
A Unifying Framework for Version Control in a CAD
Environment

Microelectronics and Computer Technology Corporation
9,fSO Research Blvd.

Austin, Tezas 78759

ABSTRACT

Version control is one of the most important lunctions
which need to be supported in integrated computer-aided design
(CAD) systems. In this paper we address a broad spectrum of
semantic and operational issues in version control for a
public/private distributed architecture of CAD syslems. The
research issues we address include the semantics of version crea-
tion and manipulation, version na.ming and name binding, a.nd
version change notification. We develop solutions to these issues
under a unifying framework, and discuss implementation and
application interface issues.

1. Introduction

In recent years there has been a tremendous surge of interest
in research and development of computer-aided design (CAD) sys-
tems for aiding and controlling the design ellorts for a wide variety
of engineering artifacts, including VLSI circuits, mechanical parts,
software systems, multimedia documents, etc. There is a general
consensus in the computer-aided design (CAD) community that
version control is one of the most, important functions in an
integrated CAD system. Designers often need to generate and
experiment with multiple versions of a design, before selecting one
that satislies the design requirements. A complex design consists
of lower level components. A component may be shared by any
number of designs, and may in turn consist of lower level com-
ponents. When a lower level component is changed, the higher
level component that contained it may become invalid, and thus
need to be notified or the change.

The literature abounds with proposals that address various
aspects of version control for CAD applications (ROCII75,
TICH82, I’XIS82, WIED82, NEUM82, McLE83, PLOU83,
HAYN84, IO\TZ84a, DADA84, UAT085b, ATW085, DITT85,
I<ATZ86]. In spite of these elTorts, to our knowledge no
comprehensive framework for version control in an integrated CAD
system exists. We believe that there are three major rerasons for
this. First, most of the existing proposals address only limited
subsets of the spectrum of semantic and operational issues in vcr-
sion control. Second, most of them fail to take into account the
characLerist,ics of CAD environments, namely, the system architec-
ture and the \vay in which users and applications share data and
interact among themselves. Third, most of them fail to consider
the characteristics of CAD databases, namely, the way in which
CAD objects are represented and used.

In this paper, we attempt to take significant first steps
towards establishing a unifying fmmcwork for version control in
integrated CAD systems. The framework incorporates explicitly
the characteristics of CAD environments and CAD da.tabases.
Within this framework, we identify what we hope to be a
comprehensive set of semanLic and operational issues in version
control, and indicate solutions to these issues that are consistent
within the framework. We have adopted existing solutions to
some aspects of these issues, and developed our own s&lions to
other issues.

The system architeclure often envisioned for CAD systems
consists of a public system (central server) and a collection of
private systems communicating with the public system [IIASK82,
I<ATZ84b, LOR183, I<IM84]. The public system manages the pub-
lic database of stable design data and design control data. A
private system manages the private database of a designer on a
design workstation. Private systems check out versions of design
data from the public system, update them, and check them in as
new versions to the public database.

The versions residing in the public system are supposed to be
more ‘stable’ than those in the private syslems. The public ver-
sions are supposed to be &arable among many useIs, while the
private versions are owned and accessed by a single user. It is
clear Llren that public versions should have a dillerent set, of capa-
bilities from private versions; that is, the users will manipulate the
public versions diIIerently from private versions. This is the basis
of our notion of version cnpnbitities, which forms an important
basis of our model of versions.

To keep a complex design humanly manageable, a design,
which we will call a CAD object, is often represented z~ a
configuration hierarchy in which a component of the design con-
sists of progressively more detailed lower level components. One
of the most important requirements or a CAD database is to allow
any subtree of such a hierarchy to be shared among any number of
designs. Without such sharing, the size of the database and the
dilliculty of niaintaining the consistency in multiple topics of the
same component will quickly get out of hand. To support sharing,
an object at any level of a configuration hierarchy references
(points to) its lower Ievcl components. One of the problems this
imposes on a CAD database system is that or change notification.
When a lower level component is updated or deleted, the higher
level component that rererences it should in general be notified.

The remainder of this paper is organized as follows. We
summarize the characterisLics of CAD environments and CAD
databases in Section 2. In Section 3, we propose our model of vcr-
sions, based on the notion of version capabilities. We extend the
discussions of the semantic issues of our model in Section 4 to ver-
sion naming and name binding, that is, binding versions with a
version that references them. In Section 5, we explore issues in
change nolification, including timing and scope of notification, and
noLification techniques. Then in Section 6, we present data struc-
tures for implementing our model of versions, including those for
version history and change notification. In Section 7, we provide a
provisional list of commands that applications and users may issue
to use our model.

2. CAD Environment and CAD Databases

In this section, we briefly summarize the characteristics of
CAD environments and CAD objects. Incorporation of these
characteristics is the cornerstone, and in our view one of the
significant contributions, of our model of versions.

Permission to copy without fee all or part o this material is gran.tedprouided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice an d the title o/the publication and its date appear, and notice is given t!at copyin is by permission of

the Very Large Data Rase Endowment, To cop
I

otherwise, or to republish, requires a fee and/or spectal permtsslon from 1
Proceedings of the Twelfth International Con erence on Very Large Data Bases

!y%?ii$%, 1986 ,

-33G-

2.1. CAD Environment

Integrated CAD systems of the future will consisL of intelli-
gent workstations and central server machines on local-arca nct-
works. The designers will perform much of the design and design
validation work on workstations, to minimize the need to send
long batch jobs to remote servers. Although the role of worksta-
tions will grow, central servers will continue to play important
roles in CAD systems. A server may be a large mainframe or a
local-area distributed network of superminis. There will be two
types of central servers: compute servers (number crunchers) and
database servers. The compute servers will process long batch jobs
sent from the workstations; for example, in VLSI CAD, the simula-
tion and design-rule check of full designs. The database server will

manage the public database of stable design data and design con-
trol data, and coordinate the sharing of data among database sys-
tems running on workstations.

