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Abstract 

An extended relational database and its application 
to VLSI data management are described. The follow- 
ing shortcomings mainly arise when we try to apply 
conventional DBMSs to management of engineering 
data : lack of facilities to support various data 
types, a design hierarchy, version control and 
efficient access to design data. We have extended 
the relational data model by supporting (1) a set 
of graphics functions that bridge relational data 
structures to graphics representations, (2) a 
special data type that allows a designer of the 
database to model the design hierarchy ( including 
versions ) explicitly. Ordinary relational data- 
bases appear to be too slow to be used on-line in a 
design process. Our hypothesis is that it does not 
come from the nature of the relational model, but 
rather internal access mechanisms. We have devel- 
oped our system in such a way that data on a design 
object are stored as interrelated collections of 
records and are manipulated as a logical group. As 
a result, our system offers sufficient facilities 
and performance for interactive use of design data 
at design system level. 

1. Introduction 

As the complexities of electric circuits in- 
crease, an information management component is 
becoming crucial to the success of a computer aided 
design (CAD) system. In most cases, the CAD 
systems that exist today each use their own data 
format. This often requires data translation each 
time a new CAD tool is added to the design system. 
Data translation is adverse to integration of CAD 
tools because it increases not only the difficulty 
to maintain integrities of design data but the 
amount of data translation software that must be 
written and maintained [7,14,18,25,27]. 

Database management systems support such 
facilities as uniform access to data on secondary 
storage, dynamically changeable schemas, concurrent 
access mechanisms for data sharing. Placing all 
design information under the control of a single 
database management system make it easier to 
maintain the self-consistency. Design database 
have long been of interest in CAD community and a 
number of design systems have been build upon 
CODASYL database ,systems with sufficient per- 
formance. CODASYL systems, however, provide opera- 
tions to access a record at a time and do not 
adequately isolate the design management software 

from the physical data organization. Further, a 
CODASYL database schema is static. Since tools are 
closely tied with database schema, new tools can 
not be added without a major reorganization of the 
database [3,23]. The relational approach, on the 
other hand, offers the dynamic view of the data 
necessary to share data between application pro- 
grams. Further, relational systems support a set 
of operations to manipulate relations at a time. 
These achieve high data independence, i.e. physical 
data structures can be changed without affecting 
existing programs. Hence, many specialists on 
database systems agree that the relational approach 
is the most promising one to design data manage- 
ment. Some design systems have been build on rela- 
tional database systems, however, only with limited 
success. Conventional relational database systems 
are primarily designed for business applications 
that only deal with formatted alphanumeric data. 
Thus, these database systems fail to support many 
of the facilities needed in design activities. In 
particular, the missing features include ( Katz[l7] 
presents a more detailed discussion.) : 

(1) support for various data types, such as pic- 
tures, images, 

(2) explicit representation of a design hierarchy, 
(3) support for version control, 
(4) efficient access to design data. 

VLSI circuits are a particularly interesting 
design domain because of the rich set of represen- 
tations used in their description. These represen- 
tations may include system architecture, register 
transfer, logic diagrams, Boolean expression and 
process specification. We limit the scope of this 
paper to management of logic diagrams only. In 
particular, we concentrate on a logical structure 
and graphical representation. Circuits are usually 
represented as block diagrams, i.e. named boxes 
with input/output signals to denote data and con- 
trol flow. The key information that the block 
diagram presents is how subsystems are wired 
together. Because the block diagram is naturally 
created and viewed graphically, database systems 
must be able to support geometric data t11.12, 
17,281. 

Hierarchical levels of abstraction are essen- 
tial for tackling any complex problem. VLSI design 
is no exception. VLSI systems can be conceptual- 
ized as a complete design, and then recursively 
decomposed into more primitive pieces. The leaves 
of the hierarchy represent the detailed specifica- 
tion of primitives that constitute the design. To 
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support design data adequately, the design database 
must reflect this hierarchical levels [13,16,23, 
281. 

Versions are objects that share the same in- 
terface descriptions and differ only in their im- 
plementations. A hierarchical design approach 
provides a conceptual partitioning of the design. 
An engineer is responsible for a conceptual unit of 
the design. The concept of versions allows the 
engineer to proceed as he wishes within the concep- 
tual unit, as long as his implementation does not 
alter the specified interface [17,19]. 

CAD applications require object-oriented ac- 
cessing and manipulation. Typical design objects 
are stored as interrelated collections of records 
and are manipulated as a logical group. While fast 
access to records is important, the overhead of 
accessing a record at a time seems too great for 
the large quantities of data. It is more efficient 
to extract and process large aggregations of design 
data as a unit [1,20,29]. 

