
Index Cost by GIG. 

ADMS supports VIEWCACHE, [Roussopoulos 
851, a system of very carefully designed algorithms 
for incremental updating and optimal caching of view 

indexes. The principle idea behind VIEWCACHE is 
that, between any two consecutive accesses of the same 
view, only a small part of the index gets outdated and, 
therefore, the access path search is only necessary on 
the increments rather than the whole thing. The 
unaffected part of the index needs no access path 
search but, instead, it is directly cached. 
VIEWCACHE achieves extremely fast access to views. 
We have shown that IUC plus CIC is much less than 
the cost of reexecuting the views. 

An additional revolutionary feature of 
VIEWCACHE is the interleaving of update and cache. 
This feature saves a lot of the CIC because whatever 
needs to be updated is read in, updated, and displayed 
immediately. Therefore, its corresponding CIC is 
saved, subsumed by the IUC. This interleaving and 
the special data structures used, (variations of B-trees 
and R-trees which maintain the view indexes sorted), 
make VIEWCACHE optimal with minimal buffering. 
Analytical and experimental results of VIEWCACHE 
are reported in [Roussopoulos & Kang 19851. 

2.4. Deferred Updates 

The second novel feature of ADMS is the 
deferred (or lazy) update strategy. Maintenance of 
views and other derived objects (such as secondary 
indexes) is deferred until a direct or indirect request to 
them is made. This avoids global overhead associated 
with updates to the database. When a query needs to 
access a possibly outdated view, say V, the 
VIEWCACHE incremental update algorithms pro- 
pagate the changes of the base relations down to all 
intermediate views used in the derivation of V. These 
update algorithms use a set of differential files stored in 
the form of backlogs, and apply the performed updates 
against the view indexes. The update cost of V is part 
of the cost of accessing V. And since, the incremental 
update plus the cache costs are less than the cost of 
reexecuting the definition of the view, the cost of 
deferred update cost is zero; maintenance of views is 
totally free of overhead. 

The same technique is used with secondary 
indexes. When a query needs to use an outdated index, 
it updates it first in a much more efficient way by 
batching, sorting and merging all the updates together. 
The cost of maintaining a given index becomes now the 
cost of using it in answering the query instead of being 
uniformly distributed as overhead. 

The deferred update strategy allows the 
definition of a new class of concurrency control proto- 
cols for redundantly derived or replicated data, see 
next section. Views, secondary indexes, multiple 
copies, and other access aids that are derivable from 
ba.se relations are referred to as derived objects. 

2.5. Slow down for speeding up- A fully 
concurrent protocol 
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ADMS uses a concurrency control protocol based 
on a new type of lock, called derived object lock, or 
d-lock for short for concurrent retrieval and update of 
access paths and other derived objects. Because of the 
deferred update strategy, a query involving retrieval of 
derived objects on a given access path, is not neces- 
sarily a pure retrieval process with regards to this 
access path, but it may first invoke the access path 
update algorithm to bring any outdated subpaths up- 
t-date and then retrieve from them. d-locks are used 
for both of these processes, 

To retrieve/update a derived object on an access 
path, a d-lock for it is acquired. A d-lock is preceded 
by a shared lock to all base relations deriving the 
object, This implies that while a derived object of an 
access path is brought up-to-date, concurrent access to 
the deriving base relations is allowed but not updates. 
During the retrieve/update of an access path, only 
dependent paths are not allowed to retrieve/update 
concurrently. However, as the retrieve/update of an 
access path proceeds, previously dependent subpaths 
are released from their d-locks as they become indepen- 
dent and concurrent retrieval/updating through them 
is permitted. 

For example, while access path B in Figure 2.1 
updates object V2, path A can simultaneously update 
object Vl but path C, that is dependent on V2 of B, 
has to wait. As soon as V2 gets updated, its d-lock is 
released and path C can proceed immediately and in 
parallel with path B which continues 
retrieving/updating. 

What is even more important to point out is 
that this protocol is a fully concurrent non-positive 
delay protocol. This is true because even when a pro- 
cess requesting to update a path, say path C in the 
previous example, waits for another process to finish 
updating a dependent path, say path B, the waiting 
process C will not have to update the common sub- 
path, V2 and above. The cost of updating shared paths 
is paid only once. The earlier process B had d-locked 
the common subpath, V2 and above in the example, 
the better for process C because it only has to wait for 
the remaining time of B which is a fraction of the time 
it would take C to do it itself. Thus, the more a pro- 
cess is slowed down by finding more and more d-locked 
objects, the speedier its execution! Note that, since 
almost zero time is needed to check whether an object 
is up-to-date, the slow down for speeding up concept 
holds for any number of waiting processes. 

