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Abstract 

This paper describes the development of a general 
spatial data model for PROBE, a knowledge-oriented 
DBMS being developed at CCA [DAYA85, DAYASG]. 
The data model, called PDM, is an extension to the 
Daplex functional data model [SHIPII, FOX84]. The 
paper first describes the approach taken to defining 
spatial semantics in the model, and how these seman- 
tics were incorporated into the non-spatial aspects of 
the model. Second, some implementation aspects are 
discussed. 

1. Introduction 

It is widely recognized that existing database 
management systems do not address the needs of many 
“non-traditional” applications such as geographic 
information systems and computer-aided design. The 
underlying data models, query languages, and access 
methods were designed to deal with simple data types 
such as integers and strings, while the new applica- 
tions are characterized by spatial data, temporal data, 
and other forms of data having both complex structure 
and semantics. While spatial data can usually be 
stored in conventional DBMS data types,, it is 
extremely difficult to specify even the simplest 
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spatial operations in such a DBMS. Moreover, the 
implementation will have poor performance because 
the query will be complicated and difficult to optim- 
ize, because the access paths were not designed for 
spatial data, and because the clustering of data nor- 
mally provided by a DBMS (e.g. on a numeric attri- 
bute) is a poor choice for spatial data. In order to deal 
with spatial data, more support is needed at all levels 
of the DBMS. 

One approach that has been taken to address this 
problem is to define specific extensions for various 
nontraditional data types, and add them to conven- 
tional DBMSs, in many cases borrowing from the 
extensive literature on abstract data types (from 
which we also borrow, e.g., [MALL82]). For example, 
various special-purpose extensions to DBMSs have 
been proposed for dealing with text [STON82, 
SCHE82], images ([IEEE77, CHANII] contain many 
relevant papers), and geographic data [IEEE77, 
MORE85]. 

The problem with this approach does not lie in 
starting with conventional DBMS facilities. In any 
real application for databases of spatial data there are 
databases of non-spatial data that must be dealt with, 
and for th.is data conventional DBMS facilities are 
often ideal. Instead, the difficulty is that in each case 
the specific extensions added are application-specific, 
and limited in generality. For example, the spatial 
capabilities required for geographic data would be at 
best of limited use in a mechanical CAD application. 
Moreover, even for a single type of data, e.g. geo- 
graphic data, there are many different ways to 
represent and manipulate the data, and each way may 
be the best in some specific application. It does not 
seem possible to select one approach to build in and 
maintain generality. At the same time, it is clearly 
impossible to provide all useful approaches in the 
same DBMS. 

One of the goals of the PROBE DBMS being 
developed at CCA [DAYA85, DAYA is to 
efficiently process a variety of spatial and temporal 
data types. The approach being taken in PROBE is to 
design an “extensible” object-oriented DBMS. This 
allows the inclusion of specific object classes that sup- 
port the required spatial data types, while maintaining 
generality by allowing additional types to be defined 
as applications grow or change. 

An extensible DBMS stores and manipulates 
members of object classes. The set of operations in 
the data model includes conventional database opera- 
tions like select, and operations supplied with the 
object class definitions. Certain common object 
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classes (e.g. numeric and string object classes) are 
needed by all users. More specialized object classes 
can be added as needed. The definition of an object 
class includes implementations of operations, the 
representation of object class instances, a description 
of the algebraic properties of the operations and infor- 
mation about the cost of the operations. These last 
two items will be used by an extensible query optim- 
izer. 

This paper describes the basic concepts supporting 
spatial data handling in PROBE, and the facilities of a 
specific object class being implemented in PROBE for 
handling spatial data. This object class is intended pri- 
marily to support spatial query processing. To allow 
wide applicability, the object class is not tailored to a 
particular dimension or representation. This object 
class will implement “approximate geometry”. 
Approximate geometry (AG) is based on the idea that 
approximate answers to spatial queries can be calcu- 
lated much more quickly than exact answers. As 
developed here, AG can be used in conjunction with a 
wide variety of established representations that would 
be hidden in other object classes. The algorithms and 
data structures we will describe are well-supported by 
the facilities of conventional DBMS implementations. 

