
An Extended Relational Database System and
It’s Application to Management of Logic Diagrams

Yosihisa Udagawa and Tetsuo Mizoguchi

Information Systems & Electronics Development Lab.
Mitsubishi Electric Corporation

5-l-l Ofuna. Kamakura City, Kanagawa, 247, Japan

Abstract

An extended relational database and its application
to VLSI data management are described. The follow-
ing shortcomings mainly arise when we try to apply
conventional DBMSs to management of engineering
data : lack of facilities to support various data
types, a design hierarchy, version control and
efficient access to design data. We have extended
the relational data model by supporting (1) a set
of graphics functions that bridge relational data
structures to graphics representations, (2) a
special data type that allows a designer of the
database to model the design hierarchy (including
versions) explicitly. Ordinary relational data-
bases appear to be too slow to be used on-line in a
design process. Our hypothesis is that it does not
come from the nature of the relational model, but
rather internal access mechanisms. We have devel-
oped our system in such a way that data on a design
object are stored as interrelated collections of
records and are manipulated as a logical group. As
a result, our system offers sufficient facilities
and performance for interactive use of design data
at design system level.

1. Introduction

As the complexities of electric circuits in-
crease, an information management component is
becoming crucial to the success of a computer aided
design (CAD) system. In most cases, the CAD
systems that exist today each use their own data
format. This often requires data translation each
time a new CAD tool is added to the design system.
Data translation is adverse to integration of CAD
tools because it increases not only the difficulty
to maintain integrities of design data but the
amount of data translation software that must be
written and maintained [7,14,18,25,27].

Database management systems support such
facilities as uniform access to data on secondary
storage, dynamically changeable schemas, concurrent
access mechanisms for data sharing. Placing all
design information under the control of a single
database management system make it easier to
maintain the self-consistency. Design database
have long been of interest in CAD community and a
number of design systems have been build upon
CODASYL database ,systems with sufficient per-
formance. CODASYL systems, however, provide opera-
tions to access a record at a time and do not
adequately isolate the design management software

from the physical data organization. Further, a
CODASYL database schema is static. Since tools are
closely tied with database schema, new tools can
not be added without a major reorganization of the
database [3,23]. The relational approach, on the
other hand, offers the dynamic view of the data
necessary to share data between application pro-
grams. Further, relational systems support a set
of operations to manipulate relations at a time.
These achieve high data independence, i.e. physical
data structures can be changed without affecting
existing programs. Hence, many specialists on
database systems agree that the relational approach
is the most promising one to design data manage-
ment. Some design systems have been build on rela-
tional database systems, however, only with limited
success. Conventional relational database systems
are primarily designed for business applications
that only deal with formatted alphanumeric data.
Thus, these database systems fail to support many
of the facilities needed in design activities. In
particular, the missing features include (Katz[l7]
presents a more detailed discussion.) :

(1) support for various data types, such as pic-
tures, images,

(2) explicit representation of a design hierarchy,
(3) support for version control,
(4) efficient access to design data.

VLSI circuits are a particularly interesting
design domain because of the rich set of represen-
tations used in their description. These represen-
tations may include system architecture, register
transfer, logic diagrams, Boolean expression and
process specification. We limit the scope of this
paper to management of logic diagrams only. In
particular, we concentrate on a logical structure
and graphical representation. Circuits are usually
represented as block diagrams, i.e. named boxes
with input/output signals to denote data and con-
trol flow. The key information that the block
diagram presents is how subsystems are wired
together. Because the block diagram is naturally
created and viewed graphically, database systems
must be able to support geometric data t11.12,
17,281.

Hierarchical levels of abstraction are essen-
tial for tackling any complex problem. VLSI design
is no exception. VLSI systems can be conceptual-
ized as a complete design, and then recursively
decomposed into more primitive pieces. The leaves
of the hierarchy represent the detailed specifica-
tion of primitives that constitute the design. To

Permission fo copy wifhouf fee all or parf offhis maferial is granfed provided fhaf fhe copies are not made or disfribufed for direct commercial
adoanfage, fhe VLDR copyrighf notice and fhe fifle o/the pablicafion and ifs dafe appear, and nofice is given fhaf copyin. is by permission of
the Very Large Dafa Base Endowmenf. To cop
Proceedings of the Twelfth International Con erence on Very Large Data Bases I

ofherwise, or fo republish, requires a Tee and/or special permission from f R e Endowment.
Kyoto, August, 1986

-267-

support design data adequately, the design database
must reflect this hierarchical levels [13,16,23,
281.

Versions are objects that share the same in-
terface descriptions and differ only in their im-
plementations. A hierarchical design approach
provides a conceptual partitioning of the design.
An engineer is responsible for a conceptual unit of
the design. The concept of versions allows the
engineer to proceed as he wishes within the concep-
tual unit, as long as his implementation does not
alter the specified interface [17,19].

CAD applications require object-oriented ac-
cessing and manipulation. Typical design objects
are stored as interrelated collections of records
and are manipulated as a logical group. While fast
access to records is important, the overhead of
accessing a record at a time seems too great for
the large quantities of data. It is more efficient
to extract and process large aggregations of design
data as a unit [1,20,29].