In this paper, we discuss an extension of the 
relational model and its application to management 
of logic diagrams. A number of design systems have 
been implemented upon the relational techniques, 
notably System R at IBM Research, San Jose -[13, 
201. INGRES at the Universitv of California. 
Berkeley [ll], VDD, at AT&T Bell'Laboratories [5]: 
Each system takes different ways to provide better 
support for design applications : System R with 
complex objects, INGRES with abstract data types 
and VDD with rather specific approach to VLSI 
design. While many researchers have proposed novel 
data models for CAD applications, little work has 
been done to design a coherent data model which 
supports all the requirments peculiar to CAD 
applications. The coherent data model is needed 
to understand the basic requirements of database 
support for VLSI applications and' how existing 
database techniques can be applied, refined or 
generalized for the engineering environment. In 
our research and development efforts, we believe 
that we are making two valuable contributions to 
the understanding of design databases. One is the 
development of a coherent data model, termed ADAM ( 
Advanced Database with Abstraction Mechanism ), 
which supports the requirements (l),(2) and (3) 
mentioned above. Another is an implementation of 
the ADAM with good performance in the design envi- 
ronment. 

This paper is organized as follows. We begin 
by outlining the ADAM data model in terms of the 
design hierarchy, graphical representation, version 
control and its implementation. In Section 3, we 
discuss use of ADAM data model for managing logic 
diagrams and describe the structure of the database 
itself. Section 4 deals with implementation of the 
logic diagram management system and performance. 
We close the paper with conclusions and future 
works. 

2. Over View of ADAM Data Model and Its 
Implementation 

2.1 Design Hierarchy 

A design object consists of its interface 
description and implementation description. The 

interface description should contain enough infor- 
mation about the object so that it can be used 
without having a detailed understanding of its 
implementation. It usually contains such informa- 
tion as overall functions of the object, input and 
output connection points, geometric boundary. The 
implementation description specifies how the design 
object is composed of more primitive components. 
It typically includes listing of components, their 
interconnections and graphical representations. 

The skeletal structure of ADAM data model is a 
directed acyclic graph of design objects. Vertices 
represent objects. Leaves are primitive objects 
that have no implementation descriptions. Vertices 
but leaves mean objects that are formed from the 
recursive composition of its descendants in the 
graph. Edges are directed from an object to its 
component objects. Each vertex include the follow- 
ing specifications. 

(Name of object) 
(Parameters of object) 
(Interface description for structure) 
(Interface description for graphical notation) 
(Implementation description for structure) 
(Implementation description for graphical notation) 

( Name of object ) declares a name of the design 
object. The design object can be parameterized 
with geometric transformation information describ- 
ing how it should be placed or rotated. In ADAM, a 
special data type, termed "abstract object", is 
devised to identify the parameterized object. An 
instance of the abstract object data type , having 
a syntax <identifier> ( <parameter>, [ <parameter>, 
. . . 1 1, is a straightforward counterpart of the 
"molecular object" addressed by Batory and Kim [2]. 
<identifier> is the name of the design object and 
must be unique in the design hierarchy. Structural 
description of the object, i.e. input/ output 
ports, listing of components and their inter- 
connections, is described in terms of the rela- 
tional data model. However, the usual collection 
of relational domains has been extended to include 
the abstract object type. Components of the design 
object are' listed in a relation involving this 
special domain type. 

2.2 Graphical Representation 

The graphical representation provides engi- 
neers with outline of the design object for viewing 
on a graphics display. In ADAM, three types of 
graphics functions are invented to bridge the 
structural description and the graphical represen- 
tation. One is a graphics function that manipu- 
lates named graphical segments are stored in an 
image file. The name of the segment may be listed 
in a relation. The other is a set of functions 
that draw a parametrized pictures, e.g. circle, 
triangle. Values of the parameters may be stored 
in a relation. Fig. 1 illustrates the general 
relationships between data in a relation and their 
graphical notation. The graphics functions men- 
tioned above have a conspicuous feature, i.e. they 
ensure that the displayed notation is an up-to-date 
representation of the structural description. 
These functions are useful to specify both the 
interface and implementation descriptions of the 
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DISPLAY( R( Fig.ID ) ) 
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(A) Displaying named segments 
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i CIRCLE( R( AR, AX, AY ) ) 
: 

(B) Drawing parameterized pictures 

Fig.1 Graphics functions in ADAM. 

objects graphically. 
Another type of the graphics function supports 

a facility of letting designers show lower-level ( 
i.e. more detailed ) views of the design objects in 
context of the overall graphical notation. The 
design object is usually defined by less complex 
components and their interconnections, where each 
component is assigned its own interface and imple- 
mentation descriptions. Thus, to support the 
facility, a sophisticated algorithm has to be deve- 
loped to display the structures of the related 
objects in a hierarchy, i.e. the underlying object 
and its components and so on. Fig. 2 gives a 
general idea of the algorithm. For more details, 
Udagawa and Mizoguchi [28] can be referred. 

