
Concurrent Operations in Extendible Hashing

Meichun Hsu
Wei-Pang Yang

IIarvard University
Cambridge MA 02138

Abstract.
An algorithm for synchronizing concurrent operations on

extendible hash files is presented. The algorithm is deadlock free
and allows the search operations to proceed concurrently with
insertion operations without having to acquire locks on the direc-
tory entries or the data pages. It also allows concurrent
insertion/deletion operations to proceed without having to acquire
locks on the directory entries. The algorithm is also unique in that
it combines the notion of verification, fundamental to the optimis-
tic concurrency control algorithm, and the special and known
semantics of the operations in extendible hash files. A proof of
correctness for the proposed algorithm is also presented.

1. Introduction

The concurrency control algorithm in a conventional data-
base management system enforces serializability of transactions
(Papadimitriou791. Each transaction is normally modeled as a
sequence of read and write steps, and the concurrency control algo-
rithm enforces serializability without assuming much knowledge of
the semantics of the read and write steps of the transactions.
While this level of generality enables the concurrency control algo-
rithm to be applicable to any transaction system, it does not take
advantage of the structures inherent in the applications to optimize
for higher level of concurrency and lower synchronization over-
head.

In recent years specialized concurrency control algorithms
that take advantage of the knowledge of the structure and/or the
semantics of transactions have appeared [e.g., SK80, KS83, I(F79,
IlM83, IIC85, O’Niel851. In particular, much attention has been
paid to the optimization of algorithms that synchronize concurrent
operations on B-trees [e.g., BS77, LY81, MR85].

In this paper we present an algorithm that synchronize con-
current operations on a file structured using extendible hashing
[FNPS79]. Extendible hashing is a form of dynamic hashing which
adaptively updates a directory or pointers to data bucket, or data
pages. Since the directory entries are subject to update at any
moment, a search operation would normally be required to obtain a
lock on the directory entry it reads to prevent the directory entry
from being inadvertently changed. Bowever, by exploiting the

Permission to copy without fee all or parf of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage? the VLDB copyright notice and the
title of the publication and Its o!ate appear, and notice is given
thai copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
andlor special permission from the Endowment.

known semantics of the accesses to the directory entries, it is con-
ceivable that one can devise concurrency control algorithms that
minimize such overhead.

We present a concurrency control algorithm that allows the
search operation in an extendible hash file to proceed without hav-
ing to set locks on the directory entries. We also allow concurrent
insertions to be synchronized with a mechanism which is simpler
and potentially able to offer a higher degree of concurrency.

The algorithm is also unique in that it utilizes the general
mechanism behind the optimistic concurrency control algorithms
[KRSl]. By making use of verification at the right moment, opera-
tions are guaranteed a consistent view of the data structures
required to ensure their correctness while minimizing the locking
overhead.

The structure of the paper is as follows. In the next section,
the general mechanism of the extendible hashing scheme is
reviewed. In Section three, we present our concurrent search and
insertion algorithms, followed by a proof of correctness in Section
four. Section five concludes the paper and presents a discussion of
future extensions.

2. Review of Extendible Hashing

Extendible hashing [FNPS79] is a file structuring and search-
ing technique in which the user is guaranteed no more than two
page accesses to locate the data associated with a given key.
Unlike conventional hashing, extendible hashing has a dynamic
structure that grows and shrinks gracefully as the database grows
and shrinks.

The file consists of a directory (D) and data pages. The
directory is characterized by a global depth g, and contains 2’
entries, each of which points to a data page. The hash function, h,
transforms the keys of the key set into a “pseudo key” of a bit
form; the first g bits of the pseudo key determine the directory
entry corresponding to a key. Each data page is characterized by
a local depfh l<g, and a bit pattern bp of length 1. A data page
with an I-bit & pattern bp contains all keys the first I bits of
whose pseudo keys conform to the bit pattern bp. When a data
page overflows, its local depth is incremented by 1 and the page is
split in two: one page is now characterized by a bit pattern which
is the old bit pattern concatenated with an additional bit of ‘0’ and
the other, with the bit of ‘1’.