In this paper, we discuss an extension of the
relational model and its application to management
of logic diagrams. A number of design systems have
been implemented upon the relational techniques,
notably System R at IBM Research, San Jose -[13,
201. INGRES at the Universitv of California.
Berkeley [ll], VDD, at AT&T Bell'Laboratories [5]:
Each system takes different ways to provide better
support for design applications : System R with
complex objects, INGRES with abstract data types
and VDD with rather specific approach to VLSI
design. While many researchers have proposed novel
data models for CAD applications, little work has
been done to design a coherent data model which
supports all the requirments peculiar to CAD
applications. The coherent data model is needed
to understand the basic requirements of database
support for VLSI applications and' how existing
database techniques can be applied, refined or
generalized for the engineering environment. In
our research and development efforts, we believe
that we are making two valuable contributions to
the understanding of design databases. One is the
development of a coherent data model, termed ADAM (
Advanced Database with Abstraction Mechanism),
which supports the requirements (l),(2) and (3)
mentioned above. Another is an implementation of
the ADAM with good performance in the design envi-
ronment.

This paper is organized as follows. We begin
by outlining the ADAM data model in terms of the
design hierarchy, graphical representation, version
control and its implementation. In Section 3, we
discuss use of ADAM data model for managing logic
diagrams and describe the structure of the database
itself. Section 4 deals with implementation of the
logic diagram management system and performance.
We close the paper with conclusions and future
works.

2. Over View of ADAM Data Model and Its
Implementation

2.1 Design Hierarchy

A design object consists of its interface
description and implementation description. The

interface description should contain enough infor-
mation about the object so that it can be used
without having a detailed understanding of its
implementation. It usually contains such informa-
tion as overall functions of the object, input and
output connection points, geometric boundary. The
implementation description specifies how the design
object is composed of more primitive components.
It typically includes listing of components, their
interconnections and graphical representations.

The skeletal structure of ADAM data model is a
directed acyclic graph of design objects. Vertices
represent objects. Leaves are primitive objects
that have no implementation descriptions. Vertices
but leaves mean objects that are formed from the
recursive composition of its descendants in the
graph. Edges are directed from an object to its
component objects. Each vertex include the follow-
ing specifications.

(Name of object)
(Parameters of object)
(Interface description for structure)
(Interface description for graphical notation)
(Implementation description for structure)
(Implementation description for graphical notation)

(Name of object) declares a name of the design
object. The design object can be parameterized
with geometric transformation information describ-
ing how it should be placed or rotated. In ADAM, a
special data type, termed "abstract object", is
devised to identify the parameterized object. An
instance of the abstract object data type , having
a syntax <identifier> (<parameter>, [<parameter>,
. . . 1 1, is a straightforward counterpart of the
"molecular object" addressed by Batory and Kim [2].
<identifier> is the name of the design object and
must be unique in the design hierarchy. Structural
description of the object, i.e. input/ output
ports, listing of components and their inter-
connections, is described in terms of the rela-
tional data model. However, the usual collection
of relational domains has been extended to include
the abstract object type. Components of the design
object are' listed in a relation involving this
special domain type.

2.2 Graphical Representation

The graphical representation provides engi-
neers with outline of the design object for viewing
on a graphics display. In ADAM, three types of
graphics functions are invented to bridge the
structural description and the graphical represen-
tation. One is a graphics function that manipu-
lates named graphical segments are stored in an
image file. The name of the segment may be listed
in a relation. The other is a set of functions
that draw a parametrized pictures, e.g. circle,
triangle. Values of the parameters may be stored
in a relation. Fig. 1 illustrates the general
relationships between data in a relation and their
graphical notation. The graphics functions men-
tioned above have a conspicuous feature, i.e. they
ensure that the displayed notation is an up-to-date
representation of the structural description.
These functions are useful to specify both the
interface and implementation descriptions of the

-268-

R (

DISPLAY(R(Fig.ID))

I I

(A) Displaying named segments

~l$‘;ADlb $X/C;Of$

2810: 010: 010

AYKOOR 1 ;
:
i CIRCLE(R(AR, AX, AY))
:

(B) Drawing parameterized pictures

Fig.1 Graphics functions in ADAM.

objects graphically.
Another type of the graphics function supports

a facility of letting designers show lower-level (
i.e. more detailed) views of the design objects in
context of the overall graphical notation. The
design object is usually defined by less complex
components and their interconnections, where each
component is assigned its own interface and imple-
mentation descriptions. Thus, to support the
facility, a sophisticated algorithm has to be deve-
loped to display the structures of the related
objects in a hierarchy, i.e. the underlying object
and its components and so on. Fig. 2 gives a
general idea of the algorithm. For more details,
Udagawa and Mizoguchi [28] can be referred.

2.3 Version Control

With designs proceeding to more concrete
ones, engineers typically generate or use equiva-
lent design objects using different technologies (
TTL, CMOS etc.), different physical characteris-
tics (consuming power or area etc.). Thus,
design databases prefer to support a special mech-
anism, i.e. version control, to manage these design
objects efficiently. Though many researchers have
addressed the problem of version control, many
crucial issues are still not well understood or
clearly defined partly because the absence of a
coherent data model for design objects [2,17]. In
this paper, we simply define versions as objects
that share the same interface but have different
implementation. Version control offers a mechanism

YES

I
Display implementation
description of object,
i.e. interface of com-
ponents and intercon-
nections

I

YES

I

and interconnections
I

I

Fig.2 General Algorithm to view
various hierarchical levels.

by which convenient groupings of versions can be
formed.