A simpler but less concurrent protocol was 
implemented in ADMS. Instead of d-locking derived 
objects, only base relations deriving a derived object 
are d-locked and remain d-locked until the update of 
the path finishes. This protocol in the example of Fig- 
ure 2.1 would make path C wait until path B finishes 
updating (this is not the case in retrievals). At that 
point, C starts updating but, again, it needs not repeat 
updating the shared subpa.th V2 and below. This 
simplification in the implementation was adopted 

because it drastically reduces the number of object 
locks and overhead. 

3. ADMSf Architecture 

The principle design goal of this architecture is 
to distribute (download) local database access and cen- 
tralize (upload) global access. As the user on a works- 
tation accesses the database through ad hoc or precom- 
piled queries, a local portion of the database is dynami- 
cally built and maintained on the workstation that a) 
provides very quick access to it because most of the 
local access needs not be scheduled with other access 
requests, and b) alleviates the mainframe load as it is 
performed on the workstation. 

A basic assumption of this architecture is that, 
unlike network communication lines, the lines between 
the mainframe and each of the workstations have high 
bandwidth with no delays, similar to those connecting 
terminals to a mainframe. The cost of downloading 
data to the workstation is only slightly higher than 
dumping the data on the terminal. The only addi- 
tional cost is that of locally storing the downloaded 
result but this is only a one time cost. Subsequent 
requests are capitalizing the cache benefits of the 
downloaded portion of the database. 

In order to provide a simple and efficient tech- 
nique that guarantees database consistency, updates on 
replicated (downloaded) base relations’ are done on the 
mainframe first, using a standard update protocol, 
[Eswaran et al 19761, based on exclusive and shared 
locks. Ail committed updates are then recorded on the 
objects’ backlogs. 

Workstations that issue an access request to an 
updated base relation or to a derived data object 
dependent on updated base relations, including the 
workstation that issued some of these updates, pass 
along with the request a pointer to the backlog entry 
beyond which the updates have not been reflected on 
the downloaded object. If this pointer points to the 
end of the backlog, the object is up-todate and can be 
immediately accessed locally. If more updates have 
been made to the object since the workstation’s prior 
request, the difference of the backlog between the pre- 
vious request and the current is transmitted 
(differential file and dirty pages only see section 3.4). 
The workstation then resets the pointer to the end of 
the backlog. No broadcasting of any sort to any 
workstations that have data objects affected by the 
updates is done. Updating of derived objects on the 
workstation is deferred until these objects are accessed 

’ We consider direct updates on base relations only. 
Updates to views are first translated into valid base relations 
updates using techniques presented in [Furtado & Sevcik 
19771, /Dayal & Bernstein 19783, ]Bancilhon & Spyratos 19811, 
and then are reflected to the views by the VIEWCACHE up- 
date algorithms. 
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again. 

The main advantages of the ADMS+ architec- 
ture are briefly outlined below: 
a) The response time of queries that are locally pro- 
cessed is dramatically decreased because the worksta- 
tion runs in a single-user mode and no dynamic secu- 
rity checking is necessary for the downloaded portion 
of the database. Security is checked only on the main- 
frame once before downloading. Only authentication 
of the user at login time is done on the workstation. 
Thus, ADMS- does not need either a concurrency or a 
security control subsystem. 
b) Although ADMS& provides an extended centralized 
database environment, it distributes data and process- 
ing to workstations and achieves this in a simple and 
powerful manner that avoids the difficult problems of 
concurrency and data consistency control of fully dis- 
tributed environments [Traiger et al 19791, [Stone- 
braker 19791. d-locks and pointers to the backlogs 
easily handle concurrent access of derived objects on 
the mainframe, the only one that needs concurrency 
control. This distribution not only alleviates the 
mainframe’s load but it increases the overall con- 
currency because locks in the mainframe are released 
much earlier than in a fully distributed environment. 
c) Data distribution is dynamically done based on the 
workstations’ requests. The user interacts with 
ADMSf as if he were using a centralized system. Ini- 
tially there is no data stored in the workstations but 
downloaded on demand and maintained on the works- 
tation as the system processes workstations’ requests. 
This dynamic data allocation permits each workstation 
to build and maintain the portion of the database that 
is pertinent to its applications. Removal of once down- 
loaded but not frequently accessed objects can be based 
on (a function of) the ratio of the sizes of the 
differential file needed to be propagated in order to 
update the downloaded objects over the sizes of the 
objects themselves. Clearly, for ratios close to one (or 
higher) the outdated downloaded portion is of little 
value. Other criteria, such as storage constraints, can 
also be used for removal of workstation objects. 
d) The deferred update strategy with no broadcasting 
drastically reduces the overhead from message traffic to 
synchronize the updates. In an ordinary distributed 
DBMS architectures, the message traffic to obtain the 
appropriate locks would be four times the number of 
sites, [Date 19831. Therefore, even for a moderate 
number of workstation, the message traffic would be 
very high. 
e) ADMS-+ architecture is very modular and extendi- 
ble Very little preparation is necessary for adding new 
workstations. 
f) The user can speed-up the query response by access- 
ing “almost up-todate” data instead of “up-to- 
moment” data. In this case, his queries are processed 
mostly locally on the workstation without having to 
wait for the current updates. This is not uncommon in 
many applications where a checked out portion of the 
database can go a long way before it needs be 