2.3 Version Control 

With designs proceeding to more concrete 
ones, engineers typically generate or use equiva- 
lent design objects using different technologies ( 
TTL, CMOS etc. ), different physical characteris- 
tics ( consuming power or area etc. ). Thus, 
design databases prefer to support a special mech- 
anism, i.e. version control, to manage these design 
objects efficiently. Though many researchers have 
addressed the problem of version control, many 
crucial issues are still not well understood or 
clearly defined partly because the absence of a 
coherent data model for design objects [2,17]. In 
this paper, we simply define versions as objects 
that share the same interface but have different 
implementation. Version control offers a mechanism 

YES 

I 
Display implementation 
description of object, 
i.e. interface of com- 
ponents and intercon- 
nections 

I 

YES 

I 

and interconnections 
I 

I 

Fig.2 General Algorithm to view 
various hierarchical levels. 

by which convenient groupings of versions can be 
formed. 

Logic circuits are typically divided into 
about ten categories ,e.g. gates, counters, regis- 
ters. Each category of the circuits has its own 
attributes that are typically related to the inter- 
face description not the implementation description 
of circuits. For example, counters can be featured 
in terms of count type ( binary, decade, etc. ), 
count frequency, data load type ( synchronous or 
asynchronous ) and so on [26]. 

For the purpose of version control, our system 
provides an entry for each category. Each entry 
contains information that features the circuits in 
terms of relations. In our system, the design hie- 
rarchy is organized in such a way that each design 
object can be identified through the entries. 
Though our system only supports primitive facili- 
ties for version control, we believe our version 
control facility is valuable in the sense that it 
is based on a coherent data model and is imple- 
mented with good performance. 
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2.4 Implementation 

The use of a datahase system in design appli- 
cations has the potential to free its users from 
routine data management tasks. However, existing 
commercial database systems appear to be too slow 
to be used on-line by engineers in a design 
process. A relational database is no exception. 

Wilkins et a1.[29] and Barabino et al.[l] 
make the claim that the relational data model in 
itself is not a critical factor in performance, 
rather internal access mechanisms of the database 
significantly affect performance. As we have men- 
tioned earlier, design applications require 
object-oriented accessing and manipulation. A 
direct implementation based on a conventional rela- 
tional database system results in suffering from 
poor performance primarily because the overhead of 
entering and leaving the database system to extract 
a record at a time is too great for large quanti- 
ties of data involved. So it is quite natural to 
think about accessing related design data as a unit 
and manipulating them in main memory. 

Fig3 shows an overall architecture of our 
system that has been implemented in this direction. 
Our system runs on a MELCOM COSMO 900 II computer 
system that has approximately 4 MIPS processing 
power. ADAM is approximately.10000 lines of FORTRAN 
code. "Management Information on DBMS'! in Fig.3 
includes information about the skeletal structure 
of ADAM, names and parameters of objects in the 
structure. The "Relation File" stores a relation 
or a set of homogeneous 'records. The "Picture 
File" includes a set of graphics segments defined 
by a sequence of graphics functions, while the 
"Image File" ,involves a set of digitized images. 
In our system, units of access to secondary storage 
are the "Relation File", "Picture File" or "Image 
File." Extracted data are then processed primarily 
in main memory allowing various design tools to 
handle them. A logic diagram editor EVE ( Editor 
in Visual Environment ) is constructed on top of 
ADAM. EVE, approximately 3000 lines of FORTRAN 
code, supports facilities need to edit a logic 
diagram adequately, e.g. retrieving components from 
a design database, connecting components, checking 
validity of the diagram. Our system appears to 
provide sufficient performance at design system 
level. Typical operations to edit a logic diagram 
are executed in less than 100 msec. 

r --_- 
I EVE Design 
I I (FORTRAN) Tool 

I 

ADAM (FORTRAN) 
) 

DBMS 

UTS/VS (COSMO 90011) OS 

I 
4 

Management Relation Picture Image 
Information File File File 

on DBMS 
. .- 

Fig.3 Overall architecture of the system. 

3. Use of ADAM for Managing Logic Diagrams 

3.1 Describing Structural Information 

In this section, we will discuss how struc- 
tures of a logic diagram are represented in terms 
of relations in ADAM data model. As we mentioned 
earlier, design objects have two levels of descrip- 
tion, i.e. an interface and implementation. Both 
levels are modeled using standard entity-relation- 
ship (ER) techniques [4]. The ER model views the 
world as consisting of entities and relationships 
among entities. An entity is something that exists 
in the world. Entities and relationships have 
attributes that describe them. 