Logic circuits are typically divided into
about ten categories ,e.g. gates, counters, regis-
ters. Each category of the circuits has its own
attributes that are typically related to the inter-
face description not the implementation description
of circuits. For example, counters can be featured
in terms of count type (binary, decade, etc.),
count frequency, data load type (synchronous or
asynchronous) and so on [26].

For the purpose of version control, our system
provides an entry for each category. Each entry
contains information that features the circuits in
terms of relations. In our system, the design hie-
rarchy is organized in such a way that each design
object can be identified through the entries.
Though our system only supports primitive facili-
ties for version control, we believe our version
control facility is valuable in the sense that it
is based on a coherent data model and is imple-
mented with good performance.

-269-

.

2.4 Implementation

The use of a datahase system in design appli-
cations has the potential to free its users from
routine data management tasks. However, existing
commercial database systems appear to be too slow
to be used on-line by engineers in a design
process. A relational database is no exception.

Wilkins et a1.[29] and Barabino et al.[l]
make the claim that the relational data model in
itself is not a critical factor in performance,
rather internal access mechanisms of the database
significantly affect performance. As we have men-
tioned earlier, design applications require
object-oriented accessing and manipulation. A
direct implementation based on a conventional rela-
tional database system results in suffering from
poor performance primarily because the overhead of
entering and leaving the database system to extract
a record at a time is too great for large quanti-
ties of data involved. So it is quite natural to
think about accessing related design data as a unit
and manipulating them in main memory.

Fig3 shows an overall architecture of our
system that has been implemented in this direction.
Our system runs on a MELCOM COSMO 900 II computer
system that has approximately 4 MIPS processing
power. ADAM is approximately.10000 lines of FORTRAN
code. "Management Information on DBMS'! in Fig.3
includes information about the skeletal structure
of ADAM, names and parameters of objects in the
structure. The "Relation File" stores a relation
or a set of homogeneous 'records. The "Picture
File" includes a set of graphics segments defined
by a sequence of graphics functions, while the
"Image File" ,involves a set of digitized images.
In our system, units of access to secondary storage
are the "Relation File", "Picture File" or "Image
File." Extracted data are then processed primarily
in main memory allowing various design tools to
handle them. A logic diagram editor EVE (Editor
in Visual Environment) is constructed on top of
ADAM. EVE, approximately 3000 lines of FORTRAN
code, supports facilities need to edit a logic
diagram adequately, e.g. retrieving components from
a design database, connecting components, checking
validity of the diagram. Our system appears to
provide sufficient performance at design system
level. Typical operations to edit a logic diagram
are executed in less than 100 msec.

r --_-
I EVE Design
I I (FORTRAN) Tool

I

ADAM (FORTRAN)
)

DBMS

UTS/VS (COSMO 90011) OS

I
4

Management Relation Picture Image
Information File File File

on DBMS
. .-

Fig.3 Overall architecture of the system.

3. Use of ADAM for Managing Logic Diagrams

3.1 Describing Structural Information

In this section, we will discuss how struc-
tures of a logic diagram are represented in terms
of relations in ADAM data model. As we mentioned
earlier, design objects have two levels of descrip-
tion, i.e. an interface and implementation. Both
levels are modeled using standard entity-relation-
ship (ER) techniques [4]. The ER model views the
world as consisting of entities and relationships
among entities. An entity is something that exists
in the world. Entities and relationships have
attributes that describe them.

Fig. 4 shows the interface (in broken lines >
and the implementation (in solid lines > of a
circuit that is composed, of a 2-input NAND gate, a
switch and resistors, etc. An ER schema of cir-
cuits is shown in Fig.5.. In this figure, ""COMPO-
NENTS" means a parent circuit that is constructed
from child circuits ("COMPONENTS"), points and
wires. "*PORTS" specifies an associated inter-
face, i.e. a list of connection points that are
used when an instance of the circuit is incorpo-
rated as a child within a higher level parent
circuit. "*PORTS" and "PORTS" are disjoint subsets
of "POINTS" and this is depicted in the schema
using "DISJOINT" category [lo]. The translation of
the schema to relations in ADAM is straightforward.
Rules for mapping ER schemas to Codd's relations
are discussed in Elmasri et al.[lO]. Note,

------ -- ---
I -i
r . - - 1 -

I

: ?D-L

I

&-Ts :_

t-----’ I
I Z’ i----~---“---~- -,’ -

Fig.4 An example circuit. _

Interface 1

COMPONENTS

Fig.5 An ER schema of a circuit.

-270-

however, in ADAM data model, domains of a relation
may include "abstract objectn mentioned in Section
2.

The ER schema in Fig.5 is reduced into rela-
tions below.