A workstation in general will have a privafe database system.
A privat,e database system manages the private database of a
designer on a workstation. An application running on a worksta-
Lion checks copies of design data out of the public database,
inserts them into the private database on the workstation,
retrieves and manipulates data in boLh the private database and
the public database, and checks (returns) modified design data into
the public database.

In [BANG851 we defined a model of transactions in a CAD
environment in terms of projects and cooperating designers wiLhin
each project. The design objects (versions) in Lhe public database
arc accessible to any designer. The design objects in a private
database are owned and accessed by only one user. A designer
may share data with other designers who belong to the same pro-
ject. This hias led us to the notion of a project database, which

T- serves as the repository of design objects that are being passed
back and forth among designers within the same project. A
designer places design objects in his or her project database.
Another designer checks them out, updates them, and returns
(checks) them, as new versions, in the project database. The data-
base server manages both the public database and the project
database of each of the projects.

The database hierarchy in our model of CAD environment
then includes the private databases in workstation database sys-
tems, the public daLabase of the database server, and the project
databases associated with projects. This is shown in Figure 1.

public database

project database

private databases

Figure 1. Database Hierarchy

More precisely, the differences in the Lhree databases arc as
follows. The public database holds released design objects and
data about design objects and design status. A released design has
two properties: it cannot be updaLcd or deleted, and it is accessible
to all authorized designers within a CAD environment. The data
about design objects and design status include the directory of
design objects, checkout/checkin status, etc. They are also acces-
sible Lo all authorized designers; however, they can be updated,

either by the designers, or by the dat,abase server. There will be a
public database administrator for the public database.

A private database holds non-released designs that a designer
is currently working on, and any information the designer wishes
to maintain. That is, the designer who creates the private data-
base is the owner and database administrator of the database. A
private database of a designer is not accessible to any other
designer.

A project database contains those designs and data about
designs that are accessible only to cooperating designers within a
project. The design objects in a project database are considered
stable; however, the assumption is that they have not gone
through validation tests and, as such, they cannot be released to
the public. A project administrator will have the database
administrator privileges over a project database.

2.2. Model of CAD Objects

In this subsection, we highlight the model of CAD objects,
developed in (I(ATZ86] and our earlier work [BATO85a]. The
model captures three types of relationships that exist among CAD
objects in a database. We sssumc that the applications may query
and manipulate (insert, delete, update) these relationships through
the normal capabilities of CAD database systems.

First, a CAD object may have any number of versions. And
any number of versions may be derived from an existing version.
The description of a CAD object consists of two parts: its interface
and implementation [EDIF84, McLE83, BATO85b]. We define
versions to be objects that share the same interface but have
different implementations. The inter{ace, for example, of a circuit
contains inputs and outputs, and specifies the function of the cir-
cuit. The in~plenwztolion consists of descriptions of less complex,
component circuits, and their interconnections, where each com-
ponent circuit has its own interface and implementation. In
computer-aided software development environments, an object
may be a procedure. The interface part of a procedure is the
parameter list; the implementation part is the code segment.

Second, a CAD object of any complexity is represented as a
hierarchy of progressively more primitive objects. This is done by
including in an object rc/crences Lo other, more primitive objects.
The hierarchical composition of a complex CAD object is often
called the configuration of the object. A component object may be
referenced by any number of other objects, and may in turn refer-
ence any number of other objects. Therefore, the database of a set
of CAD objects forms a directed-acyclic graph (DAG) of indepen-
dent, sharable objects.

Third, a version of a CAD object can have a number of
equivalent representations. For example, a VLSI CAD object may
be in register transfer, Boolean, logic, circuit, or layout representa-
tions. In our earlier work [WOELS(I], we noted that a chapter of a
book in a multimedia document may be in text, audio, or movie
representations. One representation of an object is often derived
from another representation. In VLSI, for example, circuit
representations are generated from logic representations and circuit

representations are extracted from layout representations.

3. Version Capabilities

In this section, we define three distinct types of versions, in
terms of operational capabilities, and provide a formal characteri-
zation of them. The three types of version capabilities arise
directly from the three types of databases in the database hierar-
chy of a CAD environment.

3.1. Version Semantics

After the initial creation of a design object, new versions of
the object can be derived from it, and new versions can in turn be
derived from them, forming a version-derivation Liernrchy for the
object. A version-derivation hierarchy captures the evolution of
the design and indicates a parLial ordering of the versions of the

-337-

object

We will distinguish three types of versions, on the b,asis of
their location in Lhe database hierarchy in a dislributcd CAD
environment, and thus of the types of operations that may be
allowed on them. They are transient versions, working versions
and released versions, shown in Figure 1. We characterize their
properties below.

A lransienl version has the following properties.
1. It can be updated by the designer who created it.
2. It can be deleted by the designer who created it.
3. A new transient version may be derived from an existing tran-

sient version. The existing transient version then is ‘promoted’
to a working version (this will be discussed shortly).

4. It is stored in the private database of a designer who created it.

A working version, called an ‘effective version’ in [I(nTZ84a],
has the following properties.
1. It can exist in a private database or in a project database.
2. It is considered stable and cannot be updated.
3. It can be deleted by its ‘owner’ (this is explained shortly).
4. A transient version can be derived from a working version.
5. A transient version can be ‘promoted’ to a working version.

Promotion may be explicit (user-specilied) or implicit (sysLcm-
determined).

A tra.nsient version which is promoted to a working version
may continue to reside in the private database in which it was
created, or it may be checked into a project database. There are
two ways in which a transient version V can be implicitly pro-
moted to a working version. One is when a new transient version
is derived from V. Another is when V is checked into a project
database.