Fig. 4 shows the interface ( in broken lines > 
and the implementation ( in solid lines > of a 
circuit that is composed, of a 2-input NAND gate, a 
switch and resistors, etc. An ER schema of cir- 
cuits is shown in Fig.5.. In this figure, ""COMPO- 
NENTS" means a parent circuit that is constructed 
from child circuits ( "COMPONENTS" ), points and 
wires. "*PORTS" specifies an associated inter- 
face, i.e. a list of connection points that are 
used when an instance of the circuit is incorpo- 
rated as a child within a higher level parent 
circuit. "*PORTS" and "PORTS" are disjoint subsets 
of "POINTS" and this is depicted in the schema 
using "DISJOINT" category [lo]. The translation of 
the schema to relations in ADAM is straightforward. 
Rules for mapping ER schemas to Codd's relations 
are discussed in Elmasri et al.[lO]. Note, 

------ -- --- 
I -i 
r . - - 1 - 

I 

: ?D-L 

I 

&-Ts :_ 

t-----’ I 
I Z’ i----~---“---~- -,’ - 

Fig.4 An example circuit. _ 

Interface 1 

COMPONENTS 

Fig.5 An ER schema of a circuit. 
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however, in ADAM data model, domains of a relation 
may include "abstract objectn mentioned in Section 
2. 

The ER schema in Fig.5 is reduced into rela- 
tions below. 

COMP( DIV-ID/ID, DIV/ABS ) 
TERM( T-ID/ID, DIV-ID/ID, CHR/ID, 

XC/AD, K/AD ) 
CONN( L-ID/ID, S-ID/ID, DIV-S/ID, 

D-ID/ID, DIV-D/ID ) 

Each tuple in the COMP relation represents an in- 
stance of a circuit incorporated within the parent 
circuit. Each item in the DIV column encodes an 
identifier of the instance and geometric placement. 
The TERM relation lists information about points of 
the circuit. The CONN relation describes wires of 
the circuit. It contains one tuple per wire. 
Fig.6 gives a collection of relations that de- 
scribe the circuit in Fig.4. Each tuple including 
"DO" in the relations indicates that it specifies 
the interface of the circuit. Fig.7 shows rela- 
tions describing the 2-input NAND gate. Since the 
NAND gate is a primitive component in our logic 

COMP ( OIV ID/ID, DIV/ABS 1. 
D00T, GND(+5.0,+0.0) 
D002, GND(+35.0,-10.0) 
D003, SW2(+12.0,+2.0) 
D004, NAf2(+31.0,+0.0) 
D005, REGV(+18.0,+8.0) 
D006, REGV( t35.0, t8.0 1 
D007, REGV(+35.0,-5.01 
D008, VCC(+18.0,+14.0) 
D009, VCC(+3!&0,+!4.0) 
DO, SWD(X,Y) 

TERM ( 

CONN ( 

T ID/ID, DIV ID/ID, CHR/ID, 
XC/AD, YC’AD- 1. 
10, DOO1, TP N, t5.0, tl.0 
10, D002, TP-N, +35.0, -8.0 
10, 0003, TP-N, +Q.S, +2.0 
II, 0003, TP-N, tl4.5, t2.0 
QO, D004, TP-N, t31.0, t0.0 
10, D004, TP-N, t23.0, t2.0 
11, 0004, TP-N, t23.0, -2.0 
10, D005, TP-N, t18.0, t5.0 
II, D005, TP-N, tlB.0, +11.0 
10, D006, TP-N, t35.0, t5.0 
II, 0006, TP-N, t35.0, t11.0 
10, D007, TP-N, t35.0, -8.0 
11, D007, TP-N, t35.0, -2.0 
Q0, 0008, TP-N, t18.0, t14.0 
Q0, 0009, TP-N, t35.0, tl4.0 
1,000, D0, TP-N, t0.0, -5.0 
Q000, DO, TP;N, t40.0, t0.0 

LD-I:: 
L001, 

E% 
L004: 
L005, 
L006, 
L007, 

Ez2 I 

‘ID, S ID/I 
‘I :;I D;$$ 

11: D003: 
1000, DO, 

D, DIV-S/ 
‘ID ). 

10, D001 

? IEZ: 
11: D005 
11, 0003 

iv E% 
Q060, DO 
10, D002 

ID, 

Fig.6 Relations describing a circuit in Fig.4. 

diagram management system, the relations in Fig.7 
only consist of tuples specifying the interface 
description. 

Haskin and Lorie have investigated an exten- 
sion of the relational database for VLSI design 
1131. In their database, the hierarchical struc- 
tures among the design objects are described im- 
plicitly in the sense that the hierarchy of the 
design object is encoded by so called "referential 
integrity," i.e. a tuple for a child object must 
include an identifier for its parent object [9]. 
In our database, on the other hand, each design 
object is encapsulated in the sense that the struc- 
tural and graphical information of the object is 
stored in one conceptual partition. Each partition 
is uniquely identified by an instance of the "ab- 
stract object" mentioned in Section 2. No parti- 
tion is accessed which need not be. By virtue of 
the explicit management of the hierarchy, our sys- 
tem achieves high performance, which will be dis- 
cussed in Section 4 of this paper. 

