
Knowledge Bases and Database Engineering 

D. Stott Parker (chairperson) 
Dept. of Computer Science, UCLA, 
Los Angeles CA 90024, USA 

Stefano Ceri 
Politecnico di Milano, Piazza Leonardo Da Vinci 32, 
20133 Milano, ITALIA 

Robert Demolombe 
ONERA-CERT-DERI, 2, Ave. Edouard Belin, 
B.P. 4025,31055 Toulouse CEDEX, FRANCE 

Koichi Furukawa 
Institute for New Generation Computer Technology, 
4-28, Mita I-Chome, Minato-ku, Tokyo 108, JAPAN 

Masanobu Matsuo 
Sumitomo Electric Industries, Ltd. 
I-3, Shimaya I-Chome, Konohana-ku, Osaka 554 JAPAN 

Gio Wiederbold 
Dept. of Computer Science, Stanford University, 
Stanford CA 94305, USA 

Economic pressures now encourage the engineering of 
comprehensive information management systems to control 
large volumes of heterogeneous information or ‘knowledge’. 
These systems interface conventional database management 
systems with spreadsheets, documents, and rule bases. Stor- 
ing large bases of knowledge, modeling the knowledge accu- 
rately, and accessing the knowledge conveniently become in- 
creasingly important when the information managed by an en- 
terprise is a model of that enterprise. 

The fields of Data Engineering, Knowledge Engineering, and 
Software Engineering overlap in the development of systems 
combining large volumes of data and knowledge. This panel 
is concerned with key issues in developing such systems. 
Some major problems in this area are listed here. 

Although fairly advanced knowledge engineering tools are 
now available, knowledge-based systems are not well under- 
stood, and there is very little experience with large knowledge 
bases. What functions must knowledge-based systems pro- 
vide? Current research papers suggest they should support ac- 
cess to type hierarchies, integrity management, and set- 
oriented recursive query processing, for example. 

Knowledge and Data Engineering are fields of complex per- 
formance tradeoffs. Increases in flexibility or accuracy of 
knowledge representation can dramatically increase the com- 
plexity of knowledge access. Adding one function to a sys- 
tem can make other functions unacceptably slow, introduce 
redundancy in storage, etc. 

In a recent workshop on knowledge engineering, participants 
from both industry and academe identified the lack of clear 
design methodologies as a major obstacle to successful use of 
the tools and development of systems, not to mention the edu- 
cation of designers and end-users on what KBMS can offer. 
What methodologies can be used for designing knowledge- 
based systems? Good design methodologies come from ex- 
perience, and experience comes from bad designs. 

Information systems of the future will have to communicate 
with information systems of the past, and different systems 
rest on different conceptual models (knowledge representation 
schemes). Integration requires some form of integration of 
their models. Which kind of model - object-oriented, func- 
tional, or logic-based - is (dis)advantageous under which 
circumstances? There is little consensus on how best to in- 
tegrate models. 

All conceptual models have weaknesses. For example, expert 
system models do not seem to scale as well as database 
models do. Why is it so difficult to expand expert systems 
beyond a few hundred rules? Even the best-known systems 
today are essentially prototypes with only a limited number of 
rules or facts. Also, is there any dtrerence at all between an 
expert system and a decision tree? 

Conceptual modeling schemes are evolving rapidly today to 
capture more information. These schemes have expanded 
from ‘shallow’ models of objects to ‘deep’ models of the 
behaviors of and constraints on those objects as well. Are 
current DBMS models s@iciently rich to be the basis for 
knowledge-based systems, or are more elaborate models 
needed? DBMS conceptual models seem shallow and not 
very extensible. 

Logic Programming and Prolog extend relational databases 
with deduction and the ability to store complex objects such 
as schema, metadata, and constraints with database facts. It 
also provides an elegant and uniform way of implementing 
views, query languages, and null values. When is Logic Pro- 
gramming the best strategy for extending DBMS to KBMS? 
Systems like Prolog lack responsive query interfaces, and lack 
support for data processing concepts such as transactions, in- 
dexing, and integrity. 

What are general methodologies for connecting KBMS and 
DBMS? General methods for binding these systems seem 
necessary if the area is to avoid remaining underdeveloped. 
Idiosyncracies of individual DBMS make such general in- 
tegration challenging, but DBMS provide the technology for 
dealing with large collections of data, and this should not be 
re-invented. 

Permission to copy without fee all or parf offhis material is granted provided that the copies are not made or distributed for direct commercial 
advantage, the VLDR copyrighf notice and the title o/the publication and its date appear, and notice is given that copyin is by permission of 
the Very Large Data Base Endorvmenf. To cop 

t 
otherwise, or lo republish, requires n fee and/or special permission from t f e Endowment. 

Proceedings of the Twelfth International Con erence on Very large Data Bases Kyoto, August, 1986 

-315- 