A working version that resides in a private database is owned
by the designer who created it as a transient version and promoted
it to a working version. IIowever, a working version in a projccl
database is owned by the database administrator for the project.
That is, a working version can be deleted by a project database
administrator

There are two reasons we impose the update restriction on
working versions. One is that it is considered stable and thus
transient versions,can be derived from it. If a working version is
Lo be directly updated, after one or more transient versions have
been derived from it, we need a set of careful update algorithms
(for insert, delete, update) which will ensure that the derived ver-
sions will not see the updates in the working version. In fact, we
developed such a set of algorithms in [UAT085b]. However, in
view of the fact that all a designer has to do to ‘update’ a working
version is simply to create a new transient version, we agree with
[KATZ85] and [NEWT851 that the added complexity of such algo
rithms is not justified.

Another reason for the update restriction on working versions
is that, as we will show in the next subsection, it eliminates the
need to support update-mode checkouts. In other words, all
checkouts under our model will be read-only, which in turn means
that transactions issuing checkout requests will not be blocked.

We impose no restriction on the number of working versions
on a version-derivation hierarchy of a given design object, In par-
ticular, we a.llow more than one transient versions derived from a
working version Lo be promoted to working versions. For example,
the designer may wish to place two transient versions in a project
database, so that oLher designers may work on them. To be con-
sistent with our view of project databases, both transient versions
t,hen need to be promoted to working versions.

A released version has the following properties.
1. It resides in the public database, and is managed by the data-

base server.
2. It is not updatable.
3. It is not deletable.
4. A transient version can be derived from a rclensed version.
5. A working version can be promoted to a released version.

3.2. Version Creation

There are three ways to create versions: checkout and chec-
kin, derivation, a.nd promotion. As difIerent authors use the terms
checkout and checkin in somewhat dillkrent ways, we will define

them here.

Definition: A checkout of a version Vi from a database Ds to a
database DL involves installing a copy of Vi as version Vj in Dt,
without destroying Vi in Ds.

Definition: A checkin of a version Vj from a database Ds to a
database Dt involves installing a copy of Vj as version Vk in Dt,
without destroying Vj in Ds.

Now we state how the three types of versions can be created.

A transient version can be
1. created by a checkout of a released version from the public

database,
2. created by a checkout of a working version from a project da.ta-

base,
3. derived from a transient or working version in a private data-

base, or
4. created from scratch from a workspace copy on a private sys-

tem.

WC note that there is no notion of a checkout from a private
database. To reference other designer’s work, a designer can check
a version out of either the public database or a project database.
After a version is checked out, it becomes a transient version in
the private database, ready for direct manipulation by the designer
who checked it out.

A working version can be created
1. in a private database by promoting (explicitly or implicitly) a

transient version in the private database, or
2. in a project database by a checkin of a working version from a

private database.

A released version is created by
1. a checkin of a working version from a private database, or
2. a checkin of a working version from a project database.

Our model of versions only requires read-mode checkouts.
This should be contrasted with other proposals. [IIASK82] defines
two modes of checkout; read and write. The two modes conllict,
which means that, in case of a conflict, a checkout request must be
either rejected or forced to wait until the designer(s) who had
checked out the design object checks it back in. (LORI83, I<IM84]
add a third mode, a copy mode. A copy mode checkout does not
conflict with either the read or write mode checkout. The motiva-
Lion for this mode is Lo allow designers to get a copy of a version,
which may be in the process of update, and use some portions of it
in some other designs.

In practice, a user may wish to create in his database more
than one version-derivation hierarchy for any design object.
FurLher, as we will show in Section 7, a version-derivation hierar-
chy may be split into a number of independent hierarchies for the
same design object. IIowever, for expository simplicity, we will
assume a single version-derivation hierarchy for a design object in
any database.

Further, when a user checks out or checks in a version V
from a database Ds to another database Dt, he needs to specify the
new parent of V in the database Dt. For example, when a user
checks a version Vr out of the public database and installs it as a
new transient version VL in his private database, he should indi-
cate the identity of the version in the private database which will
become the parent of Vt on the version-derivation hierarchy.
Similarly, when the user checks a working version VW into the
public database, he will specify the identity of the released version
which will become the parent of VW in the public database.

4. Version Naming and Name Binding

In this section, we discuss how versions are uniquely
identified in a database. The reader may find some aspects of the

-338-

discussions LO be mLher complex. We emphasize, how~vcr, Lhat
most of the apparent complexity are very natural consecmences of
the distributed nature of a CAD environment. In fact, we hope
t,hat Lhe discussions of this section will help the reader to recognize
the inherent inadequacy of Lhe existing proposals for version con-
tro1.

4.1. Version Names

As versions may exist anywhere in the database hierarchy,
the full name for each version of an object is a triplet <object
name, database name, version number>, where ‘database name’ is
the name of a private database, a project database, or the public
database. Versions on a derivation hierarchy in a particular data-
base are assigned monoLonicaHy increasing integers in the order of
their crealion.

We associate a disLinct version-name server with each data-
base in our database hierarchy. Each private database system is
the version-name server for all its transient and working versions.
The database server is the name server for all released versions in
the public database. The database server also functions as the
name server for the working versions in a project database, by pro
viding one logical name server for each project database.

4.2. Name Binding

There are two ways to bind an object with another versioned
object: sLaLic and dynamic. In static binding, the reference t.o an
object includes the full three-part name of the object. In dynamic
binding (PLOU84, DITT85, ATWO85, KATZSGJ, the reference
needs lo specify only the object name, and may leave one or both
of Lhe other two parLs unspecified. The system selects the default
database name and version number. If the database name of the
referenced version is unspecified, the system will assume it to be
the same as that for the object that makes the reference. Clearly,
dynamic binding is useful, since existing transient or working ver-
sions may be deleted, and new versions created.

Colltents

A natural extension of the idea of dynamic binding is that of
conLexLs [DITT85, ATWO%/. We define a confezf to mean the
specification of default versions for a particular configuration of a
complex design object. The user may define a number of contexts,
and, by switching from one context to another, can experiment
with various alternative configurations of a design object.