3.2 Specifying Graphical Representation 

Graphical representation offers a convenient 
way for engineers to understand structures of a 
logic diagram. Many geometric models consist of a 
mixture of data structures and procedures [21]. 
ADAM data model is no exception. ADAM's graphics 
facilities consist of the relational data structure 
supplemented by some graphics functions. The fol- 
lowing SQL like formulas [9] define the graphical 

1.000 

9.000 

K%!l 
12: 000 
13.000 

19.000 

FEEi 
22: 000 

/*********t******t***********************/ 
2 DEFINITION OF 5; 

;** 
ABSTRACT INSTANCE 2-INPUT NAND x/ 
WITH TOTEM-POLE OUTPUT 

5 
;:*************i*************************, 
/**/ 
IVARIABLF-DEEECRATION ; 

t 
: 

/ REAL : .- _- 
$ABSTRACTED-INSTANCE : 

NAT2 ( X, Y,) ; 
“,“F;FRAL ; 

‘I : .--. , 
.ORI( X, Y 1 i 
CIRCLEi 0.5, -0.5, 0 1 
APX( 3, -4, 

: 
0, 3, -3 1 ) 

POLY((-4,3),(-8,3),(-8,-3),(- 
LINE{ -9, 2, -8, 2 1 ; 
f$E;&Qj-2, -8,-2 ) ; 

; 
SDOMAIN. ; ..’ 

ID / CHAR : 
ABS / ABST : 
AD / REAL ; 

ZRELAT ION ; 
COMP( DIV ID/ID, DIV/ABS ) : 

DO, N&T2( 0.0, 0.0 1 ; 
$RELATION ; 

TERM( T ID/ID, DIV ID/ID, CHR/ID, 
XC/AD, YC/AD-) ; 

Q0, DO, TP N, 0.0, 0.0 : 
10, DO, TP-N, -9,0, 2.0 j 

BEND ; 
11, DO, TP;N, -9.0,-2.0 ; 

Fig.7 Definition of a 2-input NAND gate. 

-3 
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representation of the interface of the logic di.a- 
gram. It is preceded and followed by calls to the 
translation function, i.e. .ORIGIN( X,Y ), that 
sets the position of the diagram to be displayed. 

.ORIGIN( X,Y ) ; 
DISPLAY CIRCLE ( RADIUS = 'O.S', 

SELECT XC, YC 
FROM TERM 
WHERE DIV-ID = 'DO' 

AND CHR = '+**I*' ) ; 
DISPLAY CROSS ( RADIUS = '0.5', 

SELECT XC, YC 
FROM TERM 
WAERE DIV-ID = 'DO' 

AND CHR = 'f**N*' ) ; 
DISPLAY IMAGE ( GFl ) ; 
.ORIGIN( -X,-Y ) ; 

The condition DIV ID = 'DO' indicates that the 
displayed symbols are those of the interface de- 
scription. The condition CHR = '**+I*' specifies a 
partial match, i.e. the forth letter of the CHR 
column be 'I'. The graphics function DISPLAY IMAGE 
(GFl) draws the line segment named GFl, which is 
defined by a list of coordinates stored in the 
image file (Fig.3). 

The following formulas display the interface 
of the components and connecting wires in the logic 
diagram. In other words, it draws the implementa- 
tion of the logic diagram graphically on a display. 

DISPLAY INTERFACE 
( SELECT DIV 

FROM COMP 
WHERE DIV ID /= 'DO' ) ; 

DISPLAY IMAZE 
( SELECT L-ID 

FROM CONN >. ; 

Since the interface description of each component 
is stored in the design hierarchy, the DISPLAY 
INTERFACE function is,implemented by some -sophis- 
ticated procedures, e.g. executing relational and 
graphics operations in lower levels. 

3.3 Detecting Errors in Logic Diagrams 

Findi.ng errors in logic diagrams potentially 
offers time and economic advantages for circuit 
engineers. This subsection describes use of the 
relational operations in connection with error 
detection. Some of the potential errors that can 
be detected at a schematic design step are listed 
below ( even though they may apply to other steps 
in VLSI design cycle [22,24]) : 

(1) each input/output of a component must be 
connected, 

(2) all inputs of a component must be connected, 
(3) outputs of a component must be connected to 

compatible inputs, 
(4) outputs of a component must not drive too 

many inputs. 