refreshed. For example, queries for browsing in a data- 
base for statistical gathering, or for searching archived 
files not affected by the current activities, or for 
developing and testing new queries, etc. Current 
DBMSs do not support almost up-todate retrieval, 
but, instead uniformly distribute concurrency control 
overhead to all queries. 

In the next subsections we describe the separa- 
tion of global and local access paths, the global and 
local data model, the access path distribution proto- 
cols, and the concurrency protocol of ADMS+. 

3.1. Global and Local Access Path Separa- 
tion 

The extension to the access path model required 
by ADMS+ deals with data downloads, uploads, and 
bindings between mainframe and workstation objects. 
For example, an operator may be performed on the 
mainframe but the target relation TR is downloaded to 
the workstation. Figure 3.1 shows the extended set of 
unary and binary relational operators (unary in single 
lines and binary in double lines) and the implicit down- 
load ADMS* operators that build up the access paths 
in ADMS*. The horizontal line is used to separate the 
subpaths that correspond to mainframe and worksta- 
tion respectively. M(R) and M(V) correspond to base 
relations and views of the mainframe materialized on a 
workstation (see section 3.3). 

The access path defined by a query on a works- 
tation may refer to global and/or local base relations 
and/or views. This access path can be separated into a 
global subpath that accesses data objects in the main- 
frame and the local subpath that accesses local objects. 
An example of a global/local access path is shown in 
Figure 3.2. Execution of the two subpaths is processed 
in the following order: the global first on the main- 
frame, followed by a release of all locks acquired on the 
mainframe to process the global subpath, followed by 
an uninterrupted and independent execution of the 
local subpath on the workstation. 

ADMS* requires different catalog management 
in the mainframe and the workstation. The ADMS+ 
catalog keeps track of not only the global objects but 
also all local objects derived from global ones. The 
ADMS- catalog keeps track of all global and local to 
the workstation data objects, but has no knowledge of 
objects local to the other workstations. 

3.2. Global-Local Data Model and their 
Bindings 

Base relations and views of the mainframe are 
downloaded to a workstation when they are accessed 
for local processing. Similarly, local to a workstation 
views are uploaded when they are found to be shared 
by several workstations. Downloading and uploading is 
done differently for each object but in all cases the 
result is a binding between a mainframe object and a 
local one. The binding is similar to that of a derived 
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object in ADMS. 

We extend the class of derived objects to 
include downloaded base relations, downloaded materi- 
alized views, downloaded backlogs, downloaded secon- 
dary indexes, etc. When an upload of an local object 0 
takes place, the mainframe object becomes the deriving 
and 0 becomes the derived one. This means that 
every data object on a workstation, with the exception 
of local only base relations, is either derivable from 
mainframe objects or it is derivable from objects that 
are themselves derivable from mainframe objects 

The storage structures used for the downloaded 
base relations and its associated secondary indexes are 
identical to those used in the mainframe. In figure 3.2, 
a downloaded relation Rl is represented by M(R1). 
Mainframe views, on the other hand, which consists of 
pointers, are materialized first and their materialization 
is downloaded. This is necessary to make access to the 
view local to the workstation. After the download of a 
mainframe view, the view becomes like a base relation 
but the tuple correspondence between the view in the 
mainframe and its downloaded materialization of it is 
maintained by ADMS- for efficient update processing. 
Figure 3.2 shows two materialized views, M(V1) and 
M(V2). M(V1) is bound to the mainframe view Vl; 
M(V2) does not correspond to a global view, but it is 
the materialization of the result of a join between R2 
and R3. 

