THE MANAGEMENT OF DYNAMICALLY DISTRIBUTED DATABASE WINDOWS
(Extended Abstract)
Qiming Chen
National Land Information System
Research Institute of Surveying and Mapping, Beijing, China

Data processing in an en 'neering environment, such as a CAD
system or a Geographic Information System (GIS), requires a
significantly different database_ architecture in buffering and user-
interfacing” from that developed for conventional business
applications, since

- A CAD or GIS transaction typically invelves a number of steps ar:d

intermediate results. This feat: m
intermediate results. This leature requires a manageable data

check-out environment.

- The CAD and GIS systems are characterized by hi%h degree of
function distribution as they are facilitated with versatile specially
designed workstations, which may be more suitable than the main
system for performing certain types of transactions. This feature
requires a distributed management over the check-out
environment.

- The database objects check-out are just temporagy, swappable
copies. This fealure requires the handling of dynamic data
distribution, rather than static distribution

T mvdae o wano-t P - P SE Y P JU Uy Py

11l UIuTE w }uuvlde Sueh alx Ellslllccl llls n.} U1 CHVIIVIIIIITIAL 11)
this &aper a new approach for managing muThple Database Windows
(DBW) is proposed, which may be considered as an issue in between
DDB and mu ticache management, and augments two major types of
previous approaches, the database program interface {Ston 84] {Chen
g5ab, 86]) [Melk 83], which did not support distributed management
over the check-out environment; and the statically distributed
database (DDB), which did not cover the notion of dynamic data
swapping.
A DBW, residing on a workstation connected to the Main database
(MDB), is handled as, ﬁrstlﬁ a check-out environment, containing
objects copied from the MDB, together with the universally
quantified constrains on these objects, which provides an extended
programming environment for the MDB; secondly, a semi-
independent system supported by a local data manager, where data
can be manipulated by multiple users; and finally, a bufier of data
swappirag not for keeping fixed set of data, but for buffering the
require data for the current applications.
A DBW is defined w specifying a query to the selected database
ohjects. An OPEN/ADD request can be made at any workstation, bul
must be sent by the system to MDB for execution. Managed as a
temporary database, a DBW can be queried and updated, while
committed updates made to the objects are propagated to the MDB
and those DBW's who contain the same objects. The application
program interface also includes certain particular language
constructs to EXECUTE, SUSPEND, and RESUME a transaction,
FORK a transaction into a_hierarchy of sub-transactions for a
cooperative task, and to GRANT and REMOVE R and W priviieges
to specific sub-transactions to use certain objects.
For example, we use the following statement on our GIS to define a
W named “map”, containing certain feature data of a digital map

“J-47", as
DEFINE map ON station_a INCLUDE J-47 WHERE feature =
“elevation” AND feature = "land__use”

oy

The local management of a DBW is quite diiferent from the

traditional database approaches in concurrency and recovery

control, as

- Allowing non-serialized sub-transactions for cooperative work at a
DBW, through issuing certain commands mentioned above.

- Global state update is made only after the transaction, including its
all sub-transactions, has been completed.

- At a DBW, upon failure of satisfying pre-defined const or
g?stjcgndltlons, the update effects are not completely erased as

aditionally.

These features provide a tolerant environment for long duration,

consclous decisions involved engineering tasks.

The global ma'nag.ement of a multi-DDW system is characterized by

dynamic distribution. Issues must be taken into account inciude data

coherence problem, caused by the existence of multiple access paths

to each logic database ol()ject and Missin§ operation problem, caused

]b)yB%nproper ordering of a DROP operation and a transaction at a

To describe the operational behavier of a muiti-DBW system

mentioned above we refine the concept of a transaction T, as a 5-

tuple(A, PA, IC, U, PU) where

- A is a set of actions, which may cause a temporary inconsistent
state, but is undesirable to be followed by an immediate
synchronization effort,

- PA is a partial order on A,

- IC is a set of integrity constraints,

- U is a set of post-actions for enforcing the system legality, such as
update synchronization, acceptance test, recovery,

- PU is a set of protocols on U.