3.3.1 Detecting Unconnected Ports 

Unconnected ports are ports in a diagram that 
is neither origin nor destination of wires. All 
ports in the diagram are listed in the TERM rela- 

tion. The oriein and the destination of wires are v 

stored in the CONN relation. Thus, to find uncon- 
nected ports, we get the following formula : 

TR <--- SELECT T-ID, DIV-ID FROM TERM 
DIFF 
( SELECT S-ID, DIV-S FROM CONN 

UNION 
SELECT D-ID, DIV-D FROM CONN ); 

The following formula retrieves the coordinates of 
the unconnected ports and display a predefined 
symbol 'X' at their position. 

DISPLAY MARK 
( SELECT XC, YC 

FROM TERM, TR 
WHERE TERM.T ID = TR.T-ID 

AND TERM.DIV-ID = TR.DIV-ID ) ; 

3.3.2 Detecting Components with Unconnected Inputs 

Unconnected inputs on components are inputs 
that are not connected to any wire. Note, however, 
we must exclude input ports of the diagram under 
design. The following formula discovers a set of 
unconnected inputs together with identifiers of the 
related component. 

TR <--- SELECT T ID, DIVLID 
FROM TERM 
WHERE, DIV-ID /= 'DO' 

AND T-ID = 'I*', 
DIFF 
SELECT D ID, DIV-ID 
FROM CtiNN ; 

To display the result graphically, we must retrieve 
the abstract instances related to the components. 

DISPLAY INTERFACE 
( SELECT. DIV 

FROM COMP, Tk 
WHERE COMP.DIV-ID = TR.DIV-ID j ; 

3.3.3 Detecting Illegal Connection 

There are many kinds of illegal connections in 
logic circuits [22,26]. Among them, we consider 
the following typical one. In the standard TTL, 
three output types can be included for organizing 
circuits, i.e. two-state, three-state and open- 
collector. The three-state outputs can interface 
directly with and drive data lines of bus-organized 
circuits. The open-collector outputs can be tied 
with other similar outputs to perform the wire-AND 
function. Thus, outputs of these two types may be 
connected to other outputs of an identical type, 
while two-state outputs must not be tied with other 
outputs of any type. The following expressions 
formulate the last part of the statement and dis- 
play results on a display. 

TR <--- SELECT S ID, DIV-S, L ID - 
FROM C8NN 
GROUP BY D-ID, DIV-ID 
HAVING COUNT(*) > 1 ; 
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. . . 
h i h 

1 GATE 1 1 COUNTER 1 1 CONTROL- 

DISPLAY 
( SELECT 

FROM 
WHERE 

AND 
AND 

The condition 

Fig.8 Overall structure of .ogic diagram database. 

IMAGE 
L ID 
TERM, TR 
TERM.T ID = TR.S ID 
TERM.D?/ ID = TRTDIV-S 
TERM.CHR-= 'TP' ) ; 

CHR = 'TP' selects tuples related to 
two-state outputs. 

3.3.4 Checking Fan-out 

Fan-out check is done to ensure that the out- 
puts of components are not driving too many inputs. 
The check usually takes into account inputs with a 
value of other than one standard load. However, in 
order to make formulation simple, we assume that 
all inputs be with one load. The expressions below 
detect outputs driving more than N load and display 
a predefined symbol at their position. 

TR <--- SELECT S-ID, DIV-S 
FROM CONN 
GROUP BY S-ID, DIV-S 
HAVING COUNT (*) > N ; 

DISPLAY MARK 
( SELECT XC, YC 

FROM TERM, TR 
WHERE TERM.T-ID = TR.S-ID 

AND TERM.DIV-ID = TR.DIV-S ) ; 

3.4 Organizing Structure of Logic Diagrams 

Logic diagrams may be, and generally are, 
defined within other diagram definitions. The 
definitions may be nested to any depth. ADAM data 
model allows the engineers and CAD application 
programs to express diagram structures in a hierar- 
chy. Some diagrams can be shared to create a 
directed acyclic graph rather than a tree. 

Functions of digital circuits can be divided 

Entry 
Level 

k User 
Level 

Library 
Level 

> 

Primitive 
Level 

PLIS( /R, 

Fig.9 An example relation in the GATE entry. 

into about ten categories listed below according to 
descriptive information that features them. 

(1) Drivers / Gates 
(2) Decoders / Encoders 
(3) Asynchronous counters 
(4) Synchronous counters 
(5) Registers / Latches 
(6) Shift registers 
(7) Arithmetic units 
(8) Memories 
(9) Controllers 

(10) CPUs / Systems 
Our logic diagram management system supports an 
entry for each category. The entries provide users 
with powerful tools for finding circuits for which 
he or she is looking. Fig.8 shows the overall 
structure of logic diagrams. It consists of four 
levels, i.e. entry, user, library and primitive 
levels. The entry level consists of a collection 
of relations that include both descriptive informa- 
tion ( e.g. the number of gates contained, types of 
outputs, clock frequency ) and uninstantiated ab- 
stract instance for accessing diagrams in the user 
or the library level. Fig.9 gives an example of 
the relations in the GATE entry. User-defined 
diagrams are stored in the user level. Since a 
user-defined diagram may incorporate other user- 
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defined diagrams, this level may constitute sub- 
hierarchies of any height. Standard logic diagrams 
and primitives organize the library level and the 
primitive level respectively,which are usually 
created by database system engineers. The diagrams 
in the library level may consist of some primi- 
tives. Thus they may include their implementation 
description, whereas the diagrams in the primitive 
level do not. 

