
A GENERAL MODEL FOR VERSION MANAGEMENT IN DATABASES

Peter Klahold, Gunter Schlageter and Wolfgang Wilkes

University of Hagen, Praktische Informatik I
Postfach 940, D-5800 Hagen, West-Germany

Abstract

In this paper we introduce a general model
for version management expressed by the
concept of version environments. A version
environment offers two mechanisms for
structuring the version sets of objects:
graphs and partitions. By the use of
views, constraints and transactions the
version environment may be tailored to
specific user requirements. The embedding
of application tools into the version
environment provides the users with their
specific application environment which
consists of the objects, their version
structures and the tools operating on
them. The proposed concept is more general
and more powerful than the concepts
published so far; it is shown, how well
known version concepts can be implemented
by means of version environments.

1. Introduction

Many application areas now or in future
supported by database systems cannot be
modelled in a sufficient way by
representing only the present state of the
world. Instead it must be possible to
model past and future states as well as
states existing parallel to each other.
These requirements led to the development
of various version models tailored to
specific application areas. Thereby new
concepts were introduced or taken from
application areas (for instance time
version, alternative, variant, etch, which
all describe some facets of a general
version concept.

In order to support these different
application areas with their specific
version concepts by databases, we have to
find a common base for these different
concepts. We then can attempt to integrate

This work was supported by Deutsche
Forschungsgemeinschaft, IBM Germany and
BMFT, contract no. NT 2823 4.

this common base into data models and,
possibly, to support a version kernel by
lower levels of the dbms.

In this paper we introduce the concept of
a version environment. A version
environment models complex version
structures, which are based on some
primitive mechanisms. To motivate these
mechanisms, at first we sketch some
version concepts known from literature. In
chapter 3 we give a survey of our model,
which in chapter 4 is described more in
detail by means of an example in the area
of CAD. In chapter 5 we show, how our
model can be extended by an operational
component, which defines the operations on
the version structures of a version
environment. Finally, we model some of the
version concepts of chapter 2 in terms of
our model.

2. Version Concepts: Some Approaches

We try to develop a uniform version model
based on elementary structuring mechanisms
extracted from existing version concepts.
In this chapter we describe some version
concepts known from literature.

2.1 Commercial Applications

In commercial applications old states are
ordered in accordance with a time
attribute to allow controlling of
(commercial) transactions and their
results (auditing). However, it turned out
that there are several dimensions of
‘time’ in this environment.

Example: Queries on salary histories

1) What salary did an employee get in
month m?

21 What was the salary of an employee for
his work done in month m?

To answer query 1, we have to know the
date of payment. For query 2 we need the
period for which salary was paid; the time
of payment is not of interest. A

Permission to copy wifhout fee all or part o
aduontage, the VLDR copyright notice an d

this material is granted provided fhat the copies are not made or distributed for direct commercial
the

the Very Large Data Base Endowment. 7’0 cop
Me of the publication arcd its date appear, and notice is given that copying is by permission of
otherwise, or to republish, requires a fee and/or special permission from the Endowment.

ProceedingsoftheTwelfthlnternationalCon erenceonvery LargeDataBases I Kyoto,August.1986

m-319-

subsequent adjustment of salary will lead
to different results of the two queries.
/Hard/ distinguishes three aspects of time
to represent as much semantics as
possible:

- time of realization, i.e. when the
occurrence of an event is recognised or
a future event is specified.

- time of storage into the database
- time of validity

According to the three points of time,
there are three different ordering
relationships on the set of objects.

2.2 CAD/CAM applications

In CAD/CAM, the notion of version is of
great importance. Versions are used for
different purposes, e.g. to illustrate the
life-cycle of a design object, to document
the process of development, or to
represent variants in production. This
shall be examplified in the following.

/MiiSt/ decribes a time version model for
CAM databases which allows the versions to
be ordered with respect to the beginning
of production. For this reason the model
offers operations to move the versions
along the future part of the time axis.

/Lock/ introduces the following version
scheme:

obiect

/ \
rep 1 rep n

revison 1 . . . revison k

Representations are different views of an
object (e.g. logical design and layout of
a VLSI circuit). Variants, often called
alternatives, are different approaches to
a problem, they are developed in the
respective revisions.

