
ECRINS/86 : An Extended Entity-Relationship Data Base Management System
and its Semantic Query Language

Marc Junet, Gilles Falquet, niche1 Leonard

University of Geneva, Centre Universitaire d’Informatique
12, rue du Lac, CH - 1207 Geneva, Switzerland

ABSTRACT : we propose a DBMS the data model of
which is an extension of the Entity-Relationship
model of Chen. The main extensions include the
specialization and generalization concepts of
Smith 6 Smith and the possibility to define
relationships between relationships. In addition
we extend the concept of a role in a
relationship, to a multi-valued role which
enables to associate a set of tuples performing
the same function in a relationship. A query
language has been designed in order to deal with
the enhanced semantic capabilities of the data
model supported by the ECRINS/86 system.

1. INTRODUCTION

ECRINS/86 is a DBMS (Data Base Management System)
the data model of which is an Extended
Entity-Relationship Model. This paper is
narrowed to the description of the extensions of
the E-R Model proposed by Chen [CHEN76] and to
the semantic query language we developed to deal
with the ECRINSi86 system. A more complete
description of the system may be found in
[JUNET86]. In addition to the concepts proposed
by Chen we included the generalization and
specialization concepts developed by Smith &
Smith [SMITH77]. We also extended the role
concept of an entity in a relationship. A role
in the E-R Model is the function that an entity
performs in a relationship; through one role only
one tuple of an entity relation can be related to
one tuple of a relationship relation. We
introduce the new concept of multi-valued role
which enables to associate a set of tuples
performing the same function in a relationship.
Furthermore in ECRINS/86 a role in a relationship
relation may be performed either by an entity or
another relationship relation (the original E-R
Model was criticized for its lack of capability
to express such relationships [SCHEUER79]). In
addition a new graphical representation adapted
to the Extended E-R Model of ECRINSf86 is
proposed. Obviously the ECRINS.186 sys tern
validates automatically all the inherent
integrity constraints related to the data model
implemented. The description of those integrity
constraints can be found in [JUNET86 1. They
mainly concern : a) the domain of the attributes,
b) the keys of the relations, c) the existence
dependencies, d) the cardinality and e) unknown
values.

In section 2 only the new concepts of the data

model are presented in order to explain and
illustrate the particularities of the query
language. Section 3 describes some features of
this query language. These are : 1) the
definition and use of extended relation obtained
by joining tuples of different relations
associated through relationship relations,
2) the handling of non-first normal form
relations appearing when multi-valued roles
are defined in a relationship relation, 3) the
deduction of an extended relation containing all
the attributes of a query.

2. THE EXTENDED E-R MODEL IMPLEMNTED WITH THE
DBMS ECRINS/t?6

In order to point out some of the modeling
facilities offered by the Extended E-R Model of
ECRINSf86, we will first model an example
concerning an airline company with the n-ary
relational model of Codd [CODD’IO].

2.1 A n-ary Relational Modeling Example

Let us consider an airline company made up of the
following relations and attributes (the keys of
each relation are underligned).

FLYING-STAFF (E, AGE, SALARY, JOB-CLASS)
PILOT (PNAMI~, LICENCE-NUMBER, LICENCE-TYPE)
OPERATOR (ONAME, JOB-HISTORY)
STEWARDESS (SNAME, YEARS-OF-SERVICE)
CABIN-CREW (CREW-NUMBER, CHIEFPNAME, copl-

PNAME, COPSPNAME, ONAME, NBFLIGHT)

AIRPORT (AIRPORT-NAME, CITY)
PLANE (PLANE-NUMBER, KIND-OF-PLANE, NB-SEAT)
FLIGHT (FLIGHT-NUMBER, CREW-NUMBER, SNAME:,

SNAME2, SNAME3, SNAME4, DEP-AIRPORT-

NAME, ARR-AIRPORT-NAME, PLANE-NUMBER,

DEP-HOUR, ARR-HOUR)

The relations PILOT, OPERATOR and STEWARDESS are
specializations of the relation FLYING-STAFF.
With the n-ary relational model 4 relations need
to be defined in order to model this
specialization concept. The data base designer
must also be aware of all the integrity
constraints which are related to this structure
(i.e. deleting a tuple of PILOT must trigger the
deletion of the corresponding tuple in relation
FLYING-STAFF) .