4. EVE : Editor for Logic Diagrams 

4.1 Objects and Actions in Editing Logic Diagrams 

As mentioned earlier, engineers deal with 
design objects as a logical group that are usually 
represented by a collection of heterogeneous re- 
cords. It is therefore feasible to design a user 
interface that allows users to access and manipu- 
late these objects as a unit. This section 
describes an editor, termed EVE, that is tailored 
for logic diagram editing based on the ADAM data- 
base system. 

The following are five intrinsic objects that 
construct the diagrams. 

(1) component diagrams, 
(2) wires, 
(3) input / output ports, 
(4) graphical representation of the objects (l), 

(2) and (3), 
(5) text to name the objects (1); (2) and (3). 

The following actions are also required to 
edit the diagrams. 

(1) archive diagrams, 
(2) retrieve archived diagrams, 
(3) re-edit archived diagrams, 
(4) verify diagrams, 
(5) define, move, delete the objects, 
(6) control display representations of the 

objects. 
(2) is used to retrieve components from the data- 
base to edit a new diagram, whereas (3) is used to 
retrieve a diagram in order to revise it. 

4.2 Command Menu 

The editor EVE is designed and implemented for 
a storage tube display. Since this kind of display 
is not a very powerful interactive device, we must 
design a command menu in which users can explicitly 
specify each objects and actions. The resulting 
menu is shown in Fig.10. The menu displays plainly 
on the screen the full range of commands available 
to the user. It is generally necessary to use such 
a large menu in storage tube display user interface 
to avoid the need for frequent menu changes. Each 
time the user retrieves a component,defines a wire, 
etc., he gives the command by pointing a corre- 
sponding item in the menu. Errors simply abort the 
current command. 

The commands preceded by '*CIRCUIT LIBRARY' 
are provided to archive, retrieve or re-edit dia- 
grams. The menu items 'GATE', 'CONTROL', etc. are 
directly related to the corresponding entries in 
Fig.8. The commands preceded by '*VALIDITY' acti- 
vate the diagram verification procedures discussed 
in Section 3.3. The commands preceded by '+BASIC 

CLEAR e 
FIG-ID 

WIRE 

FFizE 
TH-DEF INP OUT - 

t BCISIC ELEMENTS 
RESI COND ItW 

zii?p %p 
CRYS LED 

k GATES 
TP OC ST 8 

NAM)+ + + 4 

K! + + + ’ + + + i 
+ + + 4 

E + + + i 
+ + + -1 

I FLIP-FLOPS 
CLPRCP 

K-P + + + 
JK-N + t t 
D-TY + + + 

1;tX&ClJIT;SL~ARY 

IHZOUNT GATE 
F#T ;;;tW~EG 

WITH . HEtlORY 
;;$TFzOLT CPWSYS 

CL Blank screen and 
redraw menu 

- Define diagram 

> 

name 
Control display 
representations 

- Define wires 

1 
Define graphical 
representations 

- Define input/ 
output ports 

> 

Retrieve basic el- 
ements 

Retrieve gate pri- 
mitives 

> 

Retrieve flip-flop 
primitives 

Archive, retrieve, 
re-edit diagrams 
in user or library 
levels 

> 

Invoke verifica- 
tion procedures 

Fig.10 Command menu of EVE. 

ELEMENTS', '"GATES' and '*FLIP-FLOPS' are used to 
retrieve primitives such as resistors, NAND gates 
and flip-flops, respectively. Each item of these 
commands is related to the entries in the lowest- 
level in Fig.8. 

Other commands are as follows. 
CLEAR. Blanks the screen and redraws the menu. 
FIG-ID. The user types a name of a diagram follow- 

ed by a RETURN. 
ZOOM. The scale of the drawing area is reset ac- 

cording to the selected scale. 
ORIGIN. The origin of the drawing area is reset 

according to the indicated position or 
specified coordinates. 

WIRE. Defines wires. 
MESH. The width of the mesh on the drawing area 

is reset according to the specified width. 
GEN-FIG. The user draws a graphical representation 

of the interface of the diagram under 
design. 
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TM-NAME. The user types a port name followed by a 
RETURN. 

TM-DEF. Defines input/output ports of the diagram 
under design. 