/KaLe/ introduces a version model defining
the life-cycle of objects (and
consequently the process of design). Every
version adopts a certain state. There are
operations

- to transfer a version from one state to
another(e.g. ARCHIVE: released version
-> archived version)

- to derive a new version v2 in state s2
from an existing version vl in state sl
(e.g. CREATE ALTERNATIVE: in progress
version -> alternative).

This allows to represent the production
phases as well as the development stages
of an object in one concept. The state of
a version indicates its meaning.

A generalisation of these approaches is
described in /DiLo/. Instead of the fixed
version structures, version clusters are
introduced. They allow to group versions
at will. Thus, the version structure can
be adapted to the application. Clusters
are implemented by pointer structures on
top of the extended SQL database.

In /KSUW/ the documentation of design
history is emphasized. Design rather
progresses by trial and error than in a
linear way. This leads the authors to the
concept of a version graph which has
meanwhile been used by other authors, too
/KACh/. The version graph allows to
represent flexible order relationships by
describing parallel alternatives and
linear versions in one concept. Version
graphs are one element of the general
version concept introduced in this paper.

3. A survey of the general version model

In the following we introduce a general
version model. At first we sketch our idea
of versions and objects. Then we define
the basic version structures, which are
used to model the applications described
above. Finally, we introduce 'version
environments' as a means of defining and
manipulating version structures.

We start from an intuitive notion of
objects and versions. The user thinks in
terms of objects where an object
constitutes a unit or an entity for him.
An object is not static, it develops over
time. Therefore the notion of object is
(at least) twofold: Sometimes the user
considers the total of all states as his
object, sometimes he regards a particular
state as the unit he is interested in.

A single state of the user's entity is
called 'version'. We use the term 'object'
when we talk about the set of all versions
(or states) of this entity. The actual
information is stored in the versions, the
object is only a unit which comprises all
versions (and what. they have in common).
This general structure is similar to the
version concept of /BaKi/ and /KiBa/.

Versions are, for instance, represented by
(sets of) tuples in a database. They
comprise the total of information
necessary to describe a state of an
object, i.e. they can be regarded as
updated copies. This does not exclude
techniques to save space at lower levels.
For reasons of simplicity, objects and

-320-

versions are identified in this paper by
unique identifiers <aid> and <vid>.

In the models sketched in chapter 2,
versions are related to each other in
different ways. Two main structures can be
distinguished:

1. Versions are ordered (not necessarily
totally) by various relationships (time
relations, development history). To
model these orders the general version
model offers version graphs.

2. Versions are classified according to
specific properties (valid/invalid, in
progress/alternative/effective/etc.).
The set of versions is partitioned,
with every version belonging to a
certain class. A class may determine
the operations applicable to the
versions in it.

In this paper we propose a concept combi-
ning these means of structuring versions.

up to now we distinguish two main levels:
on the one hand, the objects as a set of
versions, on the other, the relationships
between versions. The concept of version
environment integrates these two levels: A
version environment consists of a set of
objects and a set of version structures;
the version structures are based on the
two structuring mechanisms graph and
partition. Every object inherits the
version structures of its environment.
Thus, all objects of an environment have
common version structures. Many version
environments can be managed by the system;
in principle, every object may possess its
own version environment.

The model is organized in four levels. The
lowest level 1 realizes the notion of
versions and objects. Levels 2 and 3
realize the concept of version environ-
ments. The fourth level allows to adapt
the model to the application environment
by importing tools as transactions. Every
level offers a functional interface the
operations of which may be used by higher
levels. The model looks as follows:

+--------------------~~~~~~+
! application environments !
+--------------------------f

+------------------------------~~~~~~~+
! version environments !
! view, constraint, complex operation 1
+-------------------------------------+

+---------------------------------+
! structures !
! version graph partition !
+----------------------------~~~~~~~~~+

+---------------------+
! versions !
+---------------------+

The lowest level (level 1) offers basic
operations on versions and objects:
Objects may be created and deleted, and
there are operations for inserting,
updating, deleting and selecting qualified
versions of an object. At this level all
versions of an object are considered
separately; no relations between them are
known.

Level 2 manages the version graphs and
partitions. There are operations (11 to
define and delete version graphs, as well
as partitions and their classes, (2) to
manipulate the version structures
(creating and deleting of edges between
versions, shifting versions between clas-
ses) and (31 to retrieve versions using
the structures (predecessor, successor in
version graphs, membership in classes).