Considering an extended database stat D~ as the combination of the
states of MDB and all its DBW's, a transaction T is viewed as a
mapping from one _stable extended database state to another, as T:
S(D~)—S(D~). Under this sense, a DBW OPEN/ADD or
CLOSE/DROP operation must be consider as a transaction, Although
it neither changes the primary state of MDB, nor has confliction with
another OPEN/ADD or CLOSE/DROP operation, it does cause a
transition of the extended state, and may have conflict data set with
another (usual) transaction. In fact, the improper interaction of
OPEN/ADD and CLOSE/DROP DBW operations to transactions

malkac the data eoherence nroblem more eomnlex than that in a static

makes the data cocherence problem more complex than that in a static
muilticopy DDB system. For examg{le,_suppose the copy of object X
residing in DBWj is identified as X; in a multi-DBW environment,
such operation sequences asMOD‘iFY(Xi), OPEN/ADD(Xj),... eor
MODIFY(X;), CLOSED/DROP(X)),... 1
We propose a DBW semi-centralized (while also taking into account
the dominant role of MDB) update synchronization approach,
differing from usual DDB approaches by handling dynamic
distribution, 1n which timestamps are empioyed and put on
transactions (rather than data items), however, viewing DBW
OPEN/ADD, CLOSE/DROP operations as transactions, and as
interruptions to the system, the timestamps may .not be the only
factor for ordering. i

The policy of handling an OPEN/ADD request A and a transaction T
with conflict data set, depends on

TR o LT Iy A 28 mmmniniibabliog (oo walican af daia) nhaoa

@) U 4 D UBYULIU 1w ‘-Ulllpl‘wbl\l'll e .vuluua U.l u.dl;d[priasc

update synchronization phase, it has higher priority.

(b) if T is within the computation phase, timestamps ordering is the

general principle, however, if a user degires to sacrifice consistency

ior speed, transfering inconsistent data (such as a untinished design)

in read-only mode is allowed. . .

The Folicy of handling a CLOSE/DROP request D and a transaction

T with conflict data set, depends on

(a) both are issued at & same site, then if D is issued earlier, T is to be

canceled, otherwise D must be postponed until T is completed, to

ensure the update effects transfer to other sites of the system.

T is J)ropa ated from a foreign site, then T always can be

committed and T be canceled (only at this site), since the update at

this DBW becomes insignificant.

For a usual transaction T initiated at DBWi, the update

synchronization is generally based on timestamps ordering principle.
he algorithm includes the following steps:

1. Checking environment, and computing new values if the checking

is nacon:
1§ passeq.

2. Submitting u&date request to MDB and each DBW where copies of

the objects be 'modified reside, receiving echo, and

committing/aborting based on conflict checking with other foreign

requesis.

3. Global updating.

At phase 1, the ?ossible conflict between T and ADD requests is
4]

checked at MDB, to determine if T should be postponed; The possible
conflict between T and DROP requests submitted to DBWi is also
checked, if there is, T is to be canceled. At phase 2 and 3, the possible

conflicts between T and DROP requests submitted to MDB and other
i d DBW’s are checked. to see if the update effects are still

Inve:avel oW 'S are onecHed, W S8 U Lne upcaie eiiec Stzi:

necessary over there.

This algorithm, beside handling the_ dynamic data ADD/DROP

to/from DBW’s, has as_sufficient condition as_two_phase locking

{corresponding o phase Z and 3) for consistency {Esw 76].

REFERENCES

[Chen86] Q. Chen, “A Rule-based Object/Task Modelling
AP]T)TO&(‘:U", Proc. anu-s}G}viGD, 1986.

[Chen 85a] Q. Chen, "Extending the Imppl‘ement.ation Scheme of
Functional Programming System FP for Suyporting the
Formal Software Development Methodology”, Proc. 8th
Software Engineering, 1985.

{Chen 85b] Q. Chen, “Toward A Generalized Data/Action
Management: An Approach for Sp?clfging and Implementing

Operati Schemes”, Proe. 1 an Pacific Computer
1emes oc. an Pac Computer

ara sllaca
are iuegas.

Tt b jéa
O av 1S

invalve

Operational Sl Pr 1st [ifie

Conference, 1985.

[Esw 76] K. Eswaran, J. Gray, R. Lorie and 1. Traiger, “The
Notions of Consistency _qnd_ Predicate_Locks in A Database
System”, CACM Vol.19, No.11, pp.624-633, 1976.

[Melk 83] M. Melkanoff and Q. Chen, “Integrating Action

Capabilities into Information Databases”, Proc. 2nd Int. Conf.
On Databases(ICOD-2), 1983.

[Ston 84] M. Stonbraker and L. Rowe, “Database Portals: A New
Application Program Interface”, Proc. VLDB, 1984.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of
the Very Large Data Base Endowment. To cop{ otherwise, or to republish, requires a fee and/or special permission from the Endowment.

e

Proceedings of the Twelfth International Con

rence on Very Large Data Bases

Kyoto, August, 1986

—248—