COMP(DIV-ID/ID, DIV/ABS)
TERM(T-ID/ID, DIV-ID/ID, CHR/ID,

XC/AD, K/AD)
CONN(L-ID/ID, S-ID/ID, DIV-S/ID,

D-ID/ID, DIV-D/ID)

Each tuple in the COMP relation represents an in-
stance of a circuit incorporated within the parent
circuit. Each item in the DIV column encodes an
identifier of the instance and geometric placement.
The TERM relation lists information about points of
the circuit. The CONN relation describes wires of
the circuit. It contains one tuple per wire.
Fig.6 gives a collection of relations that de-
scribe the circuit in Fig.4. Each tuple including
"DO" in the relations indicates that it specifies
the interface of the circuit. Fig.7 shows rela-
tions describing the 2-input NAND gate. Since the
NAND gate is a primitive component in our logic

COMP (OIV ID/ID, DIV/ABS 1.
D00T, GND(+5.0,+0.0)
D002, GND(+35.0,-10.0)
D003, SW2(+12.0,+2.0)
D004, NAf2(+31.0,+0.0)
D005, REGV(+18.0,+8.0)
D006, REGV(t35.0, t8.0 1
D007, REGV(+35.0,-5.01
D008, VCC(+18.0,+14.0)
D009, VCC(+3!&0,+!4.0)
DO, SWD(X,Y)

TERM (

CONN (

T ID/ID, DIV ID/ID, CHR/ID,
XC/AD, YC’AD- 1.
10, DOO1, TP N, t5.0, tl.0
10, D002, TP-N, +35.0, -8.0
10, 0003, TP-N, +Q.S, +2.0
II, 0003, TP-N, tl4.5, t2.0
QO, D004, TP-N, t31.0, t0.0
10, D004, TP-N, t23.0, t2.0
11, 0004, TP-N, t23.0, -2.0
10, D005, TP-N, t18.0, t5.0
II, D005, TP-N, tlB.0, +11.0
10, D006, TP-N, t35.0, t5.0
II, 0006, TP-N, t35.0, t11.0
10, D007, TP-N, t35.0, -8.0
11, D007, TP-N, t35.0, -2.0
Q0, 0008, TP-N, t18.0, t14.0
Q0, 0009, TP-N, t35.0, tl4.0
1,000, D0, TP-N, t0.0, -5.0
Q000, DO, TP;N, t40.0, t0.0

LD-I::
L001,

E%
L004:
L005,
L006,
L007,

Ez2 I

‘ID, S ID/I
‘I :;I D;$$

11: D003:
1000, DO,

D, DIV-S/
‘ID).

10, D001

? IEZ:
11: D005
11, 0003

iv E%
Q060, DO
10, D002

ID,

Fig.6 Relations describing a circuit in Fig.4.

diagram management system, the relations in Fig.7
only consist of tuples specifying the interface
description.

Haskin and Lorie have investigated an exten-
sion of the relational database for VLSI design
1131. In their database, the hierarchical struc-
tures among the design objects are described im-
plicitly in the sense that the hierarchy of the
design object is encoded by so called "referential
integrity," i.e. a tuple for a child object must
include an identifier for its parent object [9].
In our database, on the other hand, each design
object is encapsulated in the sense that the struc-
tural and graphical information of the object is
stored in one conceptual partition. Each partition
is uniquely identified by an instance of the "ab-
stract object" mentioned in Section 2. No parti-
tion is accessed which need not be. By virtue of
the explicit management of the hierarchy, our sys-
tem achieves high performance, which will be dis-
cussed in Section 4 of this paper.

3.2 Specifying Graphical Representation

Graphical representation offers a convenient
way for engineers to understand structures of a
logic diagram. Many geometric models consist of a
mixture of data structures and procedures [21].
ADAM data model is no exception. ADAM's graphics
facilities consist of the relational data structure
supplemented by some graphics functions. The fol-
lowing SQL like formulas [9] define the graphical

1.000

9.000

K%!l
12: 000
13.000

19.000

FEEi
22: 000

/*********t******t***********************/
2 DEFINITION OF 5;

;**
ABSTRACT INSTANCE 2-INPUT NAND x/
WITH TOTEM-POLE OUTPUT

5
;:*************i*************************,
/**/
IVARIABLF-DEEECRATION ;

t
:

/ REAL : .- _-
$ABSTRACTED-INSTANCE :

NAT2 (X, Y,) ;
“,“F;FRAL ;

‘I : .--. ,
.ORI(X, Y 1 i
CIRCLEi 0.5, -0.5, 0 1
APX(3, -4,

:
0, 3, -3 1)

POLY((-4,3),(-8,3),(-8,-3),(-
LINE{ -9, 2, -8, 2 1 ;
f$E;&Qj-2, -8,-2) ;

;
SDOMAIN. ; ..’

ID / CHAR :
ABS / ABST :
AD / REAL ;

ZRELAT ION ;
COMP(DIV ID/ID, DIV/ABS) :

DO, N&T2(0.0, 0.0 1 ;
$RELATION ;

TERM(T ID/ID, DIV ID/ID, CHR/ID,
XC/AD, YC/AD-) ;

Q0, DO, TP N, 0.0, 0.0 :
10, DO, TP-N, -9,0, 2.0 j

BEND ;
11, DO, TP;N, -9.0,-2.0 ;

Fig.7 Definition of a 2-input NAND gate.

-3

-271-

representation of the interface of the logic di.a-
gram. It is preceded and followed by calls to the
translation function, i.e. .ORIGIN(X,Y), that
sets the position of the diagram to be displayed.

.ORIGIN(X,Y) ;
DISPLAY CIRCLE (RADIUS = 'O.S',

SELECT XC, YC
FROM TERM
WHERE DIV-ID = 'DO'

AND CHR = '+**I*') ;
DISPLAY CROSS (RADIUS = '0.5',

SELECT XC, YC
FROM TERM
WAERE DIV-ID = 'DO'

AND CHR = 'f**N*') ;
DISPLAY IMAGE (GFl) ;
.ORIGIN(-X,-Y) ;

The condition DIV ID = 'DO' indicates that the
displayed symbols are those of the interface de-
scription. The condition CHR = '**+I*' specifies a
partial match, i.e. the forth letter of the CHR
column be 'I'. The graphics function DISPLAY IMAGE
(GFl) draws the line segment named GFl, which is
defined by a list of coordinates stored in the
image file (Fig.3).