Level 3 provides a mechanism to define
views adapting the version environments to
specific requirements of individual
(groups of) users. These views form new
(virtual) objects with their own
environments. To control integrity, rules
may be specified which disallow operations
on versions and version structures at
certain data states. Moreover, we allow to
define complex operations as a sequence of
basic operations, e.g. to insert versions
into the object and the corresponding
structures at one time.

Level 4 expands the version model by an
important feature: BY embedding
application tools into version
environments it provides a mechanism for
the operational adaptation of the version
model to specific application areas. Thus,
the system can guarantee the correct
access to data.

The version environment is managed by an
environment administrator. He defines the
version structures of the environments and
provides users with specific operations
and views. The user works on existing
objects with predefined version structures
only.

4. Using version environments

In this chapter the most important
operations of the general version concept
are illustrated by means of an example of
the CAD environment. The complete list of
operations can be found in the appendix.

We consider the following design
environment for chip objects:

1. Chip objects have to supply versions to
keep former states of the design.

-321-

2. The versions are arranged in a history-
graph to retain the development of the
object. The edges of the graph have the
meaning 'is derived from'.

3. The time of creation of versions must
be documented. The versions have to be
ordered in a linear way with respect to
their time of creation.

4. The versions are grouped into certain
consistency classes according to the
tests performed successfully (e.g. by
simulation programs). The classes are:
unchecked, test-a, test-b and
consistent.

4.1 Basic version handling

To represent this specific design
environment two version graphs and one
version partition are used which have to
be adapted in correspondence with the
requirements. To retain the time of
creation, chip objects must have the
attribute 'time'.

After defining the version environment
'chip-design' by

DEFINE ERVIRONHENT chip-design

the version structures are defined by the
following commands of level 2

DEFINE-GRAPB POR chip-design: historY_graph, tine-list

DEPINR-PARTITION WR chip-design: consistency

After the definition the partition
consists of a default class 'null' which
comprises all versions not explicitly
assigned to a certain class.

The additional classes are introduced by

DEFINE-CLASS
FOR consistency OF chip-design : (unchecked, test-a, test-b, cons)

The insertion (level 1) of a certain chip
object (e.g. for designing a CPU) into
this environment is done by

DEPINE-OBJECT cpu
IN chip-design

When the object is inserted the version
structures existing in the environment
chip-design are automatically created for
this cpu object.

A version is inserted into the database by

INSERT-VERS versl
INTO cpu : (1)

X denotes the version created by the
designer. Its version-id is set to 'versl'
by the user. The INSERT-VERS command
(level 1) inserts the version into the
version set of the object. At the same
time it is linked to the structures of the
object defined by its environment as
follows: it constitutes an independent
component in all graphs (i.e. it is not
connected with other versions) and is a
member of class 'null' in all partitions.

Now let us assume that the newly inserted
version 'versl' has to succeed the version
designed by author 'Miller' at l-28-86 in
the history graph, i.e. 'versl' was
derived from Millers version designed at
l-28-86.

CONNECT-VERS
In history-graph OF cpu
SOORCE : SELECT-VERS ’

FROH cpu
MERE designer = Wller' AND tine = 'l-Xl-86

DESTINATION: SELECT-VERS ’
PROII cpo
MERE id = ‘vernl’

SOURCE and DESTINATION determine the
versions which are connected. In general
SOURCE and DESTINATION are sets of
versions, and for every element of SOURCE
the set of DESTINATION elements is
computed and connected to it.

The insertion at the end of the time-list
is accomplished by

CONWECT-VERS
IN time-list OF cpu
SOORCK : SELECT-VERS Y

PROll cpu Y
IlRERE NOT EXISTS (succ in time-list(Y))

DESTINATION : SELECT-VERS ’
Flion cpu
WRBRE id = 'versl'

Finally 'versl' is assigned to the class
'unchecked' by the command

SAIPT-VERS
POOR consistency IN cpa
TO unchecked
WRRRE id = ‘versl’

Instead of the above series of commands a
more complex INSERT command can be
provided at level 3 of the general
version concept. This enables the user to
insert the version into all structures of
the object simultaneously.

The structure of the object ceu after
repeated insertions of new versions is as
follows:

-322-

Fig. 1 : The object cpu

The user may not only select versions by
attribute qualification but also by
exploiting the version structures. Direct
predecessors and successors of versions
can be found in graphs by means of the
operations succ and pred, succ* and pred*
are the corresponding transitive closure
operations. In partitions the membership
of a version in a certain class can be
checked.