Permission lo cop
adoankzge, Ihe V E

wilhoul fee all or parl o lhis malerial is granted provided that Ihe copies are not made or distributed for direcf commercial
DB copyright notice an d the Me of the publicaGon and 2s dale appear, and notice is given that copyi

Ihe Very Large Data Base Endowment. To cop olherwise, or lo republish, requires a fee and/or special permission from L “a
is by permission of

I
e Endowment.

Proceedings of the Twelfth International Con erence on Very Large Data Eases Kyoto, August, 1986

-259-

Within the relation CABIN-CREW we observe two
different keys and the following functional
dependencies :

CREW-NUMBER -> CHIEFPNAME , CQPlPNAME, COP2PNAME,
ONAME, NBFLIGHT

CHIEFPNAME, COPlPNAME, COPLPNAME, ONAME -> CREW-
NUMBER, NBFLIGHT

Nevertheless a chief pilot and a co-pilot are
both pilots. In other words the attributes
CHIEFPNAME, COPlPNAME and COP2PNAME have the same
domain and semantic as the attribute PNAME of the
relation PILOT. The n-ary relational model is not
appropriate to explicitly express this
correspondance between CHIEFPNAME, COPlPNAME,
COPZPNAME with PNAME.

The problem described for the relation CABIN-CREW
is ident ical for the relation FLIGHT. But
concerning this relation a new problem is due to
“undefined” unknown values (“undefined” and
“nothing” unknown values were introduced by
Abrial in [ABRIAL74] and discussed by Tjoa
[TJOA79] concerning their implications within the

E-R Model). Considering the fact that a flight
may need only two stewardess, the key attributes
SNAME3 and SNAME4 will have “undefined” unknown
values . But with the n-ary relational model
“undefined” unknown values are prohibited for key
attributes.

2.2 Data Model and Definitions

The Extended E-R Model of the ECRINS/86 system
takes care of the problems we briefly described
in the airline company example. We shall now
define the different concepts used in our
Extended E-R Model in order to show how the
airline company example can be modeled with
ECRINS/86. In the appendix A, a definition of
this example with the Data base Definition
Language (DDL) of the ECRINS/86 system is
proposed.

2.2.1 Regular Entity Relation

A regular entity relation is composed by a set of
attributes and a primary key (PK) is defined with
a subset of attributes. For example : the n-ary
relations FLYING-STAFF, AIRPORT and PLANE can be
defined as regular entity relations.

2.2.2 Sub-relation

The term of sub-relation is used to define the
generalization and specialization concepts
[SMITH77]. In ECRINS/86 we restricted the
implementation of those concepts to a “tree
generic hierarchy”. According to this restriction
a specialization can be considered as a subset of
a relation and we shall call it sub-relation.

A sub-relation SR is defined from one and only
one relation R (called the SR generic relation).
A tuple of SR is a tuple of R, and R attributes
may be viewed as SR attributes. The PK of SR is
the PK of R. A generic relation may be of any

kind (entity, relationship, sub-relation).
Furthermore a SR may have own attributes. For
example : the n-ary relations PILOT, OPERATOR and
STEWARDESS can be defined as sub-relations of the
regular entity relation FLYING-STAFF.

Obviously the ECRINS/86 system validates all the
inherent constraints due to the specialization
and generalization concepts we implemented.

2.2.3 Relationship Relation

In ECRINS/86 no distinction is made between weak
and regular relationship relations. Both are
handled in the same way since we allow any kind
of relation playing a role in a relationship
relation. A relationship relation RS is a
relation which is defined over n relations :
Rfl, Rfq, Rf, : they are called the RS
reference relations (reference relations may not
be distinct). A reference relation may be either
a regular entity relation, a weak entity
relation, a sub-relation or a relationship re-
lation.

A role of a reference relation in a relationship
relation is the function that it performs in the
relationship. Each reference relation may
perform m distinct roles in a relationship :

=01, ro2, ro,. A role is defined as a
simple role when a single tuple of a reference
relation is associated to one tuple of a
relationsh
role when
tuple of

lip relation. A role is a multi-valued
a set of tuples is associated to one

a relationship relation. Multi-valued
roies are distinguished from simple roles with a
superscript 11*11 (i.e. rol* is a multi-valued
role) and the maximum number of tuples which can
be associated is the degree of the multi-valued
role. In the ECRINS/86 system a role may be
declared as “not-mandatory” (the “mandatory”
concept of a role is similar to “mandatory
automatic set” in [CODASYL‘I 1]) . It is then
possible to create tuples in a relationship
relation with “undefined” unknown values through
those roles.