The following formulas display the interface
of the components and connecting wires in the logic
diagram. In other words, it draws the implementa-
tion of the logic diagram graphically on a display.

DISPLAY INTERFACE
(SELECT DIV

FROM COMP
WHERE DIV ID /= 'DO') ;

DISPLAY IMAZE
(SELECT L-ID

FROM CONN >. ;

Since the interface description of each component
is stored in the design hierarchy, the DISPLAY
INTERFACE function is,implemented by some -sophis-
ticated procedures, e.g. executing relational and
graphics operations in lower levels.

3.3 Detecting Errors in Logic Diagrams

Findi.ng errors in logic diagrams potentially
offers time and economic advantages for circuit
engineers. This subsection describes use of the
relational operations in connection with error
detection. Some of the potential errors that can
be detected at a schematic design step are listed
below (even though they may apply to other steps
in VLSI design cycle [22,24]) :

(1) each input/output of a component must be
connected,

(2) all inputs of a component must be connected,
(3) outputs of a component must be connected to

compatible inputs,
(4) outputs of a component must not drive too

many inputs.

3.3.1 Detecting Unconnected Ports

Unconnected ports are ports in a diagram that
is neither origin nor destination of wires. All
ports in the diagram are listed in the TERM rela-

tion. The oriein and the destination of wires are v

stored in the CONN relation. Thus, to find uncon-
nected ports, we get the following formula :

TR <--- SELECT T-ID, DIV-ID FROM TERM
DIFF
(SELECT S-ID, DIV-S FROM CONN

UNION
SELECT D-ID, DIV-D FROM CONN);

The following formula retrieves the coordinates of
the unconnected ports and display a predefined
symbol 'X' at their position.

DISPLAY MARK
(SELECT XC, YC

FROM TERM, TR
WHERE TERM.T ID = TR.T-ID

AND TERM.DIV-ID = TR.DIV-ID) ;

3.3.2 Detecting Components with Unconnected Inputs

Unconnected inputs on components are inputs
that are not connected to any wire. Note, however,
we must exclude input ports of the diagram under
design. The following formula discovers a set of
unconnected inputs together with identifiers of the
related component.

TR <--- SELECT T ID, DIVLID
FROM TERM
WHERE, DIV-ID /= 'DO'

AND T-ID = 'I*',
DIFF
SELECT D ID, DIV-ID
FROM CtiNN ;

To display the result graphically, we must retrieve
the abstract instances related to the components.

DISPLAY INTERFACE
(SELECT. DIV

FROM COMP, Tk
WHERE COMP.DIV-ID = TR.DIV-ID j ;

3.3.3 Detecting Illegal Connection

There are many kinds of illegal connections in
logic circuits [22,26]. Among them, we consider
the following typical one. In the standard TTL,
three output types can be included for organizing
circuits, i.e. two-state, three-state and open-
collector. The three-state outputs can interface
directly with and drive data lines of bus-organized
circuits. The open-collector outputs can be tied
with other similar outputs to perform the wire-AND
function. Thus, outputs of these two types may be
connected to other outputs of an identical type,
while two-state outputs must not be tied with other
outputs of any type. The following expressions
formulate the last part of the statement and dis-
play results on a display.

TR <--- SELECT S ID, DIV-S, L ID -
FROM C8NN
GROUP BY D-ID, DIV-ID
HAVING COUNT(*) > 1 ;

-272-

. . .
h i h

1 GATE 1 1 COUNTER 1 1 CONTROL-

DISPLAY
(SELECT

FROM
WHERE

AND
AND

The condition

Fig.8 Overall structure of .ogic diagram database.

IMAGE
L ID
TERM, TR
TERM.T ID = TR.S ID
TERM.D?/ ID = TRTDIV-S
TERM.CHR-= 'TP') ;

CHR = 'TP' selects tuples related to
two-state outputs.

3.3.4 Checking Fan-out

Fan-out check is done to ensure that the out-
puts of components are not driving too many inputs.
The check usually takes into account inputs with a
value of other than one standard load. However, in
order to make formulation simple, we assume that
all inputs be with one load. The expressions below
detect outputs driving more than N load and display
a predefined symbol at their position.

TR <--- SELECT S-ID, DIV-S
FROM CONN
GROUP BY S-ID, DIV-S
HAVING COUNT (*) > N ;

DISPLAY MARK
(SELECT XC, YC

FROM TERM, TR
WHERE TERM.T-ID = TR.S-ID

AND TERM.DIV-ID = TR.DIV-S) ;

3.4 Organizing Structure of Logic Diagrams

Logic diagrams may be, and generally are,
defined within other diagram definitions. The
definitions may be nested to any depth. ADAM data
model allows the engineers and CAD application
programs to express diagram structures in a hierar-
chy. Some diagrams can be shared to create a
directed acyclic graph rather than a tree.

Functions of digital circuits can be divided

Entry
Level

k User
Level

Library
Level

>

Primitive
Level

PLIS(/R,

Fig.9 An example relation in the GATE entry.

into about ten categories listed below according to
descriptive information that features them.