Thus, the following complex query might be
formulated: Find all consistent versions
of designer 'Miller' which were created
later than 'vers-xy' and have not been
developed to newer versions yet.

SELECT-VERS 8
PROII cpu z
WAERE class Ill consistency iI1 =‘cont’
AND Z.designer : 'Hiller
AND (SELECT-VERS *

PROH cpu
MERE id = ‘vers-xy’l IN ipred’ IN tine-list(ZlI

AND NOT EXISTS (succ IN history-graph(Zll

4.2 Advanced mechanisms for adaptation

The above proposed version model
supporting graphs and partitions provides
possibilities to represent various version
concepts needed in practice. But not every
individual user needs to see all resulting
version structures, and sometimes the
general model provides more than the
application requires to represent its
specific environment. Therefore, level 3
offers operations to adapt the version
model to the demands of the environment.

Views

Let us assume, a user wants to work only
with consistent versions, and he is
interested in the derivation history only.
Thus, two version structures of the chip
design environment are useless to him. It
is convenient to define a view on the
basic version set and its version
structures which corresponds to his
understanding of the object. Fig. 2 shows
the view resulting from the following
command:

DEFINE-VIEW oy-cpu
ON chip-design C
WITS eleaents : SELECT-VERS

FROM C
NAERE class

WITH CRAPS derivation-graph
SOURCE : SELECT-VERS

PROH C

V

IN consistency IV1 = 'cons'

V_pred

WERE V-pred in elements
DESTINATION: SELECT-VERS V-succ

PROH C
WHERE V-WCC in elements
AND V-pred IN pred' in history-graph (V-succl
AND NOT EXISTS (SELECT-VERS V-between

PROII C
MERE V-between in elements
4ND V-between IN

pred' in history-graph fV_succl
AND V-between IN

WCC' in history-graph iV_predl

Within the view object 'my-cpu' versions
V-pred and V-succ are connected to each
other if V--pred is the predecessor of
V succ in
exists no

the history-graph and there
consistent version between them

(V-between).

Note: In this example we use an
environment variable 'c' representing any
object of the environment.

n

Fig. 2: View with all consistent versions
and their derivation history

Constraints

BY imposing constraints on operations
there are further possibilities to define
specialized version concepts. Any command
of the general version model may be
restricted by a command DISALLOW for all
version environments in the system as well
as for individual environments only.
Operations may either be prevented totally
or the restriction may apply to specific
states of data only. Thus, DISALLOW is a
means to define integrity constraints for
version sets and their structures.

If, for instance, no partitions are used
in an environment, all operations for
partitions will be disallowed. Thus, three
simple commands establish a graph oriented
version concept.

In our environment it would be convenient
to restrict the graph structure time-list
to a linear list. The creation of a new
edge is prevented if the source version

-323-

has a successor or the destination version
has a predecessor:

DISALLOW
CONNECT-VERS
POR tine-list IN chip-design X
SOIJRCE : SELECT-VERS Y

PROII x
MERE EXISTS lsucc in time-list (YII

DESTINATION : SELECT-VERS 9J
PROH x
MERE EXISTS lpred in time-list 1211

The operation DISALLOW can also enforce a
certain discipline on the handling of
partitions. In our example we assume that
the design process allows moving of
versions between classes only in the
sequence unchecked -> test a -> test-b ->
cons, or from any class into unchecked.
This is formulated by

DISALLOW
SAIPT-VERSION
POR consistency IN chip-design
TO test-a PUERE class in consistency : test-b or cons
TO test-b WAERE class in consistency = unchecked or cons
TO cons !#iERE class in consistency = unchecked or test-a

Any allowable sequence of transitions may
be defined in this way. In the following
chapter we introduce mechanisms which, in
addition, allow to control which program
causes a database update. Thus, it can be
guaranteed that the transitions are caused
only by the respective tools and not. by
users at their will. This enables the
system to ensure operational integrity.

Complex operations

As illustrated by our example it is often
necessary to apply a sequence of several
basic operations in order to insert a new
version into all existing structures. To
make this series of operations available
as one unit, the single operations can be
hidden in a complex operation called
transaction.