4.3 Operations and Performance 

A typical model for an editing cycle is 
sketched in Fig.11. When EVE is initialized, the 
three relations for describing a logic diagram, 
i.e. COMP, TERM and CONN, contain no tuples. In 
editing the diagram, four objects are primarily 
manipulated, i.e. components, input/output pots, 
wires and graphical representations. Following 
editing, it is necessary to check whether the 

system to merge the interface descriptions of the 
objects with the implementation descriptions of the 
diagram under design. Each retrieval takes approx- 
imately 250 msec of elapsed time on a MELCOM COSMO 
900 II for the first time because it requires 
access to data on secondary storage, whereas the 
following retrieval takes approximately 60 msec. 

( BEGIN ) 
I 

diagram involves errors. In our diagram management 
system, the final diagram can be registered in one 
or more categories. 

4.3.1 Retrieving Primitives and Components 

In order to retrieve a primitive, the user NO 
points to the corresponding item in the menu and 
then indicates the position at which the primitive 
is displayed. To retrieve a component, first, the 
user chooses a circuit category. Then the system 
responds by showing the column names related to the 
category in a blank skeleton table displayed at the 
bottom of the screen (Fig.12). Now he can express 
a query for retrieving the desired component in the 
same way as Query by Example [15,30]. Finally, he 
points to the target point. Retrieving primitives 
or components, which amounts to a direct counter- 
part of the concept "instantiation" [2], gets the 

Archive diagram 

I 
( END > 

Fig.11 A typical editing cycle. 
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Fig.12 Editing a diagram by EVE. 'X's indicate 
unconnected ports. 
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4.3.2 Defining Input/Output Ports 

To define an input/output port, the user 
chooses the TM-DEF command and then moves the 
cursor to the desired position. This operation 
gets the system to insert a single tuple to the 
TERM relation. Since the TERM relation is kept in 
main memory, defining a port is performed quite 
efficiently. It only takes approximately 30 msec. 

4.3.3 Defining Wires 

To define a wire, the user selects the WIRE 
command and then indicates a sequence of points 
that define the wire. First, the system checks 
whether ports to which the wire is connected are 
defined in the TERM relation by a simple selection 
operation. If they are defined, the system inserts 
a single tuple to the CONN relation and stores 
coordinates of the points in the image file. Since 
the relations and the image file are kept in main 
memory, defining a wire typically takes 80 msec. 

4.3.4 Defining Graphical Representation 

To define a graphical representation of the 
interface of the diagram under design, the user 
chooses the GEN-FIG command and then indicates a 
sequence of points that define it. The system 
stores coordinates of the points in the image file. 
Defining a graphical representation typically takes 
100 msec. 

4.3.5 Verifying Diagrams 

To detect errors in the diagram, the user 
chooses one of the commands preceded by '*VALIDITY' 
in the menu. Since all the relations needed to 
perform the verification are kept in main memory, 
verifying a diagram is executed efficiently. 
However, theCPU time needed is largely depend on 
the number of tuples in the relations. It typical- 
ly takes 1500 msec to detect illegal objects and 
display them. 

4.3.6 Archiving Diagrams 

To archive the diagram, the user points the 
item '#ARCH' and chooses a circuit category. Then 
the system responds by showing the column names 
related to the category in the blank skeleton table 
on the screen. Now he can type the descriptive 
information about the diagram in the appropriate 
place in the table. Finally, he types a special 
character, say blank. Then the system updates the 
management information about the structure of the 
design objects and then writes the relations, the 
picture file and the image file to secondary stor- 
age. Archiving a diagram takes approximately 3000 
msec. 

5. Conclusions 

The use of a database system has the potential 
to free its users from routine data management 
tasks. For example, database systems usually pro- 
vide features for data sharing, concurrency control 
and automatic crash recovery. With relational 

database systems its users can define different 
views of the same data and also dynamically alter 
them, allowing many programs with different data 
requirements to use one common database. However, 
no existing relational system supports the many 
facilities needed to support design activities. 
They include : 
(1) an explicit representation of the design 

hierarchy, 
(2) support for various data types, 
(3) support for version control, 
(4) efficient access to design data. 

In this paper, we have described a logic dia- 
gram management system built on top of an extended 
relational database called ADAM. ADAM is a con- 
sistent database management system which supports 
all the facilities mentioned above. By using hie- 
rarchical levels of abstraction, the design data 
can be organized into meaningful groupings for 
application programs. Data that are likely to be 
used together will be stored together and can be 
retrieved with only a few operations. In our sys- 
tem, a unit of access to secondary storage is the 
meaningful group of the design data. Extracted 
data are then processed primarily in main memory. 
It appears that these implementation strategies 
lead to the design system with improved performance 
over systems using traditional relational database 
management systems. 

The future research and development works are 
summarized as follows : 
(1) extending the data model to manage behavioral 

and functional information, 
(2) developing a comprehensive version control 

mechanism, 
(3) implementing a powerful user interface in- 

cluding browsing capabilities. 
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