Ezample. Consider the state of an extendible hash file as
shown in Figure 2.1. Currently there are very few records with
pseudo keys that begin at ‘1’. All such records are collected into a
single data page whose local depth is 1 and whose I-bit bit pattern
is ‘1’. When the page becomes full, as shown in Figure 2.2, it splits
into two data pages, each with local depth of 2: one data page now
has a bit pattern of ‘10’ and the other ‘11’. All keys whose pseudo
keys begin at ‘10’ appear in the first of these data pages, and all
keys whose pseudo keys begin at ‘11’ appear in the other.

proceedings of the Twelfth International
Conference on Very Large Data Bases

Kyoto. August, 1986

-a-

When the data page whose local depth is equal to the global
depth of the directory overflows, the directory size is doubled, i.e.,
the global depth is incremented by 1, and the overflowing data
page is again allowed to split. For example, if we start with the
situation as shown in Figure 2.2, and if the data page pointed to
by the “010” pointer is already full, then the directory is doubled
and the page splits, as shown in Figure 2.3. (Figures 2.1 to 2.3 are
taken from Figures 8 to 10 in [FNPS’IB].)

Data pages

&hI-, moo.

4

h(-)-010

3
h(-)-011

h(-)=l..

Fiq. 2.1. A directory with ~3.

. .

. . .

. . .

Directory

The extendible hashing scheme uses a contiguously allocated
directory whose size changes by factors of two. It enables direct
access to the right data page (or bucket). No overllow area is
used. In [FNPS79], it is shown that, in the case where the bucket
(page) size is 400 and the size of the key set is 40,000, the storage
utilization, on the average, is about 69%.

Directory Data pages

h(-I-00...

Depth 9

000 eorntet
001 Pointer
010 Pointer
011 Pointer
100 Pointer
101 Pointer
110 Pointer
111 Pointer

H- 1 lh(-J-011...

El
---_ I --__ -- -. - -.,- . *-.. -. - --,I;., I--. ., -. ., i...J h(-)-LO...

-. -_ '_

Fiq. f.2. A paqc splits into two data paged.

Data pages
-

h(-I-Oo...

Depth 9 4
0000 Pointer
0001 Poinecr

i-i-///

. 42c.. ,
: ' :h(-)-OLOO...

0010 Pointer _I* : -. _ .:
0011 Pointer ,-

0100 Pointer
010 1 miner h(-)-Oil...
0110 Pointer
0111 Pointer

1111 Pointer.

: ;h(-,-OLOL..
u:

Fiq. 2.9. Directory doubled wifh ~4.

-242-

3. Concurrent Operations in Extendible Mashing

In this section we describe the algorithm of our concurrent
operations in extendible hash files. Throughout we will ignore the
issue of underIlow and compaction. In other words, the number of
pages of the file only grows and never shrinks. The compaction
issue was also ignored in (LY81] and is generally justified by the
observation that databases tend to grow and the utility of the
storage recovered from on-line real-time compaction may not be
worth the trouble. Compaction can be handled by taking the
database ollhne for a reorganization.

3.1. Search Algorithm

The search operation on an extendible hash file consists of (1)
applying the hash lunction to obtain a pseudo key, (2) examining
the first q bits of the pseudo key to determine the directory entry
to be read, (3) reading the directory entry to find a pointer to the
data page to be searched, and (4) searching in the data page to
llnd the key desired.

What the search operation is vulnerable to is the concurrent
insertion operation that splits a data page and relocates a range of
the keys that include the key desired by the search operation.
This type of interference can be eliminated by requiring the search
and the insertion operations to obtain a lock on the directory entry
and hold it until the operation ends. In our search algorithm, how-
ever, this type of interference is avoided by re-reading the direc-
tory entry when a search operation could not find the key in the
data page it has just read, without having to hold any lock on the
directory. This form of re-reading, or verification, continues until
either the key is found, or the value of the directory entry does not
change between two consecutive readings. The algorithm is for-
mally defned shortly.