The set of attributes of a relationship relation
is composed by the PK of the reference relations,
plus own attributes. For each role that is
performed by a reference relation in a

relationship, the PK of the reference relation is
” exported” to the relationship relation. This set
of “exported” attributes can be considered as the
PK of the relationship relation. The PK
“exported” through a multi-valued role becomes an
higher order object (see definition in section
3.3.11, noted PK*, in the relationship relation.
It may be possible to define a secondary key to
a relationship relation representing the
aggregation of all the “imported” attributes.

Example :

The n-ary relation CABIN-CREW can be defined
as a relationship relation with 2 reference
relations : PILOT and OPERATOR. PILOT
performs the simple role CHIEF-PILOT and the

-260-

multi-valued role CO-PILOT* of degree 2 in
the relationship. OPERATOR performs a simple
role OPERATOR-OF-CREW. The PK of CABIN-CREW
is composed by the attributes : NAME (as a
chief-pilot), NAME* (as 2 co-pilots), NAME
(as an operator). The secondary key is the
attribute CREW-NUMBER.

Through the multi-valued role CO-PILOT, two
pilots may be associated to one cabin-crew.
Without the concept of multi-valued role a
database designer muet declare two different
roles, CO-PILOT-l and CO-PILOT-2, to express the
fact that a cabin-crew may have two co-pilots. In
this case, a pilot does not play the same role in
the relationship. He is either a first
(CO-PILOT-l) or a second (CO-PILOT-21 co-pilot.

In the same way the n-ary,relation FLIGHT can
be defined as a relationship relation, the
reference relations of which are : CABIN-CREW
(role : CREW-OF-FLIGHT), STEWARDESS (role :
STEWARDESS-OF-FLIGHT*), AIRPORT (roles :
DEP-AIRPORT, ARR-AIRPORT), PLANE (role :
PLANE-OF-FLIGHT). The degree of the 'role'
STEWARDESS-OF-FLIGHT* is 4, but by defining
this role as "not-mandatory",
stewardess may appear in one flight.

only 2

When a reference relation Rf performs one
multi-valued role and/or many roles in a
relationship relation RS, it may be possible to
declare Rf as mono-reference. This enables to
insure that a tuple rf of Rf may not be
associated in a tuple rs of RS more than once
(mono-tuple association). Otherwise there is a
multi-tuple association.

Example :

PILOT is mono-reference in CABIN-CREW
considering that a tuple pl of PILOT may
not be in a tuple ccl of CABIN-CREW, a
chief-pilot and a co-pilot-. AIRPORT is
multi-reference in FLIGHT considering that a
tuple al of AIRPORT may be in a tuple fl
of FLIGHT, the departure and the arrival
airport.

To each role it may be possible to declare a
maximum cardinality parameter (maxcard) which
indicates the maximum of RS tuplem can be
related to one tuple of a reference relation
through this role. This parameter maxcard
enables to declare all the different kinds of
mapping of a relationship relation.

Obviously the ECRINSf86 system validates
automatically all the inherent constraints due to
the relationship relations (i.e. existence
dependencies, cardinality constraints, . ..I.

2.2.4 Weak Entity Relation

We define a weak entity relation as a relation in
which the existence of a tuple depends upon the
existence of a specific tuple of a reference
relation Rf. In the same way as relationship

relations, a reference relation may be of any
kind. The PK of a weak entity relation is
composed by the PK of its reference relation Rf
and by other supplementary attributes. There is
a 1:M mapping between Rf and the weak entity
relation.

Example :

Let consider a new relation QUALIFICATION as
a weak entity relation which reference
relation is OPERATOR . Its PK is composed' by
the key attribute of OPERATOR (NAME) and a
supplementary attribute QUAL-NUMBER (which is
a serial number used to distinguish the
various qualifications of one operator). Own
attributes of QUALIFICATION are a"
explanation of the qualification
(EXPLANATION) and the number of years the
opetator practiced it (YEARS-OF-PRACTICE).

2.2.5 Graphical Representation

As soon as a data schema contains several
relations of various kinds, the use of a
graphical representation helps in the
understanding and the communication. Because of
the features of the Extended E-R Model
implemented with the ECRINS/86 system, we defined
new conventions for a graphical representation.