The rest of the paper is organized as follows. Sec- 
tion 2 briefly describes the characteristics of the 
PROBE data model. Section 3 describes the concepts 
underlying PROBE’s spatial data model. Section 4 
presents a short example illustrating the use of these 
concepts. Approximate geometry is discussed in sec- 
tion 5. Section 6 contains concluding remarks. 

2. Data Model Overview 

Like others who have investigated the problems of 
DBMSs for spatial data, we begin with an existing data 
model. The model we have chosen is the Daplex func- 
tional data model [SHIPIl, FOX84]. The extension is 
referred to here as PDM (for PROBE Data Model). 
Due to lack of space, and our intent to concentrate on 
spatial data handling, we can only present here a brief 
description of the basics of PDM. A more detailed 
description of PDM is found in [MAN086]. 

As in Daplex, there are two basic types of objects 
in PDM, entities and functions. An entity is a data- 
base object that denotes some individual thing. It may 
be though of as being denoted by a surrogate value 
(system-generated unique identifier). The basic pro- 
perty of an entity in the model is its distinct identity. 
Attributes and relationships of entities are 
represented by functions (see below). Entities are 
grouped into classes called entity types. The same 
entity may be associated with one or more entity 
types in the database, as defined by metadata 
specifications. 

In Daplex, a function is a mapping from entities 
either to other entities, to scalar values, or sets of 
entities or scalar values. PDM generalizes this con- 
cept by defining a function as a mapping from collec- 
tions of entities and scalar values (the parameters of 
the function) to other collections of entities or scalar 
values. Thus, a function is defined over one or more 

input arguments (of specified types), and returns one 
or more output arguments, also of specified types. 
This is indicated by the notation: 

function-name(inputt ,...,input,): (output1 . . . ..output.) 

Each entity type has defined for it (via metadata 
specifications) a collection of functions that may be 
applied to entities of that type. There are two classes 
of these functions. The first class consists of generic 
data model operations that apply to all entities in the 
database, such as “selection”. These functions have 
been defined in the form of a “PDM algebra” that 
plays the same role in PDM as the relational algebra 
does in the relational model. The second class consists 
of functions defined by users using the data descrip- 
tion facilities of PDM. These functions are used to 
represent entity attributes and relationships. PDM 
makes no distinction between functions that have 
explicit stored representations (similar to relations) 
and functions whose output is computed procedurally 
on demand. Thus, arbitrarily-complex functions may 
be specified in a database, and referenced in queries. 
Entity types may be defined as subtypes of other 
entity types. In such cases, entities of a subtype may 
inherit functions from their supertypes. The use of 
entities and functions in spatial modeling is discussed 
in the next section. 

3. Spatial Data Model 

3.1 Point Sets and Spaces 

Given a data model supporting conventional data 
types, such as PDM, it is necessary to do several things 
to define spatial enhancements. The first of these is 
to find a way to represent spatial characteristics of 
the entities defined in the data model, and to associ- 
ate these characteristics with the non-spatial charac- 
teristics. The second is to define the precise seman- 
tics of the various spatial characteristics. Finally, 
implementations of the defined semantics must be 
provided. 

A spatial representation of an entity in a given 
space can be modeled by a function that maps from 
the entity to one or more points in that space. Intui- 
tively, this function says, for the entity, what points in 
the space it “occupies”. Similarly, non-spatial attri- 
butes of entities that vary over the spatial representa- 
tion of the entity, such as the color of a mechanical 
part, can be modeled by a function that maps from the 
attribute value to one or more points in the spatial 
representation of the entity. Note that, in the 
absence of constraints to the contrary, several entities 
may occupy the same space. 

A problem that must be considered is how to gen- 
erate the point set values of such functions. Many 
applications involve a continuous (non-discrete) space, 
in which most useful point sets contain an uncountable 
number of points. In order to be practical, however, it 
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must be possible to construct a value of interest in a and other shapes (including text). In 3D solid model- 
finite number of operations. To do this, we first con- ing, the entity subtypes could include the various solid 
sider these functions as mapping from real entities to shapes, such as blocks, spheres, cones, etc., found in 
special entities that denote point sets, rather than solid modelers. In the case of boundary representa- 
mapping to actual (enumerated) sets of points tions, subtypes of PTSET would be formed from other 
(although this will still be permitted in practice). subtypes of PTSET with the special semantics of boun- 
These special entities are defined as entities of type daries, using special operations for forming structured 
PTSET. objects from entities of these types [MANT82]. 