Intuitively, the search algorithm attempts to verily the direc-
tory entry it has previously read before it would conclude a search
failure. If the content of the directory entry has changed in the
mean time, the search operation automatically retries with the new
pointer oht.ainrd. A formal proof of correctness of the algorithm is
presented in Section 4.

De/inition of the Search Algorithm.

Algorithm Search(given key k);
begin

initialization:
xold:=O;

hashing:
calculate k’ = h(k)= 6e6, 6,-i;

getpointer:
read d, base ; /* the global depth and base address of the directory D */
t := 6s6, 6r-,; /* take the initial d bits of k’ */
x := get(D[t]); /* D[t] is the t-th entry in D */

probe:
do while x # xold;

A := get(x); /* read a data page */
if key k in A then ‘success’, return(x); /* ends search */
xold := x;
x := get(D]t]); /* re-read directory */
end;

return (‘search fails’);
end;

3.2. Insertion Algorithm

The insertion operation in an extendible hash file consists of
(1) applying the hashing function to the key to obtain the pseudo
key, (2) examine the first g bits OI the pseudo key to determine the
directory entry to be read, (3) reading the directory entry to obtain
a pointer to a data page, (4) reading the data page to search for
the existence of the same key, and (5) inserting the key in the data
page, if the key does not already exist. When inserting the new
key, if the data page is full, then a split is performed, resulting in a
new data page to be created and at least one directory entry to be
updated. For now we will ignore the issue of directory expansion
(i.e., doubling in size). We will revisit this issue briefly in the final
section of this paper.

Two insertion operations may interfere even when they are
inserting digerent keys. Undesirable interference may be elim-
inated by requiring the insertion operation to hold locks on both
the directory entries and the data page that it updates till the end
of the operation. In our algorithm, however, the need to hold locks
on the directory entries is avoided by requiring the insertion opera-
tion to perform verification of the content of the directory entry it
has previously read after locking the data page and be/ore perform-

ing updates on the data page. If vetillcation fails, the operation
would unlock the page and lock a different one, and perform
another verification. The insertion operation never blocks once its
first lock is granted, therefore deadlock is eliminated.

In handling splitting, our algorithm requires that the newly
allocated page be locked until the aIfected directory entry(entries)
is(are) updated. Inherent in the dynamic hashing algorithm,
however, is the complication that when a key k is to be inserted
into a page which is already full, one split may not be enough.
When splitting occurs, the local depth of the splitting page is incre-
mented by one and a new page is allocated in the database. The
original key range in the splitting page is divided in half, with the
higher half distributed into the new page and the lower half
retained in the splitting page. One of these two pages, say p, now

contains the key range that includes k. It is noted that in extreme
cases p may be full again before k is inserted. This occurs when
all the existing records in the splitting page are all hashed into the
halved-key-range that contains k. When this occurs, p needs to be
split again before k can be inserted. This process must continue
until k finally falls in a page which is not full. However, the

-243-

number of splits required, and therefore the number of new pages
need to be allocated to allow k to be inserted, can be determined
from the contents of the splitting page when it is first examined.
We will denote this number to be n. In general, n ranges from 0
to log,(2d-‘.d)-l, where d is the global depth and 1.1 is the local
depth of the splitting page before splitting.

The way our concurrent insertion algorithm deals with the
above complication is to (1) have the splitting page as well .zs n/l
the newly allocated pages in the database locked, (2) rearrange
contents of these pages in private work space and allowing k to be
inserted, (3) write the newly allocated pages back to the database,
(4) update all the allected directory entries, (5) unlock all new
pages, (G) write the splitting page back to the database, and finally
(7) unlock the splitting page. One may choose to combine steps (5)
and (7) together as the last step, but that is not strictly necessary.
Note that during the entire operation no directory entrirs are
locked and all search operations proceed without being blocked. In
particular, in step (4) above, when multiple directory entries are
updated, they are updated one by one without having to be

updated all in one atomic action. It is assumed, however, that
updating any single directory entry is atomic, as well as writing
any single data page to the database.