The set of relations is mapped onto a graph where
single nodes correspond to regular (thin) and
weak entity relations (thick), thin daub* nodes
to relationship relations. Thin edges corresponds
to roles and thick edges to links between a weak
entity relations and its reference relation. Thin
edges are directed from a relationship relation
to its corresponding reference relations; the
name, the cardinality, the minimum and maximum
degree of a multi-valued role are put near to it.
A single arrow is used for simple roles, while
double arrows represent multi-valued roles.

Sub-re1ation.s which have the same geper ic
relation are mapped onto single nodes put inside
the "ode of their generic relation. A symbol
representing the exclusive or (v) is used to show
the different sub-relations of a relation.

We introduce 4 new sub-relations to the airline
company example in order to show how it is
possible to represent a sub-relation the generic
relation of which is another sub-relation or a
relationship relation. Let consider that an
operator may be either a student (sub-relation
STUDENT) or a diplomed operator (sub-relation
DIPLOMED) and a cabin-crew either active
(sub-relation ACTIVE) or inactive (sub-relation
INACTIVE). In a tuple of relation CABIN-CREW only
one diplomed operator may be involved and in a
tuple of relation FLIGHT only an active
cabin-crew.

-261-

V piK+ / 1 \

DIPLOMED PILOT STEWARDESS

4 // /
t-l

ClUALlFlCATlON N
i

-- ARR- ’ 1

a : relationship relation [PLANE 1 AIRPORT 1

0 : regular/weak/sub entity relation
-+ : simple role
H :multi-valued role /
M..T : max caralnallty
ft,.q : mInImax degrees of

multi-valued role

hg!&X THE “AIRLJNE COMPANY” GRAPHICAL REPRESENTATION

3. THE ECRINS/86 QUERY LANGUAGE

3.1 General Structure

The basic ‘structure of the query language ‘is a
“query block” similar ,to what can be found in
common languages such as SQL. A query block is
made of a target attributes list specifying the
attributes to be output, a “from” clause
specifying the relations to use in the query and
a “where” clause giving the selection condition.
The following sections describe some aspects of
the query language related to the structure and
the semantic of the data model implemented with
ECRINS/S6, theses are : extended relations,
nested relations structures and deduction of
extended relations.

3.2 Extended Relations

The “from” clause of a query may contain, apart
from entity and relationship relations, a list of
expressions defining derived relationship
relations called extended relations. The “se of
extended relations, expressed in a simple form,
allows to withdraw from the “where” clause the
conditions that are only used to associate tuples
of different relations.

A linear-extended relation expression is an
expression of the form :

ER = Rell of rol of Rel2 of...of Rel,,

where the Relj’s are entity or relationship
relations.

The corresponding derived relation is the set of
all tuples <tl,...,tn> where ti is a tuple
of Reli and ti is associated to ti+l
through the simple role roi (0 < i < n) (the
semantic of associations through multi-valued
roles is described in section 3.3). Let us also
define first(ER) as Rell and last(ER) as
Rel,.

Example :

PLANE of FLIGHT of ARR-AIRPORT of AIRPORT

is the extended relation associating a flight
to its plane and its arrival airport. Note
the absence of role specification between
PLANE and FLIGHT since PLANE performs only
one role in the relationship relation FLIGHT.

A tree-extended relation is an expression of the
form :

ER = (ERl of rol, ER2 of ro2,...
. ..) ERm-1 of ro,l) of ER,,,

where the ERj’s are extended relations and
associates

FEOd, may not
last(ERj) with first (ER,)

be a tree extended relation). The
corresponding derived relation is the set of all

tuples <<tll,...,tlkl>,~..,<tml,...,tmkm>>
such that <t -1
(0 < i < m+l J

t akJ> belongs to ERj
~nd’;jk~ is a,ssociated to tml

through role roj.

In this case last(ER) is defined as lasttERm)
and first(ER) is undefined.