When a local to a workstation view is uploaded, 
the view that corresponds to the local data object is 
created on the mainframe. This view is then linked to 
the objects used to derive the local object in the first 
place. For example, if MV2 in figure 3.2 is uploaded, a 
new view V2 is created on the mainframe and MV2 is 
then bound to it. This is shown in figure 3.3. It is 
possible that by uploading a local view, more local 
views must also be uploaded to make the derivation of 
the first object possible on the mainframe. Consider the 
case of uploading V4 in figure 3.2; it results in upload- 
ing V3 as well and the final path is shown in figure 3.3. 

A download or upload operation defines a bind- 
ing between one or more global mainframe objects to 
one or more local objects on workstations, The bind- 
ings are points of transfer of control and processing 
from global to local. Even when retrieval of objects on 
a given access path is totally local, update control 
always has a global and a local component. It starts 
off by requesting all updates that affected their deriving 
objects on the mainframe and translates them into 
corresponding local updates. After this step, update 
control is passed to the workstation which processes 
the rest of the path independently. 

3.3. Access Path Distribution Protocols 

We describe two access path distribution proto- 
cols for downloading and uploading data paths and 
objects. Their purpose is to find an efficient “execution 
home” for a given query access path. The execution 
home may be either all global on the mainframe, or all 

local on the workstation, or both. The two protocols 
differ in the binding they allow between data objects of 
the mainframe and the workstation. 

The Access Path Distribution (APD) protocols 
are designed with two basic principles in mind: first, 
to localize to each workstation the data and access 
paths (along with their associated computation for 
maintenance and access) that are very specialized to 
the applications of the workstation, but, are not gen- 
eral enough to be supported at the global level for the 
community of users. Specialized data and access paths, 
when downloaded to the appropriate workstations, pro 
duce no overhead to the mainframe and to other 
workstations. The second principle is to make global 
all those access paths that are common to good number 
of workstations. A common access path is uploaded to 
the mainframe if it is shared by k workstations, where 
k is set up by a policy maker. Making a path global 
increases the chance of finding it updated since it is 
accessed by several users. If updating is required, the 
cost paid in response to a requesting workstation can 
be “depreciated” against subsequent requests. 

The access path distribution protocols are static 
and do not attempt dynamic query optimization. We 
consider this as a separate issue. 

We assume that if a base relation is to be 
shared, then it is global because otherwise it cannot be 
derived by any workstation not having it. However, 
totally private relations can also be defined on the 
workstations. Private base relations cannot be seen by 
either the mainframe or any other workstation. In 
what follows, we are only discussing shared relations 
and their management rather than private ones. 
Private local relations can be easily handled by 
ADMS-. 

To describe the protocols, we need the following 
definitions. Let 

GS 

LS 

be the set of relations and views residing on the 
mainframe, 

be the set of relations and views residing on a 
workstation, 

DS(V) be the set of deriving relation(s) and/or view(s) 
of view V in a given query. If V is derived 
from a unary operator, IDS(V)1 = 1. If V is 
from a binary operator, IDS(V)1 = 2. For a 
base relation DS(R) = 0. 

M(R) be the materialized form of relation R on a 
workstation. If R is a mainframe base relation, 
M(R) is a copy of R. If R is a view on the 
mainframe, M(R) has the same structure as a 
base relation on the workstation. 

The access path distribution protocols have three 
steps, the upload/download of the operand(s), the exe- 
cution home, and the upload/retain of the result step. 
The upload/download of the operand(s) step deter- 
mines which data objects need be 
uploaded/downloaded for the execution. The execution 
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step decides whether the execution will be done at the 
mainframe or the workstation. Finally, the 
upload/retain step decides whether the result of the 
execution is uploaded to the mainframe and/or 
retained on the workstation, 

The access path distribution protocols are best 
described in terms of requests provided in the query 
language. ADMS query requests can be classified into 
three types: 

a. create a new base relation, 

b. display an existing relation or view, and, 

C. create an access path for a given query graph 
which consists of a set of existing or new inter- 
mediate relations/views and a target relation TR. 