We provide the definition of our insertion algorithm below,
and the formal proof of correctness is presented in Section 4.

3.3. Deletion Algorithm

A deletion operation in an extendible hash file consists
roughly of the same set of steps as the insertion operation, except
that it needs not to deal with the issue of overflow and page split-
ting. For our purpose, as mentioned in the beginning of this sec-
tion, we will ignore the issue of underflow and compaction. There-
fore syntactically a deletion operation is just like an insertion
operation that does not encounter overflow. For brevity, we do
not include a formal definition of its algorithm.

Definifion o/ fhe Insertion Aigorilhtn

Algorithm Insert(given key k);
begin

hashing:
Calculate k’ = h(k)= bob, b,-,;

getpointer:

read d, b,ase; /* the global depth and base address of the directory D*/
t := bobI bd-,; /* take the initial d bits of k’ */
x := get(D[t]); /* D(t] is the t-th entry in D */

lock-and-verify:
xold := x;
lock (x);
x := get(D[t]); /* re-read directory entry */
do while xold # x; /* verificat.ion loop */

unlock(x);
xold := x;
; :I (pe;.(D[t]); /* re-read */
oc x,

end;
probe:

A := get(x-+p); /* read data page p pointed to by x */
if key k in A then ‘error duplication’, return;

insertion:
case 1. bl < c /* no need to split, where c is the capa.city of a page */

A := pageinsert (A,k);
case 2. fi[= c /* split required; assume no directory doubling */

n := number of new pages required;

Yl,YZ,...,Y, := allocate n new pages in database;
lock (yl,y2,...,yn); /* keep new pages locked */
A, B,,B, ,.., B, := rearrange old A and II’s, adjust I.d, insert k;
for i = 1 to n do;

put (@,y;--rp); /* write l3’s into database */
end;

directory.modify(D,y,,..,y,);

unlock (YI,..,Y.);
put@, x+p);
unlock(x);

end;

The function of directory.modify is

Procedure directory.modify(D,y,,..,y,);
begin

for all directory entries j affected by split do;
i := subscript of newly allocated page containing key range of entry j;

put (Yij WI);
end;

end;

-244-

3.4. Discussion of Performance

In this subsection we briefly discuss how our proposed algo-
rithm compares with “standard techniques”. To our h?st
knowledge, there has been little discussion of concurrent opcrnt,ions
in extendible hashing in the literature. Therefore we will rwsunle
the “+andard technique” in this case to be two-ph,ase locking
(OPl,). Using 2PL, a search operation must (1) obtain a shared-
lock on the directory entry, (2) obtain a shared-lock on the data
page pointed to by the directory entry, (3) perform search and
then release both locks. An insertion/deletion operation must (1)
obtain an exclusive-lock on the directory entry, (2) obtain an
exclusive-lock on the data page pointed to by the directory entry,
and (3) perform updates and release both locks. If the insertion
encounters the need to split the data page, it must additionally
acquire exclusive locks on all directory entries alIected by the split
before updating these entries and before releasing any lock that it
has acquired.

We first show that the standard technique is prone to
deadlocks. Consider two adjacent directory entries d, and d,
pointing to the same data page p where p currently hw a local
depth which is 1 less than the global depth. Two insertion opera-
tions I, and I2 are run, one with a pseudo key mapped to d, and
the other to d,. Consider the following interleaved execution
sequence using the standard technique:

I, locks d,;
I, locks d,;
I, locks p;
I, reads p and encounters overflow;
I, attempts to lock d,;
I, attempts to lock p;

The two operations are now deadlocked

Also, using the standard technique, while a search operation
is never blocked by another search operation, it may be blocked by
an insertion operation, and vice versa. In our algorithm, a search
operation is never blocked by an insertion operation. Furthermore,
in our algorithm, insertion operations do not have to acquire a lock
on the directory entry before reading it, resulting in savings in
locking overhead. The exact nature of the performance of the
algorithm as compared to the standard technique would require
additional analysis.