Example :

(OPERATOR of CABIN-CREW, AIRPORT of
ARR-AIRPORT) of FLIGHT of PLANE

Finally a cyclic-extended relation is an
expression of the form :

ER = ERl of (rol of ER2 of ro2 <connect>
ro3 of ER3 of ro4) of ER4

where the ERj’S are extended relations and

‘01 (rag) associates last(ER1) to first
(ER2) (first(ER3)) and ro2 (ro4) associates

last(ER2) (last(ER3)) to first(ER4).
<connect> is one of the connectors: and, z,
diff. The corresponding extended relation is the
set of tuples <<t11,. . .t1kl>)...

ct :i
.<t41,...tqk4>> s u ch that t. =

t .kj> 3

(0 ? j ‘<‘4\ ‘ahd !
b e 1 ongs to ERJ

a) and
(Cl) tlkl is associated to t2l

thio”gh
ro1 and tzk2 is associated to

through
;4c2j

ro2 and
tlkl is associated to t3l

through

t4l
ro3 and t3k3 is associated to

through ro4.
b) or

YCl and C2) or
(Cl and t3 is null and there is no tuple

t3’ of ER3 associating tl and t4) or
CC2 and t2 is null and there is no tuple

t2’ in ER2 associating tl and t4).

-262-

c) diff
Cl and t? is null and there is no

t3’ of ERiassociating tl and t4.

first(ER) is defined as first(ER1)
last(ER) as last (ERA).

Example :

tuple

and

AIRPORT of (DEP-AIRPORT 0f FLIGHT or
ARR-AIRPORT of FLIGHT) of CABIN-CREW.

Corresponds to the relation associating each
flight to its cabin-crew to its departure or
arrival airport.

As the same relation may appear many times in an
extended relation expression, an explicit
renaming can be used to distinguish different
occurences. The new names can then serve as a
qualification for attributes.

Example :

“Find the city of arrival, the city of
departure, the operator’s and chief-pilot’s
names of every flight”

select CITY of AR, CITY of DEP,
NAME of OPERATOR, NAME of PILOT

from((PILOT of CHIEF-PILOT,OPERATOR) of CREW,
DEP : AIRPORT of DEP-AIRPORT,
AR : AIRPORT of ARR-AIRPORT) of FLIGHT.

Note the nesting of the tree extended relations.

3.3 Nested Extended Relations

The presence of multi-valued roles in the data
model leads naturally to non-first normal form
extended relations. Non-INF relations, [ABIT85]
[FISCH85] are relations which tuples are defined
on atomic values and/or (non-1NF) relations. This
kind of structure is “hat one intuitively expects
when associating relations through multi-valued
roles. The expected meaning of “STEWARDESS of
FLIGHT of PLANE” is a set of tuples <s,f ,p> “here
f is a flight, p is its plane and s is the set of
stewardess (i.e. a relation) of this flight.
Non-1NF relation also arise when considering weak
entity relations. Since many tuples of a weak
entity r’elation are associated to one tuple of
the reference relation, they can be considered as
a relation nested in their reference tuple. For
example :
OPERATOR (NAME, JOB-HISTORY, (QUALIFICATION)*)
with QUALIFICATION (OUAL-NUMBER, EXPLANATION,
YEARS-OF-PRACTICE). Nested relations are
evidently not limited to one level.

3.3.1 Nested Joins

Let us first define a nested relation scheme as
a set of attributes and schemes (called higher
order objects). For example :

FLIGHT(FLIGHT-NUMBER, CREW-NUMBER, STD*)
with the scheme

STD(NAME, YEARS-OF-SERVICE)

is a nested relation scheme (with one level of
nesting).

A (nested) relation over a nested relation scheme
(Al. ..A,Yl*Y2*...Y,*) (a * follo”s

each higher order object) is then recursively
defined a set
<al ,... am,y;,s yn>

of tuples
where ai is a

value taken from the domain of Ai (1 < i < m)
and . is
(1 <jYtn).

a (nested) relation on scheme Yj

Given two schemes :

with
R = (K Yl*...Yk*), S = (Z Ul*...Uq*)

Kl* in Yl*, K2* in Kl*, . . . , K,*
in K,-1*, A in K,*

and
Ll* in Ul*, L2* in Ll*, . . . , Lnr*
in La,-l*, B in L,,,*

and two relations :
I on R and J on S,

the nested equi-join of I and J on A and B used
in ECRINS/86 (noted I*<A=B>*J) is recursively
defined as :

1. if n=sl (i.e. the two attributes are at
the same level)

1.1 if A is in R and B is in S then
I*<A=B>*J = I]A=B] J

(the standard equi-join of “flat” relations)

1.2 else
I*<A=B>*J =

{ t / there exists u in I, v in J such that
t[x Yg”... Yk*] = U[x Y2*...Yk*]and
t[z u-2*... Uq*] = v[2 U2*. . .U *land
t [(YlUl)*]=u[Yl*] *<A=B>*V [Ul& # fl].