With the development so far, the basic elements of 
our approach to incorporating spatial data in the 
model can be identified with reference to Figure 3.1. 
(The arrows denote entity-valued functions; double- 
headed arrows denote entity-set-valued functions). 

Only the most general point set semantics are 
defined for the PTSET type. The detailed behavior 
and characteristics of spatial entities required for par- 
ticular applications are defined in the various special- 
ized subtypes of PTSET. For example, [REQUIO] 
identifies “r-sets” (bounded, closed, and regular sets) 
as having the required characteristics for representing 
3-dimensional solids (r-sets, for example, are finite 
and have well-formed boundaries). In PROBE, we 
anticipate adding these specialized entity subtypes 
using PROBE’s extensibility features. The new types 
would either inherit the definitions of operations from 
the PTSET type, or would provide specialized versions 
of such operations. For example, a subtype 3DSOLID 
of type PTSET might be provided for representing 3-D 
solid objects using “r-sets” as its representation. How- 
ever, [REQUIO] notes that ordinary point set opera- 
tions (such as union) are not closed for these objects 
(they can create “dangling edges” of zero thickness). 
Thus, it would be necessary to use “regularized set 
operations” (described in [REQUIO]) that preserve the 
properties of “r-sets” for subtype JDSOLID instead of 
the generic point set operations provided for its super- 
type PTSET (described below). Specialized types 
could also have additional specialized functions that 
apply to them (such as a “boundary” function), as well 
as specialized predicates. 

iz 
representation 
rekionships 

Figure 3.1 Elements of Spatial Data Model Ektensions 

Entities of type PTSET that have the semantics of 
points or point sets (such as lines, areas, or volumes) 
are included in the model, and serve as the values of 
spatial attributes, such as “shape” or “boundary”, of 
ordinary database entities, such as “parts”. Using 
PTSET entities allows both spatial and non-spatial 
attributes (such as “PART#“) to be associated with the 
same database entities in a straightforward way, as 
shown in Figure 3.1. Attributes, such as COLOR or 
DENSITY, that vary over the shape of the part may be 
handled in two ways in PDM. First, the attribute, e.g. 
COLOR, can be defined as one or more multiargument 
functions, such as COLOR(PART,EXTENT). Alterna- 
tively, a separate entity can be defined, as shown in 
the figure. 

It must be possible to specify entities of type 
PTSET that denote required point sets in a finite 
number of operations. The usual solution (and the one 
adopted here) is to provide specific entity subtypes of 
the general entity type PTSET that denote shapes 
needed in a particular range of applications, together 
with operations for combining entities of type PTSET 
(and its subtypes) to produce new entities of type 
PTSET. A given entity could then be specified by 
specifying one of the specialized entity subtypes, 
together with values for its various parameters, e.g., 
“CONE (RADIUS=>12, HEIGHT=>40)“. The set of 
points denoted by this entity would be implicit in the 
underlying definition of “cone” (e.g., an equation, pos- 
sibly defined in terms of a default coordinate system 
and origin) together with the specified parameters. 
More complex shapes could be built by combining such 
specialized shapes. In graphics, the entity subtypes 
would typically include boxes, points, line segments, 

In addition to dealing with PTSET entities as indi- 
vidual objects, there are many situations in which it is 
necessary to deal with PTSETs contained within other 
PTSETs. For example, a map feature might have a 
PTSET describing its shape. The PTSET for the con- 
taining map would have to contain all the PTSETS of 
features contained within the map (Figure 3.2). 

MAP 

TITLE 
SCALE AREA 

FEATURES 

FEATURE 

TYPE 
FEATURED 

SHAPE 

CONTAINS 

T 

Figure 3.2 A Map and its Component Features 

Similarly, PTSET entities that represent individual 
parts within an assembly may be grouped as com- 
ponents of the PTSET entity that represents the entire 
assembly. 
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When we deal with a PTSET in its role as a “con- 
tainer” of other PTSETs, we refer to the “container” 
PTSET as a “space”. Since a PTSET contained in one 
space can itself contain other PTSETs, PTSETs natur- 
ally exhibit a hierarchical structure. We represent the 
hierarchical structure in the model by a set-valued 
CONTAINS function from the space to the spatial 
entities contained within the space. Multiple decom- 
positions of the same set of points (such as a geo- 
graphic area) can be defined using multiple PTSET 
entities denoting the same set of points. 