While the proposed algorithm ofTers freedom from deadlocks,
potentially higher level of concurrency and savings in locking over-
head, it is conceptually simple and should be just as easy, if not
easier, to implement. The only additional cost in the proposed
algorithm is the cost of verification. The search operation is poten-
tially required to perform verification of the content of the direc-
tory entry previously read. This veritication is needed only when
the key desired is not found. The insertion algorithm is always
required to perform verification. However, it can be argued that,
when a verification is performed on a directory entry, the likeli-
hood that the latter is memory-resident (i.e., in the buffer pool) is
very high. This is true even if one does not in general keep the
entire directory in memory. Therefore the cost of verification due
to re-reading the directory entries is but a few memory accesses,
rlllrl can be largely ignored.

Assumptions:

(1) The database is finite in size. In other words, there exists a
bound on the global depth.

(2) Each search/insertion/deletion operation consists of a
sequence of read and write steps. Each read/write step
involves a data granrrle which is either a directory entry or a
data page. We aSsume that each read and wrife step on such
data granule is guaranteed to be atomic by the underlying
system, on top or which the current algorithms are imple-
mented. In other words, we assume that the gef and put steps
in the definition of the algorithm are atomic steps. Note that
this assumption can be supported by a synchronization
mechanism at a lower level if necessary.

In order to provide a proof of correctness the criterion of
correctness must first be articulated. We first give the following
definitions before we discuss the criterion of correctness.

Definition. A schedule is a sequence of steps, each of which
is in the form of A,(OP). The action A can be read (R) or write
(W). The data granule is z, which can either be a directory entry,
denoted as d, or a data page, denoted as p. OP is an operation,
which may either be a search operation, denoted as S, which con-
sists of two steps R,, and R,, or an insertion/deletion operation,
denoted as I, which consists of at least three steps, R,, R, and WP.
(Additional lVP and W, may also appear in an insertion operation.)
An operation can also be denoted, together with the key k of the
record to be operated on, as S(k) or I(k).

Ezatnplc. An example of a schedule is

4. Proof of Correctness

To show that the above algorithm is correct, we use the fol-
lowing steps:

(1) Show that all operations are deadlock-free and will terminate.

(2) Show that the search operation is correct.

(3) Show that the insertion/deletion operation is correct

in which three operations S,I and ?’ are involved.

Definifion. Let A and A’ be two steps in a schedule. We say
that A < A’ if A occurs before A’ in the schedule.

Ezample. In the above example schedule, Rd(J) < W,(I)

Criferion 01 Correctness. The unit of atomicity used for the
purpose of defining correctness is the operation. In other words, the
algorithm is correct if any interleaved schedule C that the alge
rithm allows is equivalent (i.e., having the same net effect) to eotne
serialized execution SE of the same set of operations, subject to an
additional restriction to be described in the next paragraph. The
notion of “having the same net effect” is defined as follows: if a
search operation fails(succeeds with record r) in C it also
fails(succeeds with record r) in SE, and if an insertion/deletion
operation succeeds(fails) in C it also succeeds(fails) in SE.

We lirst motivate the additional restriction, followed by t,he
formal definition of the criterion of correctness. It is spurious to
consider an interleaved schedule C correct if it results in a failure
of a search operation (i.e., the search operation does not find the
key it is looking for) while the search operation starts in C after an
insertion operation that inserts that key has finished its last step.
For example, consider an interleaved schedule C =
< W,(I) ,..., R,(S),..> and assume that I inserts key k in page p
and W,(I) is its last step, S searches for key k and fails, and no
deletion operation is involved in this schedule. While one may find
the net result of schedule C equivalent to that of a serialized exe-
cution where S is run before I, it is meaningless to consider C
correct. Therefore we define a more meaningful and more intuitive
criterion of correctness, while retaining the basic notion of atomi-
city at the operation level, as follows:

A schedule C of an interleaved execution of a set of
search and insertion/deletion operations is correct if the
net eflect of C is equivalent to some serialized execution
SE of the same set of operations s.t. if the last step of
OF’, is before the first step of OF’, in C then OP, is
before OP, in SE.