2. if n is different from m (say m < n) then

I*<A=B>*J = I*<A=B>*augp(J) where p = n-m
and aug(J) (the structural augmentation of J)
is a relation defined on (Z Ul*...U,*)*
and composed of only one tup1e
t[(Z Ul*...Uq*)*] = J.

I” the appendix B, two examples of
equi- join are given.

A nested theta-join may be defined in a
way, as well as a nested set-theta-join
with set comparison operators between

t Gith

nested

similar

higher
order objects replacing the join attributes.

3.3.2 Extended Relations with Multi-Valued Roles
and Set Expressions

The nested extended relation corresponding to an
1 inear extended relation expression with
multi-valued roles is obtained by taking the
nested equi-join of all the relations with the PK
attributes representing the different roles used
as join attributes. If there’s no multi-valued
role the resulting relation is equa 1 to the
1 inear extended relation defined in section
3.2. Nested tree and cyclic extended relations
are defined in a similar way as tree and cyclic
extended relations but with nested equi-joins
used to associate the different (nested) extended
relations.

-263-

Examples :

1. STEWARDESS of FLIGHT of PLANE
is interpreted as :

STEWARDESS*<NAME=SNAME>*FLIGHT*
<PLANE-NUMBER=PLAN~-NUMBER>*PLANE

with FLIGHT beeing a nested relation defined
0l-i
(FLIGHT-NUMBER, CREW-NUMBER,

DEP-AIRPORT-NAME, ARR-AIRPORT-NAME,
DEP-HOUR, ARR-HOUR, (sNAME)*).

2. Let TICKET be a relat.ionship relation which
reference relation is FLIGHT performing a
multi-valued role, then

STEWARDESS of FLIGHT of TICKET
is interpreted as :

STEWARDESS*<NAME=SNAME>*FLIGHT*
<FLIGHT-NLJMBER=FLIGHT-NUMBER)*TICKET

which associates to a ticket a set of flight
and to each one of these flights a set of
stewardess.

The connectors containing, included in, equals,
etc. appearrng in an extended relation expression
give rise to set-theta-joins in the computing of
the extended relation .

Example :

“Find all the flight numbers of flights
needing all the stewardess of flight number
102”.

select FLIGHT-NUMBER of Fl
from Fl : ‘FLIGHT of STEWARDESS containing

STEWARDESS of F2 : FLIGHT
where FLIGHT-NUMBER of F2 = 102.

Two addi t ionna’l operators : one and set - -
LMARKOW83] can be applied to convect a
multi-valued role to a simple role and
vice-versa.

Example :

“Find the name of the co-pilots of any cabin
crew who have a type B licence”.

select NAME of PILOT
from PILOT of one CO-PILOT of CABIN-CREW
where LICENCE-TYPE = “B”.

3.4 Deduction of Extended Relations

3.4.1 Qualification Expressions

A qualification is an expression taking the same
form as an extended relation. A qualified
attribute [MGREG85] is an attribute A followed by
a qualification ER such that A is an attribute of
first(ER). The qualifications are used in a query
block to specify to which extended relation a set
of attributes be longs. Given a set of
qualifications ERl,...,ERk, the corresponding
extended relation is defined as then minimal
extended relation “covering” the ERj’S. If more
than one such extended relation exists then the
qualifications are said to be ambiguous. Thus the
qualifications determine the semantic connection
between attributes of the query.

Example :

select NAME of DIPLOMED,
KIND-OF-PLANE of PLANE

is interpreted as

select NAME of DIPLOMED,
KIND-OF-PLANE of PLANE

from DIPLOMED of ACTIVE of FLIGHT of PLANE

while

select NAME of PILOT, KIND-OF-PLANE of PLANE

is ambiguous since PILOT and PLANE can be
associated through CHIEF-PILOT or CO-PILOT.

3.4.2 Abreviated Qualifications

ECRINS/86 offers the possibility to abbreviate
the qualification of an attribute as long as no
ambiguity appears. An abreviated (or incomplete)
qualification is said to be unambiguous if it can
be expanded to only one qualification.

Example :

NAME of OPERATOR of PLANE

will be ,expanded to

NAME ol. DIPLOMED of ACTIVE of FLIGHT of
PLANE.