A database entity may be related to multiple 
PTSET entities (e.g. in different spaces) in a straight- 
forward way, using the normal capabilities of the data 
model to support l-n relationships. This allows an 
entity to be associated with any number of different 
versions of its “shape”. For example, a bridge might 
be represented as a point in one map, as a line in a 
map showing greater detail, as a space frame in its 
design data, etc. This provides a method for associat- 
ing all representations of the bridge (assuming they 
are known). Also, each of the Z-D point sets 
representing the bridge in a particular map, for exam- 
ple, would be associated with the point set represent- 
ing the area covered by the entire map, enabling the 
bridge to be associated (and located) with respect to 
the other features in the same map. 

Finally, figure 3.1 shows that the model also 
allows aspects of the implementation of PTSET enti- 
ties to be visible in the database, if this is appropriate, 
via “representation entities” (and relationships). 

3.2 Operations 

Since entities of type PTSET are first class PDM 
entities, they can be used as arguments of generic 
PDM functions in the same way as conventional PDM 
entities. In addition, specialized operations associated 
specifically with entities of type PTSET are defined. 
The operations provided for operating on generic 
PTSET entities fall into two categories, point set 
operations and structural operations. 

The point set operations include set operations on 
PTSET entities, spatial selection, overlay, and 
geometric transformations. The point set operations 
intersection, union, and difference, provide the pri- 
mary means for combining PTSET entities into new 
PTSET entities. These operations are defined for enti- 
ties Pl and P2 of type PTSET as follows: 

- Point set union -- The point set union 
ptunion(Pl,PP) is an entity Pr of type PTSET that 
denotes the set of points belonging to either Pl or 
P2 (or both). 

- Point set intersection -- The point set intersec- 
tion ptintersect(Pl,P2) is an entity Pr of type 
PTSET that denotes the set of points belonging to 
both Pl and P2. 

- Point set difference -- The point set difference 
ptdiff(Pl,PZ) is an entity Pr of type PTSET that 
denotes the set of points belonging to Pl and not 
to P2 (note that difference is not symmetric). 

Also defined as point set operations are special 
variants of generic PDM functions that are tailored to 
operate with PTSET entities. Specifically, predicates 
are added to functions such as selection that test vari- 
ous spatial conditions, such as whether a point set is 
empty, contains another point set, or intersects 
another point set. A whole range of other spatial rela- 
tionships (e.g. “left-of”, “above”, “adjacent-to”) can be 
added in the same way. 

Given a space containing objects that may overlap 
with one another, it is often useful to identify maxi- 
mal subspaces that do not contain any object boun- 
daries. For example, a crucial operation in geographic 
information systems is “polygon overlay”. This opera- 
tion superimposes two maps of the same area (e.g. 
land usage and political districts) and creates all the 
regions due to the intersection of regions from the 
input maps. PROBE’s spatial data model includes an 
overlay operator to facilitate this kind of processing. 

In discussing overlay it is useful to have the con- 
cept of a uniform region. Let obj(p,S) be the set of 
objects in a space, S, where p is a point of S. Then a 
uniform region is a maximal subspace u, in a space S, 
such that for every point p in u, obj(p,S) is the same. 
I.e. u is a uniform region if v pl, p2 e u: obj(pl,S) = 
obj(p2,S) and no subspace containing u has this pro- 
perty. To support operations such as polygon overlay, 
it is useful to be able to turn uniform regions into 
first-class objects. This is the finest partitioning that 
can be obtained given a set of objects (using only 
object boundaries to define partitions.) Any desired 
partitioning can be created from the uniform regions. 
From the point of view of the data model, a space 
containing objects is indistinguishable from a space 
containing the uniform regions derived from a set of 
objects. They are both represented by a space con- 
taining spatial objects. 