-245-

4.1. Proof of Termination

Lemma 1. All operations terminate.

Proof. Since no operation would hold any lock while wailing
for another, no circular wait-for is possible, therefore no deadlock is
possible. Therefore the termination proof amounts to proving that
the potential loop in the operation will terminate. All operations
potentially involve a loop of re-reading a directory entry. Given an
operation 0 that involves such a loop, the loop in 0 terminates
when the content of the last directory entry read is the same as
that of the previous directory entry read. The content of any
directory entry would change only when a split occurs in the data
page that the directory entry points to. Since the number of times
that any data page can split is bounded by the log,(N), where iV is
the maximum number of pages allowed in this system, i.e., it is
bounded by the maximum global depth of the system, the number
of times the value of a directory entry will change is bounded by
log,(N). Therefore the loop of re-reading the directory entry in 0
will terminate.

4.2. The Search Operation is Correct

Lemma 2. The search operation is correct.

Prooj. To prove that search operations are correct, we inves-
tigate what could possibly be the cause for it, to be incorrect.
Since all search operations terminate, they either succeed or fail.
We consider each of these two cases separately.

(i) If a search operation S succeeds, i.e., if it finds the key it
is looking for, then it must be correct. This can be shown a.~
follows. Suppose the record it finds is r. Then there must exist. an
insertion operation I that inserts r. We can construct an
equivalent serialized execution in which I is before S. If there also
exists a deletion operation I, which deletes r, then in the
equivalent serialized execution we must let I,, be after S. This
equivalent serialized execution is legal (according to the definition
of correctness) as long as the last step of I, did not, come before
the first step of S in our interleaved schedule. Suppose the last step
of Id did come before the first step of S. Then the only way for r
to still linger in the database when S starts is for it. to be in some
data page p from out of which r was relocated (i.e., via page split)
to a diflerent page p’, from which Id deleted r, and p is still in a
transient state containing r. IIowever, if I, is finished by the time S
starts, the directory entry corresponding to r would have already
be pointing to p’. S therefore could not possibly get access to p.
Therefore the last step of I, could not come before the lirst step of
S in our interleaved schedule. Therefore the equivalent. serialized
execution is legal. Therefore the search operation is correct..

(ii) If a search operation S fails, it could fail incorrectly only
when concurrent relocation exists. In other words, we want. to
show that if a search operation S(k) fails, and the last data page
read by S(k) is p, then there exists no insertion operation I such
that I relocates the key range containing k from p to p’ # p before
S(k) reads p.

Suppose that there exists such an insertion operation I. Let d
be the directory entry corresponding to the key k. Then I, before
finishing, would first write the directory entry d and then writes p.
We denote these steps as W,,(I) and W,,(I). We also denote the
final steps of S(k) in reading directory d, reading page p, then re-
reading (i.e., verifying) directory d as R,(S),R,(S) and V,(S). By
definition of the failed search operation, the value read in R,(S)
would be equal to that of Vd(S). There are four cases of possible
interleaving:

(1) W,,(I)<R,(S) and W,,(I)<R,(S). In this case, since I relo-
cates k from p to p’, the directory entry read by S(k) should
not contain a pointer to p, therefore S(k) would not have
read p, contradictory.

(2) W,(I)<R,(S) and Rp(I)<W,,(S). In this case, similar argu-
ment as above, S should not have read p, also contradictory.

(3)

(4)

Rd(S)<W,(I) and W,,(I)<R,,(S). In this case, the V, step of
S(k) would have read the new pointer (i.e., to p’) which is not,
equal to the old pointer (i.e.,to p) read in the R,, step, con-
tradictory.

Rd(S)<Wd(I) and Rp(S)<Wp(I). In this case, S(k) would
read the old content of page p before I relocates k out of p,
contradictory to definition of I.

Therefore we conclude that there exists no insertion opera-
.

tion I that could have relocated k out of p before S(k) reacls p as
its last data Page to read before termination. Therefore the searci,
operation is correct.