4. CONCLUSION

The data model, we implemented with the ECRINS/86
system is powerful enough to take care of the
main integrity constraints of a complex data
schema. ,The main advantage of a DBMS such as
ECRINS/86 is due to its capability to implement a
data structure very quickly without developing
wearisome validation programs. The query language
allows,, the user to access the database in
a simple way. The construct of the language are
closely related to the data model and thus
provide a coherent interface to the data base.
Actually the ECRINS/86 system runs on computers
such as UNIVAC 1100/60, VAX-780 (vMS+UNIK
systems), PRIME-750, Personal Computer running
with EISJDOS, SUN, . . . A first version of
ECRINS/86, restricted to binary relationship
relations [LEON85], has been installed in some
universities, in Switzerland’ and in Europe, as
well as in private compagnies. We also used this
version to manage the meta-base of two DBMS
implemented at the C.U.I. The first one is PIREE
used to store data on economics, the second one
is FARANDOLE used in data analysis LSNELLA861.
The query language is under development;
nevertheless a subset of it, including extended
relations and automatic extended relations
deduction, has been implemented for the PIREE
DBMS. Since ECRINS/86 is not a front-end for
another DBMS such as Ariel [MGREG85] the
execution of queries can take advantage of
phys ica 1 data structures well suited for
implementing an extended E-R Model.

-264-

ACKNOWLEDGEMENT

The authors would like to thank all the members
Of the Data Base Group in the C.U.I. who
contributed to the implementation of the system.
Special thanks go to R. Tschopp, A. Galland for
their earlier contribution to the project, to F.
Bodard for his valuable comments and to E. Kohl
for her precious collaboration for the
page-setting of this paper.

REFERENCES

[ABIT84] ABITEBOUL, S.; BIDOIT, N.; Non First
Normal Form Relations to Represent
Hierarchically Organized Data; Proc. ACM
Symp. PODS, Waterloo, Ontario, 1984.

lABRIAL74] ABRIAL, J.R.; Data Semantics;
Klimbie, J.W. and Koffeman, K.L. (eds), Data
Base Management, North Holland, Amsterdam,
1974.

[CHEN76] CHEN, P.P.S.; The Entity Relation-
ship Model-Toward a Unified View of Data;
ACM TODS, Vol.1, Nb.1, 1976.

[CODASYL71] CODASYL; Data Base Task Group
Report; e, New-York, 1971.

[CODD‘IO] CODD, E.F.; A Relational Model of
Data for Large Shared Data Banks; ACM TODS,
Vol. 13 1970. ,

[FISCH85] FISCHER, P.C; VAN GUCHT, D.; Deter-
mining when a Structure is a Nested
Relation; Proc. ACM 11th. VLDB, Stockholm,
Sweden, 1985.

[JUNET86] JUNET, M. ; Features and Physical
Implementation of the Extended Entity-
Relationship DBMS ECRINS/86; Technical
Report Nb 88, University of Geneva,
Switzerland, 1986.

[LEON851 LEONARD, M.; GALLAND, A.;JUNET, M.;
TSCHOPP, R; ECRINS : Un Modele relationnel
tendu et un SGBD pour petite bases de
donnees; Convention Informatique Latine,
Barcelona, Espagne, 1985.

[MARKOW83] MARKOWITZ, V.M.; ROZ, Y.; ERROL: An
Entity-Relationship, Role-Oriented, Query
Language; Proc. Int. Conf. on E-R Approach
to Software Engineering, Anaheim, 1983.

[MGREG85] MC GREGOR, R.M.; ARIEL -- a Semantic
Front-End to Relational DBMSs; Proc. ACM
11th. VLDB, Stockholm, Sweden, 1985

[SCHEUER79] SCHEUERMANN, P.; SCHIFFNER, G. ;
WEBER, H.; Abstraction Capabilities and
Invariant Properties Modelling within
the Entity-Relationship Approach; Proc.
International Conf. on Entity-Relatioa
Approach to Systems Analysis and Design,
1979.

[SMITH77] SMITH, J.M.; SMITH, D.C.P.; Database
Abstractions : Aggregation and Generali-
zation; ACM TODS, Vo1.2, Nb. 2, 1977.

[SNELLA~~J SNELLA, J.J; ABDELJAOUED BOUJEMAA,
A.; LEONARD, M. ; A Database Model for
Statistical Data Analysis and Economic
Analysis : FARANDOLE and PIREE; Sec. Baghdad
Conf. on Computer Technology and
Applications, Irak, 1986.