3.3.1. APDl- Non-Redundant Global & 
Local Access Subpaths 

This protocol maintains the access paths in such 
a way that no overlap between global and local sub- 
paths exists. In other words, in any access path there 
is unique binding between global and local objects and, 
thus, only one possible execution choice. 
1. Creation of a new (shared) base relation R. 
upload/download step: 

Nothing is downloaded to the requesting worksta- 
tion. 

ezecution home step: 

Execution is performed at the mainframe only. 

upload/retain step: 

GS := GS U {R}, LS remains unchanged. 

2. Display of a relation or view R. 
upload/download step: 

If R E GS, then set LS = LS - {R}. (This takes 
care of the case of R having been promoted to 
global since the last time it was accessed by the 
workstation.) 

execution home step: 

case (M(R) E LS): 
Execution is performed locally on the 
workstation. 

case (M(R) 1~ LS): 
Execution is performed on the mainframe. 

upload/retain step: 

None. GS and LS remain unchanged. 

3. Create an access path with TR as target rela- 
tion. 

The following is repeatedly applied to every sub- 
path <D=DS(TR),TR> consisting of a single opera- 
tor from the given access path. Since this is a repeated 
process, the resulting GS and LS sets are compared to 
the initial GSc and LSc before any actual 
download/upload/execution occurs. 
upload/download step: 

case (D & GS): 
Set LS = LS - D. This takes care of the 
local objects having been promoted since 
they were last accessed by the workstation 
and intermediate results in a long path. 
Note that some of the elements in LS are 
removed in the upload and reinserted in the 
download part of this step. 

case (ID/=2 & D n LS # 0): 
The non-local deriving relation in D is 
downloaded2. 

ezecution home step: 

case (D C GS): 
Execution is performed on the mainframe. 

case (D c LS): 
Execution is performed on the workstation. 

csse (IDI= & D f~ LS # 0): 
Execution is performed on the workstation, 

upload/retain step: 

Retain TR at the workstation. If TR E GS, 
upload TR to the mainframe. 

Using APDl, every access path in the mainframe 
is an access path which is shared by at least k worksta- 
tions, and no global subaccess path is redundantly 
maintained in a workstation. 

3.3.2. APDP- Redundant Global & Local 
Access Subpaths 

This protocol is very similar to APDl except for 
the upload/download of the operand step in the crea- 
tion of a new access path. When a deriving object Ri 
E D, that is not an intermediate view but a target rela- 
tion of a query, is found global, it is not removed from 
LS and this creates multiple bindings among global and 
workstation objects on the same logical access path. 
This implies that the switch from global to local execu- 
tion can be done in more than one way. The lower the 
switch the more mainframe execution. Figure 3.4 
shows such a path that has redundant global and local 
subpaths. 

Using AF’D2, every access path in the mainframe 
is an access path which is shared by at least k worksta- 
tions, but, workstations may maintain global subpaths 
in addition to their local paths. 

Redundancy in global and local access subpaths 
allow the implementation of a dynamic execution stra- 
tegy. The redundant subpath may be executed on the 
workstation or the mainframe depending on 
mainframe’s load, speed, etc. In contrast, ADPl pro- 
vides a simpler but fixed execution distribution of the 

* Note that the semijoin techniques discussed in [Ceri & 
Pelagatti 1984, chapter 61 for optimizing distributed joins can 
be used for reducing the amount of downloaded data. 

-360- 



subpaths. 

3.4. ADMSf Deferred Update Strategy 
and Differential Files 

The update strategy of ADMS& is similar to 
that of the basic ADMS, namely, all derived data 
objects, residing on the mainframe or a workstation are 
not updated until it is absolutely necessary to answer a 
query involving the object. This has two basic advan- 
tages: first, the system is not burden by the overhead 
of broadcasting every single change to every worksta- 
tion that has data objects affected by the change. This 
keeps the communication control overhead of the sys- 
tem low. Second, when a derived object that has been 
affected by a series of updates needs to be brought up- 
todate, the updates of the underlying objects can be 
propagated and processed in a more efficient way 
(optimized in a batch mode). 

There are two basic techniques that are utilized 
for processing derived objects. The first deals with 
copies of objects; i.e. base relations and views stored 
globally and locally. When one of the copies is up-to- 
date and another copy needs to be updated, the dirty 
disk pages are transmitted. This allows replacement of 
the pages containing all the tuple updates. This tech- 
nique requires precise maintenance of the one-tc+one 
correspondence between the records of the data struc- 
tures used. 