For example, suppose a design object consists of three com-
ponent objects, A, B, and C. The object A has two versions, Vai
and Va2; B has one version, Vbl; and C has two versions, Vcl and
Vc2. This gives rise to four possible configurations, or contexts, of
the design object: (Val Vbl Vcl), (Val Vbl Vc2), (Va2 Vbl VcI),
and (Va2 Vbl Vc2). The user may want to evaluate the design
object, in any of these contexts.

Default Selection

There is nothing novel about the idea of dynamic binding or
contexts. IIowever, we need to examine the issue of selecting
default versions for dynamic binding. In other proposals, the
default selected is often the ‘most recent’ version. This simple
defaulting scheme is not appropriate in our model. One dilhculty
is that in our model version history is represented in a hierarchy,
Lhe version-derivation hierarchy. In a linear-derivation scheme,
where only one version may be derived from any version
[DADA84], the most recent version has the implicit meaning that
it is the ‘most correct’ or ‘most complete’. However, a version-
derivation hierarchy, where any number of new versions may be
derived from any node on the hierarchy any time, potentially has
any number of ‘most recent’ versions in this sense. Therefore, we
need to allow the user to specify a particular version on Lhe
version-derivation hierarchy as the default version. In the absence
of a user-specified default, the system will select the version with

Lhe ‘most recent’ tirnestamu as the default.
Another dilIiculty with dynamic binding in our model is that

versions of dillerent capabilities reside in different databases. A
transient version resides in a private database of a user. A work-
ing version resides either in a private database of a user or in a
project database to which the user has access. A released version
resides in the public database. We need to define a search order
over the database hierarchy as follows. Suppose Va, a version of
an object A, references an object B.
1. If Va is in the private database of a user, search first Lhe private

database, then the project database of the user, followed by the
public database, selecting the default version in the first data-
base that has any version of B.

2. If Va is in a project database, search first the project database,
followed by the public database, selecting the default version in
the first database that has any version of B. (The reason
private databases are not searched will be explained later.)

3. If Va is in the public database, search the public database, for
the default version of B. (The reason private and project data-
bases are not searched will be given later.)

Checkout and Checkin

IL is clear that when a version of an object is released
(checked into the public database), all versions it references must
also be released. This is why we do not search any private or pro-
ject database for an object which is referenced by an object in the
public database.

Similarly, when a version in a private database is checked
into a project database, we assume that all objects it references
will also be checked in, if they are needed. Therefore, we do not
search any private database for an object which is referenced by
an object in a project database. If the user checks an object into a
project database but Iails to also check in some of the objects it
references, the behavior of the system will be unpredictable. It
may find some working versions in the project database, or some
released versions in the public database.

Surprisingly, static binding also presents problems when ver-
sions are checked inLo the public database or project dalabases.
When a version and all versions it references are checked in, in
general all static references the version has to other versions must
be converted to new static references that have meaning in the
new dalabase.

For example, suppose a working version Va references a
lower level version Vb, and the rererence specifies <Vb, my-
private-db, version-r)>. Suppose also that both versions reside in
a private database, my-private-db. When the versions are checked
into the public database, the reference to Vb in Va must be con-
verted to a new static reference that has meaning in the public
database, say <Vb, public-db, version-3>.

When a version is checked out or checked in, the version-
name servers generate version numbers as follows.
1. When a private database system checks out a version, it gen-

erates a version number for the newly created transient version.
2. When a private database system checks a working version into a

project database, the name server for the project database
assigns a version number for the new working version in the pro-
ject database.

3. When a working version is checked into the public database,
either from a private database or a project database, the name
server for the public database assigns a new version number to
the newly released version.

We note that when a transient version in a private database
is promoted to a working version, the status of the version is
updated, but no new version number is generated.

The reason for assigning a new version number to a transient
version at the t,ime of checkout, rather than later at checkin time,
is that it is ofLen necessary to reference the new version from other
objects, before the new version is ready for checkin.

339-

5.2. Message/Flag-Based Notification

In a distributed CAD environment, two types of notification
techniques must be supported: message-based and flag-based. In
the mcssnge-bnscd approach, the system sends messages to notify
(human) users of potentially affected versions. The message-based
approach is further distinguished as inrmcdinfe or dcjerred,
depending on whether the affected users <are notified immediately
after the changes to a version are committed or at some later time
that the users may have specified.

In the flag-based approach, the system simply updates data
structures that it maintains, so that afIectcd users will become
aware of changes in a version only when they explicitly access the
version. The flag-based approach is necessarily a deferred
notifcation strategy.

We see that an object has a number of change-not&cation
options at its disposal: message vs. flag-based, immediate vs.
deferred (in the case of message-based notification), and types of
changes to post notification (update, delete, creation of a new ver-
sion). When the application defines an object, it must specify
these options with respect to the versioned objects it references.
However, it is impractical to require the user to specify a possibly
diIIerent set of options for each of the references in an object, since
an object may reference a large number of other objects. We
believe that a more sensible approach is to have a single set of
options specified for an object, and apply it across all objects the
object references.

6.3. Flag-Based Notification Technique

In this subsection, we present our flag-based notification
technique. We will describe a message-based notilication technique
in Section 6.2. In [BhT085b] we presented a preliminary proposal
for a Rag-based notification technique. Since then we have refined
the technique and found that it compares favorably against
another interesting technique that has recently come to our atten-
tion.

In our scheme, each version of an object has two distinct
timestamps. One timestamp, called the change-notificalion limes-
lamp (CN), indicates the time the version was created or the last
time it was changed. The other, called the change-opprouaf limes-
fomp (CA), indicates the last time at which the designer of the
version approved of the changes to the version. Let V.CA and
V.CN denote the change-approval and change-notiG.cation times-
tamps of version V. Let I be the set of versions that are referenced
by version V. If no version in I has a change-notilication times-
tamp that exceeds the change-approval timestamp of V (i.e, for all
X in I, X.CN <= V.CA), then V is re~crcnce consistent. V is
re/crence inconsislent if there are one or more versions in I that
have been updated, but the effects of these updates on V have not
been determined

To make V reference consistent, the elfects of the updated
versions in I must be acknowledged. This is done in one of two
ways. Either the updates to I have no eIIec1 on V, in which case
V.CA will be set to the current time, or V will need to be
modified, in which case V.CN (and possibly V.CA if the changes
are approved) will need to be set to the current time. Until such
actions are t,a.ken, V will remain reference inconsistent.