(1) Drivers / Gates
(2) Decoders / Encoders
(3) Asynchronous counters
(4) Synchronous counters
(5) Registers / Latches
(6) Shift registers
(7) Arithmetic units
(8) Memories
(9) Controllers

(10) CPUs / Systems
Our logic diagram management system supports an
entry for each category. The entries provide users
with powerful tools for finding circuits for which
he or she is looking. Fig.8 shows the overall
structure of logic diagrams. It consists of four
levels, i.e. entry, user, library and primitive
levels. The entry level consists of a collection
of relations that include both descriptive informa-
tion (e.g. the number of gates contained, types of
outputs, clock frequency) and uninstantiated ab-
stract instance for accessing diagrams in the user
or the library level. Fig.9 gives an example of
the relations in the GATE entry. User-defined
diagrams are stored in the user level. Since a
user-defined diagram may incorporate other user-

-273-

defined diagrams, this level may constitute sub-
hierarchies of any height. Standard logic diagrams
and primitives organize the library level and the
primitive level respectively,which are usually
created by database system engineers. The diagrams
in the library level may consist of some primi-
tives. Thus they may include their implementation
description, whereas the diagrams in the primitive
level do not.

4. EVE : Editor for Logic Diagrams

4.1 Objects and Actions in Editing Logic Diagrams

As mentioned earlier, engineers deal with
design objects as a logical group that are usually
represented by a collection of heterogeneous re-
cords. It is therefore feasible to design a user
interface that allows users to access and manipu-
late these objects as a unit. This section
describes an editor, termed EVE, that is tailored
for logic diagram editing based on the ADAM data-
base system.

The following are five intrinsic objects that
construct the diagrams.

(1) component diagrams,
(2) wires,
(3) input / output ports,
(4) graphical representation of the objects (l),

(2) and (3),
(5) text to name the objects (1); (2) and (3).

The following actions are also required to
edit the diagrams.

(1) archive diagrams,
(2) retrieve archived diagrams,
(3) re-edit archived diagrams,
(4) verify diagrams,
(5) define, move, delete the objects,
(6) control display representations of the

objects.
(2) is used to retrieve components from the data-
base to edit a new diagram, whereas (3) is used to
retrieve a diagram in order to revise it.

4.2 Command Menu

The editor EVE is designed and implemented for
a storage tube display. Since this kind of display
is not a very powerful interactive device, we must
design a command menu in which users can explicitly
specify each objects and actions. The resulting
menu is shown in Fig.10. The menu displays plainly
on the screen the full range of commands available
to the user. It is generally necessary to use such
a large menu in storage tube display user interface
to avoid the need for frequent menu changes. Each
time the user retrieves a component,defines a wire,
etc., he gives the command by pointing a corre-
sponding item in the menu. Errors simply abort the
current command.

The commands preceded by '*CIRCUIT LIBRARY'
are provided to archive, retrieve or re-edit dia-
grams. The menu items 'GATE', 'CONTROL', etc. are
directly related to the corresponding entries in
Fig.8. The commands preceded by '*VALIDITY' acti-
vate the diagram verification procedures discussed
in Section 3.3. The commands preceded by '+BASIC

CLEAR e
FIG-ID

WIRE

FFizE
TH-DEF INP OUT -

t BCISIC ELEMENTS
RESI COND ItW

zii?p %p
CRYS LED

k GATES
TP OC ST 8

NAM)+ + + 4

K! + + + ’ + + + i
+ + + 4

E + + + i
+ + + -1

I FLIP-FLOPS
CLPRCP

K-P + + +
JK-N + t t
D-TY + + +

1;tX&ClJIT;SL~ARY

IHZOUNT GATE
F#T ;;;tW~EG

WITH . HEtlORY
;;$TFzOLT CPWSYS

CL Blank screen and
redraw menu

- Define diagram

>

name
Control display
representations

- Define wires

1
Define graphical
representations

- Define input/
output ports

>

Retrieve basic el-
ements

Retrieve gate pri-
mitives

>

Retrieve flip-flop
primitives

Archive, retrieve,
re-edit diagrams
in user or library
levels

>

Invoke verifica-
tion procedures

Fig.10 Command menu of EVE.

ELEMENTS', '"GATES' and '*FLIP-FLOPS' are used to
retrieve primitives such as resistors, NAND gates
and flip-flops, respectively. Each item of these
commands is related to the entries in the lowest-
level in Fig.8.

Other commands are as follows.
CLEAR. Blanks the screen and redraws the menu.
FIG-ID. The user types a name of a diagram follow-

ed by a RETURN.
ZOOM. The scale of the drawing area is reset ac-

cording to the selected scale.
ORIGIN. The origin of the drawing area is reset

according to the indicated position or
specified coordinates.

WIRE. Defines wires.
MESH. The width of the mesh on the drawing area

is reset according to the specified width.
GEN-FIG. The user draws a graphical representation

of the interface of the diagram under
design.

-274-

TM-NAME. The user types a port name followed by a
RETURN.

TM-DEF. Defines input/output ports of the diagram
under design.