Based on this discussion of uniform regions, we can 
now define overlay: Overlay(S) returns a space con- 
taining a spatial object for each uniform region of 
space S. The overlay operation can be used to com- 
pute polygon overlay as follows. Each input map is 
represented by a space containing a PTSET for each 
polygon of that map. The PTSETs from the two maps 
are placed in a single space by the obunion operation 
(discussed below). The overlay operator is applied to 
the output from obunion. 

It is useful to be able to compute attributes of uni- 
form regions from attributes of the objects (e.g. area). 
An approach to this problem is discussed in [OREN851. 

A geometric transformation is an operation that 
moves the points of a PTSET entity without changing 
its identity (in effect, the transformation changes the 
definition of the set of points denoted by the entity); 
thus, any geometric transformation can be character- 
ized by a function between points. Application of a 
geometric transformation to a PTSET entity S can be 
denoted: 

tran.sfonn(T.S) 

where T is a specification of the transformation to be 
performed. Syntactically, transformation 
specifications can be defined “on the fly” in a query or 
PDM algebra expression, or declared in the database 
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and stored for later access. Transformations can be 
supported directly through the use of multiargument 
functions. Transformations between entire spaces 
may be defined in the same way as those between indi- 
vidual spatial entities, since both individual spatial 
entities and whole spaces are denoted by entities of 
type PTSET. 

The point set operations defined above form an 
algebra on point sets. As a result, given these opera- 
tions, PTSET entities denoting complex “shapes” can 
be constructed by specifying “algebraic expressions” 
of point set operations applied on (possibly 
transformed) PTSET entities. 

The structural operations are concerned with the 
hierarchical structure of spaces described earlier. In 
general, these are convenient “macros”, as they can be 
defined in terms of the non-spatial operators of the 
PDM algebra. The object set operations are defined 
for spaces Sl and S2 denoting the same point set, but 
having possibly different contained PTSETs (i.e. Sl 
and S2 register different information about a single 
point set). The definitions are as follows: 

- Object union -- The object union obunion(Sl,SP) is 
a space S3 denoting the same point set as Sl and 
52 that contains the set of PTSET objects con- 
tained in Sl, S2, or both. (The objects in S3 may 
not be spatially distinct although their identities 
are retained.) 

- Object intersection -- The object intersection 
obintersect(Sl,S2) is a space S3 denoting the 
same point set as Sl and S2 that contains the set 
of PTSET objects contained in both Sl and S2. 

- Object difference -- The object difference 
obdiff(Sl,SO) is a space S3 denoting the same 
point set as Sl and S2 that contains the set of 
PTSET objects contained in Sl and not in S2 
(again, difference is not symmetric). 

The operation sinsert(Pl,PS) takes an entity Pl of 
type PTSET and inserts an entity P2 of type PTSET 
into it (P2 must be capable of being fully contained 
within Pl). The semantics of sinsert can be described 
in terms of operations on the CONTAINS function 
described above. In its most primitive form, 
sinsert(Pl,PS) simply adds P2 to entity Pi’s CONTAINS 
function. More complete information may be cap- 
tured by allowing P2 to be the result of some spatial 
transformation operation on another PTSET entity, as 
in sinsert(Pl,transform(P2,spec)), where “spec” 
denotes the specification of of the transformation to 
be performed on P2 prior to inserting it in Pl. This 
captures not only the fact that P2 is contained in Pl, 
but where within Pl entity P;! is actually located. 
Such specifications may be more or less precise, 
depending on the subclass of PTSET entities involved. 

The expand and reduce operators provide addi- 
tional control over the CONTAINS relationship in 
spaces. If S is a space, X is in S’s CONTAINS function, 
and Y is in X’s CONTAINS function, expand(S) pro- 
duces a space S’ denoting the same point set, having 

moved Y into S’s CONTAINS function without altering 
X’s CONTAINS function. That is, for each immediate 
child X of S, expand(S) effectively copies each child 
of X so that it is also an immediate child of S. Note 
that placing an object in a new space (Y in the space 
of S in the above example), requires computation of 
the position of the object within the space. If the posi- 
tion is specified as a transformation, then a composi- 
tion of transformations is necessary (e.g. multiplica- 
tion of 4 x 4 matrices). Reduce is, in some sense, the 
inverse of expand. Reduce(S) produces a space S’ hav- 
ing no immediate children that are also contained in 
some other (immediate or indirect) child object of S. 