For each object we need to maintain the version number of
each version the object references. This is necessary to support
dynamic binding. Suppose a version Va references a transient ver-
sion Vb3, which was derived from a working version Vb2. Vb3 is
updated, and subsequently Va approves the changes in Vb3. Then
Vb3 is dcletcd. With dynamic binding, Va will now be bound to
Vb2. The change approval timestamp alone does not capture the
fact that the approval was for the changes in Vb3, not for Vb2.

A dilfercnt notification technique, called version percohlion,
is presented in [ATW085]. In this scheme, when a new version is
derived from an old version of s.n object, the system automatically

4.3. Versions of Schemes

In a database, the schema is used to control the creation and
manipulation of design objects. In a CAD environment, the users
tend to arrive at the schema for design objects through trial and
error [WOEL86]. As such, it is important to allow flexibility in the
definition and modilication of schemes. If systematic query and
update capabilities are desired for versions of design objects based
on any particular schema, we must support versions not only for
design objects, but also for schemas of the design objects. We
dcfme the following semantics for versions of schemas, which are
consistent with our model of versions of design objects.

1. A version of schema for a design object X is in gcncral shared
by multiple versions of X. F’or example, if a transient version is
derived from a working version in a private database, both ver-
sions may use the same version of schema.

2. The version of schema used for version Vi of a design object
may be dimerent from that used for version Vj derived from Vi.
For example, after a designer creates a transient version by
checking out a version, he may modify the schema for the tran-
sient version. Then the original version a.nd the transient ver-
sion will use different schemas.

3. A version of schema for a design object X rcsidcs in the data-
base along with versions of X that are based on that version of
schema. For example, if a transient version of a design object
has been derived from a rele,ased version, the schema must exist
in both the public database and the private database in which
the transient version has been created

The above discussion suggests that when a version V is
checked into the public or project datab,ases, or when it is checked
out, the version of schema for V must precede V, if the version of
schema does not already reside in the database to which V is being
sent.

6. Version Change Notification

In [DAT085b] we identified some issues to cons&r, and pro-
posed preliminary solutions, to have a database system react to
changes in versions in a CAD environment. In this section, we
extend our earlier work, and provide a framework for the discus-
sions in the next section of the implementation issues for our
model of versions and change notificalion.

6.1. Change Notification Requirements

We have stated all along that a version of an object may
reference any number of versions of other objects. We now make
this precise in the context of our database hierarchy.
1. A transient or working version in a private database may refer-

ence other transient or working versions in the same private
database, working versions in the project database of the user of
the private database, or released versions.

2. A working version in a project database may reference other
working versions in the same project database or released ver-
sions.

3. A released version may reference other released versions.

From the above characterization of references that the sys-
tem will support, the following situations may require change
notification.
1. A transient or working version in a private database references a

t,ransient version in the same private database, and the transient
version is updated, deleted, or a new version of it is created.

2. A transient or working version in a private database references a
working version in the same private database or in a project
database, and the referenced version is deleted or a new version
of it is created.

3. A working version in a project database references another
working version in a project database, and the referenced ver-
sion is deleted or a new version of it is created.

-340-

generates new versions of objects that directly or indirectly refer-
ence the old version of the object. This technique has some annoy-
ing shortcomings. One is that it may generate a large number of

useless versions. In the example shown in Figure 2, suppose Vl of
object A references Vl of object B and Vl of object C. If the user
derives new versions V2 of objects B and C, even if the user’s
intention was to only create a new version V2 of object A, the SYS-

tern will have generated three new versions of A. V2 of A will
reference Vl of B and V2 of C; V3 of A will reference V2 of B and
Vl of C; and V4 of A will reference V2 of B and V2 of C!

(1) configuration hierarchy (2) COmblnatOrid growth of versions

&f& m

Figure 2. Version Percolation

Another shortcoming of the percolation technique is that,
when used by it.self, it is not useful when versions of a component
object are deleted. In our current example, the user of Vl of
object A will not be notified of the deletion of VI of object B or
Vl of object C!

6.4. Notification Scope

The fact that a version in general references other versions in
a recursive manner presents a problem with the acope of change
notilication. Suppose, for example, that a version Vi references Vj,
and Vj references Vk. If version Vk is deleted, should both Vj and
Vi be notified, or only Vj be notified? In general, the possibilities
are
1. to notify only the versions that directly reference the changed

version, or
2. to notify all versions that directly or indirectly reference it.

The philosophy behind the first approach, which we are
adopting, is that the (human) users of Vd, the version that directly
references Vc, the changed version, should react to the change,
The users may determine that no corrective <actions need to be
taken on Vd, and thus there is no need to notify Vi, the version
that references Vd. Only if the user updates Vd, in response to the
changes in Vc, the changes in Vd will then cause a notification to
the users of Vd.

The csse for notifying only Vd is especially strong under our
model of CAD object. As discussed in Section 2.2, a CAD object
often has the interface part and the implementation part. The
interface part is not updatable; only the implementation part may
be updated, resulting in new versions. We expect that in practice
the types of changes tbat require notification are mostly on the
interface part, which by delinition is not updatable. As such, we
believe that there will only be a low probability that Vd needs to
be updated in response to any updates to the implementation part
of Vc, and thus even lower probability for Vi to be updated. If Vc
is deleted, Vd will need to be updated, possibly to reference
another version; however, it is not very likely that Vi will also
need to be updated.