4.3 Operations and Performance

A typical model for an editing cycle is
sketched in Fig.11. When EVE is initialized, the
three relations for describing a logic diagram,
i.e. COMP, TERM and CONN, contain no tuples. In
editing the diagram, four objects are primarily
manipulated, i.e. components, input/output pots,
wires and graphical representations. Following
editing, it is necessary to check whether the

system to merge the interface descriptions of the
objects with the implementation descriptions of the
diagram under design. Each retrieval takes approx-
imately 250 msec of elapsed time on a MELCOM COSMO
900 II for the first time because it requires
access to data on secondary storage, whereas the
following retrieval takes approximately 60 msec.

(BEGIN)
I

diagram involves errors. In our diagram management
system, the final diagram can be registered in one
or more categories.

4.3.1 Retrieving Primitives and Components

In order to retrieve a primitive, the user NO
points to the corresponding item in the menu and
then indicates the position at which the primitive
is displayed. To retrieve a component, first, the
user chooses a circuit category. Then the system
responds by showing the column names related to the
category in a blank skeleton table displayed at the
bottom of the screen (Fig.12). Now he can express
a query for retrieving the desired component in the
same way as Query by Example [15,30]. Finally, he
points to the target point. Retrieving primitives
or components, which amounts to a direct counter-
part of the concept "instantiation" [2], gets the

Archive diagram

I
(END >

Fig.11 A typical editing cycle.

I---- ----
I 1

-3

4

I-----.--- _’

* L-&-j

I------ y-1

-1 R
,Y--+-~~ I - - - - - - - - 1

1 06

B WlF OfI

c REo.ac i-fir&

r---D 0
--------I

I..-------AIlI 1

-Iz

‘------8-I

“lOI

y kL

.--------I
CLK R

I------ -1

,---- ---- -1 I I

:*J I-----.---J J
‘-L------I

t---------k:

t

2un.5l241
allGIN * I
nEsN

t GnSlC ELEtENrS

!i% Et! ‘Nm
cm Ycc
CRYS LED

Fig.12 Editing a diagram by EVE. 'X's indicate
unconnected ports.

-275-

4.3.2 Defining Input/Output Ports

To define an input/output port, the user
chooses the TM-DEF command and then moves the
cursor to the desired position. This operation
gets the system to insert a single tuple to the
TERM relation. Since the TERM relation is kept in
main memory, defining a port is performed quite
efficiently. It only takes approximately 30 msec.

4.3.3 Defining Wires

To define a wire, the user selects the WIRE
command and then indicates a sequence of points
that define the wire. First, the system checks
whether ports to which the wire is connected are
defined in the TERM relation by a simple selection
operation. If they are defined, the system inserts
a single tuple to the CONN relation and stores
coordinates of the points in the image file. Since
the relations and the image file are kept in main
memory, defining a wire typically takes 80 msec.

4.3.4 Defining Graphical Representation

To define a graphical representation of the
interface of the diagram under design, the user
chooses the GEN-FIG command and then indicates a
sequence of points that define it. The system
stores coordinates of the points in the image file.
Defining a graphical representation typically takes
100 msec.

4.3.5 Verifying Diagrams

To detect errors in the diagram, the user
chooses one of the commands preceded by '*VALIDITY'
in the menu. Since all the relations needed to
perform the verification are kept in main memory,
verifying a diagram is executed efficiently.
However, theCPU time needed is largely depend on
the number of tuples in the relations. It typical-
ly takes 1500 msec to detect illegal objects and
display them.

4.3.6 Archiving Diagrams

To archive the diagram, the user points the
item '#ARCH' and chooses a circuit category. Then
the system responds by showing the column names
related to the category in the blank skeleton table
on the screen. Now he can type the descriptive
information about the diagram in the appropriate
place in the table. Finally, he types a special
character, say blank. Then the system updates the
management information about the structure of the
design objects and then writes the relations, the
picture file and the image file to secondary stor-
age. Archiving a diagram takes approximately 3000
msec.

5. Conclusions

The use of a database system has the potential
to free its users from routine data management
tasks. For example, database systems usually pro-
vide features for data sharing, concurrency control
and automatic crash recovery. With relational

database systems its users can define different
views of the same data and also dynamically alter
them, allowing many programs with different data
requirements to use one common database. However,
no existing relational system supports the many
facilities needed to support design activities.
They include :
(1) an explicit representation of the design

hierarchy,
(2) support for various data types,
(3) support for version control,
(4) efficient access to design data.

In this paper, we have described a logic dia-
gram management system built on top of an extended
relational database called ADAM. ADAM is a con-
sistent database management system which supports
all the facilities mentioned above. By using hie-
rarchical levels of abstraction, the design data
can be organized into meaningful groupings for
application programs. Data that are likely to be
used together will be stored together and can be
retrieved with only a few operations. In our sys-
tem, a unit of access to secondary storage is the
meaningful group of the design data. Extracted
data are then processed primarily in main memory.
It appears that these implementation strategies
lead to the design system with improved performance
over systems using traditional relational database
management systems.

The future research and development works are
summarized as follows :
(1) extending the data model to manage behavioral

and functional information,
(2) developing a comprehensive version control

mechanism,
(3) implementing a powerful user interface in-

cluding browsing capabilities.

Acknowledgments

We gratefully acknowledge the helpful comments of
Dr.M.Sudo, the manager of Software Department at
Information Systems and Electronics Development
Lab. of Mitsubishi Electric Corporation.

References

[II

121

[31

141

Barabino, G.P., Barabino, G.S., Bisio,G. and
Marchesi,M. : A Model for Improving Data
Access and Management in an Integrated CAD
Environment, Proc. 22nd ACM/IEEE Design
Automation Conference (June 1985), 577-583.