To provide a high-level insert operation,
we can define the transaction
CHIP-DESIGN-INSERT, as shown in Fig. 3.
The call of

CHIP DESIGN INSERT (I)
WITH ‘ver& ’
INTO cpu
APTER (SELECT-VERS '

PROM cpu
WHERE designer = ‘Hiller’ AND tine = ‘1-28-86’1

corresponds to the sequence of commands in
chapter 4. Parameters of transactions are
linked by keywords determined by the
definer of the transaction (here WITH,
INTO, AFTER) to show its semantics.

DEFINE-TRANSACTION chip-design-insert (new-version)
WITA vers id
INM obj_id APTER pred-vera

FOR chip-design

INSERT-VERS vers-id
INTO obj id : (new version)

CONNECT-VERS
IN history-graph OF obj-id
SOURCE : pred ver6
DESTINATION : SELE6T-VERS ’

PROH ohj-id
MERE id : vers-id

CONNECT-VERS
IN tine-livt OF obj-id
SOURCE : SELECT-VERS Y

PROH obj-id Y
MERE NOT EXISTS lsucc in tine-list(Yl1

DESTINATION : SELECT-VERS ’
FRON ohj-id
WAERE id = vers-id

SHIFT-VERS
FOR consistency IN obj-id
TO unchecked
WERE id = vers id

Pig. 3: Definition of transaction ‘CLIIP~DESIGN~INSERT’
__--------------------

Transactions may call basic operations as
well as other transactions. Thus, the
basic operations can be regarded as the
most simple transactions and are also
visible at the user interface. In order to
provide the user with the very
transactions he is allowed to use, access
rights are imposed on transactions. In our
example no user might, for instance, be
allowed to use the basic operation INSERT
to ensure that new CPU versions are
inserted into all version structures
correctly. Versions may be inserted only
by the complex command CHIP-DESIGN-INSERT.

5. Embedding application tools

Another aim of the general version model
is to guarantee what we call 'operational
integrity'. Assume, for instance, that
newly designed circuits must be checked by
the three simulation programs sim-a,
sim b, sim cons, in this order. Success or
failure of- a simulation is expressed by a
corresponding transition of the version
within the partition 'consistency'.

Operational integrity has not only to
guarantee correct transitions but has to
ensure that the transitions are caused
exclusively by the results of the
simulation packages. This requires the
system to control the programs causing the
transitions between classes, i.e. the
programs must be part of the transactions.

-324-

In principle, the definition of these
transactions demands a tool as powerful as
usual programming languages, which
provides control structures as branches,
loops, subroutines, etc. Several authors
offer these mechanisms explicitly with
their data models /BrRi/, /KiMc/ /MyBW/
/AlCO/.

For many practical objects, however, the
following simple idea may lead to
satisfactory results: A version
environment is informed about application
programs and treats them as transactions.
Thereby the operations of the environment
are expanded by the applicable design
tools. This allows to ensure that the
database may only be modified via these
tools.

The application programs are stored as
string objects in the database. Further
information, e.g. documentation, source,
etc, may be added. Imported application
programs get the status of a transaction,
which implies that they may contain other
transactions.

To import the simulation programs into our
example environment, the following
commands are necessary:

DEPINE-TRANSACTION simulate-a
FOR chip-design
IMPORT SOUR FRO!! (file-nameI)

code PROH (file_nane2)
dot FRO!! (file-nane3)

Corresponding commands import the programs
simulate-b and simulate-c.

To summarize, transactions look as
follows: Transactions consist of basic
operations, subtransactions and imported
application programs. The environment
administrator places a certain selection
of transactions at the users' disposal by
means of granting access rights. Access to
the data is exclusively allowed by these
transactions.

Import of application programs serves two
aims: On the one hand, control structures
of programming languages may be used in
the definition of transactions, on the
other, the tools of the application are
tied to the version environment. This may
be regarded as a step from version
environments to 'application environments'
which presents themselves as a set of
versioned objects with the same version
structures and the operations and tools
for manipulating them. Thus, an
application environment may be seen as a
class of an object oriented system
defining structure and operations which
are inherited by its instances.

6. Representing some version models by
version environments

After the description of the general
version model, we now briefly show how the
specific version concepts of chapter 2 can
be implemented by version environments.
Obviously the time relationships used in
commercial applications, and e.g.
/Must/, can be modeled by using versiii
graphs restricted to linear lists.