Combining (i) and (ii) above we conclude that the search
operation is correct.

4.3. Insertion/Deletion is Correct

Since search operations do not update the database, they
would not affect the correctness of an insertion operation. There-
fore to prove that, insertion operations are correct we need only to
take into account interferences among insertion operations them-
selves, and between insertion and deletion.

We introduce some notations to refer to specific steps of an
insertion/deletion operations. We are interested in the tailing end
of the steps in these operations, i.e., those in the final round of the
verification loop and those at the very end. The sequence of the
read/write steps of the last round of the verification loop of an
insertion/deletion consists of <Rd,L,,V;>, where L, stands for
exclusive lock of p, V,, stands for the step of verifying the content
of the directory entry read in Rd. We denote Rd and V, in this
last round of verification as R*d and V’,. Note that by definition,
the content of the directory entry read in R’l and V’, must be
identical. After the last round of verification, the page pointed to
by the value read in R*,, is read. We denote this step as R’,.
The final sequence of steps of an insertion/deletion operation that
does not involve a split is <WP,c$ >, where W, and UP sta:d for
write and unlock of the page p which was locked between R 4 and
V’, during the last round of verification. The sequence for one
involving a split is <W,,U,W,,U,>. where U unlocks all new
pages, and W, is the last directory entry update. We will denote
these last, steps of directory update and page write as W’, and
W’,. Note that the directory entry written in IV’, may not be ,
the same entry read in R d or V’,.

Definilion. Let I be an insertion/deletion operation. We
define the range of the keys relocated by I as the migration scl of
I, denoted as migration(I).

Since the deletion operation never relocates any record, ita
migration set is obviously empty.

Lemma 9. Any two concurrent insertion/deletion operations
I, and I, always interleave correctly.

Proof. Let the key to be operated by I, be k, and that by I,
is k,. Assume without loss of generality R’,(I,)<R’,(I,). We
consider the following cases, and for each case we show that they
interleave correctly.

(1) nGgration(I,) contains k,. Then I, must update the direc-
tory entry for k,, denoted as dLS’ that I2 needs to read. TWO
subcases are considered. (i) I, reads db2 in the final round
a&r I, updates it. (i.e., W,,2(I,)<R’d(12) where W,+2(Il) is

the step in which I, updates I&.) Then I, cannot read the
page pointed to by dtp it read until I, releases the lock on it,
by which time I, would have finished all its operations on
directories. Therefore the only dependency that, the
directory entry operations can possibly induce between I,
and I, are I, giving to I,. Since I, will not read or write any
data pages after I, writes them, the only dependency that
the data page operations can induce are also I, giving to I,.
Therefore any interleaving between I, and I, is equivalent to

-246-

(4

serializing I, before I*, , therefore they are correct. (ii)
W, (I,)>R

t2
,,(ls), i.e., 1, reads r&e before I, updates it. In

this case Is will be forced to wait till 1, releases its lock on
the page it is splitting, by which time W,,!I,) would have

already occurred, which means V’,(I,) would have failed,
contradictory.

migrafion(1,) does not contain k,. There are also two sub-
cases. (i) migration(ls) contains k,. Let the page read in
R:,(I,) be p. I, holds a lock on p till finish. Since
R ,(I,)<R’,(I,), I, can read p (if it ever does) only after I,
is finished. Therefore the only possible dependency is I, giv-
ing to Is, therefore the interleaving is correct. (ii)
migrafion(Is) does not contain k,. In this case no conflict
can occur between I, and Is on directory entries. And since
data pages are two-phase locked,’ the interleaving must be
correct.

From the above three lemmas, one concludes that our algo-
rithms for concurrent search/insertion/deletion operations are
correct. Q. E. D.