6. Implementation Issues

In this section, we specify the minimal set of data structures
that a database system must maintain, in order to support our
model of versions. In particular, we will identify the types of
information necessary to implement version-derivation hierarchies
and change notification, both flag-based and message-b,ased.

0.1. Version-Derivation Hierarchy

The version-derivation hierarchy of a design object is
recorded in a version fable associated with the object. A version
table consists of
1. an object name,
2. a default version number,
3. a next-version number,
4. a version count, and
5. a set of version descriptors, one for each existing version on the

version-derivation hierarchy of the object.

The default version number, which is zero initially, determines
which existing version on the version-derivation hierarchy should
be chosen when a partially specified reference is dynamically
bound. The next-version number is the version number lo be
assigned to the next version of the object that will be created. It
is incremented after being assigned to the new version.

A version descriptor contains control information for each
version on a version-derivation hierarchy. It includes
1. the version number of the version,
2. the version number of the parent version,
3. the change-notification and change-approval timeslamps,
4. the storage location of the version,
5. the schema version number associated with the version, and
6. a pointer to the list of versions the version directly references

(this list is the component table, described in the ncxl subsec-
lion).

Further, depending on the database type, a version descrip-
tor can be in one of the two formats shown in Figure 3. For a ver-
sion in a private database, we need to specify the version type as
either transient or working. For a version in the public or a pro-
ject database, we may record the identity of the creator of the ver-
sion (the designer who checked in the version).

version table

-1

I . . . I
1 verslcn descriptor n

I
vsrsicn detcrlplor formal for prlvale datsbeses

Verrlon parenf vemlcn timeslamps slcrag~ 6chema compcr6r.t

I YBdZl 1 VP0 (CN. CA) lccaflcn version table

verston descriptor format for public and prc]ecI dalsbasos

v0r.icn parent timestamps rtora!~e rehems component

I verslon croa’cr (CN. CA) locatlcn version iable

Flgure 3. Verslon Table Format

8.2. Change Notification

In this section, we describe data structures necessary to
implement the flag-based change notification technique discussed
in Section 5.2, as well as a message-based notification technique.

Flag-Based Notification

We need a data structure, we call a componenl table, to
implement the configuration hierarchy and flag-based change
notification. A component table, shown in Figure 4, is associated
with each version, and contains the following information about
the versions it directly references as components.
1. the number of components of the version,
2. the method of change notification (either nag-based or message-

based),
3. the type of event to post a notification (any combination of ver-

sion creation, deletion, and update), and
4. a set of component descriptors.

-341-

Each componenl descriptor contains the ident,iLy of a rcrcr-
cnced version and the type of binding being used. I?or static bind-
ing, Lhe full “ame of the referenced version is recorded. 1701
dynamic binding, as erplaincd in Section 5.3, Lhe dat,abasc name
and/or the version numhcr ol the v&on whose cha.nges were last
approved by the parent version are recorded [or the unspecified
databnse name and/or the version number.

Message-Based Notification

To support mcssagc-based nolifcation, we need I.0 maintain,
for each version V, an inverted rejercnce list of versions which
reference V and which require notification of changes to V. When a
new reference to V is created, the name of the version that refcr-
ences V is appended to the inverted reference list of V. As shown
in Figure 5, for each reference, the event type (a combination or
updale/deiet,ion/creation ol versions) and the timing of nolification
(immediate or deferred) are also recorded. When a vcrsiwl wi,.h a

component table
noliflcallon method : flag-based/

message-based nollficstion
event type: creationldelellonlupdsle

Figure 4.1. Component Table Format

Binding Types Component Descriptors

‘dynamic object dalabase name Version X
binding 3’ name approved approved

Flgxe 4.2. Component Descriptors for Different Binding Types

non-empt,y inverted reference list is changed, Ihe list is scanned for
t.he databases that currenlly con(.ain those versions wiLh a match-
ing event type, and messages are sent to the owners or Ihosc data-
bosrs.

Inverted reference list

Figure 5. Inverted Reference List Format

0.3. Other Miscellaneous Data Structures

To support elTicient identification of a version table for a
given object name, we need to maintain a hcash table for each
database in our database hierarchy. U.&g the object, name as a
key, the hash table returns a pointer to the version table associ-
ated with the object.

To allow a designer t.o query the status of a shared version,
we need to maintain a cheekmrt table for the public da&abase and
each project da.l.xbase. A checkout table keeps track of all tile ver-
sions that have been checked out. A designer can access a
chcckoul table, provided that the corresponding database is acces-
sible to the designer, through a normal query interlace. As shown
in Figure 6, each entry of a checkout table contains:
1. the nal”e of the version checked out,
2. the version “umber of the checked-out version,
3. the time the version was checked out, and
4. the idenLit,y of the designer who checked out the version.

For the purposes of security and addressability, two other
types ol daLa structures riced to be maintained. In each project
database, members of the project are recorded in a list. Upon a
checkin or checkout request, the identity of the requestor is
checked against this list,. Only registered members of a project are
allowed to access the corresponding project database. Conversely,
the names of Lhc project dn.tabases that are accessible to a designer
are recorded in the designer’s private database. As each designer
may participate in several projects concurrenlly, the identity of a]]
the project databases to which the designer belongs should be
recorded in his private database.

check-out descriptor

Figure 6. Check-out Registration Table Format

7. Application (User) Interface

It may appear to the reader Lhat our model of versions is
rather complex. IIowever, we emphasize that there are two major
reasons for Ihis. One is that our model takes into account the dis-
tributcd nature of a CAD environment and the complex
configuration of CAD objects. Another reason is that we have pro-
vided detailed discussions of a very broad spectrum of semantic
and operational issues on versions. Thcrerore, the reader may find
it surprising that the application (user) interface we present in this
section contains a wry small number of commands that applica-
tion programs (users) need to issue in order to take full advantage
of our model of versions. WC provide a l3NF definition of t.he com-
mands in Figure 7.