Finally, since the substructure of a particular spa- 
tial representation is structured hierarchically, it is 
possible to use recursive processing techniques to 
search this hierarchical structure, by traversing the 
CONTAINS relationship. Such recursive processing 
techniques are also being developed in the PROBE 
DBMS [DAYA85, ROSE861. 

4. Example 

This example illustrates the type of definitions 
possible within the model, once the appropriate sub- 
types are defined. It shows the definition of the shape 
of a simple missile in 3 dimensions, using a “construc- 
tive solid geometry” approach, in which primitive 3D 
shapes are combined using point set operations to give 
a complex result. The entire shape might then be 
assigned as the value of the SHAPE function of a 
PART entity defining the missile. 

create new C in CONE (NAME=>NOSE.R=>l2.H=>40) 
create new CY in CyLImm (NAME=>B~DY.R=>Iz.H=>u~o) 
create new W in RECTANGLE (NAME=>WING,2=>2o,X=>2.Y=>180) 
create new H in RECTANGLE (NAME=>HORIZ.Z=>2O.X=>2,Y=>80) 
create new V in RECTANGLE (NAME=>VERT.Z=>~O,X=>~O.Y=>~) 
create new G in SPHERE (NAME=>GYROSCOPE.R=>8) 

create new CS1 in GTFtANS (OP=>translate(0.0.4).WRT=>C) 
create new CS2 in GTTUNS (OP=>translate(O.O.G),WRT=>CSl) 
create new CS3 in GTRANS (OP=>translate(O.O.S).WRT=>CS2) 
create new CS4 in GlRANS (OP=>translate(0.0,10).WRT=>C) 

C := C sinsert transform(G.CS4) 

create new S in 3DSOLID (NAME=>MISSILESHAPE, 
DEFINITION=> C ptunion transform(CY.CSl) ptunion 

transfonn(W.CS2) ptunion transform(H,CS3) 
ptunion transform(V.CS3)) 

Object. structure: missile 
I ptunion 

+-------+-------i--------+--------+ 
trans--sinsert->nose trans trans trans trans 

I (cone) I I I I 
gyroscope MY a3 hstab vstab 

(sph) kyl) (rect) (rect) (red) 

Figure 4.1 Cruise Missile Definition 

The definition is shown in Figure 4.1. 
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Each primitive shape is predefined as an entity 
type (a subtype of the specialized spatial data type 
“3DSOLID”, which is itself a subtype of the general 
spatial data type PTSET). Thus, when new entities of 
these types are created with specific values of their 
parameters (e.g. a specific radius and height), 3D 
objects are actually being created. For example, CY 
is a cylinder defining the missile body. 

In subtype 3DSOLID, each primitive object is 
defined with its own default coordinate system. In 
order to combine objects, they must be transformed 
into the same coordinate system (as opposed to requir- 
ing all objects to be defined absolutely with respect to 
the same coordinate system). The necessary transfor- 
mations are defined as objects of type GTRANS. For 
example, CSl translates the body with respect to the 
nose cone. The shape of the missile is then defined by 
performing combinations of transformations and set 
operations on the primitive shapes. Syntactically, the 
definition of this shape is assigned to the DEFINITION 
function of the generic BDSOLID entity representing 
the shape, since, unlike a CONE, the definition is not 
implicit in the type of entity involved. 

The insertion of an independent spatial object (a 
gyroscope) into the set of points defined by the 
missile’s shape (specifically, into the missile’s nose 
cone) is also illustrated. In this case, the nose cone is 
considered as a “space”, into which other objects 
might be inserted. The operator used for this purpose 
is the I’sinsert” operator. The resulting missile shape is 
shown in Figure 4.2 inside a “shipping box”. 

To illustrate show such spatial data might be used 
in queries, suppose we’ve defined a shipping box shape 
and want to see if certain versions of the missile will 
fit in it. This is a simple example of “interference 
checking”, performed quite often in CAD systems. 