The version structure defined in /Lock/
may be realized with one version graph.
The figures 4a and 4b show two alternative
structures of the graph with the second
one more explicitly expressing the time
sequence of versions. In both graph
representations, alternatives and
revisions are characterized by respective
classes of a partition. Constraints (by
DISALLOW) are used to describe the
specific appearance of the graph.

object

repres.

variants

revisions

(a) (b)

Fig. 4: Graph structure to represent the
model in /Lock/

To model the version structures of /KaLe/,
a version environment is defined, which
has a partition with classes for every
version state. Moreover, there exists a
version graph in form of a linear list. It
orders all versions with respect to their
creation time to record the state
transitions and to support the time
related queries specified in /KaLe/.
Operations on the graph and the partition
are restricted as to the allowable
transitions. For instance, the derivation
of alternatives is permitted from in-
progress-versions and alternatives only;
versions can be moved into class
'released' from class 'effective' only.

The most flexible concept is proposed in
/DiLo/. It is the only model known to the
authors, which allows the adaptation of
the version management to the application.
The structure of clusters can be
represented in the general version model
by one or more partitions. By indirections
it is possible to obtain structures
similiar to version graphs in /DiLo/, too.
But the explicit representation of version
graphs in our general version model allows

-325-

the user to express the ordering
relationships of his versions more
directly and to deal easier with them.
Furthermore the distinction between graphs
and partitions seems to be advantageous
with respect to the implementation since
specific structuring mechanisms can be
supported more efficiently at lower levels
of the system architecture.

7. Conclusion

In this paper we have introduced a general
version model expressed by the concept of
version environments. A version
environment offers two mechanisms for
structuring the version sets of objects:
graphs and partitions. By the use of
views, constraints and transactions the
version environment may be tailored to
specific user requirements. The embedding
of application tools into the version
environment provides the users with their
specific application environment which
consists of the objects, their version
structures and the tools operating on
them. The proposed concept is more general
and more powerful than the concepts
published so far; it has been shown, how
well known version concepts can be
implemented by means of version
environments.

The general version concept is to be
implemented in connection with the AIM-
project (/Dada/, /Lum/) at IBM Scientific
Center, Heidelberg. Their NF2 relations
together with a basic time version concept
/DaLW/ seem to be a good basis for
efficient implementation. The main
problems currently are the physical
representation of versions and mechanisms
to support graphs and partitions at lower
levels of the database system by storage
structures and access paths.

The version model proposed in this paper
cannot stand alone. It has to be
integrated into a broader context which
considers that objects are very complex,
composed of other objects and can be seen
from different points of view
(representations, see for instance
/Neum/). This leads to a three-dimensional
concept of (composed) objects,
representations, and versions (for objects
and representations).

To integrate versions and composed
objects, for instance, the basic idea is
to have (part-of-)relationships between
objects, i.e. sets of versions. To
identify the specific versions bound
together the structuring mechanisms of the
introduced version concept are used. Thus,
an object may be composed of specified
versions of other 'abstract objects' or is

build up by versions identified by
denoting the class to which they belong.
For instance, an object may be composed of
the valid versions of its subobjects.
Thus, objects may be composed of
subobjects in a very flexible way by using
the possibilities of the general version
concept.

Literature

/AlCO/ Albano, A., Cardelli, C. and
Orsini, R.: Galileo: A Strongly-Typed,
Interactive Conceptual Language. ACM
TODS 10, June 1985

/BaKi/ Batory, D.S. and Kim, W.: Modelling
Concepts for VLSI CAD Objects. ACM TODS
10, Sept. 1985

/BrRi/ Brodie, M.L. and Ridjanovic, D.: On
the Design and Specification of Database
Transactions. On Conceptual Modelling,
Springer 1984

/Dada/ Dadam, P., et.al.: A dbms prototype
to support extended NFZ-relations: An
integrated view on flat tables and
hierachies. Proc. ACM-SIGMOD, Washington
1986

/DaLW/ Dadam, P., Lum, V. and Werner, H.-
D .: Integration of time versions into
relational database systems. Proc. 10th
VLDB, Singapore 1984

/DiLo/ Dittrich, K.R. and Lorie, R.A.:
Version support for engineering data
base systems. IBM Research Report RJ4769
(50628), San Jose 1985