We note that, in addition to these commands, we need
language constructs to declare schemes of objects and
configurat,ion hierarchies. In particular, we must be able to specify
change notification options for versio” references in a configuration
hierarchy in the schema definition. However, these language con-
struct.s nre part of a data delinition language, and their discussion
is beyond the scope of this paper.

The commands can be grouped into three categories: i”t,ra-
database operations, inter-database operations, and name-binding
declarations. The eiTect, of an intra-database operation is confined
t,o a single datxbaze, while an inter-databnsc opera.tion Gects a
pair of databaxs in our database hierarchy. A na.me-binding
declaration is for setting default version for an object or Mining a
context for dynamic binding. In the next subsections, we discuss
the commands in each group.

-342-

<create> := CREATE <object name>
<derive> := DERIVE <version name>
<replace> := REPLACE <old version> with <new data>
<promote> := PROMOTE <version name>
<delete> := DELETE <version name>
<split> := SPLIT <version name>
<checkout> := CHECKOUT <version name> [- .- as child of <version number> 1
<checkIn> :-CHECKIN <version name> <target database name> as child of <version number>

<enable notify> :=
ENABLE-NOTIFY <version name>[upon 1 $it.?ir/[ih i{ ~~;~~~;~ ,] message]

<disable notify> := DISABLE-NOTIFY <version name>
<set default> := SET-DEFAULT<object name>[In <database name> to [<v number> 1
<define context> := I +

DEFINE-CONTEXT <context name> where [<object name> Is <database name> <v numbers]

<use context> := USE-CONTEXT[<context name>]

<version number>
most recent version

<v number> := most-recent-transient version
mostIrecentIworking-version

<version name> := <object name> 1 <database name>
<old version> := <version name>

I[<version number> 1
<target database name> := <database name>
<object name> := <database name>:= <context name>:= <string>
<version number>:= <number>

Figure 7. BNF Definition of Application (User) Commands

<command> :=

<create>
<derive>
<replace>
<promote>
<delete>
<split>
<set default>
<checkout>
<checkin>
<enable notify>
<disable notify>
<define context:
<use context>

7.1. Intra-Databnse Operations

A versioned object is created initially by the we& com-
mand, which sets up the appropriate data structures for the object
as described in Section 6.1. The derive command is used to derive
a new transient version and allocate a new version number for it.
The version numbers of the new version and its parenl are
recorded in the private database. If the parent was a transient
version, it is automatically promoted to a working version. The
replace operation causes the contents of a transient version to be
rcplnced by a workspace copy the user specifies. A transient ver-
sion is explicitly promolcd to a working version, making the ver-
sion non-updatable, through the promote command. A transient
version can also be promoted implicitly as a side ellect or a chec-
kin.

The user may delete a version or a subtree of a version-
derivation hierarchy using the delete command. This is a recursive
operation that deletes a specilied version and all its descendant
versions. If the user intends to delete a non-leaf version on a
version-derivation hierarchy, he will specify the full three-part
name or the version, rather than just the object name. This is to
provide a measure of protection against accidental deletions of
non-lcaf versions (along wilh their descendants).

The spfil operation establishes a subtree of a version-
derivation hierarchy as a new derivation hierarchy. With this
operalion, a version-derivation hierarchy can potentially become a
forest or version-derivation hierarchies. A subtree marked by the
split operation can either be deleted, using the delete operation, or
exist s.3 a new version-derivation hierarchy. To be consistenL with
the semnnt,ics of versions, none of the intra-database operations are
applicable t,o versions in the public database.

7.2. Inter-Database Operations

The clreckout command allows a user to check out a version
from the public database or a project database, while the checkin
command allows a user to check a new version into Lhe public or a
project database. Both commands provide an opt,ion for selecting
a parent version in the destination database. For example, a user
can check out a version lrom a project databnsc and install it <as a
child of a particular version in his private dstabasc. If no parent
version is spccificd in the command, the default version on the
version-derivation hierarchy is chosen.

The two remaining commands deal with change notification
of checked-out versions. The enelk-nafijy commaud resulls in the
insertion of an ent.ry in the inverted reference list of a checked-out
version in it,s originating database. The user can specify the types
of events that will post a notification, and whether a message
should be seut immediately or delayed till the checkin time. If no
options are specified, by default a message will be sent immedi-
ately upon deletion of the original version. The disable-noti/y
command is used to cancel a previously issued enable-notify com-
mand, when the user decides that notification is no longer desired.
As we mentioned earlier, change notification options for version
references in a configuration hierarchy can be specified in the

schema definition, and need not be set (cleared) by the
enable-nofi/y (dianblc-nofi/y) command.

7.3. Name-Binding Declarations

The user uses the setdefaulf command to specify the default
version on a version-derivation hierarchy of an object. The
define-confezf command provides additional flexibility for estab-
lishing alternative (customized) dynamic binding of versions. Once
defined, a context can be invoked by the use~contezt command.
The binding defined in a context takes precedence over the default
binding when the context is in use, and the definition of the con-
text must be searched lirst to resolve a dynamic binding. The
current active context is replaced by another context specified in
the next we-confezf command. If no context name is given in a
use-confezf command, no context will be active after the com-
mand is executed.

Concluding Remarks

In this paper, we presented a model and implementation or
version control in a CAD environment. The paper made three
contributions. The First is in the development of a model which,
unlike most existing models, takes a major step towards incor-
pora.ting the distributed nature of a CAD environment and the
complex configuration of CAD objects. The second is in the
detailed exploration of a very broad spectrum of semantic and
operational issues in version control, and in unifying the solutions
to these issues in a way that is consistent within our model. The
third is in our proposal for the implementation and an application
interface for the model.

The distributed architecture of an inlcgratcd CAD system,
and the way in which users of a CAD system interact, led us to
logically partition a global database into a database hierarchy
which consists of the public database, a set of project databases,
and a set of private databases. The public database is sharable
among all users, a project database among members of a project,
and a private databLase is accessible to only a single user. This
view suggested the notion of dilferent capabilities for versions in
dilferent databases, and led us to deline and characterize the
notions of transient, working, and released versions.