The second technique is the viewcache technique 
of ADMS that is based on processing the differential 
files of the backlog storing updates (see section 2). 
Every base relation and view on the mainframe and 
every derived object in any workstation has a backlog. 
The recorded updates allow the update of all depen- 
dent access paths. This technique does not need the 
precision of the one-to-one correspondence and this 
makes it easier to implement especially on different 
DBMS&. 

Global data objects are updated on ADMS+ 
using the basic ADMS algorithms. The update of the 
local objects involves the cooperation of both the main- 
frame and the requesting workstation. 

Downloaded derived objects keep a pointer to 
the last entry (or entries) of the backlog (or backlogs) 
of the data objects they are derived from. When a 
workstation requests access to local object that is 
bound to some global objects, it passes along to the 
mainframe those pointers. The mainframe checks all 
the objects that the requested object depends on. If no 
updates have occurred since the workstation’s last 
access, it returns a null set and access to the local 
structures is immediate. If updates have occurred, 
then the mainframe transmits only the differentials 
between the previous state of the deriving objects’ 
backlogs and their current state (always maintained at 
the mainframe). Since the update process of derived 
objects considers only differences, the amount of data 
transmission is very small. After the transmission of 

the differential files, the update process is done locally 
at the workstation. The mainframe’s only participa- 
tion in the update of a downloaded object is on 
transferring (propagating) the differential files. 

Redundant access paths, namely those created 
by APDS, can be either updated on the workstation or 
the mainframe. From there on, update requests to 
those can use the first technique with the dirty pages 
to be transmitted to the other copies of the access 
paths. 

3.5. ADMS+ Concurrency Control 

In ADMSk, the access path defined by a query 
on a workstation consists of a global subpath on the 
mainframe and a local subpath on the workstation. 
Concurrency control is needed only on accessing the 
global subpath. The same concurrency protocols based 
on d-locks for derived objects and the standard proto- 
col for the update of base relations on ADMS+ are 
used. 

When the processing of the global subpath is 
finished, all locks are released immediately before the 
processing of the local subpath begins. No concurrency 
control is needed on the workstation. This early 
release of locks significantly increases the mainframe 
concurrency compared to the concurrency achieved 
when the whole access path resides on the mainframe. 
Furthermore, since local access paths on a workstation 
are mostly independent of local access paths on other 
workstations, and, since no overhead due to synchroni- 
zation delays is incurred, overall concurrency is also 
much higher than that of a distributed concurrency 
protocol. 

3.6. Global and Local Control Parameter 

The parameter k is used to control globalization. 
When k is one, everything becomes global and this 
achieves maximum access path sharing at the cost of 
increased mainframe load and reduced concurrency. 
When k gets bigger and bigger, access paths become 
less and less global, and workstations have to do more 
and more computation on their own. This increases 
concurrency and distributes the load evenly. 

A very interesting distribution is achieved by 
giving k its other extreme value, that is k becomes 
bigger than the number of workstations. In this case, 
only base relations are maintained on the mainframe 
and all access paths are locally maintained. This may 
be a reasonable approach on less capable mainframes 
which due to load, speed, storage, etc., become the 
bottleneck of the system. But more importantly, no 
other overhead is incurred but the absolutely minimum 
required to maintain the database consistent in a 
multi-user environment. All other processing is 
independent. 
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4. Conclusions 

We have presented a new architecture that fully 
integrates local and global database management in a 
transparent for the user fashion. The architecture util- 
izes the workstation’s local processing and uses the glo- 
bal mainframe for sharing and maintenance of con- 
sistency. The access path distribution protocols 
described distribute the overhead by localizing uncom- 
mon paths to their requesting workstations while 
avoiding repetition of globally shared paths in worksta- 
tions. The concurrency control protocol used has its 
foundation on the deferred update strategy, the con- 
cept of differential files, and the new lock for derived 
objects. 

We have started the implementation of ADMSf 
using a VAX 8600 as a mainframe and a series of VAX 
750s and SUN 11s as workstations. Since all the ADMS 
family software runs on any of the above machines 
under Berkeley UNIX 4.3, the roles of the mainframe 
and workstations can be interchanged. 

ADMS* can be further enhanced to provide a 
fully distributed environment among several main- 
frames We believe that the concepts presented in this 
paper are easily extendible to replicated data and that 
they bring a fresh look to the difficult problem of 
managing and controlling distributed databases. 
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