/Hard/ Harder, T.: Considerations on
modelling and integrating time into
temporal database systems. University of
Kaiserslautern, Rep. No. 19/84 (in
German)

/KACh/ Katz,R.H., Anwaruddin,M. and Chang,
E A . : Version Server fo r Computer-Aided
Design Data. Report No. UCB/CSD 86/266,
University of California , Berkeley 1985

/KaLe/ Katz,R.H.; Lehmann T.J.: Database
Support for Versions and Alternatives of
Large Design Files, IEEE Transactions on
Software Engineering 10 March 1984)

/KiBa/ Kim, W. and Batory, D.S.: A Model
and Storage Technique for Versions of
VLSI CAD Objects. Proc. "Foundations of
Data Organization", Kyoto 1985

/KiMc/ King, R. and McLeod, D.: A Unified
Model and Methodology for Conceptual
Database Design. On Conceptual
Modelling, Springer 1984

-326

/KSUW/ Klahold,P.,Schlageter,G., Unland,R.
and Wilkes,W.: A transaction model
supporting complex applications in
integrated information systems. Proc.
ACM-SIGMOD 1985

/Lock/ Lockemann, P.C., et.al.:
Requirements of technical applications
to database systems. Proc. "Database
systems for office, engineering and
sciencell, Springer 1985 (in German)

/Lum/ Lum,V.: Design of an integrated DBMS
to support advanced applications.
"Foundations of Data Organization" Kyoto
1985

/MiiSt/ Miiller, Th. and Steinbauer, D.: A
language interface for version control
in CAM databases. Proc. "GI-
Jahrestagung, Sprachen fiir Datenbanken",
Springer 1983 (in German)

/MyBW/ Mylopoulos, J., Berstein, P.A. and
Wang, H.K.T.: A Language Facility for
Designing Database-Intensive
Applications. ACM TODS 5, June 1980

/Neum/ Neumann, T.: On representing the
design information in a common database.
Engineering Design Applications,
Database Week, SIGMOD 1983

Appendix: Operations of the general
version concept

DRFINE-ENVIROMENT (eid)
DELETE-ENVIKORHEIII (eid)

Level 1:

DBPINI-Okl (aid) IN (eid)

DELETE-OBJ (oid)

INSERT-VRRS hid)
INTO (oid) : (11

SELECT-VERS ’
FROH (oid)
WAERE lqualificationl

DELBTE-VW
PROH (oid)
PARWE (qualification1

DPDATE-VERS
FROH (oid)
SET (11
WAERE (qualification1

Level 2: Operations for graph

DEFINE-GRAPR
POOR (eid) : (gid)

DELETE-CRAPA
PROH (eid) : (gid) .

CONNECT-VERS
FOR (gid) IN (oid)

SODRCE: Iversion-set of toid))
DESTINATION: (version-set of (oid)l

DISCONNECT-VERS
FOR (gid) IN (oid)

SODRCE : (version-set of (oid)l
DESTINATION :(version-set of (oid)l

pred in (gid) (version-set of (oid)l
pred’ in (gid) (version-set of (oid)l
GUCC in (gid) (version-set of (oid)l
IUCC’ in (gid) (version-set of (oid)l

level 1: Operationa for partitioov

DEFINE-PARTITIOR
FOR (eid) : (pid)

DELETK-PART
PROH (eid) : (pid)

DEPINE-CLASS
FOR (pid) IN (eid) : hid,....)

SAIPT-VERS
FOR (pid) IN (oid)
10 hid)
MERE (qualification)

DELRTE-CLASS
RON (pid) IN (eid) : (cid)

Class in (pid) Iversiowset of oidl

Level 3:

DEPINK-VIeW hale)
ON (eid) (obj-var)
WITR elewnts : (version-set of (obj-var)l
WITR Partition (pid) lclass:(cidl),,(cidn)l

WBERR tcidl = (version-set of elemental

cidn - (version-set of elements11
WITR Graph (gid)

SODRCE : (version-set of eleaentsl
DRSTINATION : (version-set of eleaent8I

DISALLOW (operation)

DEFINE-TRANSACTION (tid) Ikeyuordt(par)..
FOR (eid) : sequence of transactions and basic operations

Level I:

DEPINE-TRANSACTIOR (tid)
FOR (eid)

IllPORT SODRCE FRDII (file-name)
CODK PROI! (file-name)
WC PROU (file-name)

--327-