A CAD object is represented as a conliguration hierarchy, in
which a design is decomposed into a progressively more detailed
lower level components. Each node of a conliguration hierarchy
contains references Lo lower level components. In general, any
component may be referenced by any number of higher level com-
ponents, and it may itself reference any number of lower level
components. A set of CAD objects thus forms a directed acyclic
graph of independent, sharable components. When a lower level
component is updated, deleted, or a new version of it is created,
higher level components that reference it may need to be notified
of the changes. The characterization of a CAD database consisting
of a set of design objects as a direct&acyclic graph led to our
characterization, and solution, of the problem of change
notification.

We developed our model of version control by exploring a
spectrum of semantic and operational issues, including version
naming, static and dynamic binding of versions of a component
objecL to higher level components, versions of schema for CAD
objects, and change notification. We also provided discussions of
the data structures that a CAD database system must maintain to
support our model, and a provisional list of the commands that
application programs and u.sers may issue to use our model. We
p1a.n to integrate this version model into a prototype database sys-
tem under construction so that the model can be better evaluated
through experimentation and practical experiences.

References

[ATWO85] Atwood, T. “An ObjecGOriented DBMS for Design
Support Applications,” in Proc. IEEE COMPINT 85,
pp. 299-307, Sept. 1985, Montreal, Canada.

[BANG851 Bancilhon, F., W. Kim, and II. Korth. “A Model of
CAD TransacLions,” in Proc. lntl Conf. on Very Large
Data Bases, August 1985, Stockholm, Sweden.

[BAT085a) Batory, D., and W. Kim. “Modeling Concepb for
VLSI CAD Objects,” ACM Trans. on Database Sys-
tems, vol. 10, no. 3, Sept. 1985.

[BAT085b] Batory, D., and W. Kim. “Supporting Versions of
VLSI CAD Objects,” Lo appear in IEEE Trans. on
Software Engineering.

[DADA841 Dadam, P., V. Lum, and II. Werner. “Integralion of
Time Versions into a Relational Database System,” in
I’roc. InLl. Conf. on Very Large Databases, August
1984, pp. 509-522.

[DlTT85] Dittrich I<. and R. Lorie. “Version Support for
Engineering Database Systems,” IBM Research Report:
RJ4799, IBM Research, Calif., July 1985.

[EDIF] Electronic Design Interchange Format, preliminary
specilication, version 0.8

(IIASI<82] Haskin, It. and R. Lorie. “On Extending the Func-
Lions of a Relational Database System,” in I’roc. ACM
SIGMOD Conf., June 1982, pp. 207-212.

[HAYN84] Haynie, M. and C. Gohl. “Revision Relations: Main-
taining Revision IIistory Information,” IEEE Da.tabase
Engineering bulletin, vol. 7, no. 2, June 1984, pp. 2G-
33.

[KAlS82] Kaiser, G. and A. Habermann. “An Environment for
System Version Control,” Tech Report, Dept. of Com-
puter Science, Carnegie-Mellon University, November
1982.

[KATZ84a] Kat.z, R. and T. Lehman. “Database Support for
Versions and AltcrnaLives of Large Design Files,”
IEEE Trans. on Software Engineering, vol. SE-lo, no.
2, March 1984, pp. 191-200.

[I<ATZ84b] Katz, R. and S. Weiss. “Design TransacLion
Management,” in Proc. ACM/IEEE 21st Design Auto-
mation Conf., Nburquerque, NM, June 1984.

(KATZ85]
[RATZ~G]

[KIM841

[LORI83]

[McLE83]

Katz, R. private communication, March 1985.
Katz R., E. Chang, and R. Bhateja. “Version Model-

ing Concepts for Computer-Aided Design Databases,”
Submitted to ACM SIGMOD Intl. Conf. on Manage-
ment of Data, 1989.
Kim, W., R. Lorie, D. McNabb, and W. Ploulle. “A
Transaction Mechanism for Engineering Design Data-
bases,” in Proc. Intl. Conf. on Very Large Data Bases,
August 1984.
Lorie, R. and W. PloulIe. “Complex Objects and Their
USC in Design Transactions,” in Proc. Databases for
Engineering Applications, Database Week 1983 (ACM),
May 1983, pp. 115-121.
McLeod, D., I<. Narayanaswamy, and I<. Bapa Rae.

“An Approach to Information Management for
CAD/VLSI Applications,” in Proc. Databases for
Engineering Applications, Database Week 1983 (ACM),
May 1983, pp. 39-50.

[NEUM82] Neumann, T., and C. Hornung. “Consistency and
Transactions in CAD Databases,” in Proc. Intl Conf.
on Very Large Data Bases, Sept. 82, Mexico City,
Mexico.

[NEWT851 Newton, A.R. private communication, March 1985.
[PLOU83] Plouffe, W., W. Kim, R. Lorie, and D. McNabb.

“Versions in an Engineering Database System,” IBM
Research Report: RJ4085, IBM Research, Calif.,
October 1983.

[ROCII75] Rochkind M. “The Source Code Control System,”
lEEE Transactions on Software Engineering, vol. SE-l,
no. 4, December 1975, pp. 304-370.

[TIC11821 Tichy W. “Design, Implementation, and Evaluation of
a Revision Control System,” IEEE Gth International
Conference on Software Engineering, September 1982.

[WIED82] Wiederhold, G, A. Beetem, and G. Short. “A Data-
base Approach to Communication in VLSI Design,”
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. CAD-l, no. 2, April 1982,
pp. 57-63.

[WOEL8G] Woelk, D., W. Kim, and W. Luther. lLAn Object-
Oriented Approach to Multimedia Databases,” ACM
SIGMOD Intl. Conf. on Management of Data, 1986.

-344-