T 

Y 
M 

l-J&- 

l 

I 

I 

I 

Figure 4.2 Missile (partially) in Shipping Box 

The shape of the box would be defined, using a 
declaration such as “create new B in RECTANGLE 
(NAME=>BOX, Z=>250, X=>160, Y=>75) (this box is a 
solid representing the inside space of the shipping 
box). 

A query would then be specified to access the 
shapes of both the box and specific missile versions 
and test them to see whether the missile shape can be 
entirely contained within the box shape. If not, an 
indication that the particular version does not fit in 
the box would be printed. The query (in the PDM 
Daplex query language) would be: 

for each M in PART where NAME(M) = 9'missile" 
for each V in VERSIONS(M) where 

RELF.kSE-DATE(V) > "09-26-82" 
for each T in PART where NAME(T) = "shipbox" 

if SHAPE(V) is not contained in SHAPE(T) then 
print(R.EP(RELEASE-DATE(V)) .“does not fit”) ; 

end; end; end; 

While this example is necessarily rather simple, it 
illustrates the basic ideas involved. Quite complex 
shapes can be constructed, and spatial relationships 
tested, using the basic set operators. 

5. Supporting the spatial data model 

This section is concerned with the implementation 
of the spatial data model. As discussed above, the 
structural operations can be defined and implemented 
in terms of PDM algebra. In this section we concen- 
trate on the point set operations since they cannot be 
handled using “conventional” DBMS facilities. It is 
possible to represent point sets using known techniques 
(e.g. boundary representation), implement algorithms 
for each geometric operator, and encapsulate all this 
in an object class. There are two problems with this 
approach. First, it is difficult to do. The algorithms 
would have to be concerned with sets of spatial 
objects (and with attendant problems relating to 
secondary storage and buffering). This complicates 
the implementation of the spatial object class. 
Secondly, it is likely to be very slow. With common 
representations such as constructive solid geometry 
and boundary representation, it is difficult to avoid 
doing work that is “obviously” unnecessary (i.e. obvi- 
ous if you look at a picture.) For example, to find all 
polygons in a set, S, that overlap a given polygon P (in 
2d), a boundary representation algorithm would have 
to compare edges of polygons in S against edges in P. 
Any optimizations would have to be explicitly coded. 
(For example, ignore a polygon p of S if a box contain- 
ing p and a box containing P do not overlap.) 

Ideally, the DBMS would take care of collections 
of objects while the spatial object class would take 
care of individual objects and interactions among 
them. This would reduce the amount of work required 
to extend the DBMS with a new object class. Taking 
this approach means that optimization involving col- 
lections of objects must take place in the DBMS. 

This is the motivation behind including “approxi- 
mate geometry” (AG) in the DBMS. AG can “take care 
of collections of objects”, implement optimizations on 
collections of objects, and make use of an “object-at- 
a-time” interface to spatial object classes. Generally, 
algorithms can be optimized using AG if they rely on 
1) iteration over the objects in one or two spaces, 2) a 
spatial predicate to detect “interesting” objects or 
pairs of objects, and 3) a procedure to handle these 
objects or pairs. Parts (1) and (2) can be done very 
efficiently using widely applicable AG techniques. The 
spatial object class would have to supply parts (2) and 
(3). (Part (2) is done approximately in AG and pre- 
cisely in the spatial object class.) 
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Our approach to AG is based on a “grid” or “raster” 
representation of spatial objects. Many complex spa- 
tial operations can be implemented with very simple 
algorithms given a grid representation. The algorithms 
usually involve iteration over all cells or pixels of the 
grid, performing the same basic step for each pixel. In 
practice, it is not feasible to store grids explicitly. At 
high resolution, the space requirements are too high 
and iteration over all pixels is too slow. The tech- 
niques to be presented can be thought of as methods 
that optimize the handling of grid or raster represen- 
tations. Support for the geometric operations using 
approximate geometry will be discussed in section 5.2. 

5.1 Supporting the structural operations 

The structural operations create new spaces and 
manipulate the CONTAINS function of spaces. These 
operations can be implemented using the operations of 
PDM algebra. The implementation of the object set 
operations is fairly straightforward. For expand and 
reduce, it is necessary to compute the “square” of the 
containment relationship (as reflected in the CON- 
TAINS function). That is, for all spaces, find objects 
that are contained in contained objects. To compute 
expand, these indirect containment relationships are 
added to the current set; for reduce they are removed. 