6. Conclusion

We have presented an algorithm for synchronizing concurrent
operations in extendible hash files. The algorithm allows the
search operations to proceed concurrently with insertion operations
without having to acquire locks on the directory entries or the data
pages. It also allows concurrent insertion/deletion operations to
proceed without having to acquire locks on the directory entries.
Moreover, because at most a single lock is required at any time for
each of these operations, the algorithm is deadlock free. The algo-

rithm combines the method of verification used in the optimistic
concurrency control algorithm and the special structures of opera-
tions in extendible hash files together to yield a higher level of con-
currency as well as a lower synchronization overhead.

In this paper we ignore the issues of underflow and compac-
tion. We also did not discuss the issue of directory expansion (i.e.,
doubling) extensively. However, the latter can be handled by a
straightforward extension of the current algorithm, to require that
(1) every time a verilication (i.e., re-read) of the content of the
directory entry is performed, the global depth and the base address
of the directory are also re-read, and that (2) the old version of the
directory is carried around in memory for a specified period of
time. (Incidentally, (2) can be relaxed if the bits in the pseudo key
used to index into the directory are the suffix rather than the
prelix of the pseudo key.) If these prove to be practical to imple-
ment, directory expansion can be allowed to proceed concurrently
with starch operations. In any case, database quiescence can
always be resorted to as the method for handling directory expan-
sion

The algorithm can also be applied to handle dynamic perfect
hash files [YD84]. The dynamic perfect hash file structure employs
a method that optimizes the space requirement of the directory
used in an extendible hash file, thus rendering it more practical to
consider the directory being memory resident. However, the struc-
ture of the directory in a dynamic perfect hash file is more compli-
cated than that of an ordinary extendible hash file, and extensions
of the current algorithm must be sought for.

Acknowledgement: Work reported herein has been supported,
in part, by the Naval Electronic Systems Command through con-
bract N00039-85-C-0571.

Wei-Pang Yang is currently on leave from National Chiao
‘rung University, Taiwan, R.O.C., on a grant from Ministry of
Education. R.O.C.

References

[US771
Bayer, R. and Schkolnick, M. Concurrency of operations on
B-trees. Acta InT. 9, 1977.

[FNPS79]
Fagin, R.,
Extendible

Nievergelt, J., Pippenger, N. and Strong, H.R.,
Hashing - a fast access method for dynamic tiles,”

ACM Transactions on Database Systems, 4, 3, September
1979.

[HC85]
Hsu, M. and Ghan, A. Partitioned two-phase locking. First
International Workshop on High-Performance Transaction
Systems, September 1985.

@4831
Hsu, M and Madnick, S.E. Hierarchical database decomposi-
tion: a technique for database concurrency control. Proceed-
ings of 2nd ACM SIGACT-SIGMOD Symposium on Princi-
ples of Database Systems, March 1983.

[KP79]
Kung, 1I.T. and Papadimitriou, C.H. An optimality theory of
concurrency control for databases. ACM SIGMOD Confer-
ence Proceedings, 1979.

[RR8 11
Kung, H.T. and Robinson, J.T. Optimitic methods for con-
currency control. ACM Trans. on Database Systems, 6, 2.
June 1981.

[KS831
kedem, Z. and Silberschatz, A. Locking protocols: from
exclusive to shared locks. Journal of ACM, 30, 4, October
1983.

[LY81]
Lehman, P.L. and Yao, S.B. Eficient locking for concurrent
operations on B-trees. ACM Trans. on Database Systems, 6,
4, December 1981.

W851
Mond, Y. and Raz, Y. Concurrency control in B+ trees data-
bases using preparatory operations. Proc. of VLDB 85,
Stockholm.

[O’Nei185]
O’Neil, P. Escrow transactions permitting concurrent record
updates. First International Workshop on High-Performance
Transaction Systems, September 1985.

[Papadimitriou79]
Papadimitriou, C.H. The serializability of concurrent data-
base updates. Journal of ACM 26, 4, October 1979.

[SItSO]
Silberschatz, A. and Kedem, Z. Consistency in hierarchical
database systems. Journal of ACM, 27, 1, January 1980.

r(D841
Yang, W.P. and Du, M.W. A dynamic perfect hash function
defined by an extended hash indicator table. Proc. of VLDB
84, Singapore, August 1984.

-247-