Batory,D.S. and Kim.W : Modeling Concepts for
VLSI CAD Objects, ACM Trans. Database Syst.
10,3 (Sept 1985), 322-346.

Beetem,A, Milton,J. and Wiederhold,G. Perfor-
mance of Database Management Systems in
VLSI Design, IEEE Database Engineering, 5.2
(June 1982).

Chen,P.P.S.: The Entity-Relationship Model -
Toward a Unified View of Data, ACM Trans.
Database Syst. 1,l (March 197G), Q-36.

- 276-

[5] Chu,K-C, et al.: VDD - A VLSI Design Database
System, Proc. ACM SIGMOD Conference on
Engineering Design Applications, San Jose,
CA (May 1983).

[6] Codd,E.F.: Extending the Database Relational
Model to Capture More Meanings, ACM Trans.
Database Syst. 4,4 (Dec. 1979), 397-434.

[7] Crowley,J. : Automation Smoothes CAD Process,
Electronics (Dec.3,1984), 65-69.

[8] Datam,P., Lum,V. and Werner,H.D. : Integra-
tion of Time Versions into a Relational
Database System, Proc. 10th Intl. Conf. on
Very Large Databases (1984), 509-522.

[9] Date,C.J. : An Introduction to Database
Systems, Vol.1, 3rd ed. Addison-Wesley, Read-
ing, Mass, 1981.

[lo] Elmasri,R., Weeldreyer,J. and Hevner,A. : The
Category Concept : An Extension to the
Entity-Relationship Model, Data & Knowledge
Engineering, North-Holland, Vol.1 (1985).
75-116.

[ll] Guttman, A. and Stonebraker, M. : Using a
Relational Database Management System for
Computer-Aided Design Data, IEEE Database
Engineering 5.2 (June 1984). 56-60.

[12] Hartzband,D.J. and Maryanski,F.J. : Enhancing
Knowledge Representation in Engineering Data-
bases, IEEE Computer (Sept. 1985), 39-48.

[13] Haskin,R. and Lorie,R. : On Extending the
Functions of a Relational Database System,
Proc. ACM SIGMOD 1982, ACM, New York, 207-212.

[14] Haynie, M. N. : The Relational Data Model for
Design Automation, Proc. 20th ACM/IEEE
Design Automation Conference (1983), 599-609.

[15] Heiler,S. and Rosentha1.A. : G-WHIZ, a Visual
Interface for the Functional Model with
Recursion, Proc. 11th Intl. Conf. on Very
Large Databases (1985), 209-218.

[16] Katz,R.H. : A Database Approach for Managing
VLSI Design Data, Proc. 19th ACM/IEEE
Design Automation Conference (June 1982),
274-282.

[17] Katz,R.H. : Information Management for Engi-
neering Design, (Surveys in Computer Science)
Springer-Verlag, 1985.

[18] Keller,K.H., Newton,A.R. and Ellis,S. : A
Symbolic Design System for Integrated
Circuits, Proc. 19th ACM/IEEE Design Automa-
tion Conference (1982), 460-466.

[19] Kim.W and Batory,D.S. : A Model and Storage
Technique for Versions of VLSI CAD Objects,
Proc. of Intl. Conference on Foundation of
Data Organization (May 1985), 329-334.

[20] Lorie,R, Kim,W, Mcnabb,D., et al. : sup-
porting Complex Objects in a Relational
System for Engineering Databases, In Query
Processing in Databse Systems, W. Kim,
D.Reiner and D.Batory, Eds., Springer Verlag
(1985). 145-155.

[21] Newman,W.M. and Sproul1,R.F. : Principles of
Interactive Computer Graphics, 2nd ed.,
McGraw-Hill, 1979.

[22] Ravid,E. and Nerat,T. : Problems in Logic-
Array Design on Engineering Workstations,
VLSI Design (Sept. 1984), 46-51.

[23] Roberts,K.A., Baker,T.E. and Jerome, D.H. : A
Vartically Organized Computer-Aided Design
Data Base, Proc. 18th ACM/IEEE Design Auto-
mation Conference (1981), 595-602.

[24] Robson,G. : Benchmarking the Workstations,
VLSI Design (March/April 1983), 58-61.

[25] Smith,D.C. and Wagner,B.S. : A Low Cost,
Transportable, Data Management System for
LSI/VLSI Design, Proc. 19th ACM/IEEE Design
Automation Conference (1982), 283-290.

[26] The Bipolar Digital Integrated Circuits Data
Book, Texas Instruments, 1985.

[27] Tool Set Links All Stages of Full-Custom IC
Design, Electronics (July 1,1985), 60-62.

[28] Udagawa,Y. and Mizoguchi,T. : An Advanced
Database System ADAM --- Towards Integrated
Management of Engineering Data, Proc. 1st
IEEE Intl. Conf. on Data Engineering (1984),
3-11.

[29] Wilkins, M. W., Berlin, R., Payne, T. and
Wiederho1d.G : Relational and Entity-Rela-
tionship Model Databases and Specialized
Design Files in VLSI Design, Proc. 22nd
ACM/IEEE Design Automation Conference (June
1985), 410-416.

[30] Z1oof.M. : Query by Example - A Data Base
Language, IBM Sys. J. 16,4 (1977).

-277-