[TJOA79] TJOA, A.; WAGNER, R.; Some Conside-
rations on the Entity-Relationship Model;
Proc. of the International Conf. on
Entity-Relationship Approach to System
Analysis and Design, Los Angeles, 1979.

Appendix A : The "airline company" example
defined with the ECRINS/86 Data Definition
Language.

This definition, includes all the extensions
added throughout this paper.

structure AIRLINE-COMPANY

begin

declare regular enti
key is

NAME char (36);
with properties

AGE integer (12

ty relation FLYING-STAFF

75);
SALARY real (lQUQ:20UQU);
JOB-CLASS word generic (81. PILOT

sr OPERATOR sr STEWARDESS);
MARITAL-STATUS word (SINGLE MARRIED

DIVORCED WIDOWED);
if not SINGLE then

YEARS-OF-MARRIAGE integer (1900:2100);
PLACE-OF-MARRIAGE char;

endif
end-declare

declare sub-relation PILOT
with properties

LICENCE-TYPE char;
secondary key is

LICENCE-NUMBER integer;
end-declare

declare sub-relation OPERATOR
with properties

JOB-HISTORY char;
STATUS word generic (sr STUDENT

sr DIPLOMED) mandatory;
end-declare

declare sub-relation STUDENT
with properties

YEARS-OF-STUDY integer (1:5);
end-declare

declare sub-relation DIPLOMED
with properties

KIND-OF-DIPLOMA char;
end-declare

declare sub-relation STEWARDESS
with properties

YEARS-OF-SERVICE integer (0:50);
end-declare

declare weak entity relation QUALIFICATION
reference is OPERATOR with maxcard 5
key is

QUAL-NUMBER rank;

-265-

with properties
EXPLANATION char;
YEARS-OF-PRACTICE integer (0:50);

end-declare

declare relationship relation CABIN-CREW
association of

PILOT mono-reference
(CHIEF-PILOT) with maxcard 3
(CO-PILOT) multi-valued of degree 2

with maxcard 15
DIPLOMED with maxcard 15
with properties

NBFLIGHT integer (0:lOOOO);
CREW-STATUS word generic (sr INACTIVE

sr ACTIVE);
secondary key is

CREW-NUMBER integer (lOO:2OO);
end-declare

declare sub-relation INACTIVE
with properties

REASONS char;

end-declare

declare regular entity relation AIRPORT
key is

AIRPORT-NAME char (24);
with properties

CITY char (24);
end-declare

declare regular entity relation PLANE
key is

PLANE-NUMBER integer;
with properties

KIND-OF-PLANE char mandatory;
NB-SEAT integer (12:500) mandatory;

end-declare

declare relationship relation FLIGHT
association of

STEWARDESS multi-valued of degree4
not mandatory with maxcard 100
ACTIVE with maxcard unknown
PLANE with maxcard 25
AIRPORT (DEP-AIRPORT) with maxcard 100

(ARR-AIRPORT) with maxcard 100
with properties

DEP-HOUR real;
ARR-HOUR real;

secondary key is
FLIGHT-NUMBER integer (1OO:lOOO);

end-declare

declare relationship relation TICKET
association upon

FLIGHT mono-reference
multi-valued of degree 5 not mandatory
with maxcard unknown

with properties
DATE-OF-ISSUE integer mandatory;
PRICE real mandatory;
PASSENGER-NAME char (36) mandatory;

secondary key is
TICKET-NUMBER integer;

end-declare

end

Appendix B : Examples of nested equi-joins

Example 1 :

FLIGHT: GROUP-OF-STEWARDESS:

1 GROUP-NO. 1 ,;f.$]

name1 El name7

name2

cl

name3
name4

3

FLT-NO. GROUP-NO. (STD STD')*
SNAME 1 SNAME'

101 1 name1 name1

101 2

104 3 name6 name6

Example 2 :

STEWARDESS: augl(STEWARDESS):

I name1 21000

name2 19000

name3 22000

name4 21500

name5 27000

(NAME SALARY)*
NAME 1 SALARY

Iname 22000 1

FLIGHT*<SNAME=NAME>*STEWARDESS:

FLT-NO. (SNAME NAME SALARY)*
SNAMF. 1 NAME 1 SALARY

104 name5 name5 27000
name6 name6 22000

-266-