5.2 Supporting the geometric operations 

In this section we will discuss the basic ideas of 
approximate geometry and show how these ideas are 
used in supporting the geometric operations of the 
spatial data model. The details of the algorithms are 
beyond the scope of this paper; see [OREN85, 
OREN86] for more complete discussions. 

The essential idea behind approximate geometry is 
the decomposition of PTSET entities into box-shaped 
elements; each entity is approximated by the ptunion 
of its elements. The approximation covers at least the 
space occupied by the PTSET entity. Thus, approxi- 
mate geometry provides a filter. For example, if the 
approximations of objects A and B do not overlap, 
then A and B definitely do not overlap. If the approxi- 
mations do overlap, then A and B do not definitely 
overlap. 

The decomposition of PTSET entities is carried out 
in a highly constrained way. The decomposition stra- 
tegy used leads to 1) a very concise representation of 
the elements, 2) very simple spatial relationships 
between elements, and 3) a useful ordering of the ele- 
ments, “z order”. For any two elements, either one 
contains the other, or one precedes the other in z 
order. 

The absence of overlap (other than containment) 
and the presence of a total ordering allows the use of 
very simple algorithms based on the merging or 
traversal of z-ordered sequences of elements. All the 
geometric operations discussed in section 3 can be 
supported in AG by such algorithms. Spatial selection 

can be supported by the “spatial join”. Given two sets 
of objects, S and T, the spatial join detects all pairs of 
objects (s, t), such that s is in CONTAINS(S), t is in 
CONTAINS(T), and the approximations of s and t over- 
lap. 

A very attractive feature of the spatial join is that 
it can be incorporated into existing DBMSs with very 
little effort. The access methods and buffering stra- 
tegies in current use (e.g. B-trees and LRU page 
replacement) provide exactly the right foundation for 
the implementation of AG. Furthermore, it appears 
that performance comparable to the best obtainable 
with “custom” algorithms can be obtained. 

Note that the refinement of the approximate 
results by an “exact geometry” object class is simple. 
The interface to the DBMS (implementing AG) is 
“instance-at-a-time”, not “set-at-a-time”. Therefore, 
adding such an object class to the PROBE DBMS 
should be simpler than what would be required in 
[STON83]. 

Overlay is a more difficult spatial operation to 
support in a DBMS because, unlike spatial selection, it 
does not resemble any common database operation 
(e.g. from PDM algebra or relational algebra). How- 
ever, a short, “one-pass” AG algorithm for computing 
overlay of an AG representation is known [OREN85]. 
Following the computation of overlay on the AG 
representation, the exact version can be computed 
quickly - the AG version identifies which objects par- 
ticipate in which non-empty uniform regions. 

Ptunion, ptintersect, and ptdiff are easy to com- 
pute by merging sequences of elements. The details 
are in [OREN85]. With the spatial selection and over- 
lay operations, the computation of the AG version of 
the operation reduced the amount of work that had to 
be carried out with the exact representation. That 
does not appear to be the ease here. For example, 
computing the AG version of ptunion does not appear 
to be useful in computing the exact version. However, 
it is imporant to provide AG versions of PTSET opera- 
tions because later processing may benefit. For exam- 
ple, if solids are described using constructive solid 
geometry, then AG representations of the objects can 
be built also (using the point set operations). Having 
constructed the AG representations, interference 
detection (for example) can be optimized using AG. 
This would not have been possible had the AG versions 
of the point set operations not been computed. 

6. Current Work 

Current PROBE activities include further develop- 
ment of the ideas described above. For example, we 
are working on augmenting the “containment” rela- 
tionships described above with other relationships, 
such as adjacency, that are important in dealing with 
spatial data. We are also working to incorporate tem- 
poral data as a special case within the spatial data 
framework. Current results indicate that this is valid 
from both the modelling and implementation 
viewpoints. Finally, we are developing a “breadboard” 
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imlementation that will demonstrate some of the 
PROBE facilities, including approximate geometry, 
using a VLSI CAD application. 
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